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Abstract. This supplementary material accompanies the paper entitled
“Temporal Model Adaptation for Person Re-Identification”, accepted for
publication in ECCV 2016. It introduces an additional analysis of our ap-
proach and experiments on the 3DPeS and the CUHK03 datasets which,
due to page limit constraints, could have not been included in the main
paper. It also provides a complete derivation of both the standard de-
terministic as well as the proposed stochastic ADMM optimization solu-
tions.

1 Additional Experimental Results

In the following, experimental results on two additional datasets as well as an
analysis of the rank 1 re-identification performance achieved by using a fixed
percentage of manually labeled pairs in each batch are presented.

1.1 Additional Datasets

3DPeS dataset [1] contains 1,012 images of 191 persons taken from a multi-
camera distributed surveillance system. Each one of the 8 cameras has footages
acquired with different light conditions. Persons images have been captured from
different viewpoints at different time instants. This results in a very challenging
dataset (see Fig. 1 for a few samples). Following the same protocol proposed
in [2], the dataset has been randomly split into two sets (one for training and
one for testing) containing 95 and 96 persons each, respectively. We report on
the average results obtained from 10 independent random trials.
CUHK03 [3] is one of the largest and most challenging datasets. It contains
13,164 images of 1,360 pedestrians acquired by six disjoint cameras. Each person
has been observed by two disjoint camera views and has an average of about 5
images in each view. This dataset also contains samples detected with a state-
of-the-art person detector, hence it provides a more realistic setting (see Fig. 2).
To run the experiments, we followed the same procedure as in [3] and used the
20 provided trials. Each of these splits the data into a training set and a test set
containing 1,160 and 100 persons, respectively.
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Fig. 1: 15 Image samples from 3DPeS dataset. Each column corresponds to a pair of
images of the same person captured by the two different cameras.

Fig. 2: 15 Image samples from CUHK03 dataset. Each column corresponds to a pair
of images of the same person captured by the two different cameras.

1.2 Influence of the Temporal Model Adaptation Components

In the main paper we have conducted an analysis of the single components
of the proposed approach by separately considering the similarity-dissimilarity
metric learning and the probe relevant set selection criterion. To have additional
insights on the achieved performance and to verify if the proposed dynamic probe
relevant set selection criterion yields better performance and less manual labor
than using a fixed percentage of pairs to label in each batch, we have computed
the results in Fig. 3. The plots show the rank 1 recognition percentage achieved
as a function of the percentage of labeled pairs in each batch (solid lines) and
compare the results to ones obtained using the proposed graph-based dynamic
solution (dashed lines). Precisely, to compute the results shown through the solid
lines, hence to select the pairs to be labeled, for each person p and percentage

s, we first sorted the elements of ĥ using a descending order. Then, we selected
the first s|Dp| gallery persons in Dp.

Results are shown for the VIPeR (Fig.3(a)) and 3DPeS (Fig.3(b)) datasets
considering the 3 incremental updates. Both the plots show a similar trend:
using few labeled pairs better performance than using completely labeled data
is obtained. With increasing percentages of labeled pairs, rank 1 recognition
rates tend to decrease –up to a certain point– then, they go up again.

Specifically, results in Fig.3(a) show that for the first two batch updates
(i.e., TMA2 and TMA3), using a fixed percentage achieves better rank 1 per-
formance than the proposed graph based solution (i.e., TMA2-Dynamic and
TMA3-Dynamic). However, with the third batch incremental step, our TMA4-
Dynamic solution outperforms the other one used for comparison regardless of
the percentage of manually labeled pairs. We speculate that such a behavior
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Fig. 3: Rank 1 correct recognition rate performance obtained using the 3 incremental
batch updates is shown as a function of the percentage of labeled pairs in each batch.
In (a) single-shot results on the VIPeR dataset. In (b) multiple-shot results on the
3DPeS dataset.

is due to the fact that, using a single shot strategy and a fixed set of gallery
persons to be labeled for each probe person, we have that either many informa-
tive gallery samples are excluded or lots of uninformative and negative ones are
included in the probe relevant set. This may cause the optimization parameters
to be updated with too few informative or too many uninformative samples. As
a result, the incremental steps are no longer significant in the long term.

