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Agenda

§ Understand how to evaluate policies using dynamic programing based
methods

§ Understand policy iteration and value iteration algorithms for control
of MDPs

§ Existence and convergence of solutions obtained by the above
methods
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Resources

§ Reinforcement Learning by David Silver [Link]

§ Reinforcement Learning by Balaraman Ravindran [Link]

§ SB: Chapter 4
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Dynamic Programing

“Life can only be understood going back-
wards, but it must be lived going forwards.”
- S. Kierkegaard, Danish Philosopher.

The first line of the famous book by Dimitri
P Bertsekas.

Image taken from: amazon.com
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Dynamic Programing

§ Dynamic Programing [DP] in this course, refer to a collection of
algorithms that can be used to compute optimal policies given a
perfect model of the environment in a MDP.

§ Limited utility due to the ‘perfect model’ assumption and due to
computational expense.

§ But still are important as they provide essential foundation for many
of the subsequent methods.

§ Many of the methods can be viewed as attempts to achieve much the
same effect as DP with less computation and without perfect model
assumption of the environment.

§ The key idea in DP is to use the value functions and Bellman
equations to organize and structure the search for good policies.
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Dynamic Programing
§ Dynamic Programing addresses a bigger problem by breaking it down

as subproblems and then
I Solving the subproblems
I Combining solutions to subproblems

§ Dynamic Programing is based on the principle of optimality.

0 𝑘 𝑁

𝑠%∗ Tail subproblem

Time

𝑎(∗,⋯ , 𝑎%∗ ,⋯ , 𝑎+,-∗

Optimal action sequence

Principle of Optimality

Let {a∗0, a∗1, · · · , a∗(N−1)} be an optimal action sequence with a

corresponding state sequence {s∗1, s∗2, · · · , s∗N}. Consider the tail
subproblem that starts at s∗k at time k and maximizes the ‘reward to go’
from k to N over {ak, · · · , a(N−1)}, then the tail optimal action sequence
{a∗k, · · · , a∗(N−1)} is optimal for the tail subproblem.

Abir Das (IIT Kharagpur) CS60077 Sep 21, 22 and 28, 2020 6 / 57



Agenda DP Policy Evaluation Policy Iteration Value Iteration Mathematical Tools DP Extensions

Dynamic Programing
§ Dynamic Programing addresses a bigger problem by breaking it down

as subproblems and then
I Solving the subproblems
I Combining solutions to subproblems

§ Dynamic Programing is based on the principle of optimality.

0 𝑘 𝑁

𝑠%∗ Tail subproblem

Time

𝑎(∗,⋯ , 𝑎%∗ ,⋯ , 𝑎+,-∗

Optimal action sequence

Principle of Optimality

Let {a∗0, a∗1, · · · , a∗(N−1)} be an optimal action sequence with a

corresponding state sequence {s∗1, s∗2, · · · , s∗N}. Consider the tail
subproblem that starts at s∗k at time k and maximizes the ‘reward to go’
from k to N over {ak, · · · , a(N−1)}, then the tail optimal action sequence
{a∗k, · · · , a∗(N−1)} is optimal for the tail subproblem.

Abir Das (IIT Kharagpur) CS60077 Sep 21, 22 and 28, 2020 6 / 57



Agenda DP Policy Evaluation Policy Iteration Value Iteration Mathematical Tools DP Extensions

Requirements for Dynamic Programing

§ Optimal substructure i.e., principle of optimality applies.

§ Overlapping subproblems, i.e., subproblems recur many times and
solutions to these subproblems can be cached and reused.

§ MDPs satisfy both through Bellman equations and value functions.

§ Dynamic programming is used to solve many other problems, e.g.,
Scheduling algorithms, Graph algorithms (e.g. shortest path
algorithms), Bioinformatics etc.
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Planning by Dynamic Programing

§ Planning by dynamic programing assumes full knowledge of the MDP

§ For prediction/evaluation

I Input: MDP 〈S,A,P,R, γ〉 and policy π

I Output: Value function vπ

§ For control

I Input: MDP 〈S,A,P,R, γ〉
I Output: Optimal value function v∗ and optimal policy π∗
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Iterative Policy Evaluation

§ Problem: Policy evaluation: Compute the state-value function vπ for
an arbitrary policy π.

§ Solution strategy: Iterative application of Bellman expectation
equation.

