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1 Sentence Graph Construction

Sandhi: The phonemes at the word boundaries
are often merged using phonetic transformations
called as “sandhi”. “sandhi” is primarily an out-
come of the euphonic assimilation in speech, that
gets reflected in writing as well (Goyal and Huet,
2016). The proximity between phonemes is the
sole criteria for applying sandhi

The analysis of a construction with sandhi in it
can often lead to a word splits with possible gaps
and overlaps between them. In Figure 1b and 1c
we can find the word splits have overlaps between
them. This happens as the multiple phonemes join
together to form a single phoneme at the time of
sandhi. Rarely, instance like Figure 2d occurs.
Here the sandhi led to generation of an additional
phoneme ‘n’ it it. Figure 1a is a case where the
word splits do not have overlap with the sandhied
version. At the same time, the phonetic change in
the sandhied version can be observed.

Figure 1: Instances of sandhi formation in Sanskrit. a)
Phonetic transformation of ‘u’ and ‘ā’ to ‘v’ in the joint
form. b) ‘ā ’ and ‘ı̄’ at the word boundaries join to-
gether to form a single ‘e’ in the final form, resulting
in both the split words having an overlap at the junc-
ture (Goyal and Huet, 2016). c) and d) Two possible
analysis for the sandhied chunk ‘kurvannāpnoti

Figure 2 shows the possible segments and the
desired segmentation solution for a sentence,

‘satyam. brūyātpriyam. brūyānnabrūyātsatyamapri-
yam. priyam. canānr.tambrūyādes.adharmah. -
sanātanah. ’. The Sanskrit Heritage Reader
essentially shows all the unique segments that are
part of at least one segmentation solution. For
example, in Figure 2, the word ‘satı̄’, numbered as
9, is part of 264 out of possible 1056 segmentation
solutions. We call such a representation of the
segments as a shared forest representation.

Word order in a sentence Kulkarni et al. (2015)
perform an analysis over the extent to which free
word ordering is allowed in Sanskrit. The au-
thors identifies that constructions in Sanskrit fol-
low weak non-projectivity. But, their analysis re-
veals that constructions in poetry violates this es-
pecially for adjectival and genitive relations. In
pedagogical systems, the poetry is converted to
corresponding prose follows the regularities men-
tioned in Kulkarni et al. (2015). For example
the prose order for the sentence given above is
‘satyam brūyāt priyam brūyāt , satyam apriyam na
brūyāt. priyam ca na anrt.am brūyāt , es.a sanātanah.
dharmah. ’. The order of adjectives and modifiers
are violated in poetry as it can be seen from the
last 3 words of the prose. We use the Digital Cor-
pus of Sanskrit for our experiments where the con-
structions primarily are written in poetry format.

Lexical juncture System The Sanskrit Heritage
Reader uses finite state methods in the form of a
lexical juncture system to obtain the possible seg-
ments for a given sentence. We follow the defini-
tions as used in Goyal and Huet (2016) and it is
recommended to refer the work for a detailed re-
view of the system.

A lexical juncture system on a finite alphabet Σ
is composed of a finite set of words L ⊆ Σ∗ and
a finite set R of rewrite rules of the form u|v →
f/x (Kaplan and Kay, 1994), with x, v, f ∈ Σ∗

and u ∈ Σ+. In this formalisation, Σ is the set of
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Figure 2: a) All the phonetically valid segmentations for ‘satyam. brūyātpriyam. brūyānna-
brūyātsatyamapriyam. priyam. canānr.tambrūyādes.adharmah. sanātanah. ’ from (subhās. itam) as output by Sanskrit
Heritage Reader (SHR) and b) correct segmentation selected from the candidate space.

phonemes, R is the set of sandhi rules, and L is
the vocabulary as a set of lexical items. Though
every entry z ∈ L is an inflected word form, it
additionally contains the morphological analysis
of the word as well. For clarity, we will denote
every entry z additionally as a 3-tuple (l,m,w),
where l denotes the lemma of the word, m de-
notes the morphological class of the word, w de-
notes the inflected word form generated from l and
m. Given a sentence s, a valid segmentation solu-
tion/sandhi analysis, Si, can be seen as a sequence
〈z1, σ1, k1〉; ...〈zp, σp, kp〉. Here, 〈zj , σj , kj〉 is a
segment with zj ∈ L, kj ∈ N denotes the position
at which the word wj begins in the sentence s and
σj = [xj ]uj |vj → fj ∈ R for (1 ≤ j ≤ p).

