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Abstract—In this work, we propose a dynamic cache-based
pricing scheme, named CASH, for service-oriented sensor-
cloud. In sensor-cloud, the Sensor-Cloud Service Provider
(SCSP) provisions Sensors-as-a-Service (Se-aaS) to multiple
end-users based on a pay-per-use model. The service-requests
of the end-users have heterogeneous data-rate requirements.
In the cache-enabled architecture of sensor-cloud, these
service-requests are served by the SCSP using either the
Internal or the External cache, which incurs different costs
to the SCSP. Thereby, the SCSP tries to maximize its own
profit by distributing these service-requests, optimally, among
the caches. Additionally, the SCSP ensures that the end-users
are minimally charged. Existing literature fails to propose
any pricing scheme for service-oriented sensor-cloud, while
considering the cost incurred for data caching. In CASH,
we propose a dynamic pricing model for sensor-cloud using
dynamic coalition formation game with transferable utility.
Using CASH, based on the preference relation of the parti-
tions, we determine the optimal internal cache refresh rate,
while maximizing the coalition value. Through simulation, we
observe that the cost incurred by the SCSP reduces by 34.32-
51.15% and the price paid by the end-users decreases by 9.60-
17.47% as compared to the existing schemes. Additionally,
CASH ensures 9.60-21.85% increase in the profit of the SCSP.

Index Terms—Cache-based Service Oriented Architec-
ture, Dynamic Pricing, Dynamic Coalition Formation Game,
Merge-and-Split Algorithm, Sensor-Cloud

I. INTRODUCTION

Sensor-cloud, an enhancement of traditional wireless

sensor networks (WSNs), is designed by merging WSNs

with the concepts of cloud computing. The main aim of

sensor-cloud is to utilize the concept of virtualization of

cloud for rendering Sensors-as-a-Service (Se-aaS). A cen-

tralized Sensor-Cloud Service Provider (SCSP), possessing

the necessary cloud infrastructure, obtains physical WSNs

on rent from their respective owners and provisions these

resources as units of Se-aaS to the end-users. In lieu of these

services, the SCSP receives revenue from the end-users

as per their usage. Thus, the end-users remain abstracted

from the various hardware-related complexities and their

expenditures are significantly reduced.

In the existing literature, Chatterjee et al. envisioned a

cache-enabled architecture [1] for sensor-cloud. In this ar-

chitecture, the traditional sensor-cloud is equipped with two

caches to store sensed data — Internal Cache (IC), which

is present inside the cloud data-centers, and External Cache

(EC), which is present in the sensor network gateways.

The cache-based architecture of sensor-cloud improves the

network performance and increases the efficiency of the

system. Therefore, in this work, we explore the various

service-oriented aspects of the cache-enabled sensor-cloud.

Similar to any cloud-based service-oriented architec-

ture, sensor-cloud also follows a pay-per-use model for

Se-aaS. Thus, pricing is an important aspect in sensor-

cloud. There exist few works in the existing literature

which propose pricing schemes for sensor-cloud, viz., [2],

[3]. However, none of these schemes are suitable for the

cache-enabled architecture of sensor-cloud. Additionally,

the pricing schemes designed for cache-enabled cloud-

based systems and WSN-based systems are not suitable for

sensor-cloud as the architecture of sensor-cloud is based

on heterogeneous SOA (combination of both hardware and

infrastructure-as-a-service) [2]. Hence, there is a need for

a dynamic pricing scheme suitable for the cache-enabled

service-oriented architecture of sensor-cloud.

In this work, we propose a dynamic pricing scheme,

named CASH, for sensor-cloud, while taking into consider-

ation the cost incurred by SCSP for data caching. The pro-

posed scheme leverages the dynamic caching mechanism

of sensor-cloud to ensure maximum profit of the SCSP.

Here, we consider that the internal and external caches have

dynamic refresh rates, which are determined depending on

the service requirements of the end-users at a particular

time. The end-user applications, which require high data-

rate services, are served directly from EC, whereas those

requiring low data-rate are served from IC. The main

contributions of this work are summarized as follows:

1) In this work, a dynamic pricing scheme, CASH, is

proposed for sensor-cloud. Here, the price charged by SCSP

depends on which cache is used to serve the request.

2) Using a dynamic coalition-formation game-theoretic

approach, the optimal partition of the set of service-requests

among IC and EC is obtained, while taking into account the

data-rate requirements of the end-users at that time instant.