§ Recall the Bellman expectation equation.

vπ(s) =
∑
a∈A

π(a|s)

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)vπ(s′)

}
(1)

§ Consider a sequence of approximate value functions v(0), v(1), v(2), · · ·
each mapping S+ to R. Each successive approximation is obtained by
using eqn. (1) as an update rule.

v(k+1)(s)←
∑
a∈A

π(a|s)

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)v(k)(s′)

}
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Iterative Policy Evaluation

v(k+1)(s)←
∑
a∈A

π(a|s)

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)v(k)(s′)

}

§ In code, this can be implemented by using two arrays - one for the old
values v(k)(s) and the other for the new values v(k+1)(s). Here, new
values of v(k+1)(s) are computed one by one from the old values
v(k)(s) without changing the old values.

§ Another way is to use one array and update the values ‘in place’, i.e.,
each new value immediately overwriting the old one.

§ Both these converges to the true value vπ and the ‘in place’ algorithm
usually converges faster.
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Iterative Policy Evaluation

Iterative Policy Evaluation, for estimating V ≈ vπ
Input: π, the policy to be evaluated
Algorithm parameter: a small threshold θ > 0 determining accuracy of
estimation
Initialize V (s), for all s ∈ S+, arbitrarily except that V (terminal)= 0
Loop:

∆← 0
Loop for each s ∈ S:
v ← V (s)

V (s)←
∑
a∈A

π(a|s)
{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)V (s′)

}
∆← max

(
∆, |v − V (s)|

)
until ∆ < θ
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Evaluating a Random Policy in the Small Gridworld

Figure credit: [SB] chapter 4

§ Undiscounted episodic MDP (λ = 1)

§ Non-terminal states are S = {1, 2, · · · , 14}
§ Two terminal states (shown as shaded squares)

§ 4 possible actions in each state, A = {up, down, right, left}
§ Deterministic state transitions

§ Actions leading out of the grid leave state unchanged

§ Reward is -1 until the terminal state is reached

§ Agent follows uniform random policy
π(n|.) = π(s|.) = π(e|.) = π(w|.)
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Evaluating a Random Policy in the Small Gridworld
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Evaluating a Random Policy in the Small Gridworld
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Improving a Policy: Policy Iteration

§ Given a policy π
I Evaluate the policy

vπ
.
= v(k+1)(s)←

∑
a∈A

π(a|s)

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)v(k)(s′)

}

I Improve the policy by acting greedily with respect to vπ

π′ = greedy(vπ)

being greedy means choosing the action that will land the agent
into best state i.e., π′(s)

.
= arg max

a∈A
qπ(s, a) =

arg max
a∈A

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)vπ(s′)

}
§ In Small Gridworld improved policy was optimal π′ = π∗

§ In general, need more iterations of improvement/evaluation

§ But this process of policy iteration always converges to π∗
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Improving a Policy: Policy Iteration

Given a policy π
§ Evaluate the policy

vπ
.
= v(k+1)(s)←

∑
a∈A

π(a|s)

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)v(k)(s′)

}
=
∑
a∈A

π(a|s)r(s, a)︸ ︷︷ ︸
rπ(s)

+γ
∑
s′∈S

∑
a∈A

π(a|s)p(s′|s, a)︸ ︷︷ ︸
pπ(s′|s)

v(k)(s′)

= rπ(s) + γ
∑
s′∈S

pπ(s′|s)v(k)(s′)

I rπ(s) = one step expected reward for following policy π at state s.

I pπ(s′|s) = one step transition probability under policy π.

§ Improve the policy by acting greedily with respect to vπ

π′(s) = arg max
a∈A

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)vπ(s′)

}
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Policy Iteration

Figure credit: [David Silver: DeepMind]

§ Policy Evaluation: Estimate vπ by iterative policy evaluation.

§ Policy Improvement: Generate π′ ≥ π by greedy policy improvement.
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Policy Iteration

Algorithm 1: Policy iteration

1 initialization: Select π0, n← 0;
2 do
3 (Policy Evaluation) v(πn+1) ← r(πn) + γPπnv(πn) ; // componentwise

4 (Policy Improvement)
πn+1(s) ∈ arg max

a∈A
[r(s, a) + γ

∑
s′∈S

p(s′|s, a)v(πn+1)(s
′)] ∀s ∈ S];

5 n← n+ 1;

6 while πn+1 6= πn;
7 Declare π∗ = πn

§ why in step (4), ∈ is used?