For s, there can be multiple possible sandhi
analyses. Let S be the set of all such possible anal-
yses for s. We find a shared forest representation
of all such sandhi analyses

D(S) =
⋃
Si∈S

Si

A segment 〈zj , σj , kj〉 ∈ D(S), iff 〈zj , σj , kj〉
exists in at least one Si. Two segments 〈zi, σi, ki〉
and 〈zj , σj , kj〉 are said to be ‘conflicting’ if ki ≤
kj < ki + |wi|−1 or kj ≤ ki < kj + |wj |−1. No
two conflicting segments exist in a valid segmen-
tation solution.

Converting the candidate space into graph

We convert the shared forest representation of
the candidate segments into a sentence graph
G(V,E). For the graph G, a node v ∈ V is a seg-
ment 〈zj , σj , kj〉, where zj is a 3-tuple (l,m,w).
This representation scheme for the segment is in-
dispensable for the task. For example, in Figure
2a, the nodes 1, 2 and 3 differ from each other

only based on the morphological tag they carry. It
is represented using the m attribute of the 3-tuple
(l,m,w). Similarly nodes 1 and 11 differ from
each other only based on their position informa-
tion represented by kj in the segment.

Figure 3: A subsequence of sentence from Figure 2

Figure 4: Sentence Graph constructed for the sub-
sequence in Fig. 3. Edges are bidirectional. For better
illustration of construction details, node 17 is omitted.

The proximity of words to one another is not
suggestive of the syntactic or semantic compat-
ibility between the nodes. Hence, we form an
edge between every pair of non-conflicting nodes.
There exists an edge e ∈ E between every pair of
vertices vi, vj ∈ V , provided vi, vj are not ‘con-
flicting’ with each other, and thus, can potentially
be part of the same segmentation solution. Using
the character sequence shown in Figure 3, which is
a sub-sequence taken from the sentence in Figure
2a, we construct its corresponding sentence graph
as shown in Figure 4. In Figure 4, node 15 has
edges to all other nodes except the nodes 16 and



17 (node 17 not shown in the figure). The three
nodes share the same lemma and inflected word-
form but differ by their morphological class. Sim-
ilarly, nodes 18 and 19 are conflicting as they over-
lap in their input text positions and are suggested
as alternatives.

2 Inference Procedure

Visualisation of Inference in Clique-EBM
Figure 5 shows our approach for obtaining one
maximal clique. Here we show the clique selec-
tion approach for the input sequence in Figure 3.
The construction approach of sentence graph en-
sures that we always receive a clique. By this
method, we find a maximal clique starting from
each of the node vi ∈ V We obtain the score for
a clique by factoring it as the sum of the scores of
its edges.

Figure 5: Maximal clique selection for the input se-
quence in Figure 3. The nodes in VTi

at each step are
shown as coloured nodes.

Inference for Tree-EBM For Tree-EBM, like
Takahashi (1980), we use the Prim’s algorithm as
our search procedure for finding the relevant can-
didate nodes. The inference procedure identifies
a tree that spans over a subset of nodes, such that
the subset of ndoes forms a phonetically valid so-
lution. For every node vi ∈ V , we perform the
following:

1. Initialize a tree Ti(VTi , ETi) with vi as the only
vertex and remove all the vertexes in V which
are conflicting with vi.

2. Add the vertex vj ∈ V − VTi to VTi , where
vj forms the minimum weighted directed edge
with any of the vertexes in the VTi .

3. Remove vj and all the vertexes which are con-
flicting with vj from V .

4. Repeat Steps 2 - 3 till V = ∅

3 Edge vector creation

Once the sentence graph is constructed, what re-
mains is to obtain feature vectors for the edges.
In this section we discuss how we use a corpus to
automatically obtain feature vectors for edges in
the sentence graph G. We use the Path Ranking
Algorithm (PRA) (Lao and Cohen, 2010) to au-
tomate the edge vector generation process. Here,
we will use the terms Path Ranking Algorithm
and Path Constrained Random Walks interchange-
ably (PCRW). Although, PCRW is essentially ran-
dom walks performed over metapaths filtered us-
ing PRA.

