Policy Gradients CS60077: Reinforcement Learning

Abir Das

IIT Kharagpur

Nov 09, 10, 2020

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

•0

Agenda

- § Get started with the policy gradient methods.
- § Get familiar with naive REINFORCE algorithm and its advantages and disadvantages.
- § Getting familair with different variance reduction techniques.
- § Actor-Critic methods.

Resources

Introduction

Bias/Variance

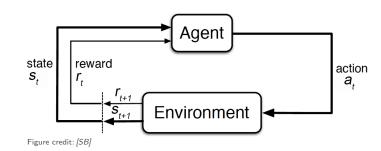
§ Deep Reinforcement Learning by Sergey Levine [Link]

§ OpenAl Spinning Up [Link]

-

Image: A matrix and a matrix

-



э

- ∢ ≣ →

-

Image: A matrix and a matrix

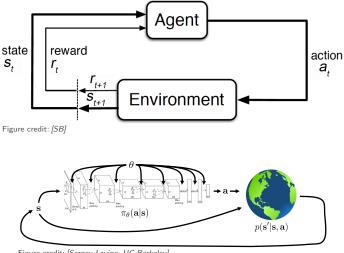


Figure credit: [Sergey Levine, UC Berkeley]

- < ∃ →

Image: A math a math

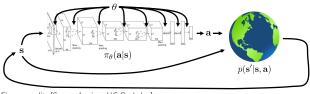


Figure credit: [Sergey Levine, UC Berkeley]

- In the middle is the 'policy network' which can directly learn a ξ parameterized policy $\pi_{\theta}(\mathbf{a}|\mathbf{s})$ (sometimes denoted as $\pi(\mathbf{a}|\mathbf{s};\theta)$) and provides the probability distribution over all actions given the state sand parameterized by θ .
- To distinguish it from the parameter vector \mathbf{w} in value function ξ approximator $\hat{v}(\mathbf{s}; \mathbf{w})$, the notation $\boldsymbol{\theta}$ is used.

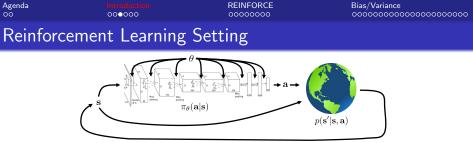


Figure credit: [Sergey Levine, UC Berkeley]

- § Goal in RL Problem is to maximize the total reward "in expectation" over long run.
- \S A trajectory au is defined as,

$$\tau = (\mathbf{s}_1, \mathbf{a}_1, \mathbf{s}_2, \mathbf{a}_2, \mathbf{s}_3, \mathbf{a}_3, \cdots)$$

§ The probability of a trajectory is given by the joint probability of the state-action pairs.

 $p_{\boldsymbol{\theta}}(\mathbf{s}_1, \mathbf{a}_1, \mathbf{s}_2, \mathbf{a}_2, \cdots, \mathbf{s}_T, \mathbf{a}_T, \mathbf{s}_{T+1}) = p(\mathbf{s}_1) \prod_{t=1}^T p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t) \pi_{\boldsymbol{\theta}}(\mathbf{a}_t | \mathbf{s}_t) \quad (1)$

Reinforcement Learning Setting

§ Proof of the above relation,

§ The boxed part of the equation is very similar to the left hand side. So, using similar argument repetitively, we get,

$$p(s_{T+1}, s_T, a_T, s_{T-1}, a_{T-1}, \cdots, s_1, a_1)$$

$$= p(s_{T+1}|s_T, a_T)\pi_{\theta}(a_T|s_T)p(s_T|s_{T-1}, a_{T-1})\pi_{\theta}(a_{T-1}|s_{T-1})$$

$$p(s_{T-1}, s_{T-2}, a_{T-2}, \cdots, s_1, a_1)$$

$$= p(s_1)\prod_{t=1}^{T} p(s_{t+1}|s_t, a_t)\pi_{\theta}(a_t|s_t) \tag{3}$$

Abir Das (IIT Kharagpur)

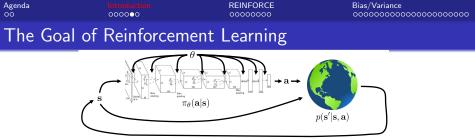


Figure credit: [Sergey Levine, UC Berkeley]

- § We will sometimes denote the probability as $p_{\theta}(\tau)$, *i.e.*, $p_{\theta}(\tau) = p_{\theta}(\mathbf{s}_1, \mathbf{a}_1, \mathbf{s}_2, \mathbf{a}_2, \cdots, \mathbf{s}_T, \mathbf{a}_T, \mathbf{s}_{T+1}) = p(\mathbf{s}_1) \prod_{t=1}^T p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t) \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$
- § The goal can be written as,

$$\boldsymbol{\theta}^* = \arg \max_{\boldsymbol{\theta}} \underbrace{\mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[\sum_{t} r(\mathbf{s}_t, \mathbf{a}_t) \right]}_{J(\boldsymbol{\theta})}$$

§ Note that, for the time being, we are not considering discount. We will come back to that.

Abir Das (IIT Kharagpur)

Agenda Introduction REINFORCE Bias/Variance

The Goal of Reinforcement Learning

 \S Goal for a finite horizon setting:

$$\boldsymbol{\theta}^* = \arg \max_{\boldsymbol{\theta}} \sum_{t=1}^{T} \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t) \sim p_{\boldsymbol{\theta}}(\mathbf{s}_t, \mathbf{a}_t)} \left[r(\mathbf{s}_t, \mathbf{a}_t) \right]$$

§ The same for the infinite horizon setting
$$\boldsymbol{\theta}^* = \operatorname*{arg\,max}_{\boldsymbol{\theta}} \mathbb{E}_{(\mathbf{s},\mathbf{a}) \sim p_{\boldsymbol{\theta}}(\mathbf{s},\mathbf{a})} \left[r(\mathbf{s},\mathbf{a}) \right]$$

§ We will consider only finite horizon case in this topic.

Introduction 000000 Bias/Variance

Evaluating the Objective

- § We will see how we can optimize this objective the expected value of the total reward under the trajectory distribution induced by the policy θ .
- § But before that let us see how we can evaluate the objective in model free setting.

$$J(\boldsymbol{\theta}) = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$
(4)

00

Introduction 000000

Bias/Variance

Evaluating the Objective

- We will see how we can optimize this objective the expected value ξ of the total reward under the trajectory distribution induced by the policy θ .
- But before that let us see how we can evaluate the objective in model ξ free setting.

$$J(\boldsymbol{\theta}) = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \approx \frac{1}{N} \sum_{i} \sum_{t} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \quad (\mathbf{4})$$

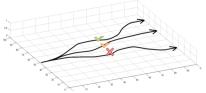


Figure credit: [Sergey Levine, UC Berkeley]

genda	Introd
õ	0000

Bias/Variance

Maximizing the Objective

§ Now that we have seen how to evaluate the objective, the next step is to maximize it.

genda	Intr
õ	00

Bias/Variance

Maximizing the Objective

- § Now that we have seen how to evaluate the objective, the next step is to maximize it.
- \S Compute the gradient and take steps in the direction of the gradient.

Maximizing the Objective

- § Now that we have seen how to evaluate the objective, the next step is to maximize it.
- § Compute the gradient and take steps in the direction of the gradient.

$$\boldsymbol{\theta}^* = \arg \max_{\boldsymbol{\theta}} \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[\underbrace{\sum_{t}^{r(\tau)} r(\mathbf{s}_t, \mathbf{a}_t)}_{J(\boldsymbol{\theta})} \right]$$
$$J(\boldsymbol{\theta}) = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} [r(\tau)] = \int p_{\boldsymbol{\theta}}(\tau) r(\tau) d\tau$$

Introduction 000000 Bias/Variance

Maximizing the Objective

- § Now that we have seen how to evaluate the objective, the next step is to maximize it.
- § Compute the gradient and take steps in the direction of the gradient.

$$\boldsymbol{\theta}^* = \arg \max_{\boldsymbol{\theta}} \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[\underbrace{\sum_{t}^{r(\tau)} r(\mathbf{s}_t, \mathbf{a}_t)}_{J(\boldsymbol{\theta})} \right]$$
$$J(\boldsymbol{\theta}) = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} [r(\tau)] = \int p_{\boldsymbol{\theta}}(\tau) r(\tau) d\tau$$
$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \int \nabla_{\boldsymbol{\theta}} p_{\boldsymbol{\theta}}(\tau) r(\tau) d\tau$$

§ How to compute this complicated looking gradient!

Introduction

Bias/Variance

Maximizing the Objective

- § Now that we have seen how to evaluate the objective, the next step is to maximize it.
- \S Compute the gradient and take steps in the direction of the gradient.

$$\boldsymbol{\theta}^{*} = \arg \max_{\boldsymbol{\theta}} \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[\underbrace{\sum_{t}^{r(\tau)} \mathbf{s}_{t}, \mathbf{a}_{t}}_{J(\boldsymbol{\theta})} \right]_{J(\boldsymbol{\theta})}$$
$$J(\boldsymbol{\theta}) = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} [r(\tau)] = \int p_{\boldsymbol{\theta}}(\tau) r(\tau) d\tau$$
$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \int \nabla_{\boldsymbol{\theta}} p_{\boldsymbol{\theta}}(\tau) r(\tau) d\tau$$

§ How to compute this complicated looking gradient! The log-derivative trick is our rescue.