§ Note the terminating condition.
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Policy Iteration

§ At each step of policy iteration, the policy improves i.e., the value
function for a policy at a later iteration is greater than or equal to the
value function for a policy at an earlier step.

§ This comes from the policy improvement theorem which (informally)
is - Let πn be some stationary policy and let πn+1 be greedy w.r.t.
v(πn), then v(πn+1) ≥ v(πn), i.e., πn+1 is an improvement upon πn.

rπn+1 + γPπn+1v(πn) ≥ rπn + γPπnv(πn)

= v(πn) [Bellman eqn.]

=⇒ rπn+1 ≥ (I − γPπn+1)v(πn)

=⇒ (I − γPπn+1)−1rπn+1 ≥ v(πn)

=⇒ vπn+1 ≥ v(πn) (2)

§ The first step: πn+1 is obtained by maximizing rπ + γPπv(πn) over all
π’s. So, rπn+1 + γPπn+1v(πn) will be better than any other π in
rπ + γPπv(πn). That ‘any other π’ happens to be πn.
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Policy Iteration: Example ([SB])

§ Jack manages two locations of a car rental company. At any location
if car is available, he rents it out and gets $10. To ensure that cars
are available, Jack can move cars between the two locations
overnight, at a cost of $2 per car.

§ Cars are returned and requested randomly according to Poisson
distribution. Probability that n cars are rented or returned is λn

n! e
−λ.

I 1st location - λ: average requests = 3, average returns = 3

I 2nd location - λ: average requests = 4, average returns = 2

§ there can be no more than 20 cars at each location and a maximum
of 5 cars can be moved from one location to the other
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Policy Iteration: Example - MDP Formulation

§ State: number of cars at each location at the end of the day
(between 0 and 20).

§ Actions: number of cars moved overnight from one location to other
(max 5).

§ Reward: $10 per car rented (if available) and -$2 per car moved.

§ Transition probability: The Poisson distribution defined in the last
slide.

§ Discount factor: γ is assumed to be 0.9.
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Policy Iteration: Example

Figure credit: [SB - Chapter 4]

Figure: The sequence of policies found by policy iteration on Jack’s car rental
problem, and the final state-value function
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Policy Iteration: Disadvantages

§ Policy iteration involves the policy evaluation step first and this itself
requires a few iterations to get the exact value of vπ in limit.

§ The question is - must we wait for exact convegence to vπ? Or can
we stop short of that?

§ The small gridworld example showed that there is no change of the
greedy policy after the first three iterations.

§ So the question is - is there such a number of iterations such that
after that the greedy policy does not change?
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Value Iteration

§ A related question is - what about the extreme case of 1 iteration of
policy evaluation and then greedy policy improvement? If we repeat
this cycle, does it find the optimal policy at least in limit?

§ The good news is that - yes the gurantee is there and we will soon
prove that. However, first let us modify the policy iteration algorithm
to this extreme case. This is known as ‘value iteration’ strategy.
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Value Iteration

§ What policy iteration does: iterate over

vπ
.
= v(k+1)(s)←

∑
a∈A

π(a|s)

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)v(k)(s′)

}
§ And then

π′(s) = arg max
a∈A

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)vπ(s′)

}

§ What value iteration does: evaluate ∀a ∈ A

r(s, a) + γ
∑
s′∈S

p(s′|s, a)v(k)(s′)

§ And then take max over it

v(k+1)(s) = max
a∈A

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)v(k)(s′)

}
Where have we seen it?
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Value Iteration

Algorithm 2: Value iteration

8 initialization: v ← v0 ∈ V, pick an ε > 0, n← 0;

9 while ||vn+1 − vn|| > ε1−γ2γ do

10 foreach s ∈ S do

11 vn+1(s)← max
a

{
r(s, a) + γ

∑
s′
p(s′/s, a)vn(s′)

}
12 end
13 n← n+ 1;

14 end
15 foreach s ∈ S do

/* Note the use of π(s). It mens deterministic policy

*/

16 π(s)← arg max
a

{
r(s, a) + γ

∑
s′
p(s′/s, a)vn(s′)

