Solutions of Tutorial II Discrete Structures (CS21001)

Autumn Semester 2014

August 4, 2014

- 1. (a) 2^{n^2} . Number of different relations is the cardinality of the powerset of Cartesian Product $(A \times A)$.
 - (b) $2^{n(n+1)/2}$ Consider matrix representation of a relation. A symmetric relation can be formed by combining any number of elements in the upper-diagonal matrix and the the principal diagonal. Total number of elements = n(n-1)/2 + n = n(n+1)/2.
 - (c) $2^{n(n-1)/2}$. If reflexive then $(a, a) \in R \quad \forall a \in A$. Consider graph representation of the relation R. As it is symmetric we consider only undirected graph. Total number of edges in the graph is n(n-1)/2.
- 2. We know that if $a \equiv b \pmod{m}$ then $m \mid (a b)$.

Reflexive : Note (a - a) = 0 is divisible be m i.e. $a \equiv a \pmod{m}$.

- Symmetric : Suppose, $a \equiv b \pmod{m}$ i.e. m | (a b) i.e. $a b = k \cdot m$. So, $(b - a) = (-k) \cdot m$ i.e. m | (b - a) i.e. $b \equiv a \pmod{m}$.
- **Transitive :** Suppose, $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$. So, we can write $a b = k \cdot m$ and $b c = l \cdot m$. Adding both of them we get, $a c = k \cdot m + l \cdot m$ i.e. $a c = (k + l) \cdot m$. Therefore, $a \equiv c \pmod{m}$.

The equivalence classes are $[0], [1], \cdots, [m-1]$.

- 3. Necessity : If R is symmetric then, $(a,b) \in R$ and $(b,a) \in R$ i.e. $(a,b) \in R^{-1}$. Therefore, $R \subseteq R^{-1}$. Similarly, if $(a,b) \in R^{-1}$, then $(b,a) \in R$ and as R is symmetric, so $(a,b) \in R$. Therefore $R^{-1} \subseteq R$.
 - **Sufficiency :** Now consider $R = R^{-1}$. Suppose $(a, b) \in R$, then also $(a, b) \in R^{-1}$ i.e. $(b, a) \in R$. Therefore, R is symmetric.
- 4. (a) Use mathematical induction. The result is trivially true for n = 1. Assume, \mathbb{R}^n is symmetric. Suppose, $(a, b) \in \mathbb{R}^{n+1}$ for $a, b \in A$. Now, $\exists c \in A$ such that $(a, c) \in \mathbb{R}^n$ and $(c, b) \in \mathbb{R}$. As \mathbb{R}^n is symmetric, $(c, a) \in \mathbb{R}^n$ and also $(b, c) \in \mathbb{R}$. Therefore, $(b, a) \in \mathbb{R}^n \circ \mathbb{R} = \mathbb{R}^{n+1}$.

(b) Consider any $(a, b), (b, c) \in \mathbb{R}^n$. Thus in the graph representation, there is a path of length n from a to b and from b to c in R. Then we have a path of length 2n from a to c in R.

Since R is transitive, we can replace the edges in this path with their two-step counterparts (they must exist since R is transitive). The n = 3 case would look like this:

Figure 1: Graph

This constructs a path of length n from a to c. Thus, $(a, c) \in \mathbb{R}^n$ and \mathbb{R}^n is transitive.

5. The result follows from $(R^*)^{-1} = (\bigcup_{n=1}^{\infty} R^n)^{-1} = \bigcup_{n=1}^{\infty} (R^n)^{-1} = \bigcup_{n=1}^{\infty} R^n = R^*.$