 Abir Das (IIT Kharagpur)
 CS60077
 Nov 09,

Introduction

REINFORCE

Bias/Variance

Log Derivative Trick

$$\nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau) = \frac{\partial \log p_{\boldsymbol{\theta}}(\tau)}{\partial p_{\boldsymbol{\theta}}(\tau)} \nabla_{\boldsymbol{\theta}} p_{\boldsymbol{\theta}}(\tau) = \frac{1}{p_{\boldsymbol{\theta}}(\tau)} \nabla_{\boldsymbol{\theta}} p_{\boldsymbol{\theta}}(\tau)$$
$$\implies \nabla_{\boldsymbol{\theta}} p_{\boldsymbol{\theta}}(\tau) = p_{\boldsymbol{\theta}}(\tau) \nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau) \tag{5}$$

æ

イロト イヨト イヨト イヨト

Introduction 000000 REINFORCE

Bias/Variance

Log Derivative Trick

$$\nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau) = \frac{\partial \log p_{\boldsymbol{\theta}}(\tau)}{\partial p_{\boldsymbol{\theta}}(\tau)} \nabla_{\boldsymbol{\theta}} p_{\boldsymbol{\theta}}(\tau) = \frac{1}{p_{\boldsymbol{\theta}}(\tau)} \nabla_{\boldsymbol{\theta}} p_{\boldsymbol{\theta}}(\tau)$$
$$\implies \nabla_{\boldsymbol{\theta}} p_{\boldsymbol{\theta}}(\tau) = p_{\boldsymbol{\theta}}(\tau) \nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau) \tag{5}$$

 \S So using eqn. (5) we get the gradient of the objective as,

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \int \nabla_{\boldsymbol{\theta}} p_{\boldsymbol{\theta}}(\tau) r(\tau) d\tau = \int p_{\boldsymbol{\theta}}(\tau) \nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau) r(\tau) d\tau$$
$$= \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[\nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau) r(\tau) \right] \tag{6}$$

-

Image: Image:

Introduction 000000 REINFORCE

Bias/Variance

Log Derivative Trick

$$\nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau) = \frac{\partial \log p_{\boldsymbol{\theta}}(\tau)}{\partial p_{\boldsymbol{\theta}}(\tau)} \nabla_{\boldsymbol{\theta}} p_{\boldsymbol{\theta}}(\tau) = \frac{1}{p_{\boldsymbol{\theta}}(\tau)} \nabla_{\boldsymbol{\theta}} p_{\boldsymbol{\theta}}(\tau)$$
$$\implies \nabla_{\boldsymbol{\theta}} p_{\boldsymbol{\theta}}(\tau) = p_{\boldsymbol{\theta}}(\tau) \nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau) \tag{5}$$

 \S So using eqn. (5) we get the gradient of the objective as,

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \int \nabla_{\boldsymbol{\theta}} p_{\boldsymbol{\theta}}(\tau) r(\tau) d\tau = \int p_{\boldsymbol{\theta}}(\tau) \nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau) r(\tau) d\tau$$
$$= \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[\nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau) r(\tau) \right]$$
(6)

§ Remember that

$$J(\boldsymbol{\theta}) = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[r(\tau) \right] = \int p_{\boldsymbol{\theta}}(\tau) r(\tau) d\tau$$

Introduction 000000 REINFORCE

Bias/Variance

Log Derivative Trick

§ Till now we have the following,

$$\boldsymbol{\theta}^* = \underset{\boldsymbol{\theta}}{\arg\max} \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} J(\boldsymbol{\theta}); \quad J(\boldsymbol{\theta}) = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[r(\tau) \right]$$
$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[\nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau) r(\tau) \right]$$

э

∃ → (∃ →

Image: A matrix and a matrix

Agenda Intro 00 000

Introduction 000000 REINFORCE

Bias/Variance

Log Derivative Trick

§ Till now we have the following,

$$\boldsymbol{\theta}^* = \underset{\boldsymbol{\theta}}{\operatorname{arg\,max}} \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} J(\boldsymbol{\theta}); \quad J(\boldsymbol{\theta}) = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[r(\tau) \right]$$
$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[\nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau) r(\tau) \right]$$

§ We have also seen,

$$p_{\theta}(\tau) = p_{\theta}(\mathbf{s}_1, \mathbf{a}_1, \mathbf{s}_2, \mathbf{a}_2, \cdots, \mathbf{s}_T, \mathbf{a}_T, \mathbf{s}_{T+1}) = p(\mathbf{s}_1) \prod_{t=1}^T p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t) \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$$

э

∃ → (∃ →

Image: A matrix and a matrix

Introduction 000000 REINFORCE

Bias/Variance

Log Derivative Trick

§ Till now we have the following,

$$\boldsymbol{\theta}^* = \underset{\boldsymbol{\theta}}{\arg\max} \underset{\boldsymbol{\theta}}{\mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} J(\boldsymbol{\theta})}; \quad J(\boldsymbol{\theta}) = \underset{\tau \sim p_{\boldsymbol{\theta}}(\tau)}{\mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} [r(\tau)]}$$
$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \underset{\tau \sim p_{\boldsymbol{\theta}}(\tau)}{\mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} [\nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau) r(\tau)]}$$

§ We have also seen,

$$p_{\theta}(\tau) = p_{\theta}(\mathbf{s}_1, \mathbf{a}_1, \mathbf{s}_2, \mathbf{a}_2, \cdots, \mathbf{s}_T, \mathbf{a}_T, \mathbf{s}_{T+1}) = p(\mathbf{s}_1) \prod_{t=1}^T p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t) \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$$

§ Taking log both sides, $\log p_{\theta}(\tau) = \log p(\mathbf{s}_1) + \sum_{t=1}^{T} \log p(\mathbf{s}_{t+1}|\mathbf{s}_t, \mathbf{a}_t) + \sum_{t=1}^{T} \log \pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$

・ 何 ト ・ ヨ ト ・ ヨ ト

Introduction 000000 REINFORCE

Bias/Variance

Log Derivative Trick

§ Till now we have the following,

$$\boldsymbol{\theta}^* = \underset{\boldsymbol{\theta}}{\operatorname{arg\,max}} \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} J(\boldsymbol{\theta}); \quad J(\boldsymbol{\theta}) = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[r(\tau) \right]$$
$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[\nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau) r(\tau) \right]$$

§ We have also seen,

$$p_{\theta}(\tau) = p_{\theta}(\mathbf{s}_1, \mathbf{a}_1, \mathbf{s}_2, \mathbf{a}_2, \cdots, \mathbf{s}_T, \mathbf{a}_T, \mathbf{s}_{T+1}) = p(\mathbf{s}_1) \prod_{t=1}^T p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t) \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$$

- § Taking log both sides, $\log p_{\theta}(\tau) = \log p(\mathbf{s}_1) + \sum_{t=1}^{T} \log p(\mathbf{s}_{t+1}|\mathbf{s}_t, \mathbf{a}_t) + \sum_{t=1}^{T} \log \pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$
- § Taking ∇_{θ} both sides, $\nabla_{\theta} \log p_{\theta}(\tau) =$

Agenda I

Introduction 000000 REINFORCE

Bias/Variance

Log Derivative Trick

§ Till now we have the following,

$$\boldsymbol{\theta}^* = \underset{\boldsymbol{\theta}}{\operatorname{arg\,max}} \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} J(\boldsymbol{\theta}); \quad J(\boldsymbol{\theta}) = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[r(\tau) \right]$$
$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[\nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau) r(\tau) \right]$$

§ We have also seen,

$$p_{\theta}(\tau) = p_{\theta}(\mathbf{s}_1, \mathbf{a}_1, \mathbf{s}_2, \mathbf{a}_2, \cdots, \mathbf{s}_T, \mathbf{a}_T, \mathbf{s}_{T+1}) = p(\mathbf{s}_1) \prod_{t=1}^T p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t) \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$$

- § Taking log both sides, $\log p_{\theta}(\tau) = \log p(\mathbf{s}_1) + \sum_{t=1}^{T} \log p(\mathbf{s}_{t+1}|\mathbf{s}_t, \mathbf{a}_t) + \sum_{t=1}^{T} \log \pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$
- § Taking $\nabla_{\boldsymbol{\theta}}$ both sides, $\nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau) = \underline{\log p(\mathbf{s}_1)}^0$

Agenda I

Introduction 000000 REINFORCE

Bias/Variance

Log Derivative Trick

§ Till now we have the following,

$$\boldsymbol{\theta}^* = \underset{\boldsymbol{\theta}}{\arg\max} \underset{\boldsymbol{\theta}}{\mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} J(\boldsymbol{\theta})}; \quad J(\boldsymbol{\theta}) = \underset{\tau \sim p_{\boldsymbol{\theta}}(\tau)}{\mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} [r(\tau)]}$$
$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \underset{\tau \sim p_{\boldsymbol{\theta}}(\tau)}{\mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} [\nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau) r(\tau)]}$$

§ We have also seen,

$$p_{\theta}(\tau) = p_{\theta}(\mathbf{s}_1, \mathbf{a}_1, \mathbf{s}_2, \mathbf{a}_2, \cdots, \mathbf{s}_T, \mathbf{a}_T, \mathbf{s}_{T+1}) = p(\mathbf{s}_1) \prod_{t=1}^T p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t) \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$$

§ Taking log both sides,

$$\log p_{\theta}(\tau) = \log p(\mathbf{s}_1) + \sum_{t=1}^{T} \log p(\mathbf{s}_{t+1}|\mathbf{s}_t, \mathbf{a}_t) + \sum_{t=1}^{T} \log \pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$$

§ Taking
$$\nabla_{\boldsymbol{\theta}}$$
 both sides,
 $\nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau) = \underline{\log p(\mathbf{s}_1)}^{\mathbf{\theta}} + \sum_{t=1}^{T} \underline{\log p(\mathbf{s}_{t+1}|\mathbf{s}_t, \mathbf{a}_t)}^{\mathbf{\theta}}$

Abir Das (IIT Kharagpur)

Introduction 000000 REINFORCE

Bias/Variance

Log Derivative Trick

§ Till now we have the following,

$$\boldsymbol{\theta}^* = \underset{\boldsymbol{\theta}}{\arg\max} \underset{\boldsymbol{\theta}}{\mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} J(\boldsymbol{\theta})}; \quad J(\boldsymbol{\theta}) = \underset{\tau \sim p_{\boldsymbol{\theta}}(\tau)}{\mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} [r(\tau)]}$$
$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \underset{\tau \sim p_{\boldsymbol{\theta}}(\tau)}{\mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} [\nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau) r(\tau)]}$$