3) The proposed scheme also takes into account the cost

incurred by the SCSP for serving the end-users from either

of the caches and maximizes the overall profit of the SCSP.

4) Performance evaluation of CASH and comparative
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analysis of the proposed scheme with existing schemes is

also presented in this work.

II. RELATED WORKS

In past few years, several works are done which focus

on various aspects of sensor-cloud. The basic concept,

architecture and theoretical modeling of sensor-cloud is pre-

sented by Yuriama et al. [4] and Misra et al. [5]. Sen et al.

[6] developed a prototype of the sensor-cloud middle-ware,

which is capable of provisioning virtual sensors. Thereafter,

the technical aspects of sensor-cloud are studied by the

researchers [7]–[10], viz., selection of optimal gateway

node for transmitting data to the cloud, virtual sensor com-

position using resource-constrained nodes, optimal data-

center selection for Se-aaS provisioning and risk assessment

of sensor-cloud architecture. Few works also focused on

the economic aspects of sensor-cloud. Chatterjee et al. [2]

presented a dynamic pricing scheme for traditional sensor-

cloud, while considering the satisfaction factor of the end-

users, whereas Zhu et al. [3] proposed several pricing

schemes for sensor-cloud, while taking into account various

service parameters. However, these pricing schemes do not

consider the cost incurred due to caching.

On the other hand, in existing literature, several research

works focused on pricing. Awad et al. [11] presented a dy-

namic pricing scheme for device-to-device communication-

enabled HetNets. A double auction-based dynamic pric-

ing scheme for cloud in the presence of heterogeneous

resources is studied by Zhang et al. [12]. Several other

pricing schemes, viz., [13], [14], are proposed for efficient

utilization of resources in cloud. However, these schemes

neither consider caching cost, nor are applicable to sensor-

cloud. Additionally, few cache-based schemes are proposed

in existing literature. Araldo et al. [15] proposed a cost-

aware caching mechanism for information centric networks.

A contract theory based pricing scheme for commercial

caching systems was proposed by Le et al. [16]. Feng

et al. [17] explored the optimal placement of data caches

among mobile nodes in mobile cloud environment. How-

ever, since sensor-cloud follows a heterogeneous service-

oriented architecture, none of the proposed schemes in

existing literature are suitable for sensor-cloud. Therefore,

we infer that, there is a need to design dynamic pricing

schemes suitable for cache-enabled sensor-cloud.

III. SYSTEM MODEL

Sensor-cloud encompasses the integration of WSNs and

cloud using the concept of virtualization for provisioning

Se-aaS. In this work, we consider a sensor-cloud having

a single SCSP with multiple registered end-users and sen-

sor owners, as shown in Figure 1. Several heterogeneous

physical sensor nodes, which are owned by the sensor

owners, are deployed over varied geographic regions and

used to serve the end-user service-requests. We consider

that the sensor-cloud comprises of several base-stations or

gateway nodes, which act as the sink nodes. These nodes

collect the aggregated sensed data from the deployed sensor

nodes and transfer it to the cloud. Each gateway node

has an EC, which gets updated periodically with a time-

interval decided by the SCSP. Additionally, we consider

that, in order to efficiently serve the end-users belonging

to different geographical regions, the sensor-cloud includes

several IC-equipped data-centers. These data-centers are

synchronized together for avoiding any discrepancy.

Fig. 1: Schematic Diagram of Cache-Enabled Sensor-Cloud

We consider that each end-user j ∈ N (t), where N (t) is

the set of registered end-users at time instant t, request the

SCSP to provide sensed data with data-rate rj . Accordingly,

the SCSP allocates a suitable data-center d ∈ D, where D is

the set of data-centers possessed by the SCSP, and gateway

node g ∈ G, where G is the set of gateway nodes registered

with the SCSP. Thereby, we observe that there is a many-

to-many relation between the data-centers and the gateway

nodes, i.e., the internal and external caches. In this scenario,

the optimal cache refresh rate for IC and EC needs to be

decided in order to ensure the profit of the SCSP as well as

QoS for the end-users. Based on the service requirements of

the end-users, the SCSP decides the EC refresh rate RE .

We argue that RE = max {rj |∀j ∈ N (t)}. However, the

SCSP may vary IC refresh rate RI for maximizing its own

profit. Thereafter, the SCSP serves each end-user j ∈ N (t)
with data-rate requirement rj ≤ RI from IC. On the other

hand, the end-users having data-rate requirements RI <

∀rj ≤ RE are served directly from EC.