As shown in Fig.3(b), similar results are obtained using the multiple-shot
strategy. However, in such a case, using all the labeled data is not achieving
anymore better rank 1 performance than using only few labeled pairs. In addi-
tion, our approach performs better than other solutions already after considering
the 3rd batch. This result may indicate that if the different correct match pairs
are already included in the first ranks, i.e., considered for labeling even with a
small percentage of labeled pairs, adding additional negative samples does not
yield to increasing performance.

1.3 State-of-the-art Comparisons

3DPeS: Table 1 shows the performance comparison between our approach and
existing ones on the 3DPeS dataset. Results reflect the ones provided in the main
paper with our method performing better than recent ones using only about 5%
of the data (i.e., TMA1). Incremental updates yields performance improvement
and after the 4th batch is processed, the proposed solution reaches the 4th highest
rank 1 exploiting only 22.31% of labeled data. It is worth noticing that the three
works that have better performance on such dataset, namely CSL [4], kLFDA [5]
and KEPLER [6] exploits either a different dataset setup, learn a metric on a
kernel space or use a multiple shot-strategy. More precisely, in CSL [4], au-
thors create 3 groups of cameras having similar views, then train their approach
considering pairs of camera groups and multiple-shot of the same person –this
last is also exploited in KEPLER [6]. This, simplifies the re-identification perfor-
mance since intra-camera variations are significantly reduced. To provide a more
fair comparison with such approaches we also applied a multiple-shot strategy
TMAMS

4 . As expected, results show significant improvements and our approach
performs better than KEPLER and almost reaches the performances of CSL. In
kLFDA [5], a kernel space is computed before training the LFDA [2] method.
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Table 1: Comparison with state-of-the-art methods on the 3DPeS dataset. Best results
for each rank are in boldface font.

Rank → 1 5 10 20
Labeled

[%]
Reference

CSL 57.9 81.1 89.5 93.7 100 ICCV 2015 [4]

TMAMS
4

57.25 76.75 86.45 95.83 19.06 Proposed
kLFDA 54.0 77.7 85.9 92.4 100 ECCV 2014 [5]
KEPLER 51.37 76.18 84.32 92.13 100 TIP 2015 [6]
TMA0 47.91 76.03 85.54 92.51 100 Proposed
TMA4 47.52 75.67 84.96 92.14 22.31 Proposed
rPCCA 47.3 75.0 84.5 91.9 100 ECCV 2014 [5]
TMA3 44.75 69.76 82.50 93.75 16.18 Proposed
TMA2 41.67 65.62 80.21 85.42 10.48 Proposed
IMS-LFDA 38.71 61.64 72.22 82.54 100 CVPR 2015 [7]
TMA1 38.02 53.54 62.08 75.62 5.25 Proposed
LFDA 34.24 59.31 70.13 81.12 100 CVPR 2013 [2]
KISSME 32.76 57.65 68.51 79.71 100 CVPR 2012 [8]
PRDC 34.04 57.74 64.37 73.84 100 TPAMI 2013 [9]
eSDC 27.25 56.16 66.82 74.88 100 CVPR 2013 [10]

Table 2: Rank 1 performance comparison with state-of-the-art methods on the
CUHK03 dataset. Best results are in boldface font.

Labeled Detected Labeled [%] Reference

MLAPG 57.96 51.15 100 ICCV 2015 [11]
TMA4 54.78 48.13 19.09/21.41 Proposed
IDLA 54.74 44.96 100 CVPR 2015 [12]
XQDA 52.20 46.25 100 CVPR 2015 [13]
TMA3 50.64 44.23 13.59/17.12 Proposed
TMA2 44.12 37.74 10.43/11.21 Proposed
TMA1 35.98 32.51 6.11/6.11 Proposed
DRSCH-128 21.96 – 100 TIP 2015 [14]
DeepReID 20.65 19.89 100 CVPR 2014 [3]
DRSCH-64 18.74 – 100 TIP 2015 [14]
KISSME 14.17 11.70 100 CVPR 2012 [8]

This allows to capture the non-linearities in the feature space. Indeed, as shown
in Table 1, this improves LFDA [2] rank 1 performance by about 20%. Thus, we
hypothesize that our approach can benefit of similar improvements if a kernel
space is adopted before learning the similarity-dissimilarity metric.