§ We have also seen,

$$p_{\theta}(\tau) = p_{\theta}(\mathbf{s}_1, \mathbf{a}_1, \mathbf{s}_2, \mathbf{a}_2, \cdots, \mathbf{s}_T, \mathbf{a}_T, \mathbf{s}_{T+1}) = p(\mathbf{s}_1) \prod_{t=1}^T p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t) \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$$

§ Taking log both sides,

$$\log p_{\theta}(\tau) = \log p(\mathbf{s}_1) + \sum_{t=1}^{T} \log p(\mathbf{s}_{t+1}|\mathbf{s}_t, \mathbf{a}_t) + \sum_{t=1}^{T} \log \pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$$

§ Taking
$$\nabla_{\boldsymbol{\theta}}$$
 both sides,
 $\nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau) = \underline{\log p(\mathbf{s}_1)}^{+} + \sum_{t=1}^{T} \underline{\log p(\mathbf{s}_{t+1}|\mathbf{s}_t, \mathbf{a}_t)} + \sum_{t=1}^{T} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_t|\mathbf{s}_t)$

Introduction

REINFORCE

Bias/Variance

Log Derivative Trick

1

§ Thus,

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[\nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau) r(\tau) \right]$$
$$= \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[\sum_{t=1}^{T} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_t | \mathbf{s}_t) \sum_{t=1}^{T} r(\mathbf{s}_t, \mathbf{a}_t) \right]$$

æ

イロト イヨト イヨト イヨト

 Bias/Variance

Log Derivative Trick

§ Thus,

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[\nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau) r(\tau) \right]$$
$$= \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[\sum_{t=1}^{T} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_t | \mathbf{s}_t) \sum_{t=1}^{T} r(\mathbf{s}_t, \mathbf{a}_t) \right]$$

§ So, to get the estimate of the gradient we take samples and average not only the sum of rewards but also average the sum of the gradients of the policy values.

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \approx \frac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=1}^{T} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right]$$

 Agenda
 Introduction
 REINFORC

 00
 000000
 00000000

Bias/Variance

Log Derivative Trick

§ Thus,

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[\nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau) r(\tau) \right]$$
$$= \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[\sum_{t=1}^{T} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_t | \mathbf{s}_t) \sum_{t=1}^{T} r(\mathbf{s}_t, \mathbf{a}_t) \right]$$

§ So, to get the estimate of the gradient we take samples and average not only the sum of rewards but also average the sum of the gradients of the policy values.

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \approx \frac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=1}^{T} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right]$$

 \S And the last bit is to update heta along the gradient direction.

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \tag{7}$$

Introduction

REINFORCE

Bias/Variance

Fitting in Generic RL Pipeline

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \approx \frac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=1}^{T} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right] \sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$
$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$
If the model to estimate return for the policy improve the policy

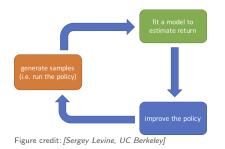
Figure credit: [Sergey Levine, UC Berkeley]

Introduction 000000 REINFORCE

Bias/Variance

Fitting in Generic RL Pipeline

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \approx \boxed{\frac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=1}^{T} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right]}_{\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})}$$



REINFORCE Algorithm

Sample $\{r^i\}$ from $\pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$ (run the policy)

2
$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \approx \frac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=1}^{T} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right]$$

(日) (同) (三) (三)

Abir Das (IIT Kharagpur)

Introduction

REINFORCE

Bias/Variance

Taking a Closer Look

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \approx \frac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=1}^{T} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \sum_{t=1}^{T} (\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right]$$

- § What is given by $\log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t})$? It is log of the probability of action $\mathbf{a}_{i,t}$ at state $\mathbf{s}_{i,t}$ under the distribution parameterized by θ .
- § This gives the likelihood, *i.e.*, how likely, we are to see $\mathbf{a}_{i,t}$ as the action, if our policy is defined by the current $\boldsymbol{\theta}$ that we have.
- § Computing the gradient and taking a step along the direction of the gradient, changes θ in such a way that the likelihood of the action $\mathbf{a}_{i,t}$ increases.

Introduction

REINFORCE

Bias/Variance

Taking a Closer Look

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \approx \frac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=1}^{T} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \sum_{t=1}^{T} (\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right]$$

- § What is given by $\log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t})$? It is log of the probability of action $\mathbf{a}_{i,t}$ at state $\mathbf{s}_{i,t}$ under the distribution parameterized by θ .
- § This gives the likelihood, *i.e.*, how likely, we are to see $\mathbf{a}_{i,t}$ as the action, if our policy is defined by the current $\boldsymbol{\theta}$ that we have.
- § Computing the gradient and taking a step along the direction of the gradient, changes θ in such a way that the likelihood of the action $\mathbf{a}_{i,t}$ increases.

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \approx \frac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=1}^{T} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right]$$

§ Now consider the case, when it is getting multiplied by $\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$. § Those actions with high rewards are getting more likely.

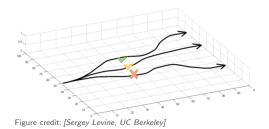
Image: A mathematical states and a mathem

Introduction

Bias/Variance

Taking a Closer Look

- § Good stuff is made more likely.
- § Bad stuff is made less likely.
- § Formalizes the 'trial and error' learning.

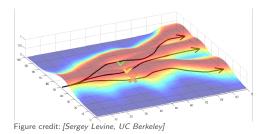


Introduction

Bias/Variance

Taking a Closer Look

- § Good stuff is made more likely.
- § Bad stuff is made less likely.
- § Formalizes the 'trial and error' learning.

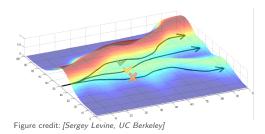


Introduction 000000

Bias/Variance

Taking a Closer Look

- § Good stuff is made more likely.
- § Bad stuff is made less likely.
- § Formalizes the 'trial and error' learning.

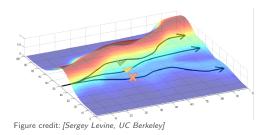


Introduction 000000

Bias/Variance

Taking a Closer Look

- § Good stuff is made more likely.
- § Bad stuff is made less likely.
- § Formalizes the 'trial and error' learning.



00

Bias and Variance in Estimation

- § One way to work with values we do not know is to estimate them by experimenting repeatedly.
- § Monte-Carlo methods provide the estimate of the true value and we have used Monte-Carlo methods to estimate the value functions and to estimate the gradient of the expected return.
- § The estimator is a function of the data which itself are random variables. So the estimated value is subject to many possible outcomes if employed repeatedly, *i.e.*, if you conduct the experiment multiple times, in general, the estimator will provide different values.
- § An estimator is good if,
 - On average the estimated values are close to the true value for different trials - (Bias)
 - ▶ The estimates do not vary much in each trial (variance)

Agenda	
00	

Introduction 000000 REINFORCE

Bias/Variance

Unbiased Estimators

- § An unbiased estimator is the one that yields the true value of the variable being estimated on average. With θ denoting the true value and $\hat{\theta}$ denoting the estimated value, and unbiased estimator is one with, $\mathbb{E}[\hat{\theta}] = \theta$
- § Naturally bias is defined as,

$$b = \mathbb{E}[\hat{\theta}] - \theta$$

Introduction 000000 REINFORCE

Bias/Variance

Unbiased Estimators

- § An unbiased estimator is the one that yields the true value of the variable being estimated on average. With θ denoting the true value and $\hat{\theta}$ denoting the estimated value, and unbiased estimator is one with, $\mathbb{E}[\hat{\theta}] = \theta$
- § Naturally bias is defined as,

$$b = \mathbb{E}[\hat{\theta}] - \theta$$

§ Let us consider estimating a constant value (say temperature of this room) by some sensors which are not perfect. Consider the observations.

$$x[n] = \theta + w[n]$$
 $n = 0, 1, \cdots, N-1$. $w[n]$ is WGN with variance $= \sigma^2$.

Introduction 000000

Unbiased Estimators

- § An unbiased estimator is the one that yields the true value of the variable being estimated on average. With θ denoting the true value and $\hat{\theta}$ denoting the estimated value, and unbiased estimator is one with, $\mathbb{E}[\hat{\theta}] = \theta$
- § Naturally bias is defined as,

$$b = \mathbb{E}[\hat{\theta}] - \theta$$

§ Let us consider estimating a constant value (say temperature of this room) by some sensors which are not perfect. Consider the observations.

