
1

Re-Identification in the Function Space of Feature
Warps

Supplementary Material
Niki Martinel1, Student Member, IEEE, Abir Das1, Student Member, IEEE, Christian Micheloni, Member, IEEE,

and Amit K. Roy-Chowdhury*, Senior Member, IEEE

I. INTRODUCTION

This supplementary material accompanies the paper “Re-
Identification in the Function Space of Feature Warps”.

This supplementary material is structured as follows.
• Section II gives an introduction to Dynamic Time Warp-

ing (DTW). We describe how the algorithm can be
applied to get the warp functions we formulated through
Eqn. (1)-(3) in Section IV of the main paper. We also
provide the algorithm (Algorithm. 1) for a better com-
prehension of the concept.

• Section III shows a set of sample images from the
RAiD dataset. This shows the change in illumination and
pose occurring between several camera views, especially
between the indoor and the outdoor cameras.

• Section IV shows the extracted texture features for an
example image.

• Section V provides a comparison of re-identification
performance in terms of the CMC curves as different
classifiers and dense feature patch sizes are used.

To keep the supplementary material as much readable as
possible we have tried to design self-explanatory images.
Hence, we did not add much text describing each one of them,
but we provide a little discussion within the captions.

II. DYNAMIC TIME WARPING FOR FEATURE
TRANSFORMATION

In the following we introduce the main concepts of Dynamic
Time Warping. Then, at the end of the section we provide
our formulation where the warp path between two vector
functions, computed by DTW, is approximated to obtain a
vector of the same length as that of the input. Please note that
this is a brief introduction and we direct the interested readers
to [1], [2] for further details.

Let x ∈ Rm and y ∈ Rn be two vector functions. Notice
that in our specific case we have that m = n. However, in the
following, we show a more general DTW framework without
considering this assumption.

1 The first two authors should be considered as joint first authors
* Corresponding author
N. Martinel and C. Micheloni are with the Department of Mathematics and

Computer Science, Univeristy of Udine, Udine, Italy, 33100.
E-mail: {niki.martinel, christian.micheloni}@uniud.it

A. Das and A.K. Roy-Chowdhury are with the Department of Electrical
Engineering, University of California Riverside, Riverside, California, 92521.
E-mail: abir.das@email.ucr.edu, amitrc@ee.ucr.edu

The DTW algorithm constructs a warp path W

W =W (1), . . . ,W (K) (1)

where max(m,n) ≤ K < m + n. The kth element of the
warp path is defined as

W (k) = (a, b) (2)

where a ∈ {1, . . . ,m} and b ∈ {1, . . . , n}. The warp path W
thus, maps, or aligns, the elements of x and y such that the
distance between them is minimized.

To formulate a dynamic programming solution of the
problem, we must have a distance measure between two
elements. Although any valid distances can be used, in general,
the magnitude of the difference and the Euclidean distance
are used [1]. Let δ(x(a), y(b)) be the distance between the
elements x(a) and y(b). Then, a cost matrix C ∈ Rm×n is
generated where the (a, b)th element (denoted as Cab) of the
matrix is given by the distance δ(x(a), y(b)). The DTW algo-
rithm searches for the path W giving the lowest cumulative
cost between fixed start point, the (1, 1)th cell and fixed end
point, the (m,n)th cell of C. Let W = {W1,W2, · · · } be the
set of all possible paths between these two fixed points where
Wq denotes the qth path. Wq consists of tuples indicating the
indexes of the cells in C.

W ∗ = argmin
Wq∈W

 ∑
(a,b)∈Wq

Cab

 (3)

For long time series, searching through all possible warp
paths leads to high computational cost as the warp path is
combinatorially explosive [1]. So, it is sometimes important
to restrict the space of all possible warping paths. Some of
the constraints commonly used in DTW are described below,

(i) Monotonicity: the a-th and b-th points must be mono-
tonically ordered with respect to time (Fig.1(b)).

(ii) Continuity: the steps in the search grid are confined to
neighboring points (Fig.1(c)). That is W (k+1)−W (k) ∈
{(1, 0), (0, 1), (1, 1)} for k ∈ {1, ..,K − 1}.

(iii) Boundaries: the boundary condition restricts the search
space such that the starts and the ends of the two series
are always linked: W (1) = (1, 1) and W (K) = (m,n)
(Fig.1(d)).

(iv) Slope: Allowable warping paths can be constrained by
restricting the slope, thus avoiding excessively large
movements in a single direction.

2

n

1

b

...
...

1 ma... ...