3.1 Constructing the Corpus Graph

Consider a large corpus of Sanskrit denoted as
C. A sentence in our corpus essentially con-
tains the segmented words and their correspond-
ing morphological analysis. We construct a graph
Gglob(Vglob, Eglob) from the corpus which accom-
modates not just the words but also their mor-
phological analysis. Essentially, the nodes in the
graph are of heterogeneous types. As Sanskrit is
morphologically rich and is a low resource lan-
guage, the use of lemma as a type can also be seen
as a means of combating sparsity of data. It is of-
ten not possible to obtain enough distributional ev-
idence for an inflected word-form independently.
Further, when a rare or an out of vocabulary word
appears, the nodes indicative of morphological in-
formation can serve as a back-off mechanism.

Preliminaries: Heterogeneous Information
Networks The typed network is better known as
Heterogeneous Information Networks in the In-
formation Networks community. Here, we fol-
low the terminology prevalent in the community
(Meng et al., 2015). Gglob is represented as a
large Heterogeneous Information Network (HIN)
Gglob(Vglob, Eglob). A HIN is a network where
the nodes or edges can be of different types. Shi
et al. (2017) defines an HIN as a directed graph
G

′
= (V

′
, E

′
), with an node type mapping func-

tion φ : V
′ → A and a link type mapping function

ψ : E
′ → R, where |A|> 1 or |R|> 1. Each

node v′ ∈ V ′ belongs to one of the particular types
from the node type set A : φ(v

′
) ∈ A, and sim-

ilarly for each edge e
′ ∈ E

′
in relation type set

R : ψ(e
′
) ∈ R. In our setting, we consider only

nodes to be of heterogeneous type, while all the
edges are of homogeneous type.



Figure 6: Construction of Corpus Graph Gglob for a given Corpus. The edges are bidirectional. For better clarity,
we only show partially constructed corpus. We omit the nodes of the Morphological Group type. The edges be-
tween nodes of Lemma and Morphological Class types and the edges between all the inter-type nodes for Sentence
2 are not shown in the figure. The inter-type edges are shown in dotted format. But all the edges are homogeneous
and represent co-occurrence between the nodes in a sentence.

Graph Creation Co-occurrence of two items in
a sentence is the sole criteria for edge formation
in Gglob. The type of the node does not matter
here. The edges in Gglob are directed. Hence for
every pair of nodes that have a co-occurrence in
the corpus, there exist two directed edges. Given
two nodes vg, vh ∈ Vglob, the weight for the edge
from vg to vh, Pco(vh|vg) is calculated as

Pco(vh|vg) =
count(vg, vh)

count(vg)
(1)

Here count(vg, vh) represents the count of sen-
tences in which both vg and vh co-occur. Simi-
larly, count(vg) represents the count of sentences
in which the node vg occurs.

Figure 6 shows the construction of our corpus
graph from a corpus of 2 sentences. The corre-
sponding morphological analysis for the sentences
is also shown in the figure. The HINGglob has four
object types, namely, the lemma, word, morpho-
logical class and grammatical category. The word
type corresponds to all the unique inflected word-
forms that exist in the corpus, while the lemma
type corresponds to all the unique lemmas in the
corpus. The morphological class corresponds to
the exact morphological tag a word form takes in
a sentence.

In Sanskrit, an inflection is indicative of mul-
tiple grammatical categories i.e. a morphological
tag generally represents more than one grammat-
ical categories. We abstract this and form a node
type to capture the category specific data. Gram-
matical category type is an abstraction over mor-
phological class, where we form sets of morpho-
logical classes that share one or more grammatical

categories.

Obtaining Grammatical Category From Mor-
phological Tags To be specific, the morpholog-
ical class of a word in Sanskrit is indicative of
the gender, number and declension/tense it car-
ries, depending on whether the word is a noun or
verb (Scharf, 2009). For example, if we consider
a noun, ‘rāmasya’ (of Rāma), it denotes the gen-
itive case, masculine gender and singular inflec-
tion of the noun ‘rāma’. However, only a specific
grammatical category (e.g., ‘genitive’ case imply-
ing possessiveness) might be relevant as a feature
for the task while the other categories (mascu-
line, singular) may result from the morphological
agreement requirements from the words. To ad-
dress this, we form a node of type ‘grammatical
category’, in this case a node representative of the
‘genitive’ case. This node is essentially the union
of all the genitive case morphological classes and
represents the occurrence of any genitive class en-
tity in the corpus. Similarly ‘genitive singular’
will be another node of the same type where we
take union of all the three genitive singular nodes
which vary only based on the gender.