 $x[n] = \theta + w[n] \quad n = 0, 1, \cdots, N-1. \quad w[n] \text{ is WGN with variance} = \sigma^2.$

§ A reasonable estimator is the average value of x[n] *i.e.*, $\hat{\theta} = \frac{1}{N} \sum_{n=0}^{N-1} x[n]$

Agenda	Introduction	REINFORCE	Bias/Variance
00	000000	00000000	000000000000000000000000000000000000
Estimato	or Rias		

§ The sample mean estimator is unbiased.

$$\mathbb{E}[\hat{\theta}] = \mathbb{E}\left[\frac{1}{N}\sum_{n=0}^{N-1} x[n]\right] = \frac{1}{N}\sum_{n=0}^{N-1} \mathbb{E}[x[n]]$$
$$= \frac{1}{N}\sum_{n=0}^{N-1} \mathbb{E}\left([\theta + w[n]]\right) = \frac{1}{N}\sum_{n=0}^{N-1} \left(\mathbb{E}[\theta] + \mathbb{E}[w[n]]\right)$$
$$= \frac{1}{N}\sum_{n=0}^{N-1} = (\theta + 0) = \theta$$

Agenda	Introduction	REINFORCE	Bias/Variance
00	000000	00000000	000000000000000000000000000000000000
Estimato	r Bias		

§ The sample mean estimator is unbiased.

$$\mathbb{E}[\hat{\theta}] = \mathbb{E}\left[\frac{1}{N}\sum_{n=0}^{N-1} x[n]\right] = \frac{1}{N}\sum_{n=0}^{N-1} \mathbb{E}[x[n]]$$
$$= \frac{1}{N}\sum_{n=0}^{N-1} \mathbb{E}([\theta + w[n]]) = \frac{1}{N}\sum_{n=0}^{N-1} \left(\mathbb{E}[\theta] + \mathbb{E}[w[n]]\right)$$
$$= \frac{1}{N}\sum_{n=0}^{N-1} = (\theta + 0) = \theta$$

 \S Let us see what happens with a modified estimator, x[n] i.e., $\check{\theta} = \frac{1}{2N}\sum_{n=0}^{N-1}x[n]$

Agenda	Introduction	REINFORCE	Bias/Variance
00	000000	00000000	oo●oooooooooooooooooooooooo
Estimato	r Bias		

§ The sample mean estimator is unbiased.

$$\mathbb{E}[\hat{\theta}] = \mathbb{E}\left[\frac{1}{N}\sum_{n=0}^{N-1} x[n]\right] = \frac{1}{N}\sum_{n=0}^{N-1} \mathbb{E}[x[n]]$$
$$= \frac{1}{N}\sum_{n=0}^{N-1} \mathbb{E}\left([\theta + w[n]]\right) = \frac{1}{N}\sum_{n=0}^{N-1} \left(\mathbb{E}[\theta] + \mathbb{E}[w[n]]\right)$$
$$= \frac{1}{N}\sum_{n=0}^{N-1} = \left(\theta + 0\right) = \theta$$

 \S Let us see what happens with a modified estimator, x[n] i.e., $\check{\theta}=\frac{1}{2N}\sum_{n=0}^{N-1}x[n]$

§ It is easy to see that $\mathbb{E}[\check{\theta}] = \frac{1}{2}\theta$. § So the bias is $b = \mathbb{E}[\check{\theta}] - \theta = -\frac{1}{2}\theta$

Agenda	Introduction	REINFORCE	
00	000000	0000000	0000000

§ That an estimator is unbiased does not necessarily mean that it is a good estimator. It is reasonable to check by repeating the experiment how the results differ in successive trials.

- § Thus the variance of the estimate is another measure of goodness of the estimator. And the aim will be to see how small we can make $var(\hat{\theta})$.
- \S Let us take the following 3 estimators for θ and see the variances of all these.

$$\begin{split} \hat{\theta}_b &= x[0] \\ \hat{\theta}_a &= 0 \\ \mathbb{E}(\hat{\theta}_a) &= 0 \\ \mathrm{var}(\hat{\theta}_a) &= 0 \\ \mathrm{var}(\hat{\theta}_a) &= 0 \\ \mathrm{var}(\hat{\theta}_b) &= \mathrm{var}(x[0]) \\ \mathrm{var}(\hat{\theta}_b) &= \mathrm{var}(x[0]) \\ \mathrm{var}(\hat{\theta}_b) &= \mathrm{var}(x[0]) \\ \mathrm{var}(x[0]) &= \sigma^2 \\ \end{split}$$

$$\begin{split} \hat{\theta}_c &= \frac{1}{N} \sum_{n=0}^{N-1} x[n] \\ \mathbb{E}(\hat{\theta}_c) &= \theta \quad (\text{already seen}) \\ \mathbb{E}(\hat{\theta}_c) &= \mathbb{E}[(\hat{\theta}_c - \mathbb{E}[\hat{\theta}_c])^2] \\ \mathbb{E}(\hat{\theta}_b) &= \mathrm{var}(x[0]) \\ \mathrm{var}(\hat{\theta}_b) \\$$

Estimator Variance

Agenda	Introduction	REINFORCE	
00	000000	0000000	000000000000000000000000000000000000000

Estimator Variance

$$\operatorname{var}(\hat{\theta}_c) = \mathbb{E}[(\hat{\theta}_c - \mathbb{E}[\hat{\theta}_c])^2] = \mathbb{E}[(\frac{1}{N}\sum_{n=0}^{N-1} x[n] - \mathbb{E}[\hat{\theta}_c])^2]$$
(8)

$$= \mathbb{E}[(\frac{1}{N}\sum_{n=0}^{N-1}\theta + w[n] - \theta)^2] = \mathbb{E}[(\frac{1}{N}\sum_{n=0}^{N-1}w[n])^2] = \frac{1}{N^2}\mathbb{E}[(\sum_{n=0}^{N-1}w[n])^2]$$

э

Image: A image: A

æ

Agenda	Introduction	REINFORCE	
00	000000	0000000	000000000000000000000000000000000000000

Estimator Variance

$$\operatorname{var}(\hat{\theta}_c) = \mathbb{E}[(\hat{\theta}_c - \mathbb{E}[\hat{\theta}_c])^2] = \mathbb{E}[(\frac{1}{N}\sum_{n=0}^{N-1} x[n] - \mathbb{E}[\hat{\theta}_c])^2]$$
(8)

$$= \mathbb{E}[(\frac{1}{N}\sum_{n=0}^{N-1}\theta + w[n] - \theta)^2] = \mathbb{E}[(\frac{1}{N}\sum_{n=0}^{N-1}w[n])^2] = \frac{1}{N^2}\mathbb{E}[(\sum_{n=0}^{N-1}w[n])^2]$$

§ Now,

$$\operatorname{var}\left(\sum_{n=0}^{N-1} w[n]\right) = \mathbb{E}\left[\left(\sum_{n=0}^{N-1} w[n] - \mathbb{E}\left[\sum_{n=0}^{N-1} w[n]\right]\right)^2\right]$$
$$= \mathbb{E}\left[\left(\sum_{n=0}^{N-1} w[n] - \sum_{n=0}^{N-1} \overline{\mathbb{E}\left[w[n]\right]}\right)^2\right] = \mathbb{E}\left[\left(\sum_{n=0}^{N-1} w[n]\right)^2\right]$$

• • • • • • • •

æ

Agenda	Introduction	REINFORCE	
00	000000	0000000	000000000000000000000000000000000000000

Estimator Variance

$$\operatorname{var}(\hat{\theta}_c) = \mathbb{E}[(\hat{\theta}_c - \mathbb{E}[\hat{\theta}_c])^2] = \mathbb{E}[(\frac{1}{N}\sum_{n=0}^{N-1} x[n] - \mathbb{E}[\hat{\theta}_c])^2]$$
(8)

$$= \mathbb{E}[(\frac{1}{N}\sum_{n=0}^{N-1}\theta + w[n] - \theta)^2] = \mathbb{E}[(\frac{1}{N}\sum_{n=0}^{N-1}w[n])^2] = \frac{1}{N^2}\mathbb{E}[(\sum_{n=0}^{N-1}w[n])^2]$$

§ Now,

$$\operatorname{var}\left(\sum_{n=0}^{N-1} w[n]\right) = \mathbb{E}\left[\left(\sum_{n=0}^{N-1} w[n] - \mathbb{E}\left[\sum_{n=0}^{N-1} w[n]\right]\right)^2\right]$$
$$= \mathbb{E}\left[\left(\sum_{n=0}^{N-1} w[n] - \sum_{n=0}^{N-1} \overline{\mathbb{E}\left[w[n]\right]}\right)^2\right] = \mathbb{E}\left[\left(\sum_{n=0}^{N-1} w[n]\right)^2\right]$$

§ Using the above in eqn. (8)

$$\operatorname{var}(\hat{\theta}_c) = \frac{1}{N^2} \operatorname{var}\left(\sum_{n=0}^{N-1} w[n]\right) = \frac{1}{N^2} \left(\sum_{n=0}^{N-1} \operatorname{var}(w[n])\right) \quad (WGN)$$

$$= \frac{N\sigma^2}{N^2} = \frac{\sigma^2}{N}$$

Introduction 000000 REINFORCE

Bias/Variance

Estimator Mean Square Error

§ The mean of the square error of estimation is,

$$\begin{split} \mathsf{mse}(\hat{\theta}_c) &= \mathbb{E}\big[(\hat{\theta} - \theta)^2\big] = \mathbb{E}\big[(\hat{\theta} - \mathbb{E}[\hat{\theta}] + \mathbb{E}[\hat{\theta}] - \theta)^2\big] \\ &= \mathbb{E}\big[(\hat{\theta} - \mathbb{E}[\hat{\theta}])^2\big] + \mathbb{E}\big[(\mathbb{E}[\hat{\theta}] - \theta)^2\big] + 2\mathbb{E}\big[(\hat{\theta} - \mathbb{E}[\hat{\theta}])(\mathbb{E}[\hat{\theta}] - \theta)\big] \end{split}$$

э.

Introduction 000000 REINFORCE

Bias/Variance

Estimator Mean Square Error

- § The mean of the square error of estimation is, $mse(\hat{\theta}_c) = \mathbb{E}\left[(\hat{\theta} - \theta)^2\right] = \mathbb{E}\left[(\hat{\theta} - \mathbb{E}[\hat{\theta}] + \mathbb{E}[\hat{\theta}] - \theta)^2\right]$
 - $= \mathbb{E} \left[(\hat{\theta} \mathbb{E}[\hat{\theta}])^2 \right] + \mathbb{E} \left[(\mathbb{E}[\hat{\theta}] \theta)^2 \right] + 2\mathbb{E} \left[(\hat{\theta} \mathbb{E}[\hat{\theta}]) (\mathbb{E}[\hat{\theta}] \theta) \right]$ $= \mathbb{E} \left[(\hat{\theta} \mathbb{E}[\hat{\theta}])^2 \right] + (\mathbb{E}[\hat{\theta}] \theta)^2 + 2(\mathbb{E}[\hat{\theta}] \theta)\mathbb{E} \left[(\hat{\theta} \mathbb{E}[\hat{\theta}]) \right]$

(why?) - (Hint: What is random here?)

