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Abstract

This supplemental document provides additional information that does not fit in the paper due to the space limit. Section 1
provides the detailed statistics and source of the experimented datasets. Section 2 presents supplemental experiment results.
Section 3 gives detailed information on the QL based MM algorithm that is used to solve Eq. 3 of the main paper. Section 4
gives detail explanation on the fast proximal algorithm (FISTA) to solve Eq. 6 in the sparse representative selection (Section.
3) of the main paper.

1. Detailed information on the Datasets
Three multi-view datasets have been used in our experiments. The datasets are named Office, Campus and Lobby. Their

statistics and sources are given in Table 1. Some example frames of the datasets are shown in Fig. 1.

2. Supplemental experiment results
2.1. Summarized events for all the datasets

Due to space limit in the main paper, we have shown only eight summarized events for the Office dataset (Figure 4 in the
main paper). Here, we will present all the detected events in our generated summaries for all the datasets. Fig. 3, 4 and 5
present the summarized events for Office, Campus and Lobby dataset respectively. The detected events are assembled along
the time line across multiple views and are represented by a key frame. In figure, X-axis denotes the time line and the Y-axis
represent the view (camera) from which the event is detected.

2.2. Scalability in generating summaries

As mentioned in section 3 of the main paper, our approach provides scalability in generating summaries of different length
based on the user constraints without any further analysis of the input videos. Specifically, the non-zero rows of C (sparse
coefficient matrix) generate a ranked list of representatives that is subsequently used to provide a scalable representation in
generating summaries. In this section, we will present an illustrative example to show the scalability in generating summaries
for the Office dataset. As per the ground truth marked in [1], the Office dataset contains total 26 events throughout the entire
duration. Consider a scenario where three user were interested to watch the summary but with different summary length. Let
the 1st user want to see only 3 most important events while at the same time, 2nd and 3rd user want to see 5 and 7 most
important events respectively occurred in the whole day. Fig. 6 in this connection explains the generated summaries for the
Office dataset.

Table 1. Dataset statistics and sources. NJU: http://cs.nju.edu.cn/ywguo/summarization.html

Datasets Number of Views Video Length(Mins.) Settings Camera Type Source
Office 4 11:16/08:43/11:22/14:58 Indoor Fixed NJU
Campus 4 15:19/13:51/12:30/15:03 Outdoor Non-fixed NJU
Lobby 3 08:14/08:14/08:14 Indoor Fixed NJU
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(a)

(b)

(c)
Figure 1. Example frames of the datasets used in the experiments. (a):Office, (b): Campus, and (c): Lobby. As can be seen from figure,
the datasets (a) and (c) are captured with fixed cameras in indoor environments whereas the dataset (b) is taken with non-fixed cameras
in an outdoor environments.

(a)

(b)
Figure 2. Representative events detected by our method with and without SLH algorithm for Office dataset. (a): Our approach without
SLH algorithm i.e., only Gaussian kernel is used to calculate the inter-view proximities and (b): Our approach with SLH algorithm. Each
event is represented by a key frame and are arranged according to the l2 norms of corresponding non-zero rows of the sparse coefficient
matrix. As an illustration, only top five events are shown in the figure. In (a), both 1st and 4th frame represents the same event as per the
ground truth but are detected from view 1 and view 2 respectively. In total, the method without SLH algorithm detects only 15 unique
events in contrast to 18 unique events with the use of SLH algorithm. Redundant events are marked with red color borders

