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Agenda Terminology Markov Decision Process

Agenda

§ Understand definitions and notation to be used in the course.

§ Understand definition and setup of sequential decision problems.
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Agenda Terminology Markov Decision Process

Resources

§ Reinforcement Learning by David Silver [Link]

§ Deep Reinforcement Learning by Sergey Levine [Link]

§ SB: Chapter 3
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http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://rail.eecs.berkeley.edu/deeprlcourse/


Agenda Terminology Markov Decision Process

Terminology and Notation

Figure credit: S. Levine - CS 294-112 Course, UC Berkeley
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Terminology and Notation

1.	run	away

3.	pet
2.	ignore

Figure credit: S. Levine - CS 294-112 Course, UC Berkeley
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Agenda Terminology Markov Decision Process

Markov Property

The future is independent of the past given the present.

Definition

A state St is Markov if and only if

P (St+1|St) = P (St+1|St, St−1, St−2, · · · , S1)
Andrey	Markov

§ Once the present state is known, the history may be thrown away

§ The current state is a sufficient statistic of the future
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Agenda Terminology Markov Decision Process

Markov Chain

A Markov Chain or Markov Process is temporal process i.e., a sequence of
random states S1, S2, · · · where the states obey the Markov property.

Definition

A Markov Process is a tuple 〈S,P〉, where

§ S is the state space (can be continuous or discrete)

§ P is the state transition probability matrix. P also called an operator

P =


P11 P12 · · · P1n

P21 P22 · · · P2n

...
...

. . .
...

Pn1 Pn2 · · · Pnn


where Pss′ = P (St+1 = s′|St = s)
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Markov Chain

P =


P11 P12 · · · P1n

P21 P22 · · · P2n

...
...

. . .
...

Pn1 Pn2 · · · Pnn


Let µt,i = P (St = si) and µt =

[
µt,1, µt,2, · · · , µt,n

]T
, i.e., µt is a vector

of probabilities, then µt+1 = PTµt
µt+1,1

µt+1,2

...
µt+1,n

 =


P11 P12 · · · P1n

P21 P22 · · · P2n

...
...

. . .
...

Pn1 Pn2 · · · Pnn


T 

µt,1
µt,2

...
µt,n


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𝑝 𝑠# 𝑠#$%)
-1
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Student Markov Process

Class	1 Class	2 Class	3 Pass

Pub

Facebook Sleep

0.9

0.1 0.5

0.5 0.8 0.6

0.2 0.4 0.4 0.4

1.0
0.2

Figure credit:David Silver, DeepMind
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Agenda Terminology Markov Decision Process

Student Markov Process - Episodes

Class	1 Class	2 Class	3 Pass

Pub

Facebook Sleep

0.9

0.1 0.5

0.5 0.8 0.6

0.2 0.4 0.4 0.4

1.0
0.2

Figure credit:David Silver, DeepMind

Sample episodes for Student Markov
process starting from S1 = C1

§ C1 C2 C3 Pass Sleep

§ C1 FB FB C1 C2 Sleep

§ C1 C2 C3 Pub C2 C3 Pass Sleep

§ C1 FB FB C1 C2 C3 Pub C1 FB
FB FB C1 C2 C3 Pub C2 Sleep
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Agenda Terminology Markov Decision Process

Student Markov Process - Transition Matrix

Class	1 Class	2 Class	3 Pass

Pub

Facebook Sleep

0.9

0.1 0.5

0.5 0.8 0.6

0.2 0.4 0.4 0.4

1.0
0.2

Figure credit:David Silver, DeepMind



C1 C2 C3 Pass Pub FB Sleep

C1 0.5 0.5
C2 0.8 0.2
C3 0.6 0.4
Pass 1.0
Pub 0.2 0.4 0.4
FB 0.1 0.9
Sleep 1.0


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Agenda Terminology Markov Decision Process

Markov Reward Process

A Markov reward process is a Markov process with rewards.