Introduction 000000 REINFORCE

Bias/Variance

Estimator Mean Square Error

§ The mean of the square error of estimation is, $mse(\hat{\theta}_c) = \mathbb{E}[(\hat{\theta} - \theta)^2] = \mathbb{E}[(\hat{\theta} - \mathbb{E}[\hat{\theta}] + \mathbb{E}[\hat{\theta}] - \theta)^2]$ $= \mathbb{E}[(\hat{\theta} - \mathbb{E}[\hat{\theta}])^2] + \mathbb{E}[(\mathbb{E}[\hat{\theta}] - \theta)^2] + 2\mathbb{E}[(\hat{\theta} - \mathbb{E}[\hat{\theta}])(\mathbb{E}[\hat{\theta}] - \theta)]$ $= \mathbb{E}[(\hat{\theta} - \mathbb{E}[\hat{\theta}])^2] + (\mathbb{E}[\hat{\theta}] - \theta)^2 + 2(\mathbb{E}[\hat{\theta}] - \theta)\mathbb{E}[(\hat{\theta} - \mathbb{E}[\hat{\theta}])]$ (why?) - (Hint: What is random here?) $= \mathbb{E}[(\hat{\theta} - \mathbb{E}[\hat{\theta}])^2] + (\mathbb{E}[\hat{\theta}] - \theta)^2 + 2(\mathbb{E}[\hat{\theta}] - \theta)(\mathbb{E}[\hat{\theta}] - \mathbb{E}[\hat{\theta}])^0$

Introduction 000000 REINFORCE

Estimator Mean Square Error

§ The mean of the square error of estimation is, $mse(\hat{\theta}_c) = \mathbb{E}[(\hat{\theta} - \theta)^2] = \mathbb{E}[(\hat{\theta} - \mathbb{E}[\hat{\theta}] + \mathbb{E}[\hat{\theta}] - \theta)^2]$ $= \mathbb{E}[(\hat{\theta} - \mathbb{E}[\hat{\theta}])^2] + \mathbb{E}[(\mathbb{E}[\hat{\theta}] - \theta)^2] + 2\mathbb{E}[(\hat{\theta} - \mathbb{E}[\hat{\theta}])(\mathbb{E}[\hat{\theta}] - \theta)]$ $= \mathbb{E}[(\hat{\theta} - \mathbb{E}[\hat{\theta}])^2] + (\mathbb{E}[\hat{\theta}] - \theta)^2 + 2(\mathbb{E}[\hat{\theta}] - \theta)\mathbb{E}[(\hat{\theta} - \mathbb{E}[\hat{\theta}])]$ (why?) - (Hint: What is random here?) $= \mathbb{E}[(\hat{\theta} - \mathbb{E}[\hat{\theta}])^2] + (\mathbb{E}[\hat{\theta}] - \theta)^2 + 2(\mathbb{E}[\hat{\theta}] - \theta)(\mathbb{E}[\hat{\theta}] - \mathbb{E}[\hat{\theta}])^0$ $= var(\hat{\theta}) + bias^2(\hat{\theta})$

Introduction 000000 REINFORCE

Bias/Variance

Estimator Mean Square Error

§ The mean of the square error of estimation is,

$$\begin{split} \mathsf{mse}(\hat{\theta}_c) &= \mathbb{E}\big[(\hat{\theta} - \theta)^2\big] = \mathbb{E}\big[(\hat{\theta} - \mathbb{E}[\hat{\theta}] + \mathbb{E}[\hat{\theta}] - \theta)^2\big] \\ &= \mathbb{E}\big[(\hat{\theta} - \mathbb{E}[\hat{\theta}])^2\big] + \mathbb{E}\big[(\mathbb{E}[\hat{\theta}] - \theta)^2\big] + 2\mathbb{E}\big[(\hat{\theta} - \mathbb{E}[\hat{\theta}])(\mathbb{E}[\hat{\theta}] - \theta)\big] \\ &= \mathbb{E}\big[(\hat{\theta} - \mathbb{E}[\hat{\theta}])^2\big] + (\mathbb{E}[\hat{\theta}] - \theta)^2 + 2(\mathbb{E}[\hat{\theta}] - \theta)\mathbb{E}\big[(\hat{\theta} - \mathbb{E}[\hat{\theta}])\big] \\ &\qquad (\mathsf{why?}) - (\mathsf{Hint: What is random here?}) \\ &= \mathbb{E}\big[(\hat{\theta} - \mathbb{E}[\hat{\theta}])^2\big] + (\mathbb{E}[\hat{\theta}] - \theta)^2 + 2(\mathbb{E}[\hat{\theta}] - \theta)(\mathbb{E}[\hat{\theta}] - \mathbb{E}[\hat{\theta}]) \overset{0}{=} \operatorname{var}(\hat{\theta}) + \operatorname{bias}^2(\hat{\theta}) \end{split}$$

§ So the mean square error in estimation, is composed of errors due to the variance of the esstimator as well as the bias.

Introduction 000000 REINFORCE

Bias/Variance

Estimator Mean Square Error

§ The mean of the square error of estimation is,

$$\begin{aligned} \mathsf{mse}(\hat{\theta}_c) &= \mathbb{E}\big[(\hat{\theta} - \theta)^2\big] = \mathbb{E}\big[(\hat{\theta} - \mathbb{E}[\hat{\theta}] + \mathbb{E}[\hat{\theta}] - \theta)^2\big] \\ &= \mathbb{E}\big[(\hat{\theta} - \mathbb{E}[\hat{\theta}])^2\big] + \mathbb{E}\big[(\mathbb{E}[\hat{\theta}] - \theta)^2\big] + 2\mathbb{E}\big[(\hat{\theta} - \mathbb{E}[\hat{\theta}])(\mathbb{E}[\hat{\theta}] - \theta)\big] \\ &= \mathbb{E}\big[(\hat{\theta} - \mathbb{E}[\hat{\theta}])^2\big] + (\mathbb{E}[\hat{\theta}] - \theta)^2 + 2(\mathbb{E}[\hat{\theta}] - \theta)\mathbb{E}\big[(\hat{\theta} - \mathbb{E}[\hat{\theta}])\big] \\ &\quad (\mathsf{why?}) - (\mathsf{Hint: What is random here?}) \\ &= \mathbb{E}\big[(\hat{\theta} - \mathbb{E}[\hat{\theta}])^2\big] + (\mathbb{E}[\hat{\theta}] - \theta)^2 + 2(\mathbb{E}[\hat{\theta}] - \theta)(\mathbb{E}[\hat{\theta}] - \mathbb{E}[\hat{\theta}])^0 \\ &= \mathsf{var}(\hat{\theta}) + \mathsf{hias}^2(\hat{\theta}) \end{aligned}$$

- § So the mean square error in estimation, is composed of errors due to the variance of the esstimator as well as the bias.
- § Recall MC evaluation

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T \text{ and } v_{\pi}(s) = \mathbb{E}[G_t | S_t = s]$$
$$\hat{v}_{\pi}(s) = \frac{1}{N} \sum_{i=1}^N G_t^{(i)}(S_t = s)$$

Introduction 000000 REINFORCE

Bias/Variance

Estimator Mean Square Error

§ The mean of the square error of estimation is,

$$\begin{aligned} \mathsf{mse}(\hat{\theta}_c) &= \mathbb{E}\left[(\hat{\theta} - \theta)^2\right] = \mathbb{E}\left[(\hat{\theta} - \mathbb{E}[\hat{\theta}] + \mathbb{E}[\hat{\theta}] - \theta)^2\right] \\ &= \mathbb{E}\left[(\hat{\theta} - \mathbb{E}[\hat{\theta}])^2\right] + \mathbb{E}\left[(\mathbb{E}[\hat{\theta}] - \theta)^2\right] + 2\mathbb{E}\left[(\hat{\theta} - \mathbb{E}[\hat{\theta}])(\mathbb{E}[\hat{\theta}] - \theta)\right] \\ &= \mathbb{E}\left[(\hat{\theta} - \mathbb{E}[\hat{\theta}])^2\right] + (\mathbb{E}[\hat{\theta}] - \theta)^2 + 2(\mathbb{E}[\hat{\theta}] - \theta)\mathbb{E}\left[(\hat{\theta} - \mathbb{E}[\hat{\theta}])\right] \\ &\quad (\mathsf{why?}) - (\mathsf{Hint: What is random here?}) \\ &= \mathbb{E}\left[(\hat{\theta} - \mathbb{E}[\hat{\theta}])^2\right] + (\mathbb{E}[\hat{\theta}] - \theta)^2 + 2(\mathbb{E}[\hat{\theta}] - \theta)(\mathbb{E}[\hat{\theta}] - \mathbb{E}[\hat{\theta}])^0 \end{aligned}$$

- $= var(\theta) + bias^{-}(\theta)$ § So the mean square error in estimation, is composed of errors due to the variance of the esstimator as well as the bias.
- § Recall MC evaluation

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T \quad \text{and } v_{\pi}(s) = \mathbb{E}\left[G_t | S_t = s\right]$$

$$\hat{v}_{\pi}(s) = \frac{1}{N} \sum_{i=1}^{N} G_t^{(i)}(S_t = s)$$

§ So $\hat{v}_{\pi}(s)$ is an unbiased estimator but with variance (inversely proportional to number of samples N.) Abir Das (IIT Kharagpur) Ciscurr Nov 09, 10, 2020

Bias and Variance of MC and TD

Introduction

Agenda

00

- § One key contribution of variance in MC evaluation comes from the randomness at each timestep.
- § This is not the case in TD as the G_t is estimated by bootstrapping,

$$\hat{G}_t = R_{t+1} + \gamma \hat{V}(S_{t+1})$$

REINFORCE

- § This makes the estimator suffer less from variance as randomness comes from only one random step taken. The rest is deterministic.
- \S But this introduces bias. The estimate always have the deterministic additive component $\gamma \hat{V}(S_{t+1})$

Agenda	Introduction	REINFORCE	Bias/Variance
00	000000	00000000	000000000000000000000000000000000000
D I ·			

Reducing Variance in Policy Gradient Estimate

§ We have seen,

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[\sum_{t=1}^{T} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_t | \mathbf{s}_t) \sum_{t=1}^{T} r(\mathbf{s}_t, \mathbf{a}_t) \right]$$

- § Inside each trajectory, a lot of randomness is there.
- § We can derive versions of this formula that eliminate terms to reduce variance.
- § Let us apply the log derivative trick $(\nabla_{\theta} \log p_{\theta}(\tau) = \sum \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t))$ to compute the gradient for a single_reward term.

$$\nabla_{\boldsymbol{\theta}} \mathbb{E}_{\tau} \left[r(\mathbf{s}_t, \mathbf{a}_t) \right] = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[\left(\sum_{t'=1}^t \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{t'} | \mathbf{s}_{t'}) \right) r(\mathbf{s}_t, \mathbf{a}_t) \right]$$
(9)

§ Note that the sum goes up to t. Why?