(a)

n

1

b

...
...

1 ma... ...

(b)

n

1

b

...
...

1 ma... ...

(c)

n

1

a

...
...

1 mb... ...

(d)

Fig. 1. Four possible warping paths for some sequence x of length m and
sequence y of length n. (a) Admissible warping path satisfying the conditions
(i), (ii), and (iii). (b) Monotonicity condition (i) violated. (c) Continuity
condition (ii) violated. (d) Boundaries condition (iii) violated.

(v) Warping window: allowable points can be forced to fall
within a constrained window such as the Sakoe-Chiba
Band [3] or the Itakura Parallelogram [4] (see Fig. 2).

DTW finds the optimal solution by decomposing it into sub-
problems and solving them in a recursive way. Lets assume
that the continuity constraint holds, then the restriction on the
indices makes sure that the total distance D of the best warp
path matching x(a) and y(b) is equal to the distance between
x(a) and y(b) plus the minimum distance needed to match
x(a) and y(b + 1), or x(a + 1) and y(b), or x(a + 1) and
y(b+ 1). In other words

D(a, b) =

δ(x(a), x(b)) + min
(
D(a, b+ 1),

D(a+ 1, b),

D(a+ 1, b+ 1)
)
.

(4)

Since the recursive definition has many overlapping sub-
problems, DTW is suitable for an efficient dynamic program-
ming implementation. It is sufficient to store all the D(a, b)
values in a m×n matrix, which is also commonly referred to
as the accumulated cost matrix, and fill it in the proper order.
The D(m,n) element of the matrix will hold the total warp
path distance starting from the start point to the (m,n)th point.
and it is thus, a solution for the minimization problem 3. This
value is called the Dynamic Time Warping distance, even if
it is not a real distance in the mathematical sense of the term,
since it does not satisfy the properties of distance measures in
a metric space.

The computational complexity of the algorithm is O(mn)
both in space and time because the whole matrix needs
to be computed. If only the final distance is needed (thus
discarding information about the warping path leading to that
distance measure), space complexity becomes linear since only
two adjacent columns (or rows) of the table are needed at
the same time. If an approximate solution is acceptable, the
algorithm could be forced not to use the whole table, imposing
constraints such as the Sakoe-Chiba Band [3] or the Itakura
Parallelogram [4] (Fig.2). Using these constraints, the time
complexity becomes linear or quadratic, depending if the width
of the allowed band is fixed or proportional to the input size.

We have shown that given two vector functions, the DTW
is able to capture the transformation between these. However,
as told earlier, in our specific case we have m = n. We also
need the resulting warp function W ∗ to be of the same length
as that of the input vector functions. This is due to the fact that
we have to use it as an input to a classification framework.

n

1

b

...
...

1 ma... ...

\

(a)

n

1

b

...
...

1 ma... ...

(b)

Fig. 2. (a) Sakoe-Chiba Band and (b) Itakura Parallelogram constraints.

(a) (b) (c) (d)

Fig. 4. Response images after convolutions with the Gabor, Schmid and
Leung-Malik filter banks. All filter responses are summed and scaled for
visualization. (a) Input image. (b) Response after convolution of 40 Gabor
filters. (c) Response after convolution of 13 Schmid filters. (d) Response
after convolution of 48 Leung-Malik filters.

In the main paper we have provided our approximating rule
(see Eq.(3)) to get a m length warp function. Algorithm 1
provides a brief summarization of the steps to compute the
warp function considering the approximations and constraints
used by us.

III. SAMPLE IMAGES FROM RAiD DATASET

In Fig. 3 we provide a few sample images from the RAiD
dataset showing the illumination variation across the cameras.

IV. RESPONSE OF TEXTURE FILTERS

In Fig. 4 responses to the texture filters to an example image
is shown. Results has been adapted for visualization.

V. ANALYSIS OF CLASSIFIERS PERFORMANCE AND PATCH
SIZE PARAMETER

In this section we provide the comparison of re-
identification performance in terms of the CMC curves as
different classifiers and dense feature patch sizes are used.
For this experimentation, all other parameters are kept same
as described in Section V-A of the main paper and the exper-
iments are carried out employing a multi-shot strategy with
N = 10. Following the same convention as used throughout

3

Cam 1

(Indoor)

Cam 3

(Outdoor)

Cam 4

(Outdoor)

Fig. 3. Sample images of persons from the RAiD dataset showing the variation of appearance between the indoor and the outdoor cameras.

the paper, the patch size used for both the classifiers, is 8× 8
and a RF classifier is chosen for the experiments with different
patch sizes.