CUHK03: To validate our method in a more realistic scenario we have
computed the results on the CUHK03 dataset. Results in Table 2 are consistent
with the ones obtained for the VIPeR and PRID450S datasets. Our approach
has significantly better performance than the recent deep architectures even by
using 6% of labeled data. Incremental updates bring in relevant improvements
and we achieve the second best rank 1 recognition rate using both the labeled
(54.78%) and detected (48.13%) person images with only 19.09% and 21.41% of
manually labeled samples, respectively. This demonstrates that our approach can
scale to a real scenario and achieve competitive performance with significantly
less manual labor.

2 Alternating Direction Method of Multipliers Derivation
for Our Approach

Following the explanation in the main paper, we propose to use the ADMM
optimization method to solve the similarity-dissimilarity learning problem –in
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eq.(5) of the main paper– by means of the corresponding augmented Lagrangian

LK,P,U,V,Λ,Ψ = JK,P +ΩU,V + 〈Λ,K−U〉+ 〈Ψ,P−V〉 (1)

+
ρ

2

(
‖K−U‖2F + ‖P−V‖2F

)
where Λ ∈ Rr×d and Ψ ∈ Rr×d are two Lagrangian multipliers, 〈·, ·〉 denote the
inner product, ‖·‖F is the Frobenius norm and, ρ > 0 is a penalty parameter.

To solve the problem in eq.(1) at each each epoch s, ADMM updates the
variables in an alternating fashion as

K(s+1) = arg min
K

LK,P(s),U(s),V(s),Λ(s),Ψ(s) (2)

P(s+1) = arg min
P

LK(s+1),P,U(s),V(s),Λ(s),Ψ(s) (3)

U(s+1) = arg min
U

LK(s+1),P(s+1),U,V(s),Λ(s),Ψ(s) (4)

V(s+1) = arg min
V

LK(s+1),P(s+1),U(s+1),V,Λ(s),Ψ(s) (5)

Λ(s+1) = Λ(s) + ρ
(
K(s+1) −U(s+1)

)
(6)

Ψ(s+1) = Ψ(s) + ρ
(
P(s+1) −V(s+1)

)
(7)

In the following we present the specific update rules for the standard de-
terministic solution and our stochastic version. Since the updates for eq.(4-7)
do not depend on the number of training samples, those are identical for both
approaches, thus we provide their derivation only once.

2.1 Deterministic ADMM

Update K: To update the similarity low-rank projection matrix we have to find
the derivative of our objective with respect to such a parameter and solve for it
at a stationary point. So, we can write our problem as

K(s+1) = arg min
K

LK,P(s),U(s),V(s),Λ(s),Ψ(s) (8)

≡ ∂

∂K

[
JK,P(s) +ΩU(s),V(s) + 〈Λ(s),K−U(s)〉+ 〈Ψ(s),P(s) −V(s)〉

+
ρ

2

(∥∥∥K−U(s)
∥∥∥2
F

+
∥∥∥P(s) −V(s)

∥∥∥2
F

)]
= 0

Directly removing the terms that do not depend on K we have to solve

∂

∂K

[
JK,P(s) + 〈Λ(s),K−U(s)〉+

ρ

2

(∥∥∥K−U(s)
∥∥∥2
F

)]
= 0 (9)

Now, let first compute the derivatives for each of the terms separately.
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– Loss function:

∂

∂K
JK,P(s) By substitution (10)

∂

∂K

1

n

n∑
i

max
(

0, 1− SK,P(s)(p(i), g(i))
)

By the sum rule (11)

1

n

n∑
i

∂

∂K
max

(
0, 1− SK,P(s)(p(i), g(i))

)
(12)

