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Agenda Introduction MC Evaluation MC Control

Agenda

§ Understand how to evaluate policies in model-free setting using
Monte Carlo methods

§ Understand Monte Carlo methods in model-free setting for control of
Reinforcement Learning problems
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Resources

§ Reinforcement Learning by David Silver [Link]

§ Reinforcement Learning by Balaraman Ravindran [Link]

§ Monte Carlo Simulation by Nando de Freitas [Link]

§ SB: Chapter 5
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Model Free Setting

§ Like the previous few lectures, here also we will deal with prediction
and control problems but this time it will be in a model-free setting

§ In model-free setting we do not have the full knowledge of the MDP

§ Model-free prediction: Estimate the value function of an unknown
MDP

§ Model-free control: Optimise the value function of an unknown
MDP

§ Model-free methods require only experience - sample sequences of
states, actions, and rewards (S1, A1, R2, · · · ) from actual or
simulated interaction with an environment.

§ Actual experince requires no knowledge of the environment’s
dynamics.

§ Simulated experience ‘requires’ models to generate samples only. No
knowledge of the complete probability distributions of state
transitions is required. In many cases this is easy to do.
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Monte Carlo

§ What is the probability that a dart thrown uniformly at random in the
unit square will hit the red area?

(0,0)

(1,1)
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(0,1)
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P(area)=?
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Monte Carlo
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Monte Carlo
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History of Monte Carlo

§ The bomb and ENIAC

Image taken from:www.livescience.com
Image taken from:www.digitaltrends.com
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Monte Carlo for Expectation Calculation

§ Lets say we want to compute E[f(x)] =
∫
f(x)p(x)dx

§ Draw i.i.d. samples
{
x(i)
}N
i=1

from the probability density p(x)

Image taken from:Nando de Freitas: MLSS 08

§ Approximate p(x)≈ 1
N

N∑
i=1

δx(i)(x) [δx(i)(x) is impulse at x(i) on x axis]

§ E[f(x)] =
∫
f(x)p(x)dx ≈

∫
f(x) 1

N

N∑
i=1

δx(i)(x)dx =

1
N

N∑
i=1

∫
f(x)δx(i)(x)dx︸ ︷︷ ︸

f(x(i))

= 1
N

N∑
i=1

f
(
x(i)
)
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Monte Carlo Policy Evaluation

§ Learn vπ from episodes of experience under policy π

S1, A1, R2, S2, A2, R3, · · · , Sk, Ak, Rk ∼ π

§ Recall that the return is the total discounted reward:

Gt = Rt+1 + γRt+2 + · · ·+ γT−1RT

§ Recall that the value function is the expected return:

vπ(s) = E [Gt|St = s]

§ Monte-Carlo policy evaluation uses empirical mean return instead of
expected return
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First Visit Monte Carlo Policy Evaluation

§ To evaluate state s i.e. to learn vπ(s)

§ The first time-step t that state s is visited in an episode,

§ Increment counter N(s)← N(s) + 1

§ Increment total retun S(s)← S(s) +Gt

§ Value is estimated by mean return V (s) = S(s)/N(s)

§ By law of large number, V (s)→ vπ(s) as N(s)→∞
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Every Visit Monte Carlo Policy Evaluation

§ To evaluate state s i.e. to learn vπ(s)

§ Every time-step t that state s is visited in an episode,

§ Increment counter N(s)← N(s) + 1

§ Increment total retun S(s)← S(s) +Gt

§ Value is estimated by mean return V (s) = S(s)/N(s)

§ By law of large number, V (s)→ vπ(s) as N(s)→∞
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Blackjack Example

Lecture 4: Model-Free Prediction

Monte-Carlo Learning

Blackjack Example

Blackjack Example

States (200 of them):

Current sum (12-21)
Dealer’s showing card (ace-10)
Do I have a “useable” ace? (yes-no)

Action stick: Stop receiving cards (and terminate)
Action twist: Take another card (no replacement)

Reward for stick:

+1 if sum of cards > sum of dealer cards
0 if sum of cards = sum of dealer cards
-1 if sum of cards < sum of dealer cards

Reward for twist:

-1 if sum of cards > 21 (and terminate)
0 otherwise

Transitions: automatically twist if sum of cards < 12
Slide courtesy:David Silver [Deepmind]
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Blackjack Example

Lecture 4: Model-Free Prediction

Monte-Carlo Learning

Blackjack Example

Blackjack Value Function after Monte-Carlo Learning

Policy: stick if sum of cards ≥ 20, otherwise twist
Slide courtesy:David Silver [Deepmind]
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Monte Carlo Control

§ We will now, see how Monte Carlo estimation can be used in control.

