STATISTICAL PHYSICS OF LANGUAGE DYNAMICS

ANIMESH MUKHERJEE DEPARTMENT OF COMPUTER SCIENCE & ENGG. INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

Language Dynamics

- Language is complex adaptive system
- Evolves through the process of self-organization
- Question: How can one explain the interplay of structure and dynamics of such a system?
- Statistical Physics tools

A Physical System Perspective

Language as a whole (grammatical constructs)

Language as a collection of interactions among linguistic units

Language as a collection of utterances

A Physical System Perspective

Language as a whole (grammatical constructs)

Language as a collection of interactions among linguistic_units

Language as a collection of utterances

dynamic

Names for meanings

SPAM

Names for meanings

SPAM I Spiced HAM

Monty Python's spam comedy (1970 TV show) All the customers are Vikings. Mr. and Mrs. Bun enter Mr. Bun: What have you got, then? Waitress: Well, there's egg and bacon; egg, sausage, and bacon; egg and SPAM; egg, bacon, and SPAM; egg, bacon, sausage and SPAM; SPAM, bacon, sausage, and SPAM; SPAM, egg, SPAM, SPAM, bacon, and SPAM; SPAM, SPAM, SPAM, egg, and SPAM; SPAM, SPAM, SPAM, SPAM, SPAM, SPAM, baked beans, SPAM, SPAM, SPAM, and SPAM.... Mrs. Bun : Have you got anything without SPAM in it? Waitress: Well, there's SPAM, egg, sausage, and SPAM. That's not got MUCH SPAM in it. Mrs. Mrs. Bun: I don't want _any_ SPAM. Waitress Mr. Bun Bun Mr. Bun: Why can't she have egg, bacon, SPAM, and sausage? Mrs. Bun: That's got SPAM in it! Mr. Bun: Not as much as SPAM Vikings egg, sausage, and SPAM. Mrs. Bun: Look, could I have egg, bacon, SPAM, and sausage without the SPAM? Waitress: Uuuuuuuuugggggh! Mrs. Bun: What d'you mean uuugggh!? I don't like SPAM. Vikings: (singing) SPAM, SPAM, SPAM, SPAM. SPAM, SPAM, SPAM, SPAM... Lovely

SPAM, wonderful SPAM....

How do we associate names to objects ((e-)spam to spam)?

The Naming Game

The "Talking Heads" Experiment

Speaker

Hearer

- Perceive scene
- Choose topic
- Conceptualize
- Verbalize

interpret utterance perceive scene apply meaning point to referent

Luc Steels, Autonomous Agents and Multi-agent Systems (1998)

The Grounded Naming Game

Bleys et al.

Minimal Naming Game

Interactions of N agents who communicate on how to associate a name to a given object

Agents:

- can keep in memory different words
- can communicate with each other

Baronchelli et. al (2006)

Minimal NG on fullyconnected network

Speaker (randomly chosen From population)

SpeakerHearerBottleSearched in
hearer's
inventoryBag
Blackberry
TreeCarCarCar

Not Found!!

SpeakerHearerBottleBagAppleBlackberryTigerTreeCarApple

Add the word

SpeakerHearerBottleHearer has
it in its
inventoryBag
Apple
Apple
TreeCarTiger
inventoryTree

Phenomenology

- N_w(t) total number of words in the system at time t
- N_d(t) number of different words in the system at time t
- S(t) average success rate at time t
- N_w^{max} maximum memory required by the system
- t_{max} the time required to reach the memory peak
- t_{conv} the time required to reach the global consensus

Temporal evolution of the emergent properties

Baronchelli et al (2006)

Scaling Relations

- Assume when total # words is close to maximum, each agent has on average cN^a words
- probability for the speaker to play a given word is 1/(cN^a)

 probability that the hearer knows that word is 2cN^a/N (where N/2 is the number of different words present in the system)

Scaling Relations

- At the maximum, $dN_w(t_{max})/dt = 0$
- only possible value for exponent a is a =1/2
- So, $N_w^{max} \sim N^{3/2}$
- rewriting the same evolution equation as

$$\frac{dN_w(t)}{dt} \propto \frac{1}{cN^{1/2}} \left(1 - \frac{ct}{N^2}\right) - \frac{1}{cN^{1/2}} \frac{ct}{N^2} 2cN^{1/2}$$

and imposing dN_w(t)/dt = 0, we get t_{max} $\sim N^{3/2}$

Scaling with population size N

Baronchelli et al. (2008)

Another extreme case: agents on regular lattices

Local consensus is reached very quickly through repeated interactions. (few neighbors) Then:

- clusters of agents with the same unique word start to grow,

- at the interfaces series of successful and unsuccessful interactions take place.