Now, by computing the sub-gradient of the max function we obtain

1

n

n∑
i

{
0 if SK,P(s)(p(i), g(i)) ≥ 1
∂
∂K

(
1− SK,P(s)(p(i), g(i))

)
otherwise

(13)

Substituting SK,P(s)(p(i), g(i)) with its definition given in the main paper
eq.(3), we have that the non-trivial case in eq.(13) can be written as

1

n

n∑
i

∂

∂K

[
1− yp(i),g(i)

(
σK(xp(i) ,xg(i))−

1

2
δP(s)(xp(i) ,xg(i))

)]
(14)

which, by removing the terms that do not depend on K and substituting
with the definition of σK –in eq.(1) of the main paper– corresponds to

1

n

n∑
i

∂

∂K

(
−yp(i),g(i)xTp(i)K

TKxg(i)
)

(15)

Solving the matrix derivative using the identity (82) in [15] we obtain

1

n

n∑
i

−yp(i),g(i)K(xp(i)x
T
g(i) + xg(i)x

T
p(i)) (16)

So, we have that

∂

∂K
JK,P(s) =

1

n

n∑
i

{
0 if SK,P(s)(p(i), g(i)) ≥ 1

−yp(i),g(i)K(xp(i)x
T
g(i)

+ xg(i)x
T
p(i)

) otherwise
(17)

– Lagrange Components:

∂

∂K

[
〈Λ(s),K−U(s)〉+

ρ

2

(∥∥∥K−U(s)
∥∥∥2
F

)]
By definition (18)

∂

∂K

[
Tr
(

(K−U(s))TΛ(s)
)

+
ρ

2

(∥∥∥K−U(s)
∥∥∥2
F

)]
By trace property

(19)

∂

∂K

[
Tr
(
KTΛ(s)

)
−Tr

(
(U(s))TΛ(s)

)
+
ρ

2

(∥∥∥K−U(s)
∥∥∥2
F

)]
(20)
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Discarding the terms that do not depend on K, then solving the derivative
for the trace and the Frobenius norm we obtain

∂

∂K

[
〈Λ(s),K−U(s)〉+

ρ

2

(∥∥∥K−U(s)
∥∥∥2
F

)]
(21)

= Λ(s) + ρ
(
K−U(s)

)
Now, putting all together we have to solve

K(s+1) ≡ Λ(s) + ρ
(
K−U(s)

)
+ (22)

1

n

n∑
i

{
0 if SK,P(s)(p(i), g(i)) ≥ 1

−yp(i),g(i)K(xp(i)x
T
g(i)

+ xg(i)x
T
p(i)

) otherwise
= 0

Using linearity properties we can write

Λ(s) + ρ
(
K−U(s)

)
+

K

n

n∑
i

{
0 if SK,P(s)(p(i), g(i)) ≥ 1

−yp(i),g(i)(xp(i)xTg(i) + xg(i)x
T
p(i)

) otherwise

(23)

Then, introducing an additional variable

W =

n∑
i

{
0 if SK,P(s)(p(i), g(i)) ≥ 1

−yp(i),g(i)(xp(i)xTg(i) + xg(i)x
T
p(i)

) otherwise
(24)

we have that

Λ(s) + ρ
(
K−U(s)

)
+ K

W

n
= 0 (25)

Solving for K yields

K(s+1) =
(
ρU(s) −Λ(s)

)(
ρ+

W

n

)−1
(26)

Update P: To update the dissimilarity low-rank projection matrix, let us pro-
ceed as above and write our problem as

P(s+1) = arg min
P

LK(s+1),P,U(s),V(s),Λ(s),Ψ(s) (27)

≡ ∂

∂P

[
JK(s+1),P +ΩU(s),V(s) + 〈Λ(s),K(s+1) −U(s)〉+ 〈Ψ(s),P−V(s)〉

+
ρ

2

(∥∥∥K(s+1) −U(s)
∥∥∥2
F

+
∥∥∥P−V(s)