For our HIN Gglob, we thus have object type set
|A|= 4 and the relation type set |R|= 1. Table 1
shows the number of nodes for each of the type.

Type No. of nodes
Grammatical Category 310
Lemma 66,914
Word 217,535
Morphological Class 218

Table 1: Node types and the number of corresponding
nodes in Gglob



3.2 Metapaths

The corpus graph constructed represents the co-
occurrence information between the nodes as ob-
tained from the corpus. However, considering co-
occurrence as the sole criteria can be noisy. For
example, the adjective of the subject in a sentence
may not be of any relevance to the object in the
sentence. We need to identify refined contexts that
can be potentially beneficial for the task. We iden-
tify typed paths that provide connectivity between
nodes which will provide us with discriminative
contexts. So, while existence of all the paths is
equally valid in the corpus graph, some of the
paths are more valid for the task. Once a set of
typed paths is defined, we look for connectivity
between node pairs only via the typed paths and
other sources of adjacency are ignored.

The typed paths that we use here are formally
called as metapaths in the Information Networks
literature. A metapath MP is a path defined on
the schema (A,R) and is denoted in the form of

A1
R1−→ A2

R2−→ ...Al
Rl−→ Al+1, which defines

a composite relation R = R1 ◦ R2 ◦ ... ◦ Rl be-
tween A1 and Al+1, where Al ∈ A and Rl ∈ R
(Shi et al., 2017). In our case, metapaths are se-
quences of object types as our edge relations are
of the same type.

Figure 7: Sample metapaths from the HIN Gglob. The
paths can be of lengths 1,2 or 3. The internal nodes use
the nodes rather than the type in our setting.

Constraints on the Metapath Formation We
consider metapaths of length 1, 2 and 3 (i.e., the
number of edges). The external nodes, i.e., nodes
at both ends of the metapaths can only be from 3 of
the 4 node types, namely, lemma, word and mor-
phological class. The internal nodes in the meta-
paths can belong to only 2 of the 4 node types,
namely, grammatical category and morphological
class. Though, traditionally, each unique sequence
of node types is considered to be a separate meta-
path, we make a deviation from the standard def-
inition of a metapath. For the internal nodes, we
consider every unique node rather than the node
type to construct the metapath. Figure 7 show

some sample metapaths. The internal nodes are
sub-scripted to show the use of nodes (different
instances of the type) and not the types. The lin-
guistic motivation for the deviation is quite intu-
itive as we need to capture the distinctive syntac-
tical patterns prevalent in the corpus via different
metapaths. Please note that when the type “mor-
phological class” is used as an external node, only
the type information is used.

3.3 Automatic Metapath Generation and
Filtering

We use the Path Ranking Algorithm (PRA) (Lao
and Cohen, 2010) for metapath enumeration and
subsequent filtering. From any given HIN, the first
step of PRA is to identify potential metapaths ben-
eficial for a task using a supervised feature selec-
tion approach. This is a one time process. The sec-
ond step in PRA is performed at run-time (Gardner
and Mitchell, 2015). The first step requires only
the HIN.

As with the standard procedure for PCRW, we
enumerate all the possible paths MP , upto a
length of 3. From the corpus, we obtain a set of
node pairs which acts as the training dataset for
metapath filtering. Now for a given node pair,
each of the metapath acts as a template for ob-
taining a path that connects the nodes. The path
so formed should satisfy the metapath constraints.
Now, the path so obtained will have a non-negative
real value score, which is a function of the edge
weights of the edges that forms the path. Thus
each metapath acts as a feature for the node pair.

Then we use a supervised feature selection ap-
proach for identifying a fixed set of metapaths
MPfinal from MP . The path enumeration and
filtering is a one time process. We experiment
with 8 different metapath filtering approaches. We
first limit the maximum possible path length of the
metapaths to be at values 2 and then 3. This setting
enumerated about 4800 and 800,000 metapaths re-
spectively, having sufficient evidence in the cor-
pus. We kept a threshold that a metapath should
exist between at least 10 different pair of nodes.
For filtering the paths we use two different fea-
ture selection approaches. One method is recur-
sive feature elimination (RFE) with linear regres-
sion as the estimator and the other is Mutual Infor-
mation Regression (MIR) (Kraskov et al., 2004).