Agenda	Introduction	REINFORCE	Bias/Variance
00	000000	00000000	000000000000000000000000000000000000

Reducing Variance in Policy Gradient Estimate

§ We have seen,

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[\sum_{t=1}^{T} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_t | \mathbf{s}_t) \sum_{t=1}^{T} r(\mathbf{s}_t, \mathbf{a}_t) \right]$$

- § Inside each trajectory, a lot of randomness is there.
- § We can derive versions of this formula that eliminate terms to reduce variance.
- § Let us apply the log derivative trick $(\nabla_{\theta} \log p_{\theta}(\tau) = \sum \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t))$ to compute the gradient for a single_reward term.

$$\nabla_{\boldsymbol{\theta}} \mathbb{E}_{\tau} \left[r(\mathbf{s}_t, \mathbf{a}_t) \right] = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[\left(\sum_{t'=1}^t \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{t'} | \mathbf{s}_{t'}) \right) r(\mathbf{s}_t, \mathbf{a}_t) \right]$$
(9)

§ Note that the sum goes up to t. Why? - The reward at timestep t depends on actions till $t' \le t$. - **Causality**

- Summing over time we get (with some reordering of the sums, last) $\nabla_{\boldsymbol{\theta}} \mathbb{E}_{\tau} [r(\tau)] = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[\sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \sum_{t'=1}^{t} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{t'} | \mathbf{s}_{t'}) \right]$ $= \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[\sum_{t=1}^{T} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{t} | \mathbf{s}_{t}) \sum_{t'=t}^{T} r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) \right]$ (10)
- § With less randomness inside each trajectory the variance is less, but what about bias?

Introduction 000000 REINFORCE

Bias/Variance

Reducing Variance in Policy Gradient Estimate

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \Big[\sum_{t=1}^{T} \left(\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{t} | \mathbf{s}_{t}) \right) \sum_{t=1}^{T} \left(r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right) \Big]$$
$$= \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \Big[\sum_{t=1}^{T} \left(\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{t} | \mathbf{s}_{t}) \right) \sum_{t'=1}^{T} \left(r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) \right) \Big]$$
$$= \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \Big[\sum_{t=1}^{T} \sum_{t'=1}^{T} \left(\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{t} | \mathbf{s}_{t}) r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) \right) \Big]$$
$$= \sum_{t=1}^{T} \sum_{t'=1}^{T} \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \underbrace{\left[\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{t} | \mathbf{s}_{t}) r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) \right]}$$
(11)

э

∃ ► < ∃ ►</p>

Image: A matrix of the second seco

 ∇

Introduction 000000 REINFORCE

Bias/Variance

Reducing Variance in Policy Gradient Estimate

$$\boldsymbol{\theta} J(\boldsymbol{\theta}) = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \Big[\sum_{t=1}^{T} \Big(\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{t} | \mathbf{s}_{t}) \Big) \sum_{t=1}^{T} \Big(r(\mathbf{s}_{t}, \mathbf{a}_{t}) \Big) \Big] \\ = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \Big[\sum_{t=1}^{T} \Big(\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{t} | \mathbf{s}_{t}) \Big) \sum_{t'=1}^{T} \Big(r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) \Big) \Big] \\ = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \Big[\sum_{t=1}^{T} \sum_{t'=1}^{T} \Big(\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{t} | \mathbf{s}_{t}) r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) \Big) \Big] \\ = \sum_{t=1}^{T} \sum_{t'=1}^{T} \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \underbrace{ [\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{t} | \mathbf{s}_{t}) r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) \Big] \Big]$$
(11)

§ Let us consider the term, $\mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[f(t, t') \right] = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) \right]$ (12)

§ We will show that for the case of t' < t (reward coming before the action is performed) the above term is zero.

Abir Das (IIT Kharagpur)

Introduction 000000 REINFORCE

Reducing Variance in Policy Gradient Estimate

$$\mathbb{E}_{\tau \sim p_{\theta}(\tau)} [f(t, t')] = \int p(\tau) f(t, t') d(\tau)$$

= $\int p(s_1, a_1, \cdots, s_t, a_t, \cdots, s_{t'}, a_{t'}, \cdots) f(t, t')$
 $d(s_1, a_1, \cdots, s_t, a_t, \cdots, s_{t'}, a_{t'}, \cdots)$
= $\int p(s_t, a_t, s_{t'}, a_{t'}) f(t, t') d(s_t, a_t, s_{t'}, a_{t'})$ (13)

§ The above comes from the property below.

$$\int_{X} \int_{Y} f(X)P(X,Y)dYdX = \int_{X} \int_{Y} f(X)P(X)P(Y|X)dYdX$$
$$= \int_{X} f(X)P(X)dY \int_{Y} P(Y|X)dY \int_{Y} \frac{1}{4}$$

$$= \int_{X} f(X)P(X)dX \int_{Y} P(Y|X)dY$$
$$= \int_{X} f(X)P(X)dX$$
(14)

§ Taking $X = \{s_t, a_t, s_{t'}, a_{t'}\}$ and Y the rest.

Agenda 00	Introduction 000000	REINFORCE 00000000	Bias/Variance	00000000
Reducin	g Variance in Po	olicy Gradient I	Estimate	
	now we have,	e		
	$\mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[f(t, t') \right] = \int$	$p(s_t, a_t, s_{t'}, a_{t'})f(t,$	$t')d(s_t, a_t, s_{t'}, a_{t'})$	(15)
§ We v	vill now use a variati			
	$\mathbb{E}_{A,B}[f(A,B)]$	$=\int P(A,B)f(A,B)$	B)dBdA	
		$= \int P(B A)P(A)j$	f(A,B)dBdA	
		$= \int P(A) \int P(B A)$)f(A,B)dBdA	
		$= \int P(A) \mathbb{E}_B \left[f(A, \cdot) \right]$	B) A]dA	
		$= \mathbb{E}_A \big[\mathbb{E}_B \left[f(A, B) \right] \big]$	A]	
§ Takiι	ng $A = s_{t'}, a_{t'}$ and E	$B=s_t,a_t$, eqn. (15) can be written as,	
			() 1]	(1 c)

$$\mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[f(t, t') \right] = \mathbb{E}_{s_{t'}, a_{t'}} \left[\mathbb{E}_{s_{t}, a_{t}} \left[f(t, t') | \mathbf{s}_{t'}, \mathbf{a}_{t'} \right] \right]$$
(16)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

 Agenda
 Introduction
 REINFORCE
 Blar/Variance

 Occorrection
 Occorrection
 Occorrection
 Occorrection

 Reducing Variance in Policy Gradient Estimate

§ Putting the value of
$$f(t, t')$$
 back in eqn. (16), we get,

$$\mathbb{E}_{\tau \sim p_{\theta}(\tau)} [f(t, t')] = \mathop{\mathbb{E}}_{s_{t'}, a_{t'}} [\mathop{\mathbb{E}}_{s_{t}, a_{t}} [f(t, t')|s_{t'}, a_{t'}]] \qquad (17)$$

$$= \mathop{\mathbb{E}}_{s_{t'}, a_{t'}} [\mathop{\mathbb{E}}_{s_{t}, a_{t}} [\nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})r(\mathbf{s}_{t'}, \mathbf{a}_{t'})|\mathbf{s}_{t'}, \mathbf{a}_{t'}]]$$

$$= \mathop{\mathbb{E}}_{s_{t'}, a_{t'}} [r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) \mathop{\mathbb{E}}_{s_{t}, a_{t}} [\nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})|\mathbf{s}_{t'}, \mathbf{a}_{t'}]]$$

§ Let us take a closer look at the inner expectation,

 $\mathbb{E}_{\mathbf{s}_{t},a_{t}}[\nabla_{\boldsymbol{\theta}}\log\pi_{\boldsymbol{\theta}}(\mathbf{a}_{t}|\mathbf{s}_{t})|\mathbf{s}_{t'},\mathbf{a}_{t'}] = \int P(\mathbf{s}_{t},\mathbf{a}_{t}|\mathbf{s}_{t'},\mathbf{a}_{t'})\nabla_{\boldsymbol{\theta}}\log\pi_{\boldsymbol{\theta}}(\mathbf{a}_{t}|\mathbf{s}_{t})d(\mathbf{a}_{t},\mathbf{s}_{t})$ (18)

§ Now, let us consider the timestep t be greater than t', *i.e.*, the action occurs after the reward. In such a case, $P(\mathbf{s}_t, \mathbf{a}_t | \mathbf{s}_{t'}, \mathbf{a}_{t'})$ can be broken down to $P(\mathbf{a}_t | \mathbf{s}_t) P_{\mathbf{a}}(\mathbf{s}_t | \mathbf{s}_{t'}, \mathbf{a}_{t'})$. Thus eqn. (18) becomes,