∥∥∥2
F

)]
= 0

Directly removing the terms that do not depend on K we have to solve

∂

∂P

[
JK(s+1),P + 〈Ψ(s),P−V(s)〉+

ρ

2

(∥∥∥P−V(s)
∥∥∥2
F

)]
= 0 (28)

Now, let us again compute the derivatives for each of the terms separately.
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– Loss function: Since the first steps of the derivation are already given
in eq.(10-14), hereby we only proceed with the derivation of the relevant
terms for P only. Thus, by starting with eq.(14), removing terms that do
not depend on P and substituting with the definition of δP –eq.(2) in the
main paper– we can write

1

n

n∑
i

∂

∂P

[
yp(i),g(i)

1

2
(xp(i) − xg(i))

TPTP(xp(i) − xg(i))
]

(29)

Recognizing that the problem has the same form as the one in eq.(15), we
can obtain the following solution using the same identity (82) in [15]

1

n

n∑
i

yp(i),g(i)
1

2
P
(

(xp(i) − xg(i))(xp(i) − xg(i))
T + (xp(i) − xg(i))(xp(i) − xg(i))

T
)

(30)

=
1

n

n∑
i

yp(i),g(i)P
(

(xp(i) − xg(i))(xp(i) − xg(i))
T
)

(31)

So, we have that

∂

∂P
JK(s+1),P =

1

n

n∑
i

{
0 if SK(s+1),P(p(i), g(i)) ≥ 1

yp(i),g(i)P
(

(xp(i) − xg(i))(xp(i) − xg(i))
T
)

otherwise

(32)
– Lagrange Components: The solution to the Lagrange components is very

similar to the one above but with different variables. In particular, the solu-
tion requires that the derivation is performed using the updated similarity
matrix K(s+1). Other than that, all the steps remain the same so are not
given here.

After solving the Lagrangian components for P and putting all together we have

P(s+1) ≡ Ψ(s) + ρ
(
P−V(s)

)
(33)

1

n

n∑
i

{
0 if SK(s+1),P(p(i), g(i)) ≥ 1

yp(i),g(i)P
(

(xp(i) − xg(i))(xp(i) − xg(i))
T
)

otherwise
= 0

Then, using linearity properties and introducing an additional variable

Z =

n∑
i

{
0 if SK,P(s)(p(i), g(i)) ≥ 1

−yp(i),g(i)(xp(i) − xg(i))(xp(i) − xg(i))
T otherwise

(34)

we have that

Ψ(s) + ρ
(
P−V(s)

)
+ P

Z

n
= 0 (35)

which, by solving for P, results in

P(s+1) =
(
ρV(s) −Ψ(s)

)(
ρ+

Z

n

)−1
(36)
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Remark 1. Using the standard deterministic ADMM solution we have that the
update rules for K and P are very similar to each other. They require to compute
an inverse of a matrix obtained by performing the computation of specific outer
products between the considered feature vectors. Such an operation is clearly
expensive in terms of computational resources, especially if we consider 26,960-
D feature vectors as in our scenario.

Update U:

U(s+1) = arg min
U

LK(s+1),P(s+1),U,V(s),Λ(s),Ψ(s) (37)

≡ ∂

∂U

[
JK(s+1),P(s+1) +ΩU,V(s)

+ 〈Λ(s),K(s+1) −U〉+ 〈Ψ(s),P(s+1) −V(s)〉

+
ρ

2

(∥∥∥K(s+1) −U
∥∥∥2
F

+
∥∥∥P(s+1) −V(s)

∥∥∥2
F

)]
= 0

Removing terms that do not involve U we have to solve

∂

∂U

[
α ‖U‖2,1 + 〈Λ(s),K(s+1) −U〉+

ρ

2

(∥∥∥K(s+1) −U
∥∥∥2
F

)]
= 0 (38)

Following [16] (Section 3.1.1), by combining the linear and quadratic terms in
the augmented Lagrangian and scaling the dual variable, we can write

∂

∂U

[
ΩU,V(s) +

ρ

2

(∥∥∥K(s+1) −U + Λ(s)/ρ
∥∥∥2
F

)]
= 0 (39)

which, by deriving a similar explanation to the one for the “group-LASSO” given
in [17] can be solved using the soft-thresholding operator, hence yielding to

U(s+1) =
(
K

(s+1)
i,: + Λ

(s)
i,: /ρ

)
max

0, 1− α

ρ
∥∥∥K(s+1)

i,: + Λ
(s)
i,: /ρ

∥∥∥
2

 (40)

where i = 1, · · · , r denotes the i-th row of a parameter matrix.