}
; // n has

already been incremented by 1

17 end

§ Take a note of the stopping criterion

Abir Das (IIT Kharagpur) CS60077 Sep 21, 22 and 28, 2020 26 / 57



Agenda DP Policy Evaluation Policy Iteration Value Iteration Mathematical Tools DP Extensions

Summary of Exact DP Algorithms for Planning

Problem Bellman Equation Algorithm
Prediction Bellman Expectation Equation Iterative Policy Evaluation

Control
Bellman Expectation Equation

Policy Iteration
+ Greedy Policy Improvement

Control Bellman Optimality Equation Value Iteration
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Norms

Definition

Given a vector space V ⊆ Rd, a function f : V → R+ is a norm (denoted
as ||.||) if and only if

§ ||v|| ≥ 0 ∀v ∈ V
§ ||v|| = 0 if and only if v = 0

§ ||αv|| = |α| ||v||, ∀α ∈ R and ∀v ∈ V
§ Triangle inequality: ||u+ v|| ≤ ||u||+ ||v|| u, v ∈ V
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Different types of Norms

§ Lp norm:

||v||p =

(
d∑
i=1

|vi|p
) 1

p

§ L0 norm:

||v||0 = Number of non-zero elements in v

§ L∞ norm:
||v||∞ = max

1≤i≤d
|vi|
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Cauchy Sequence, Completeness

Definition

A sequence of vectors v1, v2, v3, · · · ∈ V (with subscripts n ∈ N) is called a
Cauchy sequence if for any positive real ε > 0,∃ N ∈ Z+ such that
∀m,n > N, ||vm − vn|| < ε.

§ Basically, for any real positive ε, an element can be found in the
sequence, beyond which any two elements of the sequence will be
within ε of each other.

§ In other words, the elements of the sequence comes closer and closer
to each other - i.e., the sequence converges.

Definition

A vector space V equipped with a norm ||.|| is complete if every Cauchy
sequence converges in that norm to a point in the space. To pay tribute
to Stefan Banach, the great Polish mathematician, such a space is also
called the Banach space.
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Contraction Mapping, Fixed Point

Definition

An operator T : V → V is L-Lipschitz if for any u, v ∈ V

||T u− T v|| ≤ L||u− v||

§ If L ≤ 1, then T is called a non-expansion, while if 0 ≤ L < 1, then
T is called a contraction.

Definition

Let v is a vector in the vector space V and T is an operator T : V → V.
Then v is called a fixed point of the operator T , if T v = v.
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Banach Fixed Point Theorem

Theorem

Suppose V is a Banach space and T : V → V is a contraction mapping,
then,
- ∃ an unique v∗ in V s.t. Tv∗ = v∗ and
- for arbitrary v0 in V, the sequence {vn} defined by
vn+1 = Tvn = Tn+1v0, converges to v∗.

The above theorem tells that

§ T has fixed point, an unique fixed point.

§ For arbitrary starting point if we keep repeatedly applying T on that
starting point, then we will converge to v∗.
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Banach Fixed Point Theorem - Proof (1)

§ Let vn and vm+n be two values of v obtained after the nth and the
(n+m)th iteration.

||vm+n − vn|| ≤
m−1∑
k=0

||vn+k+1 − vn+k|| [Triangle inequality]

=

m−1∑
k=0

||Tn+kv1 − Tn+kv0|| ≤
m−1∑
k=0

λ||Tn+k−1v1 − Tn+k−1v0||

≤
m−1∑
k=0

λn+k||v1 − v0|| [Repeated use of contraction]

= ||v1 − v0||
m−1∑
k=0

λn+k

=
λn(1− λm)

1− λ
||v1 − v0|| (3)
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Banach Fixed Point Theorem - Proof (2)

§ As m and n→∞ and as λ < 1, the norm of difference between
vm+n and vn becomes less and less.

§ That means the sequence {vn} is Cauchy.

§ And since V is a Banach space and since every Cauchy sequence
converges to a point in that Banach space, therefore the Cauchy
sequence {vn} also converges to a point in V.

§ What we have proved till now is that the sequence {vn} will reach a
converging point in the same space.

§ Lets say that the converging point is v∗.

§ What we will try to prove next is that v∗ is a fixed point and then we
will try to prove that v∗ is an unique fixed point.
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§ And since V is a Banach space and since every Cauchy sequence
converges to a point in that Banach space, therefore the Cauchy
sequence {vn} also converges to a point in V.