IV. DYNAMIC PRICING FRAMEWORK FOR CASH

A. Pricing Model of CASH

In CASH, we propose that the cache-based pricing model

comprises of two types of pricing policies – base-price and

variable-price. The pricing policies are discussed in the

following sections.

1) Base-Price Policy: The base-price pB(t) is the def-

inite amount charged at time instant t by the SCSP for

serving each unit of data to the end-users. At time instant t,

it is fixed for both IC and EC and is proportional to the ratio

of the minimum and the maximum data-rate requirements

of the end-users at that time. It is calculated as follows:

pB(t) = η tan−1
(

min {rj |∀j ∈ N (t)}

max {rj |∀j ∈ N (t)}

)

(1)
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where η is a constant. In CASH, pB(t) depends on the range

of data-rates for different services served by the SCSP.

2) Variable-Price Policy: The variable-price component

signifies the extra price charged by the SCSP depending

on the service requirements of the end-users. It is different

for IC and EC and denoted as pIV (RI , t) and pEV (RI , t), re-

spectively. In order to define the variable price component,

we define the average normalized data-rate as follows.

Definition 1. We define the average normalized data-rate

ζ(t) as the ratio of the cumulative sum of the normalized

data-rates demanded and the cardinality of the set of

service-requests by the end-users at time instant t.

ζ(t) =





∑|N (t)|
j=1

rj
max{rj |∀j∈N (t)}

|N (t)|



 (2)

From Definition 1, we specify the boundary values of

ζ(t) using Theorem 1.

Theorem 1. Given that the set of service requests is non-

empty, irrespective of the cardinality value of the set of

service requests at time instant t, the average normalized

data-rate ζ(t) always follows the following inequality:

0 < ζ(t) ≤ 1 (3)

Proof: We consider that the set of service requests

N (t) is non-empty, i.e., N (t) 6= {∅}. Therefore, there

exists at least one service-request having data-rate rj , such

that rj > 0. Hence, we infer that —

0 < ζ(t) < ∞ (4)

On the other hand, since rj ≤ max {rj |∀j ∈ N (t)}, the

maximum value of the numerator is |N (t)|. Thus, we

conclude that ζ(t) ≤ 1.

a) Variable-Price for IC: The variable price

pIV (RI , t) for IC varies linearly with the average normalized

data-rate requirement of the end-user applications at time

instant t. Mathematically,

∂pIV (RI , t)

∂ζ(t)
> 0 (5)

Thereby, pIV (RI , t) is computed as follows:

pIV (RI , t) = αζ(t) (6)

where α is a constant.

b) Variable-Price for EC: We consider that, the

variable-price of EC pEV (RI , t) varies polynomially having

degree two with ζ(t). Mathematically,

∂pEV (RI , t)

∂ζ(t)
> 0 and

∂2pEV (RI , t)

∂ζ(t)2
> 0 (7)

Therefore, pEV (RI , t) is expressed as follows:

pEV (RI , t) = βζ(t)2 + γζ(t) (8)

where β and γ are constants.

B. Cost Model of CASH

Similar to the pricing model, we model the cost incurred

by the SCSP for provisioning Se-aaS, as a combination of

two different cost policies — caching cost and virtualiza-

tion cost, discussed as follows.

1) Caching Cost: Caching cost is the combination of

cache storage and retrieval cost [15]. Cache storage cost

is fixed for each data unit. However, cache retrieval cost

depends on the data-rate requirements of the end-users.

Therefore, we consider cache retrieval cost as caching cost

in the rest of the paper. WI and WE denote the caching

cost for IC and EC, respectively. Intuitively, we get that

WI < WE .

2) Virtualization Cost: Virtualization cost Ψvm is the

cost associated with the instantiation and maintenance

of virtual sensor(s) and virtual machine(s) for serving a

particular end-user application per unit time. We consider

that Ψvm is fixed for all services.

C. Pricing Game Formulation

Based on the aforementioned pricing model, we formu-

late a dynamic coalition-formation cooperative game with

transferable utility [18] to obtain the optimal IC refresh

rate RI such that the incoming service-requests received

by the SCSP are distributed profitably among IC and EC.