Update V:

V(s+1) = arg min
V

LK(s+1),P(s+1),U(s+1),V,Λ(s),Ψ(s) (41)

≡ ∂

∂V

[
JK(s+1),P(s+1) +ΩU(s+1),V

+ 〈Λ(s),K(s+1) −U(s+1)〉+ 〈Ψ(s),P(s+1) −V〉

+
ρ

2

(∥∥∥K(s+1) −U(s+1)
∥∥∥2
F

+
∥∥∥P(s+1) −V

∥∥∥2
F

)]
= 0

Since the steps for solving the above problem are very similar to the ones used to
solve eq.(37), we omit them and provide only the final solution. This corresponds
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to

V(s+1) =
(
P

(s+1)
i,: + Ψ

(s)
i,: /ρ

)
max

0, 1− β

ρ
∥∥∥P(s+1)

i,: + Ψ
(s)
i,: /ρ

∥∥∥
2

 (42)

Update Λ and Ψ: The updates for Λ and Ψ are straightforward and can be
easily obtained by defining the dual of our augmented Lagrangian objective.
See [16] for more details. In our case these correspond to

Λ(s+1) = Λ(s) + ρ
(
K(s+1) −U(s+1)

)
(43)

and to

Ψ(s+1) = Ψ(s) + ρ
(
P(s+1) −V(s+1)

)
(44)

respectively.

Remark 2. As stated above, the preceding updates (corresponding to eq.(4-7))do
not depend on the number of training samples, hence are identical for both the
deterministic ADMM as well as for the proposed stochastic ADMM. Thus, the
derivation is not given for the proposed stochastic ADMM.

2.2 Stochastic ADMM

Following [18], to obtain the stochastic updates for K and P using SCAS-ADMM
we have to compute the gradients of the augmented Lagrangian with respect to
different parameters. To simplify the steps required in the process, we derive the
two updates separately.

Before deriving the specific update rule, let us state the gradients for the
loss computed with respect to generic K and P. To do this, we take the help
of previous derivatives computed in eq.(10-17) and eq.(29-32) such that, for a
given random sample pair (p(i), g(i)) we can write

∂

∂K
`K,P(p(i), g(i)) =

{
0 if SK,P(p(i), g(i)) ≥ 1

−yp(i),g(i)K(xp(i)x
T
g(i)

+ xg(i)x
T
p(i)

) otherwise
(45)

and

∂

∂P
`K,P(p(i), g(i)) =

{
0 if SK,P(p(i), g(i)) ≥ 1

yp(i),g(i)P
(

(xp(i) − xg(i))(xp(i) − xg(i))
T
)

otherwise

(46)
Finally, the derivatives of the loss computed using all pairs in the training set
are written as

∂

∂K
JK,P =

1

n

n∑
i=1

∂

∂K
`K,P(p(i), g(i)) (47)

∂

∂P
JK,P =

1

n

n∑
i=1

∂

∂P
`K,P(p(i), g(i)) (48)



Temporal Model Adaptation for Person Re-Identification 11

Update K: At iteration t, the update rule for the similarity low-rank projection
matrix with the proposed stochastic ADMM solution is given by

K̃(t+1) = K̃(t) − η

{
∂

∂K̃(t)
`K̃(t),P̃(t)(p

(t), g(t))− ∂

∂K(s)
`K(s),P(s)(p(t), g(t))

+
∂

∂K(s)
JK(s),P(s) +

∂

∂K̃(t)

[
ΩU(s),V(s) + 〈Λ(s), K̃(t) −U(s)〉

+ 〈Ψ(s),P(s) −V(s)〉+
ρ

2

(∥∥∥K̃(t) −U(s)
∥∥∥2
F

+
∥∥∥P(s) −V(s)