A. Performance comparison for different choices of classifiers

Fig. 5 and 6 show the CMC curves showing the comparison
of re-identification performance with two different classifiers
(RF and SVM) for WARD and RAiD dataset respectively. As
seen in Table V of the main paper, Fig. 5 and 6 also show that
the variation of performance is very little for all the camera
pairs for both the two datasets.

B. Performance comparison for different choices of patch sizes

Fig. 7 and 8 show the CMC curves showing the comparison
of re-identification performance with three different dense
feature patch sizes (4× 4, 8× 8 and 16× 16) for WARD and
RAiD dataset respectively. As seen in Table V of the main
paper, Fig. 7 and 8 also show that the change in performance
becomes little as the patch size grows for all the camera pairs
for both the two datasets.

REFERENCES

[1] D. J. Bemdt and J. Clifford, “Using Dynamic Time Warping to Find
Patterns in Time Series,” in Working Notes of the Knowledge Discovery
in Databases Workshop, 1994, pp. 359–370.

[2] M. Müller, “Dynamic Time Warping,” in Information Retrieval for Music
and Motion. Berlin: Springer Publications, 2007, vol. 2, ch. 4, pp. 69–84.

[3] H. Sakoe and S. Chiba, “Dynamic programming algorithm, optimization
for spoken word recognition,” IEEE Trans. on Acoustics, Speech, and
Signal Processing, vol. 26, no. 1, pp. 43–49, 1978.

[4] F. Itakura, “Minimum prediction residual principle applied to speech
recognition,” IEEE Trans. on Acoustics, Speech, and Signal Processing,
vol. 23, no. 1, pp. 52–72, 1975.

4

10 20 30

30

40

50

60

70

80

90

100

Rank Score

R
e

c
o

g
n

it
io

n
 P

e
rc

e
n

ta
g

e
Cumulative Matching Characteristic (CMC)

Camera Pair 1−2

RF N=10

SVM N=10

(a)

10 20 30

30

40

50

60

70

80

90

100

Rank Score

R
e

c
o

g
n

it
io

n
 P

e
rc

e
n

ta
g

e

Cumulative Matching Characteristic (CMC)
Camera Pair 1−3

RF N=10

SVM N=10

(b)

10 20 30

30

40

50

60

70

80

90

100

Rank Score

R
e

c
o

g
n

it
io

n
 P

e
rc

e
n

ta
g

e

Cumulative Matching Characteristic (CMC)
Camera Pair 2−3

RF N=10

SVM N=10

(c)

Fig. 5. CMC curves showing the comparison of re-identification performance with two different classifiers (RF and SVM) for WARD dataset. In (a), (b) and
(c) comparisons are shown for the camera pairs 1-2, 1-3 and 2-3 respectively.

5 10 15 20

30

40

50

60

70

80

90

100

Rank Score

R
e

c
o

g
n

it
io

n
 P

e
rc

e
n

ta
g

e

Cumulative Matching Characteristic (CMC)
Camera Pair 1−3

RF N=10

SVM N=10

(a)

5 10 15 20

30

40

50

60

70

80

90

100

Rank Score

R
e

c
o

g
n

it
io

n
 P

e
rc

e
n

ta
g

e

Cumulative Matching Characteristic (CMC)
Camera Pair 1−4

RF N=10

SVM N=10

(b)

5 10 15 20

30

40

50

60

70

80

90

100

Rank Score

R
e

c
o

g
n

it
io

n
 P

e
rc

e
n

ta
g

e

Cumulative Matching Characteristic (CMC)
Camera Pair 3−4

RF N=10

SVM N=10

(c)

Fig. 6. CMC curves showing the comparison of re-identification performance with two different classifiers (RF and SVM) for RAiD dataset. In (a), (b) and
(c) comparisons are shown for the camera pairs 1-3, 1-4 and 3-4 respectively.