 $\mathbb{E}_{s_t, a_t} [\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_t | \mathbf{s}_t) | \mathbf{s}_{t'}, \mathbf{a}_{t'}] = \iint P(\mathbf{a}_t | \mathbf{s}_t) P(\mathbf{s}_t | \mathbf{s}_{t'}, \mathbf{a}_{t'}) \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_t | \mathbf{s}_t) d\mathbf{a}_t d\mathbf{s}_t$

$$= \int P(\mathbf{s}_t | \mathbf{s}_{t'}, \mathbf{a}_{t'}) \int P(\mathbf{a}_t | \mathbf{s}_t) \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_t | \mathbf{s}_t) d\mathbf{a}_t d\mathbf{s}_t$$
$$= \mathbb{E} \left[\mathbb{E} \left[\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_t | \mathbf{s}_t) | \mathbf{s}_t \right] | \mathbf{s}_{t'}, \mathbf{a}_{t'} \right]$$

-39

§ Now we will use a neat trick known as '*Expected Grad Log Probability*' (EGLP) lemma which says $\mathbb{E}\left[\nabla_{\theta} \log p_{\theta}(x)\right] = 0.$

$$\mathbb{E}_{x \sim p_{\theta}(x)} \left[\nabla_{\theta} \log p_{\theta}(x) \right] = \int p_{\theta}(x) \nabla_{\theta} \log p_{\theta}(x) dx = \int p_{\theta}(x) \frac{\nabla_{\theta} p_{\theta}(x)}{p_{\theta}(x)} dx$$
$$= \int \nabla_{\theta} p_{\theta}(x) dx = \nabla_{\theta} \int p_{\theta}(x) dx = \nabla_{\theta} 1 = 0$$

- § Thus the inner expectation in eqn. (19) is 0. This, in turn, means eqn. (17), (16) and (15) are all 0.
- § That is, $\mathbb{E}_{\tau \sim p_{\theta}(\tau)} [f(t, t')] = 0$ for t > t'.
- § Now for $t \leq t'$, $P(\mathbf{s}_t, \mathbf{a}_t | \mathbf{s}_{t'}, \mathbf{a}_{t'})$ can **not** be broken down to $P(\mathbf{a}_t | \mathbf{s}_t) P(\mathbf{s}_t | \mathbf{s}_{t'}, \mathbf{a}_{t'})$, as past state (\mathbf{s}_t) will get conditioned on future state and actions $(\mathbf{s}_{t'}, \mathbf{a}_{t'})$ violating the Markov property.
- § So, $\mathbb{E}_{\tau \sim p_{\theta}(\tau)} [f(t,t')] \neq 0$ for $t \leq t'$.

イロト イ理ト イヨト イヨト

Reducing Variance in Policy Gradient Estimate

§ So we began with,

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \sum_{t=1}^{T} \sum_{t'=1}^{T} \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \big[f(t, t') \big]$$
(20)

and have shown that

$$\mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[f(t, t') \right] \begin{cases} = 0 & \text{if } t' < t \\ \neq 0 & \text{if } t' \geq t \end{cases}$$

3

イロト イポト イヨト イヨト

 Agenda
 Introduction
 REINFORCE
 Bins/Variance

 00
 000000
 00000000
 00000000

Reducing Variance in Policy Gradient Estimate

§ So we began with,

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \sum_{t=1}^{T} \sum_{t'=1}^{T} \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \big[f(t, t') \big]$$
(20)

and have shown that
$$\mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[f(t, t') \right] \begin{cases} = 0 & \text{if } t' < t \\ \neq 0 & \text{if } t' \geq t \end{cases}$$

§ So, the gradient of the total expected return can be written as, $\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \sum_{t=1}^{T} \sum_{t'=t}^{T} \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[f(t,t') \right] = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[\sum_{t=1}^{T} \sum_{t'=t}^{T} f(t,t') \right]$ $= \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[\sum_{t=1}^{T} \left(\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_t | \mathbf{s}_t) \right) \sum_{t'=t}^{T} \left(r(\mathbf{s}_t, \mathbf{a}_t) \right) \right]$ (21)
 Agenda
 Introduction
 REINFORCE
 Bins/Variance

 00
 000000
 00000000
 00000000

Reducing Variance in Policy Gradient Estimate

§ So we began with,

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \sum_{t=1}^{T} \sum_{t'=1}^{T} \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[f(t, t') \right]$$
(20)

and have shown that
$$\mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[f(t, t') \right] \begin{cases} = 0 & \text{if } t' < t \\ \neq 0 & \text{if } t' \geq t \end{cases}$$

§ So, the gradient of the total expected return can be written as,

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \sum_{t=1}^{T} \sum_{t'=t}^{T} \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[f(t,t') \right] = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[\sum_{t=1}^{T} \sum_{t'=t}^{T} f(t,t') \right]$$

$$= \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[\sum_{t=1}^{T} \left(\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_t | \mathbf{s}_t) \right) \sum_{t'=t}^{T} \left(r(\mathbf{s}_t, \mathbf{a}_t) \right) \right]$$
(21)

§ This is the 'reward to go' formulation we have seen earlier and which has less variance. But this also is same as the total expected reward expression which is unbiased. So this is unbiased and less variance estimator of the total expected reward.

Abir Das (IIT Kharagpur)

Agenda	Introduction	REINFORCE	Bias/Variance
00	000000	00000000	000000000000000000000000000000000000
Baselines			

- § Good stuff is made more likely.
- § Bad stuff is made less likely.

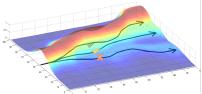


Figure credit: [Sergey Levine, UC Berkeley]

Agenda	Introduction	REINFORCE	Blas/Variance
00	000000	00000000	000000000000000000000000000000000000
Baselines			

- § Good stuff is made more likely.
- § Bad stuff is made less likely.
- § What if all have high reward?

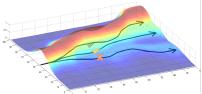


Figure credit: [Sergey Levine, UC Berkeley]

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathop{\mathbb{E}}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[\nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau) r(\tau) \right] = \mathop{\mathbb{E}}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[\sum_{t=1}^{T} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_t | \mathbf{s}_t) \sum_{t=1}^{T} r(\mathbf{s}_t, \mathbf{a}_t) \right]$$

Agenda	Introduction	REINFORCE	Bias/Variance
00	000000	00000000	000000000000000000000000000000000000
Baselines			

- § Good stuff is made more likely.
- § Bad stuff is made less likely.
- § What if all have high reward?

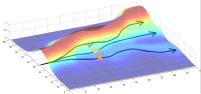


Figure credit: [Sergey Levine, UC Berkeley]

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathop{\mathbb{E}}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[\nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau) r(\tau) \right] = \mathop{\mathbb{E}}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[\sum_{t=1}^{T} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_t | \mathbf{s}_t) \sum_{t=1}^{T} r(\mathbf{s}_t, \mathbf{a}_t) \right]$$
$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathop{\mathbb{E}}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[\nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau) [r(\tau) - b] \right]$$

§ Will it remain unbiased?

§ Only if
$$\underset{\tau \sim p_{\theta}(\tau)}{\mathbb{E}} [\nabla_{\theta} \log p_{\theta}(\tau)b] = b \underset{\tau \sim p_{\theta}(\tau)}{\mathbb{E}} [\nabla_{\theta} \log p_{\theta}(\tau)] = 0$$

§ And $\underset{\tau \sim p_{\theta}(\tau)}{\mathbb{E}} [\nabla_{\theta} \log p_{\theta}(\tau)] = 0$ by EGLP Lemma.

Agenda 00	Introduction 000000	REINFORCE 00000000	Bias/Variance 000000000000000000000000000000000000
Baselines			
§ So sut	otracting a constant	baseline keeps the	estimate unbiased.
	onable choice of bas		vard across the
traject	cories, $b = \frac{1}{N} \sum_{i=1}^{N} r(\tau)$)	
🖇 What	about variance?		
	$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \prod_{\boldsymbol{\theta}} J($	$\mathbb{E}_{\tau \sim p_{\theta}(\tau)} \Big[\nabla_{\theta} \log p_{\theta}(\tau) \big $	[r(au) - b]]
			$\int_{\Theta(\tau)} \left[\nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau) [r(\tau) - b] \right] \right)^2$
			$\int_{\Theta(\tau)} \left[\nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\tau) r(\tau) \right] \right)^2$
$\frac{\partial var}{\partial b} =$	$= \frac{\partial \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \Big[\Big(\nabla_{\theta} \log p_{\theta} \\ \partial b \Big]}{\partial b}$	$\frac{b(\tau)[r(\tau)-b]\Big)^2\Big]}{2} = -0$)
	$-\frac{\partial \mathbb{E}}{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \Big[(\nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}) \Big]$		$b + b^2]]$

 ∂b

Abir Das (IIT Kharagpur)

■ のへで

・ロト ・四ト ・ヨト ・ヨト

Agenda	Introduction	REINFORCE	Bias/Variance
00	000000	00000000	000000000000000000000000000000000000
Baselines			

$$\frac{\partial \operatorname{var}}{\partial b} = \frac{\partial \underset{\tau \sim p_{\theta}(\tau)}{\mathbb{E}} \left[\left(\nabla_{\theta} \log p_{\theta}(\tau) \right)^{2} \left[r^{2}(\tau) - 2r(\tau)b + b^{2} \right] \right]}{\partial b} \\ = 0 - 2 \underset{\tau \sim p_{\theta}(\tau)}{\mathbb{E}} \left[\left(\nabla_{\theta} \log p_{\theta}(\tau) \right)^{2} r(\tau) \right] + 2b \underset{\tau \sim p_{\theta}(\tau)}{\mathbb{E}} \left[\left(\nabla_{\theta} \log p_{\theta}(\tau) \right)^{2} \right]$$

§ For minimum variance,

$$\frac{\partial \mathsf{var}}{\partial b} = 0$$
$$- \mathop{\mathbb{E}}_{\tau \sim p_{\theta}(\tau)} \left[\left(\nabla_{\theta} \log p_{\theta}(\tau) \right)^2 r(\tau) \right] + b \mathop{\mathbb{E}}_{\tau \sim p_{\theta}(\tau)} \left[\left(\nabla_{\theta} \log p_{\theta}(\tau) \right)^2 \right] = 0$$
$$b = \frac{\mathop{\mathbb{E}}_{\tau \sim p_{\theta}(\tau)} \left[\left(\nabla_{\theta} \log p_{\theta}(\tau) \right)^2 r(\tau) \right]}{\mathop{\mathbb{E}}_{\tau \sim p_{\theta}(\tau)} \left[\left(\nabla_{\theta} \log p_{\theta}(\tau) \right)^2 \right]}$$