§ What we have proved till now is that the sequence {vn} will reach a
converging point in the same space.

§ Lets say that the converging point is v∗.

§ What we will try to prove next is that v∗ is a fixed point and then we
will try to prove that v∗ is an unique fixed point.
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Banach Fixed Point Theorem - Proof (3)

§ Let us try to see what we get as the norm of the difference between
v∗ and Tv∗.

§ In the first line below we apply triangle inequality where vn is the
value of v at the nth iteration.

||Tv∗ − v∗|| ≤ ||Tv∗ − vn||+ ||vn − v∗||
= ||Tv∗ − Tvn−1||+ ||vn − v∗||
≤ λ||v∗ − vn−1||+ ||vn − v∗|| [Contraction property]

(4)

§ Since {vn} is Cauchy and v∗ is the convergence point, both the terms
in the above equation will tend to 0 as n→∞.

§ So, as n→∞, ||Tv∗ − v∗|| → 0. That means in limit Tv∗ = v∗. So,
it is proved that v∗ is a fixed point.
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Banach Fixed Point Theorem - Proof (4)

§ Now we will show the uniqueness, i.e., v∗ is unique.

§ Let u∗ and v∗ be two fixed points of the space. From the contraction
property, we can write ||Tu∗ − Tv∗|| ≤ λ||u∗ − v∗||.
§ But, since u∗ and v∗ are fixed points, Tu∗ = u∗ and Tv∗ = v∗.

§ That means ||u∗− v∗|| ≤ λ||u∗− v∗|| which can not be true for λ < 1
unless v∗ = u∗.

§ So, it is proved that v∗ is an unique fixed point.
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Existence and Uniqueness of Bellman Equations

§ Now, we will start talking about the existance and uniqueness of the
solution to Bellman expecation equations and the Bellman optimality
equations.

§ In case of a finite MDP the value function v can be thought of as a
vector in a |S| dimensional vector space V.

§ Whenever, we will use norm ||.|| in this space we will mean the max
norm, unless otherwise specified.
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Existence and Uniqueness of Bellman Equations

§ Previously, we have seen

I rπ(s) =
∑
a∈A

π(a|s)r(s, a), one step expected reward for following

policy π at state s.

I pπ(s′|s) =
∑
a∈A

π(a|s)p(s′|s, a), one step transition probability under

policy π.

§ Using these notations, the Bellman expectation equation becomes,

vπ(s) =
∑
a∈A

π(a|s)

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)vπ(s′)

}
= rπ(s) + γ

∑
s′∈S

pπ(s′|s)vπ(s′)
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Existence and Uniqueness of Bellman Equations

§ vπ(s) = rπ(s) + γ
∑
s′∈S

pπ(s′|s)vπ(s′)

§ Refresher from earlier lectures
v(s1)
v(s2)

...
v(sn)

 =


r(s1)
r(s2)

...
r(sn)

+ γ


P11 P12 · · · P1n

P21 P22 · · · P2n

...
...

. . .
...

Pn1 Pn2 · · · Pnn



v(s1)
v(s2)

...
v(sn)


§ vπ = rπ + γPπvπ

§ rπ is a |S| dimensional vector while Pπ is a |S| × |S| dimensional
matrix.

§ For all s′, pπ(s′|s) is one row (sth row) of the Pπ matrix. Similarly,
vπ(s′)’s are the value functions for all states i.e., in the vectorized
notation, this is a vector vπ.

Abir Das (IIT Kharagpur) CS60077 Sep 21, 22 and 28, 2020 39 / 57



Agenda DP Policy Evaluation Policy Iteration Value Iteration Mathematical Tools DP Extensions

Existence and Uniqueness of Bellman Equations

§ vπ(s) = rπ(s) + γ
∑
s′∈S

pπ(s′|s)vπ(s′)

§ Refresher from earlier lectures
v(s1)
v(s2)

...
v(sn)

 =


r(s1)
r(s2)

...
r(sn)

+ γ


P11 P12 · · · P1n

P21 P22 · · · P2n

...
...

. . .
...

Pn1 Pn2 · · · Pnn



v(s1)
v(s2)

...
v(sn)


§ vπ = rπ + γPπvπ

§ rπ is a |S| dimensional vector while Pπ is a |S| × |S| dimensional
matrix.