The estimators use regression approaches and
the training data require labels for feature selec-



tion. We experimented with point-wise mutual in-
formation (PMI) in one setting and co-occurrence
probability, henceforth to be referred to as bigram.
We can see this as a bigram due to the direction-
ality of the word pairs involved. But, ‘bigram’ is
also part of one of the metapaths we generate and
hence we remove it from our feature set, when
used as a label. While performing feature selec-
tion for the set with all the metapaths up-to length
3, we initially used a correlation based filtering to
reduce the feature space to 10,000 metapaths as
it was costly to perform the aforementioned su-
pervised regression tasks on 800,000 features. For
each feature, we find its correlation with the label
and experimented with different sizes at which the
filtering process was stopped. For the filtering of
metapaths by the estimators, we use a training set
of 10,000 word pairs from the corpus. The train-
ing set was obtained by stratified sampling based
on frequency of word co-occurrence. In Lao and
Cohen (2010), the authors used a logistic regres-
sion classifier setting for the selection of metap-
aths, while we use a regression setting.

Generating PCRW Vectors for the edges in the
sentence graph: For each edge in the sentence
graph G, we obtain a vector where each com-
ponent of it is a non-negative real valued score.
This forms the second step of PRA where the path
scores for the node pairs via each of the filtered
metapath fromMPfinal are calculated.

Figure 8: A pair of nodes from the sentence graph G
for input sequence in Figure 3. Every node pair has 2
directed edges.

Figure 9: Metapath based feature vector for any di-
rected edge in the sentence graph G

For a given node pair in G, the product of edge
weights for each path is calculated as the path
weight. Then, the negative logarithm of the values
so obtained becomes the feature value. Given the
nodes vh, vg, vk ∈ Vglob, where vh, vg are the ex-
ternal nodes and vk is an internal node, the values
for paths of length 1 and 2 (this can be generalised

System P R F
EdgeGraphCRF 77.6 79.68 78.63

supervisedPCRW 73.28 82.73 77.72
Tree-EBM 88.7 91.25 89.96

Clique-EBM 94.41 96.31 95.35

Table 2: Performance evaluation of the competing sys-
tems for the word-prediction task. P is precision, R is
recall, and F is the F-Score.

to length 3 as well) respectively are

S(Pathvh,vg) = −log10Pco(vg|vh) (2)

S(Pathvg ,vk,vh) = −log10(Pco(vh|vk)·Pco(vk|vg))
(3)

Figure 10: Sample scores obtained for each metapath
for a given directed edge in the sentence graph G.

Figure 10 shows the sample metapath score ob-
tained for a specific edge in the sentence graph G.
All the values obtained will be non-negative real
valued numbers.

4 Results

Word prediction task results of all models on
DCS10K: Table 2 provides the best results for
word prediction in terms of macro averaged pre-
cision, recall and F-score for each of the system
when tested on ‘DCS10K’.

Hyper-Parameters: We vary our PCRW feature
vector size from 400 to 2000 in steps of 100. A
vector size of 1500 gives the best results for our
system. The neural network in our system by de-
fault has 1 hidden layer for learning the energy
function. Adding additional hidden layers to the
neural network did not improve over the best re-
sults obtained. Marginal improvement was ob-
served by increasing the hidden layer size from
500 to 800 and finally to 1200 which was the fi-
nal setting for our model. We used dropout in
the neural network with a dropout probability of
0.4 for both the input layer and hidden layer, af-
ter experimenting with different settings. We ex-
periment with different loss functions as discussed
in LeCun et al. (2006). The standard Hinge loss,
with the fixed margin replaced with squared Ham-
ming distance margin function for trees, was final-
ized after comparing the performance of system



PCRW Vector Size 1500
Hidden Layer size 1200
Learning Rate α = 1× 10−5

Margin Loss Discount ν = 1
Dropout Rate p = 0.4

Table 3: Hyper-parameter settings for Clique-EBM

with square-exponential loss and Log loss func-
tion. The reason for better performance of the
modified Hinge loss may be due to taking into ac-
count the structural similarity of the system output
and gold standard clique.

Wall time analysis of our model: Our architec-
ture primarily requires 2 important tasks. One is
the generation of PCRW vectors and the other is
the search for the clique using our energy based
model. For the former, we use the 2-Step PRA
algorithm. The first step is an offline one time
process, and takes about 34.73s to generate all
the 800,000 path scores for a word pair. We had
10,000 such word pairs during the filtering. But
we used 40 threads to parallelise the path score
generation. The whole process took less than
3 hours including the overhead involved in the
threads.The correlation based approach to iden-
tify 10,000 metapaths from the original set took 2
hours to complete with 12 threads. For feature se-
lection, RFE took 395 minutes to filter 1500 meta-
paths while MIR took 220 minutes to complete.

