Planarity
A graph is planar if it can be drawn on a plane without crossings.

A plane graph is a particular drawing of a planar graph in the plane with no crossings.
Faces

- The *faces* of a plane graph are the maximal regions of the plane that are disjoint from the drawing.

- The length of a face in a plane graph G is the length of the walk in G that bounds it.
Dual Graphs

- Suppose G is a plane graph. The dual graph G^* of G is a plane graph having a vertex for each face in G. The edges of G^* correspond to the edges of G as follows:
 - If e is an edge of G that has face X on one side and face Y on the other side, then the corresponding dual edge $e^* \in E(G^*)$ is an edge joining the vertices x,y of G^* that correspond to the faces X,Y of G that cuts e exactly once.
Results

- If $L(F_i)$ denotes the length of face F_i in a plane graph G, then $2e(G) = \sum L(F_i)$.

- The following statements are equivalent for a plane graph G:
 - G is bipartite.
 - Every face of G has even length.
 - The dual graph G^* is Eulerian.
Euler’s Formula & other results

- [Euler’s Formula:] If a connected plane graph \(G \) has \(n \) vertices, \(e \) edges and \(f \) faces, then
 \[n - e + f = 2 \]

- If \(G \) is a simple planar graph with at least three vertices, then \(e(G) \leq 3n(G) - 6 \).
 - If \(G \) is also triangle-free, then \(e(G) \leq 2n(G) - 4 \)
K₅ and K₃,₃

- Two famous Kuratowski graphs
- Claim 1: K₅ is non-planar
 - Since no. of edges = 10 > (3(5) – 6 = 9)
- Claim 2: K₃,₃ is non-planar
 - K₃,₃ has no odd cycle, so all faces in a planar embedding of it has length at least 4
 - No. of edges = 9 > (2(6) – 4 = 8)
Kuratowski’s Theorem

- **Subdividing** an edge means replacing the edge with a path of length 2.
- **[Kuratowski’s Theorem]**: \(G \) is planar if and only if \(G \) contains no sub-division of \(K_5 \) or \(K_{3,3} \).
Coloring Planar Graphs

- [4-color Theorem]: Every planar graph is 4-colorable.
 - Long and hard proof
- Every planar graph can be colored with 5 colors
 - Easy constructive proof that gives a 5-coloring of any planar graph.