Definition

A Markov Reward Process is a tuple 〈S,P,R, γ〉, where

§ S is the state space (can be continuous or discrete)

§ P is the state transition probability matrix. P also called an operator.
Pss′ = P (St+1 = s′|St = s)

§ R is a reward function, R = E
[
Rt+1|St = s

]
= R(s)

§ γ is a discount factor, γ ∈
[
0, 1
]
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Student Markov Reward Process

Class	1 Class	2 Class	3 Pass

Pub

Facebook Sleep

0.9

0.1 0.5

0.5 0.8 0.6

0.2 0.4 0.4

1.0

R=0

R=-1

R=-2 R=-2 R=-2

R=+10

R=+1

0.2

0.4

Figure credit:David Silver, DeepMind
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Agenda Terminology Markov Decision Process

Return

Definition

The return Gt is the total discounted reward from timestep t.

Gt = Rt+1 + γRt+2 + · · · =
∞∑
k=0

γkRt+k+1 (1)

§ γ ∈
[
0, 1
]

is the discounted present value of the future rewards.

§ Immediate rewards are valued above delayed rewards.

I γ close to 0 leads to “myopic” evaluation.

I γ close to 1 leads to “far-sighted” evaluation.
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Agenda Terminology Markov Decision Process

Why Discount?

Most Markov reward and decision processes are discounted. Why?

§ Uncertainty about the future may not be fully represented

§ Immediate rewards are valued above delayed rewards.

§ Avoids infinite returns in cyclic Markov processes or infinite horizon
problems.

§ Mathematically convenient. We can use stationarity property to
better effect.

It is sometimes possible to use average rewards also to bound the return to
finite values.
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Agenda Terminology Markov Decision Process

Value Function

The value function v(s) gives the long-term value of state s

Definition

The state value function v(s) of an MRP is the expected return starting
from state s

v(s) = E
[
Gt|St = s

]
(2)
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Agenda Terminology Markov Decision Process

Example Student MRP Returns

Sample returns for Student MRP:
Starting from S1 = C1 with γ = 1

2

G1 = R2 + γR3 + · · ·+ γT−1RT+1

§ C1 C2 C3 Pass Sleep

§ C1 FB FB C1 C2 Sleep

§ C1 C2 C3 Pub C2 C3 Pass Sleep

§ C1 FB FB C1 C2 C3 Pub C1 FB
FB FB C1 C2 C3 Pub C2 Sleep

§ −2− 1
2 ∗2−

1
4 ∗2+

1
8 ∗10 = −2.25

§ −2− 1
2 ∗1−

1
4 ∗1−

1
8 ∗2−

1
16 ∗2 =

−3.125

§ −2− 1
2 ∗ 2−

1
4 ∗ 2+

1
8 ∗ 1−−

1
16 ∗

2− 1
32 ∗ 2 +

1
64 ∗ 10 = −3.41

§ −2− 1
2 ∗ 1−

1
4 ∗ 1−

1
8 ∗ 2−

1
16 ∗

2 + · · · = −3.20
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Agenda Terminology Markov Decision Process

State-Value Function for Student MRP (1)

Class	1 Class	2 Class	3 Pass

Pub

Facebook Sleep

0.9

0.1 0.5

0.5 0.8 0.6

0.2 0.4 0.4

1.0

R=0

R=-1

R=-2 R=-2 R=-2

R=+10

R=+1

-1

-2 -2 -2 10

1

0

V(s)	for	𝛾 = 0

0.2

0.4

Figure credit:David Silver, DeepMind
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State-Value Function for Student MRP (2)

Class	1 Class	2 Class	3 Pass

Pub

Facebook Sleep

0.9

0.1 0.5

0.5 0.8 0.6

0.2 0.4 0.4

1.0

R=0

R=-1

R=-2 R=-2 R=-2

R=+10

R=+1

-7.6

-5.0 0.9 4.1 10

1.9

0

V(s)	for	𝛾 = 0.9

0.2

0.4

Figure credit:David Silver, DeepMind
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State-Value Function for Student MRP (3)