§ This is mostly like the generalized policy iteration (GPI) where one
maintains both an approximate policy and an approximate value
function.

§ Policy evaluation is done as Monte Carlo evaluation

§ Then, we can do greedy policy improvement.

§ What is the problem!!

§ π′(s) .= argmax
a∈A

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)vπ(s′)
}
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Monte Carlo Control

§ Greedy policy improvement over v(s) requires model of MDP

π′(s)
.
= argmax

a∈A

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)vπ(s′)
}

§ Greedy policy improvement over q(s, a) is model-free
π′(s)

.
= argmax

a∈A
q(s, a)

§ How can we do Monte Carlo policy evaluation for q(s, a)?

§ Essentially the same as Monte Carlo evaluation for state values. Start
at a state s, pick an action a and then follow the policy.

§ After few such episodes average the returns to get an estimate of
q(s, a).
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Monte Carlo Control

§ What are some concerns?

§ First visit/Every visit!!

§ Suppose you start at a state s and take action a. You reach at state
s1 and then following the policy π at s, you take the action
a1 = π(s1). Can you take the rest of the trajectory as a sample to
estimate q(s1, a1)?

§ Practically you can, but convergence can not be guaranteed. The
reason is that this strategy draws a disproportionately large number of
actions corresponding to π. So, each sample is considered only for the
starting s and a.

§ How to make sure we have q(s, a) estimates for all s and a?
Especially because of the above the ‘exploring starts’ becomes
important.
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Monte Carlo Control

§ Many state-action pairs may never be visited.

§ For deterministic policy, with no returns to average, the Monte Carlo
estimates of many actions will not improve with experience.

§ This is the general problem of maintaining exploration.

§ One way to do this is by specifying that the episodes start in a
state-action pair, and that every pair has a nonzero probability of
being selected as the start.

§ This assumption is called ‘exploring starts’

§ Monte Carlo Exploration Starts is an ‘on policy’ method. On policy
methods evaluate or improve the policy by drawing samples from the
same policy.

§ Off-policy methods evaluate or improve a policy different from that
used to generate the samples.
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Monte Carlo Control

§ Before going to off-policy methods let us look into an on policy
Monte Carlo control method that does not use exploring starts.

§ The assumption of exploring starts is sometimes useful, but it cannot
be relied upon in general, particularly when learning directly from
actual interaction with an environment.

§ The easiest alternative is to consider stochastic policies with a
nonzero probability of selecting all actions in each state.

§ Instead of getting a greedy policy in the policy improvement step, an
ε-greedy policy is obtained.

§ It means most of the time, the action corresponding to maximum
estimated action value is chosen, but sometimes (with probability ε)
an action at random is chosen.

§ Probability of choosing nongreedy actions is ε
|A(s)| whereas remaining

bulk of the probability, 1− ε+ ε
|A(s)| , is given to the greedy action.
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Monte Carlo Control

§ ε-greedy policy is an example of a bigger class of policies known as
ε-soft policies where π(a|s) ≥ ε

|A(s)| for all states and actions, for
some ε > 0.

§ Among ε-soft policies, ε-greedy policy is, in some sense, closest to
greedy.

§ By using ε-greedy policy improvement strategy, we achieve the best
policy among ε-soft policies, but we eliminate the assumption of
‘exploring starts’.
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Off-policy Methods

§ All methods trying to learn control face a dilemma.

I They seek to learn action values conditional on subsequent optimal
behavior.

I But they need to behave non-optimally in order to explore all actions
(to find the optimal actions).

§ The on-policy approach is actually a compromise, it learns action
values not for the optimal policy, but for a near-optimal policy that
still explores.

§ Off-policy methods address this by using two policies for two different
purposes.

I one that is learned about and that becomes the optimal policy - target
policy.

I one that is more exploratory and is used to generate behavior -
behavior policy.
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Off-policy Prediction

§ Estimate vπ or qπ of the target policy π, but we have episodes from
another policy µ, the behavior policy.