5 10 15 20 25 30 35
20

30

40

50

60

70

80

90

100

Rank Score

R
e

c
o

g
n

it
io

n
 P

e
rc

e
n

ta
g

e

Cumulative Matching Characteristic (CMC)
Camera Pair 1−2

4x4, N=10

8x8, N=10

16x16, N=10

(a)

5 10 15 20 25 30 35
20

30

40

50

60

70

80

90

100

Rank Score

R
e

c
o

g
n

it
io

n
 P

e
rc

e
n

ta
g

e

Cumulative Matching Characteristic (CMC)
Camera Pair 1−3

4x4, N=10

8x8, N=10

16x16, N=10

(b)

5 10 15 20 25 30 35
20

30

40

50

60

70

80

90

100

Rank Score

R
e

c
o

g
n

it
io

n
 P

e
rc

e
n

ta
g

e

Cumulative Matching Characteristic (CMC)
Camera Pair 2−3

4x4, N=10

8x8, N=10

16x16, N=10

(c)

Fig. 7. CMC curves showing the comparison of re-identification performance with three different dense patch sizes (4× 4, 8× 8 and 16× 16) for WARD
dataset. In (a), (b) and (c) comparisons are shown for the camera pairs 1-2, 1-3 and 2-3 respectively.

5

5 10 15 20

30

40

50

60

70

80

90

100

Rank Score

R
e

c
o

g
n

it
io

n
 P

e
rc

e
n

ta
g

e

Cumulative Matching Characteristic (CMC)
Camera Pair 1−3

4x4, N=10

8x8, N=10

16x16, N=10

(a)

5 10 15 20

30

40

50

60

70

80

90

100

Rank Score

R
e

c
o

g
n

it
io

n
 P

e
rc

e
n

ta
g

e

Cumulative Matching Characteristic (CMC)
Camera Pair 1−4

4x4, N=10

8x8, N=10

16x16, N=10

(b)

5 10 15 20

30

40

50

60

70

80

90

100

Rank Score

R
e

c
o

g
n

it
io

n
 P

e
rc

e
n

ta
g

e

Cumulative Matching Characteristic (CMC)
Camera Pair 3−4

4x4, N=10

8x8, N=10

16x16, N=10

(c)

Fig. 8. CMC curves showing the comparison of re-identification performance with three different dense patch sizes (4 × 4, 8 × 8 and 16 × 16) for RAiD
dataset. In (a), (b) and (c) comparisons are shown for the camera pairs 1-3, 1-4 and 3-4 respectively.

6

Algorithm 1: DTW algorithm to obtain an m length warp function
input : Two vector functions x ∈ Rm and y ∈ Rm extracted from two images acquired by disjoint cameras
output: The warp function f(x,y) ∈ Rm, as defined in the main paper
// Given the two vector functions x and y, ComputeCostMatrix computes the

corresponding cost matrix C
1 Function ComputeCostMatrix(x, y)

// To compute the cost matrix we have to loop through all possible
combinations of a and b

2 for a← 1 : |x| do
3 for b←: |y| do

// The function δ(x(a), y(b)) can be any distance function. In our work,
as suggested in [1], we have used the Euclidean distance

4 C a,b ← δ(x(a), y(b))
5 end
6 end
7 return C
// Once the cost matrix C is computed, ComputeWarpPath is used to find the optimal

warp path between x and y. In this function, we impose the monotonicity,
continuity and boundary constraints.

8 Function ComputeWarpPath(C)
// This imposes the start boundary constraint

9 W ∗ (1) ← (1, 1)
10 i ← 1
11 j ← 1
12 k ← 1
13 while W ∗(k) 6= ((|x|, |y|)) do
14 k ← k + 1

// The function ComputeIndexOfClosestTuple gives the index of the closest
tuple in the input set. In this case we provide only 1-step nearest
cells to impose the monotonicity and continuity constraints

15 (̂i, ĵ) ← ComputeIndexOfClosestTuple(Ci,j , {Ci+1,j , Ci+1,j+1, Ci,j+1})
// Add closest tuple indexes to the warping path

16 W ∗(k) ← (̂i, ĵ)

17 i ← î

18 j ← ĵ
19 end
20 return W ∗

// To use the warp function for classification it must be the same length for each
possible input vector functions x and y. To allow this, we proposed to compute a
warp function approximation via ComputeWarpPathApproximation

21 Function ComputeWarpPathApproximation(W ∗)
22 for a ← 1 : |x| do

// The first and last values of the approximated warp path must be always
1 and the length of the input vector functions, respectively

23 if a == 1 or a == |x| then
24 f(a) = a
25 else

// The ComputeMinIndexWarpPath function is Eq.(3) of the main paper
26 minb = ComputeMinIndexWarpPath(W ∗, a)
27 f(a) = minb
28 end
29 end
30 return f(x,y)

	Introduction
	Dynamic Time Warping For Feature Transformation
	Sample images from RAiD Dataset
	Response of texture filters
	Analysis of Classifiers Performance and Patch Size Parameter
	Performance comparison for different choices of classifiers
	Performance comparison for different choices of patch sizes

	References