э

・ロト ・聞 ト ・ ヨト ・ ヨト

Agenda	Introduction	REINFORCE	Bias/Variance
00	000000	00000000	

$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \Big[\sum_{t=1}^{T} \Big(\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_t | \mathbf{s}_t) \Big) \underbrace{\sum_{t'=t}^{T} \Big(r(\mathbf{s}_t, \mathbf{a}_t) \Big)}_{\widehat{Q}^{\boldsymbol{\theta}}(\mathbf{s}_t, \mathbf{a}_t)} \Big]$

$$= \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \Big[\sum_{t=1}^{T} \Big(\nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) \Big) \widehat{Q}^{\theta}(\mathbf{s}_{t}, \mathbf{a}_{t}) \Big]$$

Advantage Function

3

イロト イポト イヨト イヨト

0000000

Agenda	Introduction	REINFORCE	Bias/Variance
00	000000	00000000	000000000000000000000000000000000000
Advantage F	unction		

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \underset{\tau \sim p_{\boldsymbol{\theta}}(\tau)}{\mathbb{E}} \left[\sum_{t=1}^{T} \left(\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{t} | \mathbf{s}_{t}) \right) \underbrace{\sum_{t'=t}^{T} \left(r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right)}_{\widehat{Q}^{\boldsymbol{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t})} \right]$$
$$= \underset{\tau \sim p_{\boldsymbol{\theta}}(\tau)}{\mathbb{E}} \left[\sum_{t=1}^{T} \left(\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{t} | \mathbf{s}_{t}) \right) \widehat{Q}^{\boldsymbol{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$

 \S It would be good to have the true value of Q to be used in the equation.

Agenda	Introduction	REINFORCE	Bias/Variance
00	000000	00000000	000000000000000000000000000000000000
Advantage F	unction		

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \Big[\sum_{t=1}^{T} \left(\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_t | \mathbf{s}_t) \right) \underbrace{\sum_{t'=t}^{T} \left(r(\mathbf{s}_t, \mathbf{a}_t) \right)}_{\widehat{Q}^{\boldsymbol{\theta}}(\mathbf{s}_t, \mathbf{a}_t)} \Big]$$
$$= \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \Big[\sum_{t=1}^{T} \left(\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_t | \mathbf{s}_t) \right) \widehat{Q}^{\boldsymbol{\theta}}(\mathbf{s}_t, \mathbf{a}_t) \Big]$$

- \S It would be good to have the true value of Q to be used in the equation.
- § But that is not available to us.

Agenda	Introduction	REINFORCE	Bias/Variance
00	000000	00000000	000000000000000000000000000000000000
Advantage I	unction		

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathop{\mathbb{E}}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \Big[\sum_{t=1}^{T} \left(\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{t} | \mathbf{s}_{t}) \right) \underbrace{\sum_{t'=t}^{T} \left(r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right)}_{\widehat{Q}^{\boldsymbol{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t})} \Big]$$
$$= \mathop{\mathbb{E}}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \Big[\sum_{t=1}^{T} \left(\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{t} | \mathbf{s}_{t}) \right) \widehat{Q}^{\boldsymbol{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \Big]$$

- $\{$ It would be good to have the true value of Q to be used in the equation.
- § But that is not available to us.
- § Other alternatives are to estimate this value using methods that we have seen earlier - MC evaluation, Bootstrapped evaluation (TD), using function approximation for these.

Agenda	Introduction	REINFORCE	Bias/Variance
00	000000	00000000	000000000000000000000000000000000000
Advantage F	unction		

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathop{\mathbb{E}}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \Big[\sum_{t=1}^{T} \Big(\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_t | \mathbf{s}_t) \Big) \Big(Q^{\boldsymbol{\theta}}(\mathbf{s}_t, \mathbf{a}_t) - \mathop{\mathbb{E}}_{\mathbf{a}_t} \big[Q^{\boldsymbol{\theta}}(\mathbf{s}_t, \mathbf{a}_t) \big] \Big) \Big]$$

§ We can also use a baseline version of this.

Image: Image:

Agenda	Introduction	REINFORCE	Blas/Variance
00	000000	00000000	000000000000000000000000000000000000
Advantage F	unction		

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \Big[\sum_{t=1}^{T} \Big(\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_t | \mathbf{s}_t) \Big) \Big(Q^{\boldsymbol{\theta}}(\mathbf{s}_t, \mathbf{a}_t) - \mathbb{E}_{\mathbf{a}_t} \big[Q^{\boldsymbol{\theta}}(\mathbf{s}_t, \mathbf{a}_t) \big] \Big) \Big]$$
$$= \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \Big[\sum_{t=1}^{T} \Big(\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_t | \mathbf{s}_t) \Big) \Big(Q^{\boldsymbol{\theta}}(\mathbf{s}_t, \mathbf{a}_t) - V^{\boldsymbol{\theta}}(\mathbf{s}_t) \Big) \Big]$$

§ We can also use a baseline version of this.

Agenda	Introduction	REINFORCE	Bias/Variance
00	000000	00000000	0000000000000000000000000
Advantage l	unction		

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathop{\mathbb{E}}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \Big[\sum_{t=1}^{T} \Big(\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{t} | \mathbf{s}_{t}) \Big) \Big(Q^{\boldsymbol{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) - \mathop{\mathbb{E}}_{\mathbf{a}_{t}} [Q^{\boldsymbol{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t})] \Big) \Big]$$
$$= \mathop{\mathbb{E}}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \Big[\sum_{t=1}^{T} \Big(\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{t} | \mathbf{s}_{t}) \Big) \Big(Q^{\boldsymbol{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) - V^{\boldsymbol{\theta}}(\mathbf{s}_{t}) \Big) \Big]$$
$$= \mathop{\mathbb{E}}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \Big[\sum_{t=1}^{T} \Big(\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{t} | \mathbf{s}_{t}) \Big) A^{\boldsymbol{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \Big]$$

§ We can also use a baseline version of this.

§ This is called the 'Advantage function'.

Agenda	Introduction	REINFORCE		
00	000000	0000000	000000000000000000000000000000000000000	
Advanta	are Eunction			

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathop{\mathbb{E}}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \Big[\sum_{t=1}^{T} \Big(\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{t} | \mathbf{s}_{t}) \Big) \Big(Q^{\boldsymbol{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) - \mathop{\mathbb{E}}_{\mathbf{a}_{t}} \big[Q^{\boldsymbol{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \big] \Big]$$
$$= \mathop{\mathbb{E}}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \Big[\sum_{t=1}^{T} \Big(\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{t} | \mathbf{s}_{t}) \Big) \Big(Q^{\boldsymbol{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) - V^{\boldsymbol{\theta}}(\mathbf{s}_{t}) \Big) \Big]$$
$$= \mathop{\mathbb{E}}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \Big[\sum_{t=1}^{T} \Big(\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{t} | \mathbf{s}_{t}) \Big) A^{\boldsymbol{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \Big]$$

- § We can also use a baseline version of this.
- § This is called the 'Advantage function'.
- § $A(\mathbf{s}_t, \mathbf{a}_t)$ can be approximated following the methods we used earlier (single sample backup or bootstrapping)

lage

Agenda 00 Introduction

REINFORCE

Bias/Variance

Advantage Function

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathop{\mathbb{E}}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \Big[\sum_{t=1}^{T} \Big(\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_t | \mathbf{s}_t) \Big) A^{\boldsymbol{\theta}}(\mathbf{s}_t, \mathbf{a}_t) \Big] \\ \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \Big(\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \Big) A^{\boldsymbol{\theta}}(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$

$$\begin{array}{l} \S \ Q^{\boldsymbol{\theta}}(\mathbf{s}_t, \mathbf{a}_t) \approx r(\mathbf{s}_t, \mathbf{a}_t) + V^{\boldsymbol{\theta}}(\mathbf{s}_t) \\ \S \ A^{\boldsymbol{\theta}}(\mathbf{s}_t, \mathbf{a}_t) \approx r(\mathbf{s}_t, \mathbf{a}_t) + V^{\boldsymbol{\theta}}(\mathbf{s}_{t+1}) - V^{\boldsymbol{\theta}}(\mathbf{s}_t) \\ \S \ \text{So we can use a neural network which learns to produce } V(\mathbf{s}) \end{array}$$

æ

イロト イヨト イヨト イヨト

Agenda	
00	

Actor-Critic

Introduction 000000 REINFORCE

Bias/Variance 000000000000000000000000

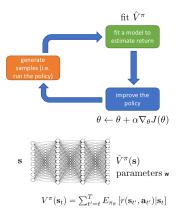
An actor-critic algorithm

batch actor-critic algorithm:

1. sample {s_i, a_i} from π_θ(a|s) (run it on the robot)
2. fit V̂_w^π(s) to sampled reward sums
3. evaluate Â^π(s_i, a_i) = r(s_i, a_i) + V̂_w^π(s'_i) - V̂_w^π(s_i)
4. ∇_θJ(θ) ≈ ∑_i ∇_θ log π_θ(a_i|s_i)Â^π(s_i, a_i)
5. θ ← θ + α∇_θJ(θ)

$$\begin{split} y_{i,t} &\approx r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \hat{V}_{\mathbf{w}}^{\pi}(\mathbf{s}_{i,t+1}) \\ \mathcal{L}(\mathbf{w}) &= \frac{1}{2} \sum_{i} \left\| \hat{V}_{\mathbf{w}}^{\pi}(\mathbf{s}_{i}) - y_{i} \right\|^{2} \end{split}$$

Figure credit: [Sergey Levine, UC Berkeley]



∃ → (∃ →

Image: A matrix and a matrix