TUTORIAL 4

- 1) Given the poset ({1, 2, 3, 5, 6, 7, 10, 20, 30, 60, 70}, |)
 - a) Draw the Hasse Diagram for this poset.
 - b) Find the maximal elements.
 - c) Find the minimal elements.
 - d) Find the greatest element
 - e) Find the least element
 - f) Find all upper bounds of {2, 5}
 - g) Find the least upper bound of {2, 5} (if it exists)
 - h) Find all lower bounds of {6, 10}
 - i) Find the greatest lower bound of {6, 10} (if it exists)
 - j) is this poset a lattice? Justify your answer
- 2) Let S = {x, y, z}, and consider the set P(S) with relation R given by set inclusion. Is R a partial order?
- 3) Prove that the direct product of any two distributive lattice is a distributive.
- 4) Prove that if l_1 and l_2 are elements of a lattice < L; V, $\Lambda >$ then $(l_1 \ V \ l_2 = l_1) \leftrightarrow (l_1 \ \Lambda \ l_2 = l_2) \leftrightarrow (l_1 \le l_2)$
- 5) If [L, Λ , V] is a complemented and distributive lattice, then the complement of any element a \in L is unique.

Hint:

Question 3: Let L1 be the two element lattice with universe $\{x_0,x_1\}$, and $x_0 < x_1$. We sometimes say L1 \cong 2. Let L2 be another two element lattice with universe $\{y_0,y_1\}$, and $y_0 < y_1$. Then L1×L2 \cong 2×2 is just the lattice whose Hasse diagram looks like a diamond. The top is the element (x1,y1). The bottom is (x0,y0). The other elements (x0,y1) and (x1,y0) are incomparable.