§ For all s′, pπ(s′|s) is one row (sth row) of the Pπ matrix. Similarly,
vπ(s′)’s are the value functions for all states i.e., in the vectorized
notation, this is a vector vπ.

Abir Das (IIT Kharagpur) CS60077 Sep 21, 22 and 28, 2020 39 / 57



Agenda DP Policy Evaluation Policy Iteration Value Iteration Mathematical Tools DP Extensions

Existence and Uniqueness of Bellman Equations

§ vπ = rπ + γPπvπ

§ We are, now, going to define a linear operator.

Lπ : V → V such that

Lπv ≡ rπ + γPπv ∀v ∈ V, [V as defined in slide (37)] (5)

§ So using this operator notation, we can write the Bellman expectation
equation as the following,

Lπvπ = vπ (6)

§ So far we have proved the Banach Fixed Point Theorem. Now we will
try to show that Lπ is a contraction.

§ We will hold the proof of V being a Banach space for later.
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Existence and Uniqueness of Bellman Equations

§ Let u and v be in V. So,

Lπu(s) = rπ(s) + γ
∑
s′

pπ(s′|s)u(s′)

Lπv(s) = rπ(s) + γ
∑
s′

pπ(s′|s)v(s′) (7)

§ One important note: Lπu(s) or Lπv(s) does not mean Lπ applied
on u(s) or v(s). It means the sth component of the vector Lπu or
Lπv
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Existence and Uniqueness of Bellman Equations

§ Let us consider the case, Lπv(s) > Lπu(s). Then,

0 ≤ Lπv(s)− Lπu(s)

= γ
∑
s′

pπ(s′|s){v(s′)− u(s′)}

≤ γ||v − u||
∑
s′

pπ(s′|s)

[Why is this?]

= γ||v − u|| [Since
∑
s′

pπ(s′|s) = 1] (8)

§ Similarly, when Lπu(s) > Lπv(s), we can show that,

0 ≤ Lπu(s)−Lπv(s) ≤ γ||u−v|| = γ||v−u|| [Since ||u− v|| = ||v − u||]
(9)
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Existence and Uniqueness of Bellman Equations

§ Putting the two equations 8 and 9 together, we can get that

|Lπv(s)− Lπu(s)| ≤ γ||v − u|| ∀s ∈ S (10)

§ Pointwise or componentwise the difference is being drawn closer by a
factor of γ, so the maximum of the difference will also have come
down.

||Lπv − Lπu|| ≤ γ||v − u|| (11)

§ So, that means that Lπ is a contraction.

Abir Das (IIT Kharagpur) CS60077 Sep 21, 22 and 28, 2020 43 / 57



Agenda DP Policy Evaluation Policy Iteration Value Iteration Mathematical Tools DP Extensions

Existence and Uniqueness of Bellman Equations
§ Another proof of contraction property of Bellman expectation operator.

||Lπv − Lπu||∞=

∣∣∣∣∣
∣∣∣∣∣rπ(s)+γ

∑
s′∈S

pπ(s′|s)v(s′)− rπ(s)−γ
∑
s′∈S

pπ(s′|s)u(s′)

∣∣∣∣∣
∣∣∣∣∣
∞

=γ

∣∣∣∣∣
∣∣∣∣∣∑
s′∈S

pπ(s′|s) {v(s′)− u(s′)}

∣∣∣∣∣
∣∣∣∣∣
∞

=γmax
s∈S

∣∣∣∣∣∑
s′∈S

pπ(s′|s) {v(s′)− u(s′)}

∣∣∣∣∣
≤γmax

s∈S

∑
s′∈S

pπ(s′|s) |{v(s′)− u(s′)}|

≤γmax
s∈S

∑
s′∈S

pπ(s′|s) ||{v − u}||∞

[ Absolute value each element ≤ max norm of a vector]

= γ ||{{v − u}||∞
��

�
��
�*1∑

s′∈S
pπ(s′|s) = γ ||{v − u}||∞
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Existence and Uniqueness of Bellman Equations

§ Next we have to move on to the Bellman optimality equation’s
convergence proof.

§ Bellman optimality equation is given by

v∗(s) = max
a∈A

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)v∗(s
′)

}
(12)

§ Let us define the Bellman optimality operator,

L : V → V such that

(Lv)(s) ≡ max
a∈A

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)v(s′)

}
∀v ∈ V (13)

§ To declutter notation, we will use Lv(s) to denote (Lv)(s).