Here, the incoming service-requests of the end-users are

considered to be the players of the game. The set of of

players or service-requests is partitioned into two disjoint

coalition sets, NI(t) and NE(t), which are to be served by

the IC and EC, respectively. Subsequently, the SCSP tries

to maximize the cumulative payoff of the utility functions,

i.e., its profit, obtained from the IC and EC coalitions, as

mentioned in Sections IV-C1 and IV-C2.

1) Utility Function for Internal Cache Coalition: The

utility function UI(RI , t) for IC coalition is the cumulative

profit obtained by the SCSP on serving the coalition-set

NI(t) of service-requests from IC at time instant t. It is a

function of optimal IC refresh rate, RI . UI(RI , t) comprises

of two components — price function P I
j (RI , t) and cost

function CI
j (RI , t), discussed as follows.

a) Price Function for IC: The price function

P I
j (RI , t) determines the price charged, at time instant

t, by the SCSP for providing a service having data-rate

requirement rj for unit time. It is expressed as follows:

P I
j (RI , t) =

[

pB(t) + pIV (RI , t)
]

rj , ∀j ∈ NI(t) (9)

b) Cost Function for IC: The cost function CI
j (RI , t)

depicts the cost incurred by the SCSP at time instant t for

provisioning a service from IC for unit time to end-user j

having data-rate requirement rj . It is calculated as follows:

CI
j (RI , t) = Ψvm + rjWI , ∀j ∈ NI(t) (10)

The utility function UI(RI , t) has a linear relation with

the price and cost functions of the individual service-
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requests, and follows the following inequalities:

∂UI(RI , t)

∂P I
j (RI , t)

> 0 and
∂UI(RI , t)

∂CI
j (RI , t)

< 0 (11)

Thus, based on Equations (9) and (10), we express the

utility function UI(RI , t) at time instant t as follows:

UI(RI , t) =

|NI(t)|
∑

j=1

[

P I
j (RI , t)− CI

j (RI , t)
]

(12)

2) Utility Function for External Cache Coalition: We

define the utility function UE(RI , t) for EC coalition at

time instant t as the cumulative profit of the SCSP for serv-

ing the set of service requests NE(t) from EC. UE(RI , t)
also has two components — price function PE

j (RI , t) and

cost function CE
j (RI , t), which are defined as follows.

a) Price Function for EC: The price charged by the

SCSP per unit time for serving the service-requests of the

end-users from EC determines the price component of the

utility function for EC. PE
j (RI , t) is expressed as follows:

PE
j (RI , t) =

[

pB(t) + pEV (RI , t)
]

rj , ∀j ∈ NE(t) (13)

b) Cost Function for EC: The cost incurred by the

SCSP at time instant t for provisioning service having data

rate requirement rj for unit time from the EC is denoted by

the cost function for EC CE
j (RI , t). We express CE

j (RI , t)
as follows:

CE
j (RI , t) = Ψvm + rjWE ∀j ∈ NE(t) (14)

The utility function for EC UE(RI , t) varies linearly with

the individual price and cost functions of each service-

request served from the EC. Thus, we have:

∂UE(RI , t)

∂PE
j (RI , t)

> 0 and
∂UE(RI , t)

∂CE
j (RI , t)

< 0 (15)

Hence, we express UE(RI , t) mathematically as follows:

UE(RI , t) =

|NE(t)|
∑

j=1

[

PE
j (RI , t)− CE

j (RI , t)
]

(16)

In order to maximize the overall profit, the SCSP needs

to decide the optimal value of RI , while making a trade-off

between the coalition values of the IC and EC coalitions.

Additionally, we consider that in CASH, the coalition value

obtained from IC and EC coalitions need to be maximized.

Therefore, the objective function for CASH is as follows:

argmax
RI

UI(RI , t)UE(RI , t) (17)

Additionally, in CASH, the SCSP needs to satisfy the

following constraints:

min{rj} ≤ RI ≤ max{rj}, ∀j ∈ N (t) (18)

NI(t) ∪ NE(t) = N (t) (19)

D. Equilibrium in CASH

In order to reach the Pareto optimal partition in CASH,

the preference relation among the elements of the super set

of all possible partitions of N (t) needs to be evaluated, as

per Definition 2.