Now at runtime, it takes approximately 66 ms
to generate a feature vector with 1500 metapaths
for an edge. On an average, the input graph con-
tains about 1178 edges. So, in addition to time for
generating the vectors, a graph with 1,178 edges
takes about 1.94 seconds for training. For testing,
a similar graph would take 0.69s.

Our overall training was completed in 10.5
hours and the testing on DCS10k was completed
in 2 hours. All our computations are performed on
an Intel Xeon machine with 48 threads (2 CPU x
12 cores x 2 threads) and 256 GB RAM.

Morphological class specific assessment: Ta-
ble 6 shows top 5 such instances where the mis-
predictions are skewed towards a particular mor-
phological class for Tree-EBM. We find that the
corresponding morphological classes for Nomina-
tive case and Accusative case often do get con-
fused by the system. We suspect, this is due to the
presence of sentences in active and passive voices
where a word which takes in the role of object in

Max Path
Length

Feature
Selection Label P R F

2 MIR PMI 92.81 95.19 93.98
3 MIR PMI 82.12 86.08 84.05
2 MIR Bigram 94.41 96.31 95.35
3 MIR Bigram 93.57 95.47 94.51
2 RFE PMI 80.85 87.61 84.09
3 RFE PMI 84.74 86.86 85.79
2 RFE Bigram 83.59 88.95 86.19
3 RFE Bigram 85.94 89.31 87.59

Table 4: Effect of PCRW Vector sets on the proposed
model (Word Prediction)

Type Word Recall Word++ Recall
Noun 96.869 88.998
Verb 95.911 94.424
Compound 93.518 91.067
Indeclinable 97.095 96.472

Table 5: System performance on the coarse level POS

the sentence appears in accusative and nominative
cases respectively. The rules 2.3.1 and 2.3.2 of
As. t.ādhyāyı̄, the grammar treatise in Sanskrit, de-
scribes the phenomenon (Kiparsky, 2009; Sharma,
1987). So it is possible that the same set of lem-
mas might have been frequently appearing in both
the morphological classes. Similarly the mascu-
line and neuter gender nouns for the instrumen-
tal, ablative and genitive cases also gets confused
by the system. Interestingly it can be observed
that these morphological classes often have sim-
ilar inflections across different lemmas. The final
column in the Table 6 presents the share of lem-
mas having the same final form for the correspod-
ning classes from a sample of 200,000 sentences
from DCS. Table 7 shows the mispredictions for
the same pair of morphological classes in Clique-
EBM. In Clique-EBM we couldn’t find any such
regularities in the mispredictions. We hypothesise
that for incorporating knowledge of dependency
structure will be beneficial to reduce the mispre-
dictions further.

We find similar trends for the Lattice-EBM
models and the EdgeGraphCRF model as well.
We find that majority of the mispredictions happen
across those same surface form with same but dif-
ferent morphological tags. The share of arbitrary
mispredictions in EdgeGraphCRF were found to
be more than the other systems. Empirically we
observe that not considering pairwise potentials
(between multiple words and at least of nearby
words) between other words in the prediction will
affect the performance of such systems adversely

Effect of PCRW Vectors: We study the effect
of different sets of PCRW vectors generated when



Original Morph
Mispredictions

(in %)
Morph Confused to

(proportion in mispredictions)
Count in
DCS10K

lemmas with same
inflection for both the

classes in corpus sample (in %)
Nominative Plural Neuter 13.18 Accusative Plural neuter (90.24) 311 99.78

Accusative Singular Neuter 22.77 Nominative Singular Neuter (85.56) 2494 99.90
Accusative Plural Neuter 13.2 Nominative Plural neuter (82.5) 303 99.78

Instrumental Plural Neuter 7.58 Instrumental Plural Masculine (80.0) 266 99.31
Nominative Dual Masculine 9.02 Accusative Dual Masculine (70.83) 266 99.96

Table 6: Top 5 entries from Tree-EBM based on the skewedness towards misprediction to a single morphological
class (column 3 parenthesis provides the % of the mispredictions to that morphological class).