§ Then Bellman optimality equation becomes
v∗ = Lv∗ \\Componentwise (14)
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Existence and Uniqueness of Bellman Equations

§ Now we will prove that L is contraction by taking the same route as
we took for Lπ.

§ Let u and v be in V. Let us also assume, first, that Lv(s) ≥ Lu(s).
Then we can write,

0 ≤ Lv(s)− Lu(s)

=
{
r(s, a∗s)+γ

∑
s′

p(s′/s, a∗s)v(s′)
}
−
{
r(s, (a′)∗s)+γ

∑
s′

p(s′/s, (a′)∗s)u(s′)
}

≤
{
r(s, a∗s)+γ

∑
s′

p(s′/s, a∗s)v(s′)
}
−
{
r(s, a∗s)+γ

∑
s′

p(s′/s, a∗s)u(s′)
}

[why?? Note what has changed!] (15)

§ The two actions a∗s and (a′)∗s maximize the value functions v and u
respectively at state s. So replacing (a′)∗s with a∗s, in the second part
reduces the value of the second part.
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Existence and Uniqueness of Bellman Equations

0 ≤ Lv(s)− Lu(s)

≤
{
r(s, a∗s)+γ

∑
s′

p(s′/s, a∗s)v(s′)
}
−
{
r(s, a∗s)+γ

∑
s′

p(s′/s, a∗s)u(s′)
}

= γ
∑
s′

p(s′/s, a∗s)[v(s′)− u(s′)]

≤ γ
∑
s′

p(s′/s, a∗s)||v − u|| [Use of max norm similar to Lπ]

= γ||v − u|| [Since
∑
s′

p(s′/s, a∗s) = 1] (16)

Similarly, for the second case Lu(s) ≥ Lv(s), we can write,

0 ≤ Lu(s)− Lv(s) ≤ γ||v − u|| (17)

Combining eqns. (16) and (17), |Lv(s)− Lu(s)| ≤ γ||v − u|| ∀s ∈ S which again

from definition of max norm leads to ||Lv − Lu|| ≤ γ||v − u||
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Value Iteration Theorem

Theorem (Value Iteration Theorem(ref. S P. Singh and R C. Yee, 1993))

Let v0 ∈ V, ε > 0, sequence {vn} is obtained from vn+1 = Lvn, Then

I. vn converges in norm to v∗.

II. ∃ a finite N at which the condition ||vn+1 − vn|| < ε1−γ2γ is met
∀n > N .

III. π(s) (obtained by

arg max
a

{
r(s, a) + γ

∑
s′
p(s′/s, a)vn+1(s′)

}
∀s ∈ S) is ε optimal.

IV. ||vn+1 − v∗|| ≤ ε
2 when the condition ||vn+1 − vn|| < ε1−γ2γ holds.

§ statement III means ||vπ − v∗|| ≤ ε. And statement IV tells that
||vn+1 − v∗|| ≤ ε

2 . Are they redundant?

§ No! Think about what is vπ and what is vn+1.
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Value Iteration Theorem

§ Though the figure is related to policy iteration, remember the figure
in slide (17).

§ Figure credit: [Singh and Yee, 1993]

§ Equality occurs if and only if value function given by the value
iteration algorithm is equal to the optimal policy.

§ What III is telling is that vπ is ε optimal and what IV is telling is that
vn+1 is ε

2 optimal given condition in II.
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Proof

§ Proof: Suppose, for some n, II is met i.e., ||vn+1 − vn|| < ε1−γ2γ and
π(s) obtained by III. Now, by triangle inequality,

||vπ − v∗|| ≤ ||vπ − vn+1||+ ||vn+1 − v∗|| (18)

§ Now we have seen Lπ to be such that

Lπv(s) = rπ(s) + γ
∑
s′

pπ(s′|s)v(s′)

=
∑
a∈A

π(a|s)

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)v(s′)

}
(19)

§ Let us apply Lπ on vn+1 and remember that π is deterministic policy.
So,

Lπv
n+1(s) = r(s, π(s)) + γ

∑
s′

p(s′/s, π(s))vn+1(s′) (20)
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Proof

§ Now we have seen L to be such that

Lv(s) ≡ max
a∈A

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)v(s′)