Algorithm 1 Cache Refresh Rate Determination Algorithm

INPUTS:

1: N (t) ⊲ Set of service-requests received by SCSP at time t
2: rj∀j ∈ N (t) ⊲ Date-rate requirement of each service request at time t
3: Ψvm ⊲ Virtualization Cost per unit time

4: WI ,WE ⊲ Caching cost per unit data for IC and EC

5: η, α, β, γ ⊲ Constants decided by SCSP

OUTPUT:

1: RI ⊲ Cache refresh rate for IC

PROCEDURE:

1: Calculate pB(t) and ζ(t) using Equations (1) and (2), respectively;

2: Initialize NI(t)← {∅} and NE(t)← N (t);

3: do

4: RI ← min{rj |∀j ∈ NE(t)};
5: NI(t)← {j|∀j ∈ N (t) & ∀rj ≤ RI};
6: for ∀j ∈ NI(t) do

7: Calculate P I
j (RI , t) and CI

j (RI , t) using Equations (9) and (10);

8: end for

9: Calculate UI(RI , t) using Equation (12);

10: Set NE(t)← N (t)/NI(t)
11: for ∀j ∈ NE(t) do;

12: Calculate PE
j (RI , t) and CE

j (RI , t) using Equations (13) and (14);

13: end for

14: Calculate UE(RI , t) using Equation (16);

15: while (∆UI(RI , t)UE(RI , t) ≥ 0);

16: Return RI ;

Definition 2. Given a set of end-users N (t) and the

corresponding service-request rates {rj |∀j ∈ N (t)}, the

preference relation among two possible partitions A and B
follows A⊲B, if and only if the following inequality holds:

UI(R
1
I , t)UE(R

1
I , t) ≥ UI(R

2
I , t)UE(R

2
I , t) (20)

where A = {AI , AE} and B = {BI , BE}. AI = {rj |∀j ∈
N 1

I (t) and rj ≤ R1
I}, AE = {rj |∀j ∈ N 1

E(t) and rj >

R1
I}, BI = {{rj |∀j ∈ N 2

I (t) and rj ≤ R2
I}, and BE =

{rj |∀j ∈ N 2
E(t) and rj > R2

I}}.

Based on Definition 2, the SCSP obtains the generalized

Nash equilibrium (GNE) given a set of service-request

rates, as defined in Definition 3.

Definition 3. The SCSP ensures GNE of CASH by satisfy-

ing the following inequality:

UI(R
∗
I , t)UE(R

∗
I , t) ≥ UI(RI , t)UE(RI , t) (21)

where [min{rj |∀j ∈ N (t)} ≤ R∗I , RI ≤ max{rj |∀j ∈
N (t)}], R∗I is the optimum cache refresh rate of IC and RI

represents all possible cache refresh rates, such that (RI 6=
R∗I). Hence, given a set of service-request rates {rj |∀j ∈
N (t)}, CASH ensures that there must be an optimum cache

refresh rate R∗I of IC.

E. Proposed Algorithm

In CASH, the SCSP needs to determine the optimal IC

refresh rate RI in order to ensure profit by serving the

requests of the end-users. To achieve the aforementioned

objective, we use a dynamic coalition formation game
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with transferable utility to form two coalitions of service-

requests for IC and EC, dynamically, and maximize the

coalition values. Motivated by the Merge-and-Split Algo-

rithm [18], we determine the optimum IC refresh rate

R∗I based on the preference relation of the collections of

coalitions as discussed in Algorithm 1.

V. PERFORMANCE EVALUATION

A. Simulation Parameters

In this section, we present the performance evaluation

of the proposed scheme, CASH, in the cache-enabled

architecture of sensor-cloud. For simulation, we consider

a sensor-cloud environment in MATLAB consisting of a

single SCSP and variable number of end-users. The number

of end-users requesting the SCSP for Se-aaS at time instant

t is varied from 100 to 10000, as mentioned in the Table I.

Additionally, we also vary the maximum data-rate requested

by the set of end-users from 100 to 1000 packets/sec.

Thereby, we analyze the effect of these parameters on the

percentage of end-users served from IC, total price charged

from the end-users, the total cost incurred by the SCSP and

the profit of the SCSP.