Baronchelli et al., PRE 73 (2006) 015102(R)

Another extreme case: agents on regular lattices

Agents on regular lattices

Regular lattice: dependence on system size N

- Memory peak
 - N_{max}^w ~ N
 - t_{max} ~ N

average maximum memory per agent: finite!

Convergence time: t_{conv} ~ N³
 => Slow process!
 (in d dimensions ~ N^{1+2/d})

Small-world

N nodes forms a regular lattice. With probability p, each edge is rewired randomly

=>Shortcuts

N = 1000

- Large clustering coeff.
- Short typical path

Watts & Strogatz, *Nature* **393**, 440 (1998)

Naming Game on a Small-world

p=0 : linear chain

p~1/N :Small world

Naming Game on a small-world

Maximum memory ~ N Convergence time ~ N^{1.4}

	Complete graph	dimension 1	small-world
maximum	N ^{1.5}	Ν	Ν
memory			
convergence time	N ^{1.5}	N ³	N ^{1.4}

Better not to have all-to-all communication, nor a too regular network structure

What about other types of networks?

Networks: Homogeneous and Heterogeneous

1.Usual random graphs: Erdös-Renyi model (1960)

N points, links with probability p: static random graphs

Poisson distribution

Networks: Homogeneous and Heterogeneous

2.Scale-free graphs: Barabasi-Albert (BA) model

(1) **GROWTH**: At every timestep we add a new node with *m* edges (connected to the nodes already present in the system).

(2) PREFERENTIAL ATTACHMENT :

The probability Π that a new node will be connected to node *i* depends on the connectivity k_i of that node

 $\Pi(\mathbf{k}_{i}) = \mathbf{k}_{i} / \Sigma_{j} \mathbf{k}_{j}$

A.-L.Barabási, R. Albert, Science 286, 509 (1999) Workshop on Social Networks

NG on heterogeneous networks

Pair selection strategies:

- select first a speaker i and then a hearer among i's neighbors
- select first a hearer i and then a speaker among i's neighbors
- select an edge at random and its two extremities at random as hearer and speaker

can be important in heterogeneous networks because: -a randomly chosen node has typically small degree -the neighbor of a randomly chosen node has typically large degree

NG on heterogeneous networks

Different behaviours

shows the importance of understanding the role of the hubs!

NG on heterogeneous networks

Speaker first: hubs accumulate more words

Hearer first: hubs have less words and "polarize" the system, hence a faster dynamics

NG on homogeneous and heterogeneous networks

➤Long reorganization phase with creation of correlations, at almost constant N_w and decreasing N_d

similar behaviour forBA and ER networks

Scaling on BA and ER networks

Applications

- As an opinion formation model in social networks
- As a "leader election" model in sensor networks
- Autonomous development of a common language among sensor nodes at exploration stage after network deployment
- In social tagging systems like del.icio.us, flickr.com etc

Category Game

 Emergence of categorization from scratch without any pre-existing categorization in a group of individuals who interact in a pairwise way without any central coordination

Motivation

- Color categorization (a central issue both in linguistics and in cognitive science)
 - evolution of English color categories
 - [english color terms gradual semantic shift from largely brightness color concepts (Old English) to almost exclusively hue concepts (Middle English)]

Motivation

- The World Color Survey(WCS)
- color systems across language are not random
- rather exhibit certain statistical regularities
- CG is able to reproduce qualitatively and quantitatively the empirical data gathered in the WCS

The CG Model

The CG Model

 Both the speaker and hearer are presented with a scene of M >= 2 stimuli (objects)

no two stimuli appearing in the same scene can be at a distance closer than d_{min}
 > the only parameter of the model encoding the finite resolution power of any perception

two stimuli colliding on the same perceptual category → a new boundary is created in the middle

Speaker browses its list of words associated with the perceptual category containing the topic

- 2 possibilities:
- Chooses the last winning word
 Otherwise, choose the newly created one

---- perceptual category — linguistic category Workshop on Social Networks

Categories and pressure of environment

ThankYou

Any Questions ?