}
∀v ∈ V (21)

§ So, similarly, let us apply L on vn+1. So,

Lvn+1(s) = max
a∈A

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)vn+1(s′)

}
(22)

Abir Das (IIT Kharagpur) CS60077 Sep 21, 22 and 28, 2020 51 / 57



Agenda DP Policy Evaluation Policy Iteration Value Iteration Mathematical Tools DP Extensions

Proof

§ Now we have seen L to be such that

Lv(s) ≡ max
a∈A

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)v(s′)

}
∀v ∈ V (21)

§ So, similarly, let us apply L on vn+1. So,

Lvn+1(s) = max
a∈A

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)vn+1(s′)

}
(22)

Abir Das (IIT Kharagpur) CS60077 Sep 21, 22 and 28, 2020 51 / 57



Agenda DP Policy Evaluation Policy Iteration Value Iteration Mathematical Tools DP Extensions

Proof

§ Repeating eqn. (20) and (22)

Lπv
n+1(s) = r(s, π(s)) + γ

∑
s′

p(s′/s, π(s))vn+1(s′) (23)

§

Lvn+1(s) = max
a∈A

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)vn+1(s′)

}
(24)

§ Now, because π was chosen such that π maximizes the argument
inside the max {.} operator, so whether we apply Lπ on vn+1 or L on
vn+1, they are the same, i.e., Lvn+1 = Lπv

n+1.
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Proof

§ Now let us take the first term in eqn. (18) and proceed.

||vπ − vn+1|| = ||Lπvπ − vn+1|| [By eqn. 6 - fixed point]

≤ ||Lπvπ − Lvn+1||+ ||Lvn+1 − vn+1|| [Triangle inequality]

= ||Lπvπ − Lπvn+1||+ ||Lvn+1 − Lvn||
[1. Using previous slide 2. vn+1 = Lvn]

≤ γ||vπ − vn+1||+ γ||vn+1 − vn|| [Contraction mappings]

=⇒ ||vπ − vn+1|| ≤ γ

1− γ
||vn+1 − vn||

≤ γ

1− γ
ε
1− γ

2γ
[By statement II of the theorem]

=
ε

2
(25)
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Proof

§ Now let us take the second term in eqn. (18) and proceed.

||vn+1 − v∗|| ≤
∞∑
k=0

||vn+k+2 − vn+k+1|| [Triangle inequality repeatedly]

=

∞∑
k=0

||Lk+1vn+1 − Lk+1vn|| [From iterative application of L]

≤
∞∑
k=0

γk+1||vn+1 − vn|| [L is a contraction mapping]

=
γ

1− γ
||vn+1 − vn|| [G.P. sum]

≤ γ

1− γ
ε
1− γ

2γ
[By statement II of the theorem]

=
ε

2
(26)

§ this is also the proof of statement IV of the theorem
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Proof

Now putting eqn. 25 and eqn. 26 in eqn. 18, we get,

||vπ − v∗|| ≤
ε

2
+
ε

2
= ε (27)

So, statement III is proved.
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Asynchronous Dynamic Programing

§ Major drawback of DP methods is that they involve operations over
entire state set.

§ the game of backgammon has over 1020 states. Even if we could
perform the value iteration update on a million states per second, it
would take over a thousand years to complete a single sweep.

f oreach s E S do 

vn+1(s) f-- max r(s a) +rLp(s'/s a)vn(s')
a 

s' 

end 

§ Inplace dynamic programing uses one single array to do the update
f oreach s E S do 

v(s) f-- max r(s a) +rLp(s'/s a)v (s')
a 

s' 

end 

§ For convergence, the order of update does not matter as long as all
states are picked at least a few times.
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Asynchronous Dynamic Programing

§ Real Time Dynamic Programing (RTDP): The main idea is to reduce
computation again but by not choosing randomly the states.

§ In an MDP there may be many states which occur very rarely i.e.,
they are seldom visited. So there is no point in putting more effort in
trying to discover the true value of these states. The agent might not
visit it at all.

§ Pick an initial state and run a policy/agent from that state. Then
employ DP update only on these states.

§ This makes changes to the value function estimate. Get the policy
from it and sample a trajectory again and do updates along the
trajectory.

§ Why is it called Real Time?

§ Many ideas from RTDP will be used in full RL problem.
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