TABLE I: Simulation Parameters

Parameter Value

Simulation Time 30 simulation hours

Number of Internal Cache 1
Number of External Cache 1
Number of service requests 100, 1000, 10000
Maximum requested data-rate 100, 250, 500, 750, 1000 packets/sec

Cost for single VM maintenance 100 units per unit simulation time

Caching cost for IC 10 units

Caching cost for EC 100 units

B. Benchmarks

We compare the proposed scheme, CASH, with two

benchmark schemes — DADCM [1] and ED. In DADCM,

Chatterjee et al. proposed a dynamic and adaptive caching

scheme for sensor-cloud. The authors considered that the

refresh rate for EC is dependent on the rate of change of the

environment and that for IC varies with the rate of change

of EC. Thus, DADCM is mostly suitable for event-driven

applications. In case of highly dynamic environment, EC

and IC are updated at almost same rate. Therefore, DADCM

serves majority of the service-requests from EC and the

corresponding end-users are charged according to the EC

pricing. On the other hand, ED is a static scheme which

considers equal division of the service requests among IC

and EC. It is suitable for both event-driven and periodic

applications. In ED, half of the end-users are charged based

on IC pricing and the other half based on EC pricing.

C. Performance Metrics

In this work, we consider the following metrics to

evaluate the performance of the proposed scheme, CASH.

Cost incurred by SCSP: We evaluate the total cost

incurred by the SCSP for provisioning hardware and com-

putational resources to the end-users for unit service-time.
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Fig. 2: Percentage of end-users served using Internal Cache

Since data is retrieved more frequently from EC than from

IC, the cost incurred by the SCSP to provision services

from EC is higher than that in case of IC.

Price paid by end-users: The price per unit service-time,

which is to be paid by the end-users to the SCSP for Se-aaS,

depends on the cost incurred by the SCSP to provision the

services requested by the end-users. Therefore, as evident

from the Equations (9) and (13), the end-users served

from EC have to pay higher price per unit service-time

as compared to those served from IC.

Profit of SCSP: The difference of the price charged by

the SCSP from its end-users and the actual cost incurred

by the SCSP for provisioning Se-aaS to the end-users is

the profit of the SCSP.

D. Results and Discussions

For simulation, we consider that at time instant t, SCSP

receives heterogeneous service-requests having varied data-

rate requirements from multiple end-users. We assume that

the regions of interest have a highly dynamic environment

and the SCSP is capable of serving every incoming service-

request either using IC or EC. Therefore, in case of

DADCM, every service-request is served from the EC,

whereas, in case of ED, the percentage of users served

from either of the caches remains fixed at 50%. However,

we observe that, using CASH, the percentage of end-users

served using IC (and hence, EC) varies with the overall

distribution of the service-request rates. Figure 2 depicts

that 70.5-72.15% of incoming service-requests at each time

instant are served from IC using CASH.

From Figure 3, we observe that the cost incurred by the

SCSP to serve the requests of the end-users is improved

by 49.95-51.15% using CASH than using DADCM. This

is because, in a highly dynamic environment, DADCM

serves majority of requests from EC, resulting in increased

service provisioning cost. On the other hand, using CASH,

the cost incurred by SCSP decreases by 32.97-34.32%
compared to using ED. Additionally, Figure 4 depicts that

using CASH, the price charged by the SCSP from the

end-users decreases by 16.71-17.47% and 9.08-9.6%, than

using DADCM and ED, respectively. This can be attributed

to the fact that, among the three schemes, CASH ensures

optimal distribution of the service-requests among IC and

EC. Moreover, from Figure 5, we infer that the profit
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Fig. 3: Cost incurred by the SCSP
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Fig. 4: Price paid by the end-users
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Fig. 5: Profit of the SCSP

earned by the SCSP also increases by 20.83-21.85% and

9.43−9.60% using CASH, as compared to using DADCM

and ED, respectively. Hence, we conclude that CASH is

economically more preferable to the SCSP as well as the

end-users than the other two existing schemes.

VI. CONCLUSION

In this work, a dynamic pricing scheme, named CASH,

for cache-enabled sensor-cloud using dynamic coalition for-

mation game is presented. Using CASH, the SCSP ensures

its maximum profit, while serving the end-user service-

requests. Additionally, the proposed scheme, CASH, adds

dynamism to the pay-per-use model of sensor-cloud, while

making Se-aaS more economic for the end-users. Simu-

lation results depict that the profit of the SCSP increases

and the price paid by the end-users decreases using the

proposed dynamic pricing scheme as compared to the

existing schemes.

This work can be extended by exploring Se-aaS pricing

scheme in the presence of heterogeneous virtual sensors.

Additionally, as an extension of CASH, the variable main-

tenance cost incurred by the SCSP in the presence of

heterogeneous physical sensor nodes can be incorporated.
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