Original Morph Mispredictions (in %)
Morph Confused to

(proportion in mispredictions)
Nominative Plural Neuter 3.85 Accusative Plural neuter (25)

Accusative Singular Neuter 12.44 Nominative Singular Neuter (50.62)
Accusative Plural Neuter 6.67 Nominative Plural neuter (52.63)

Instrumental Plural Neuter 3.42 Instrumental Plural Masculine (0.0)
Nominative Dual Masculine 3.76 Accusative Dual Masculine (50.0)

Table 7: Results from Clique-EBM for the pairs of morphological classes shown in Table 6

input to the model. The vector sets were gener-
ated based on the settings discussed in Section 3.3
Table 4 reports the Precision, Recall and F-score
for all the eight different sets of PCRW vectors
generated. We find that the best performing set
is 2-MIR-Bigram with an F-Score 95.35. It can
be observed that all the 2 path sets perform better
than the corresponding 3 path sets. 3-MIR-PMI
scores higher in the average precision than its cor-
responding 2 path vector set, but the 2 path set still
scores higher when it comes to the F-Score.
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Figure 11: PCRW Feature sets - Pairwise comparison
of common features in the set

We find that the features returned by each of the
set is quite diverse as the union of all the feature
sets has a cardinality of 9055. Figure 11 shows
the heatmap for pairwise overlap between differ-
ent feature vector sets. The best performing set,
2-MIR-Bigram has 8 of the 9 possible metapaths
of length 1, i.e., features signifying co-occurrence
between 2 nodes without any internal nodes. The
remaining one, i.e., of the type word - word co-
occurrence is used as the label for feature selec-
tion. Interestingly, no other set has all the meta-
paths of length 1 in them. In 2-MIR-Bigram,

metapaths which end with ‘lemma’ object type are
more discriminating than others as 953 of top 1000
paths end with ‘lemma’ as its object type. In fact
all of the top 100 paths end with a lemma node,
while 76 start with lemma node as well.

Clique Enumeration Heuristic Unlike other
works such as McDonald et al. (2005), where Bron
and Kerbosch (1973) was used for clique enu-
meration, we cannot use it as we cannot prune
the edges in the graph. Our heuristic results in a
speedup of 2.74 as compared to the Bron Kerbosch
(Bron and Kerbosch, 1973) for the enumeration of
cliques. Also, our approach can easily be paral-
lelised resulting in further speedups. Our approach
guarantees that at least one clique will be obtained
for a graph. Also, Both the conditions are impor-
tant for our requirement of finding subset of nodes.
Our sampling heuristic samples only about 0.57 %
of the total possible cliques on an average and yet
empirically the results are promising. Our choice
of energy based model do not require the noramli-
sation of the solution space, a choice that enables
the use of the heuristic. All our reported values are
based on 3300 sentences sampled by stratification
from the training set.

4.1 Fine Grained Performance Analysis of
Clique-EBM

We analyse the performance of Clique-EBM based
on its prediction on DCS10k. Figures 12 and 13
show the point plots for those experiment settings.
Only entries with an evidence of at least 10 obser-
vations are considered.
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Figure 12: Performance of the system in terms of Pre-
cision and Recall for entries in DCS10K grouped over
a-b) Number of words in ground truth c-d) Number of
nodes in input graph G.
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Figure 13: Recall of ground truth nodes in input graph
grouped on conflicts per node

Effect of number of words in the ground truth
solution: Figures 12a-b show the WPT and WP3T
macro level precision and recall for ‘DCS10K’
where the sentences are grouped based on the
number of words in the ground truth solution.
Effect of number of nodes in the sentence graph
G: Figures 12c-d show the aforementioned re-
sults where the sentences are grouped based on the
number of nodes in the corresponding input graph
G.

In both these settings, the mean recall and preci-
sion for the WPT, marked with filled circles, never
go below 90 % and 85 %, respectively. For WP3T,
the mean precision and recall never go below 80
%. This shows that our system is robust to the
variation in the size of the input sentences and the
sentence graph as well.
Effect of number of conflicting nodes for the
predicted nodes: Figure 13 shows the micro-
averaged recall for the system based on the num-
ber of conflicts each token has in the input graph
G. In both the tasks, almost all the bins have a
mean recall of 70 % or above. The lowest in WPT
is 69.23 % and that for WP3T is 66.67 %. On an
average, there are 3.94 conflicts per token.
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