2.3. Performance Analysis with Scott and Longuet-Higgins (SLH) algorithm

In this section we make a comparative performance analysis to show the effect of using SLH algorithm in generating better
summaries. Fig. 2 shows a comparative analysis of our method with and without using SLH algorithm in computing inter-
view proximities for Office dataset. As seen from the Fig. 2(a) the method in absence of SLH algorithm produces redundant
events in the output summary however the same method with SLH algorithm produces meaningful summaries (Fig. 2(b)).
SLH algorithm tries to maintain the consistency in group sparse coding which guarantees that two similar frames from two
different views are not produced at the same time.
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Figure 3. Summarized events for the Office dataset. X-axis denotes the time line and the Y-axis represent the view (camera) from which the
event is detected. Each event is represented by a key frame. As per the ground truth: A0 represents a girl with a black coat, A1 represents
the same girl with a yellow sweater and B0 indicates another girl with a black coat. C and D are two boys. D wears a black topcoat and C
wears a dark yellow sweater. E is a old man and F is a young guy about thirty years old. The sequence of events in our summary are: 1st:
A0, B, and D go out of the room, 2nd: A0 enters the room, 3rd:A0 stands in Cubicle 1, 4th: A0 is looking for a thick book to read, 5th:
A0 leaves the room, 6th: A1 enters the room and stands in Cubicle 1, 7th: A1 goes out of the Cubicle, 8th: B0 enters the room and goes to
Cubicle 1, 9th: B0 goes out of the Cubicle, 10th: B0 goes out of the room and D enters the room, 11th: D walks to Cubicle 2 from Cubicle
1, 12th: D walks to Cubicle 3 from Cubicle 2, 13th: F enters the inner office, 14th: A0 is looking for a book in Cubicle 3, 15th: F leaves
the room, 16th: E leaves the room, 17th: F enters the room and 18th: The computer screen in Cubicle 2 turns off. As can be seen from the
figure, Only 18 events out of 26 events are detected in our summary. It can be noticed that most of the events are detected from the view 1
and 2 as both of the cameras were focused to most activity region in the Fovs which can also be seen from the input videos. (Best viewed
in color)
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Figure 4. Summarized events for the Campus dataset. X-axis denotes the time line and the Y-axis represent the view (camera) from which
the event is detected. Each event is represented by a key frame. For this dataset, only start and end frame from an event is mentioned
without any labeling. As can be seen from the figure, there exists some redundancies in our output summary as the video is captured using
4 hand-held cameras in an outdoor environment which makes the summarization difficult. Redundant events are marked with red color
borders. Only 20 events out of 23 detected events are unique events in our summary. The dataset contains total 29 events.(Best viewed in
color)
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Figure 5. Summarized events for the Lobby dataset. X-axis denotes the time line and the Y-axis represent the view (camera) from which
the event is detected. Each event is represented by a key frame. The sequence of events in our summary are: 1st: Five persons walk across
the lobby towards the gate; a man runs to the gate, 2nd: Two men walks across the lobby towards the gate, and a man walks into the lobby,
3rd: A man run into the lobby from the gate, 4th: Four persons walk into the lobby from the gate, 5th: A0 leaves the room, 6th: A man
walks across the lobby towards the gate and at the same time Two men are talking in the lobby, 7th: A man wearing a red coat walks into
the lobby from the gate, 8th: Three men and a men with a baby in his arms walk across the lobby towards the gate. A man walk into the
lobby, 9th: A man plays a ball with a baby, 10th: A man wearing a black coat walks into the lobby from the gate. A man plays a ball
with baby, 11th: A woman wearing a white coat walks across the lobby towards the gate, 12th: A man plays a ball with a baby, 13th: Two
women and a man walk across the lobby from the gate, 14th: A man walks across the lobby towards the gate, 15th: Two men walk across
the lobby towards the gate, 16th: Two men wearing black coats walk into the lobby from the gate, 17th: A woman wearing a red coat
walks across the lobby quickly towards the gate, 18th: A man with a baby in his arms, and four other persons walks into the lobby from
the gate, 19th: Two men are running in the lobby to catch each other, 20th: A man with a baby in his arms walks towards the lobby from
the inner room, 21st: Two men are passing a basketball to each other, 22nd: A man wearing a black coat walks across the lobby towards
the gate, 23rd: Two men are playing basketball, 24th: A man with a baby in his arms walks into the lobby from the gate, 25th: A man with
a briefcase taken in hand walks into the lobby from the gate, 26th: A man with a baby in his arms walks across the lobby. And a woman
wearing a yellow coat also walks across the lobby, 27th: A man with a baby in his arms runs in the lobby, 28th: A woman wearing a blue
coat walks into the lobby slowly, 29th: A man wearing a red coat walks across the lobby towards the gate, 30th: A man wearing a black
coat walks across the lobby towards the gate, 31st: A man runs across the lobby quickly with a basketball rolling on the ground, 32nd: A
woman wearing a black coat walks across the lobby towards the gate, 33rd: A man is wandering in the lobby, and 34th: A man is going
towards the gate across the lobby. As can be seen from the figure, Only 34 events out of 43 events are detected in our summary. (Best
viewed in color)
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(a)

(b)

(c)
Figure 6. The figure shows an illustrative example of scalability in generating summaries of different length based on the user constraints
for the Office dataset. Each event is represented by a key frame and are arranged according to the l2 norms of corresponding non-zero rows
of the sparse coefficient matrix. (a): Summary for user length request of 3, (b): Summary for user length request of 5 and (c): Summary
for user length request of 7. (Best viewed in color)
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3. Detailed Information on QL based MM Algorithm to Solve Eq. 3 of Main Paper
The objective function in Eq.3 of main paper is not convex and gradient descent algorithm can be used to find the local so-

lution. However, constant step sizes in gradient algorithm do not guarantee decrease of the objective; expensive line searches
are often needed to decrease the objective in successive steps. In contrast, algorithms such as Majorization-Minimization
would be guaranteed to monotonically decrease the cost in each update. MM algorithms are based on finding a tight axillary
upper bound of a cost function and then minimizing the cost by analytically updating the parameters at each step.