∥∥∥2
F

)]}
(49)

Removing the terms that do not depend on the differentiation variables yields

K̃(t+1) = K̃(t) − η

[
∂

∂K̃(t)
`K̃(t),P̃(t)(p

(t), g(t))− ∂

∂K(s)
`K(s),P(s)(p(t), g(t))

+
∂

∂K(s)
JK(s),P(s) +

∂

∂K̃(t)

(
〈Λ(s), K̃(t) −U(s)〉+

ρ

2

∥∥∥K̃(t) −U(s)
∥∥∥2
F

)]
(50)

Using the same scaling method to get from eq. (38) to eq.(39) we obtain

K̃(t+1) = K̃(t) − η

[
∂

∂K̃(t)
`K̃(t),P̃(t)(p

(t), g(t))− ∂

∂K(s)
`K(s),P(s)(p(t), g(t))

+
∂

∂K(s)
JK(s),P(s) +

∂

∂K̃(t)

(
ρ

2

∥∥∥K̃(t) −U(s) + Λ(s)/ρ
∥∥∥2
F

)]
(51)

from which solving only the last term yields to

K̃(t+1) = K̃(t) − η

(
∂

∂K̃(t)
`K̃(t),P̃(t)(p

(t), g(t))− ∂

∂K(s)
`K(s),P(s)(p(t), g(t))

+
∂

∂K(s)
JK(s),P(s) + ρ

(
K̃(t) −U(s) + Λ(s)/ρ

))
(52)

Results for the partial derivatives of the loss computed with respect to a single
random sample or with respect of all training ones can be easily obtained from
eq.(45-46) and eq.(47-48), respectively.

Once the K iterations over the randomly selected training samples are com-
pleted, the low rank projection matrix for the next epoch s + 1 is obtained as

K(s+1) =
1

K

K∑
t=1

K̃(t) (53)
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Update P: At iteration t, the update rule for the dissimilarity low-rank projec-
tion matrix with the proposed stochastic ADMM solution is given by

P̃(t+1) = P̃(t) − η

{
∂

∂P̃(t)
`K̃(t),P̃(t)(p

(t), g(t))− ∂

∂P(s)
`K(s),P(s)(p(t), g(t))

+
∂

∂P(s)
JK(s),P(s) +

∂

∂P̃(t)

[
ΩU(s),V(s) + 〈Λ(s), K̃(t) −U(s)〉

+ 〈Ψ(s),P(s) −V(s)〉+
ρ

2

(∥∥∥K̃(t) −U(s)
∥∥∥2
F

+
∥∥∥P(s) −V(s)

∥∥∥2
F

)]}
(54)

Removing the terms that do not depend on the differentiation variables yields

P̃(t+1) = P̃(t) − η

[
∂

∂P̃(t)
`K̃(t),P̃(t)(p

(t), g(t))− ∂

∂P(s)
`K(s),P(s)(p(t), g(t))

+
∂

∂P(s)
JK(s),P(s) +

∂

∂P̃(t)

(
〈Ψ(s), P̃(t) −V(s)〉+

ρ

2

∥∥∥P̃(t) −V(s)
∥∥∥2
F

)]
(55)

As before, let us exploit the same scaling method to get from eq. (38) to eq.(39)
to get

P̃(t+1) = P̃(t) − η

[
∂

∂P̃(t)
`K̃(t),P̃(t)(p

(t), g(t))− ∂

∂P(s)
`K(s),P(s)(p(t), g(t))

+
∂

∂P(s)
JK(s),P(s) +

∂

∂P̃(t)

(
ρ

2

∥∥∥P̃(t) −V(s) + Ψ(s)/ρ
∥∥∥2
F

)]
(56)

from which solving only the last term yields to

P̃(t+1) = P̃(t) − η

(
∂

∂P̃(t)
`K̃(t),P̃(t)(p

(t), g(t))− ∂

∂P(s)
`K(s),P(s)(p(t), g(t))

+
∂

∂P(s)
JK(s),P(s) + ρ

(
P̃(t) −V(s) + Ψ(s)/ρ

))
(57)

Again, results for the partial derivatives of the loss computed with respect to a
single random sample or with respect of all training ones can be easily obtained
from eq.(45-46) and eq.(47-48), respectively.