§ Almost all off-policy methods utilize concepts from sampling theory
for such operations.
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Rejection Sampling

set i = 1
Repeat until i = N

1 Sample x(i) ∼ q(x) and u ∼ U(0,1)
2 If u < p(x(i))

Mq(x(i))
, then accept x(i) and increment counter i by 1.

Otherwise, reject.
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Importance Sampling
§ What is bad about rejection sampling?

§ Many wasted samples! why?

§ Importance sampling is a classical way to address this. You keep all
the samples from the proposal/behavior distribution, you just weigh
them.

§ Lets say we want to compute Ex∼p(.)[f(x)] =
∫
f(x)p(x)dx

Ex∼p(.)[f(x)] =
∫
f(x)p(x)dx =

∫
f(x)

p(x)

q(x)
q(x)dx

= Ex∼q(.)
[
f(x)

p(x)

q(x)

]
≈ 1

N

N∑
x(i)∼q(.),i=1

f(x(i))
p(x(i))

q(x(i))

§ p(x(i))

q(x(i))
is called the importance weight.
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Normalized Importance Sampling

To avoid numerical instability, the denominator is changed in the following
way

Ex∼p(.)[f(x)] ≈

∑
x(i)∼q(.)

f(x(i))p(x
(i))

q(x(i))∑
x(i)∼q(.)

p(x(i))

q(x(i))
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MC Control with Importance Sampling

§ What are the samples x(i)? What are the p(.) and q(.) in our case?
and what is f(x(i))?

Ex∼p(.)[f(x)] ≈

∑
x(i)∼q(.)

f(x(i))p(x
(i))

q(x(i))∑
x(i)∼q(.)

p(x(i))

q(x(i))

§ x(i) are the trajectories.

§ p(x(i)) is the probability of the trajectory x(i) given that the
trajectory follows the target policy.

§ q(x(i)) is the probability of the trajectory x(i) given that the
trajectory follows the behavior policy.

§ f(x(i)) is the return.
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§ q(x(i)) is the probability of the trajectory x(i) given that the
trajectory follows the behavior policy.

§ f(x(i)) is the return.
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MC Control with Importance Sampling

§ How is a trajectory represented?

§ Refresher from the very first lecture.

Computer	Science	and	Engineering|	Indian	Institute	of	Technology	Kharagpur
cse.iitkgp.ac.in

Reinforcement	Learning	Setting

CS60077	/	Reinforcement	Learning	|	Introduction	(c)	Abir	Das

• Goal	in	RL	Problem:- to	maximize	the	total	reward	“in	expectation”	over	the	
long	run.
• 𝜏 ≝ 𝑠$, 𝑎$, 𝑠', 𝑎', … , 𝑝 τ = 𝑝(s$)∏ 𝑝 𝑎0|𝑠0 𝑝(𝑠02$|𝑠0, 𝑎0)�

0

• max𝔼8~:(8) ∑ 𝑅(𝑠0, 𝑎0)�
0

§ Let some trajectory x(i) be (s1, a1, s2, a2, · · · )
§ p(x(i)) = p(s1)π(a1|s1)p(s2|s1, a1)π(a2|s2)p(s3|s2, a2) · · ·
§ q(x(i)) = p(s1)µ(a1|s1)p(s2|s1, a1)µ(a2|s2)p(s3|s2, a2) · · ·
§ p(x(i))

q(x(i))
= �

��p(s1)π(a1|s1)(((((p(s2|s1,a1)π(a2|s2)(((((p(s3|s2,a2)···

��
�p(s1)µ(a1|s1)(((((p(s2|s1,a1)µ(a2|s2)(((((p(s3|s2,a2)···

= π(a1|s1)π(a2|s2)···
µ(a1|s1)µ(a2|s2)··· =

Ti∏
t=1

π(at|st)
µ(at|st)
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MC Control with Importance Sampling

Ex∼π[f(x)] ≈

∑
x(i)∼µ

f(x(i))p(x
(i))

q(x(i))∑
x(i)∼µ

p(x(i))

q(x(i))

vπ(s) = E [G|S1 = s]

≈

N∑
i=1

G(i)
Ti∏
t=1

π(a
(i)
t |s

(i)
t )

µ(a
(i)
t |s

(i)
t )

N∑
i=1

Ti∏
t=1

π(a
(i)
t |s

(i)
t )

µ(a
(i)
t |s

(i)
t )

§ This was the evaluation step then do the greedy policy improvement.
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