Recently, Zhirong et al. [2] proposed a two phase Quadratification-Lipschitzation (QL) procedure to efficiently find up-
per bounds for MM which can be analytically minimized. Consider an objective function F(Ỹ ) which can be divided
into two parts i.e., A(P, Q̃) + B(P, Q̃), where A has a quadratic upper bound (Quadratification) of the form A(P, Q̃) ≤∑

i,j Wij

(
‖ỹi − ỹb‖2

)
+constant and B has a upper bound by its Lipschitz surrogate (Lipschitzation) of the form B(P, Q̃) ≤〈

Ψ, Ỹ − Y
〉

+
ρ

2
‖Y − Ỹ ‖

2
+constant, where Wij is a multiplier, Ψ = dB

dỸ

∣∣∣
Ỹ=Y

and ρ is the Lipschitz constant of B(P, Q̃).

The resulting upper bound on combining both can be minimized analytically by setting the gradient to zero.
In our case with

∑
ij Pij = 1, we have

A(P, Q̃) =
∑
ij

Pij ln
(
1 + ‖ỹi − ỹj‖2

)
(1)

B(P, Q̃) = ln
∑
ij

(
1 + ‖ỹi − ỹj‖2

)−1
(2)

Quadratification. Since A(P, Q̃) is concave in ‖ỹi − ỹj‖2, it can be upper-bounded by its tangent. Hence, A(P, Q̃) ≤∑
ij Pijqij‖ỹi − ỹj‖2, where qij =

(
1 + ‖yi − yj‖2

)−1
.

Lipschitzation. B(P, Q̃) ≤
〈
− 4LQ◦qY, Ỹ − Y

〉
+
ρ

2
‖Y − Ỹ ‖

2
, where LQ◦q denotes the Laplacian of the subscripted

matrix and ◦ denote the element-wise product.
The final upper bound of Eq.3 and the gradient of the upper bound with respect to Ỹ are given by

F̂(Ỹ , Y ) =
∑
ij

Pijqij‖ỹi − ỹj‖2 +
〈
− 4LQ◦qY, Ỹ − Y

〉
+
ρ

2
‖Y − Ỹ ‖

2

(3)

where Y , Ỹ and Y new denote current estimate, the variable and new estimates of Y respectively. ρ is the Lipschitz
constant of B(P, Q̃) and qij =

(
1 + ‖yi − yj‖2

)−1
. LQ◦q denotes the Laplacian of the subscripted matrix and ◦ denote the

element-wise product. Finally, the update rule on zeroing the gradient of upper bound, is given as

Y new =
(
LP◦q +

ρ

4
I
)−1(

LQ◦qY +
ρ

4
I
)

(4)

The update rule in Eq. 7 is used to yield the mapped locations of the frames in the embedding space. Since, the calculation
of Lipschitz constant forB(P, Q̃) is mathematically intractable, we use a simple backtracking approach to impose point-wise
maximum at each step. The computational cost of MM algorithm is O(NlogN) where N is the total number of frames in
the multi-view videos. We set c = 2, ρ = 10−6 and δ = 10−7 throughout all experiments.

3.1. Upper bound of A(P, Q̃)

We described that A(P, Q̃) is concave in ‖ỹi − ỹj‖2 and the upper bound is given by A(P, Q̃) ≤
∑

ij Pijqij‖ỹi − ỹj‖2,

where qij =
(
1 + ‖yi − yj‖2

)−1
.