Once the K iterations over the randomly selected training samples are com-
pleted, the low rank projection matrix for the next epoch s + 1 is obtained as

P(s+1) =
1

K

K∑
t=1

P̃(t) (58)

For clarification, all the steps required by the proposed stochastic ADMM
solution are finally summarized in Algorithm 1.
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Algorithm 1: Stochastic ADMM optimization for Low-Rank Sparse
Similarity-Dissimilarity Learning

Input: η > 0, ρ > 0, S > 0 K(1),P(1),X
Iterate s = 1, . . . , S

1. Compute the full partial derivatives using all training samples
∂

∂K(s)
J

K(s),P(s) = 1
n

∑n
i=1

∂

∂K(s)
`
K(s),P(s) (p

(i), g(i))

∂

∂P(s)
J

K(s),P(s) = 1
n

∑n
i=1

∂

∂P(s)
`
K(s),P(s) (p

(i), g(i))

2. Set

K̃(1) = K(s) , P̃(1) = P(s)

Iterate t = 1, . . . , n

1. Update K̃(t)

K̃(t+1) = K̃(t) − η
(

∂

∂K̃(t)
`
K̃(t),P̃(t) (p

(t), g(t))− ∂

∂K(s)
`
K(s),P(s) (p

(t), g(t))

+ ∂

∂K(s)
J

K(s),P(s) + ρ
(
K̃(t) −U(s) + Λ(s)/ρ

))
2. Update P̃(t)

P̃(t+1) = P̃(t) − η
(

∂

∂P̃(t)
`
K̃(t+1),P̃(t) (p

(t), g(t))− ∂

∂P(s)
`
K(s),P(s) (p

(t), g(t))

+ ∂

∂P(s)
J

K(s),P(s) + ρ
(
P̃(t) −V(s) + Ψ(s)/ρ

))
3. Update K(s) and P(s)

K(s+1) = 1
n

∑n
t=1 K̃(t)

P(s+1) = 1
n

∑n
t=1 P̃(t)

4. Update U(s) and V(s)

U(s+1) =
(
K

(s+1)
i,: + Λ

(s)
i,: /ρ

)
max

0, 1− α

ρ

∥∥∥∥K(s+1)
i,:

+Λ
(s)
i,:
/ρ

∥∥∥∥
2


V(s+1) =

(
P

(s+1)
i,: + Ψ

(s)
i,: /ρ

)
max

0, 1− β

ρ

∥∥∥∥P(s+1)
i,:

+Ψ
(s)
i,:
/ρ

∥∥∥∥
2


5. Update Λ(s) and Ψ(s)

Λ(s+1) = Λ(s) + ρ
(
K(s+1) −U(s+1)

)
Ψ(s+1) = Ψ(s) + ρ

(
P(s+1) −V(s+1)

)
Output: Estimated optimal solutions K = K(S) and P = P(S)

2.3 Discussion

In the preceding section we have derived the deterministic ADMM as well as
the proposed stochastic ADMM solutions for the updates of the two low-rank
projection matrices K and P, respectively. In addition, we have given the solution
for the update rules involving the remaining components, which, as stated, are
shared by both.

While, such last updates are common between the two, the update rules
for K and P, deterministic ADMM implicitly implies that the considered data
measurements, i.e., x, are exact, hence there is no noise in any component [19].
Even though the method showed to be successfully applicable even in presence
of such a strong assumption, we believed that considering the possibility of noisy
data in the optimization would have enabled us to obtain a more robust estimator
of the parameter to be optimized. Following such an idea, we have considered a
stochastic solution that can handle noisy data. The provided derivations as well
as the re-identification performance comparisons between the two solutions (see
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Table 6 in the main paper) have shown that the stochastic approach produces
better results at a lower computational cost.
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