Proof. As per the above Equation.1,
A(P, Q̃) =

∑
ij

Pij ln
(
1 + ‖ỹi − ỹj‖2

)
(5)

Since, ln
(
1 + ‖ỹi − ỹj‖2

)
is concave in ‖ỹi − ỹj‖2, it can be upper-bounded by its tangent [3]:
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ln
(
1 + ‖ỹi − ỹj‖2

)
= ln

(
1 + ‖yi − yj‖2

)
+
〈d ln

(
1 + ‖ỹi − ỹj‖2

)
d‖ỹi − ỹj‖2

∣∣∣
Ỹ=Y

, Ỹ − Y
〉

=
〈d ln

(
1 + ‖ỹi − ỹj‖2

)
d‖ỹi − ỹj‖2

∣∣∣
Ỹ=Y

, ‖ỹi − ỹj‖2 − ‖yi − yj‖2
〉

+ constant

=
〈 1

1 + ‖yi − yj‖2
, ‖ỹi − ỹj‖2

〉
+ constant

=
‖ỹi − ỹj‖2

1 + ‖yi − yj‖2
+ constant (6)

Now, from Eq. 5 and 6 , we get:

A(P, Q̃) ≤
∑
ij

Pij
‖ỹi − ỹj‖2

1 + ‖yi − yj‖2

≤
∑
ij

Pijqij‖ỹi − ỹj‖2, (7)

where qij =
(
1 + ‖yi − yj‖2

)−1
.

4. Detailed Information on FISTA to Solve Eq. 6 of Main Paper
Here we state the optimization strategy to solve the convex optimization problem in Eq. 6 of main paper. We use a fast

proximal algorithm, FISTA [4] which maintains two variables in each iteration and combines them to find the solution. It
finds the minimum of a cost function of the form g(C) + h(C) where g is convex, differentiable but h is closed, convex and
non-smooth. New value of the variable, in each iteration is computed by computing the proximal operator of h on a function
of the gradient of g. The proximal operator of h(C), denoted as Proxh(C) is computed as,

Proxh(C) = argmin
U∈RN×N

(
h(U) +

1

2
||U − C||2

)
(8)

In Eq. 6 of the main paper, the reconstruction error term is convex, smooth, differentiable function with Lipschitz continuous
gradients. Denoting ||Y − Y C||2F as g(C), the gradient∇g(C) and the Lipschitz constant Lg of the gradient are given by

∇g(C) =
(
− Y TY + Y TY C

)
Lg =

(
||Y TY ||2F

) (9)

The sparsity inducing `2,1 norm is convex but non-smooth functions of their respective variables. Let us denote the
non-smooth term λ||C||2,1 as h(C) and the corresponding proximal operators for this non-smooth function as,

Proxh(C) =
(
1− λ

||Ci||2
)
+
Ci (10)

where i denotes the row numbers with (C)+ , max(C, 0). Taking a fixed step size α equal to the inverse of the Lipschitz

constant Lg , FISTA guarantees a convergence rate of O
( 1

T 2

)
(T is the number of iterations), in contrast to traditional sub-

gradient methods of O
( 1√

T

)
to solve non-smooth optimizations.

5. Derivation of Lipschitz constant
This section contains the derivations of the derivatives and Lipschitz’s constant that are used in FISTA algorithm to solve

the Eq. 6 of the main paper.
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g(C) = ||Y − Y C||2F
= tr

[
(Y − Y C)(Y − Y C)T

]
= tr(Y Y T − Y CTY T − Y CY T + Y CCTY T )

= tr(Y Y T )− tr(Y CTY T )− tr(Y CY T ) + tr(Y TY CCT ) (11)

Now,

∇g(C) = 0− Y TY − Y TY + 2Y TY C

= 2(−Y TY + Y TY C) (12)

At the same time the Hessian of g(C) is given by,

∇2g(C) = Y TY (13)

To find the Lipschitz’s constant of g(C), we will use the following three facts.

• Consider a mapping f : Rd → Rn. If ||∇2f || is bounded in the operator norm on Ω, i.e., L = supX ||∇2f(X)||, then
||∇2f(X)−∇2f(Y )|| ≤ L||X − Y ||,∀X,Y ∈ Ω i.e., ∇f is Lipschitz continuous with Lipschitz constant L.

• g(C) has constant Hessian and thus the supremum of the operator norms of the Hessian will be the norm of the
corresponding constant Hessian.

Considering operator-2 norm, the Lipschitz constant for g(C) is then given by ||Y TY ||2. Again, considering the ease of
computation and the fact that the Frobenius norm of a matrix is greater than or equal to its operator 2-norm, we decided to
take the Lipschitz’s constant as the corresponding Frobenius norms instead of the 2-norms. This is not as tighter a bound as
the corresponding operator-2 norm would have been.

Thus, the Lipschitz constant Lg of the gradient of g(C) is given by,

Lg =
(
||Y TY ||F

)
(14)

.
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