Class	1 Class	2 Class	3 Pass

Pub

Facebook Sleep

0.9

0.1 0.5

0.5 0.8 0.6

0.2 0.4 0.4

1.0

R=0

R=-1

R=-2 R=-2 R=-2

R=+10

R=+1

-23

-13 1.5 4.3 10

+0.8

0

V(s)	for	𝛾 = 1

0.2

0.4

Figure credit:David Silver, DeepMind
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Agenda Terminology Markov Decision Process

Bellman Equation for MRPs

The value function can be decomposed into two parts:

§ immediate reward R(s)

§ discounted value of successor state γv(s′)

v(s) = R(s) + γEs′∈S
[
v(s′)

]
= R(s) + γ

∑
s′∈S
Pss′v(s′) (3)

s
s’ s’’

V(s’)

V(s)

V(s’’)

r
s
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Agenda Terminology Markov Decision Process

Bellman Equation for MRPs - Proof

v(s)=E
[
Gt|St = s

]
=E
[
Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + · · · |St = s

]

=E
[
Rt+1(St) + γRt+2(St+1) + γ2Rt+3(St+2) + γ3Rt+4(St+3) + · · · |St = s

]
=

∑
St+1,St+2,···

(
P (St+1, St+2, · · · |St = s)

[
Rt+1(St) + γRt+2(St+1)+

γ2Rt+3(St+2) + γ3Rt+4(St+3) + · · ·
])

=
∑

St+1,St+2,···
P (St+1, St+2, · · · |St = s)Rt+1(St)+

γ
∑

St+1,St+2,···

(
P (St+1, St+2, · · · |St=s)

[
Rt+2(St+1) + γRt+3(St+2)+

γ2Rt+4(St+3) + · · ·
])
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Bellman Equation for MRPs - Proof

= Rt+1(St)
∑

St+1,St+2,···
P (St+1, St+2, · · · |St = s)+

γ
∑

St+1,St+2,···

(
P (St+1, St+2, · · · |St=s)

[
Rt+2(St+1) + γRt+3(St+2)+

γ2Rt+4(St+3) + · · ·
])

= Rt+1(St)

���
���

���
���

���:
1∑

St+1,St+2,···
P (St+1, St+2, · · · |St = s)+

γ
∑

St+1,St+2,···

(
P (St+1, St+2, · · · |St=s)

[
Rt+2(St+1) + γRt+3(St+2)+

γ2Rt+4(St+3) + · · ·
])

= Rt+1(St) + γ
∑

St+1,St+2,···

(
P (St+1, St+2, · · · |St=s)

[
Rt+2(St+1) + γRt+3(St+2)+

γ2Rt+4(St+3) + · · ·
])

= Rt+1(St) + γ
∑

St+1,St+2,···

(
P (St+2, · · · |St+1, St=s)P (St+1|St=s)

[
Rt+2(St+1)+

γRt+3(St+2) + γ2Rt+4(St+3) + · · ·
])
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γ2Rt+4(St+3) + · · ·
])

= Rt+1(St) + γ
∑

St+1,St+2,···

(
P (St+1, St+2, · · · |St=s)

[
Rt+2(St+1) + γRt+3(St+2)+

γ2Rt+4(St+3) + · · ·
])

= Rt+1(St) + γ
∑

St+1,St+2,···

(
P (St+2, · · · |St+1, St=s)P (St+1|St=s)

[
Rt+2(St+1)+

γRt+3(St+2) + γ2Rt+4(St+3) + · · ·
])
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Agenda Terminology Markov Decision Process

Bellman Equation for MRPs - Proof

= Rt+1(St) + γ
∑

St+1,St+2,···

(
P (St+2, · · · |St+1)P (St+1|St=s)

[
Rt+2(St+1) +γRt+3(St+2)+

γ2Rt+4(St+3) + · · ·
])

[Conditional independence (Ref eq. (7))]

= Rt+1(St) + γ
∑
St+1

∑
St+2,St+3,···
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P (St+2, · · · |St+1)P (St+1|St=s)
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Rt+2(St+1)+
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Rt+2(St+1)+

γRt+3(St+2) + γ2Rt+4(St+3) + · · ·
])

= Rt+1(St) + γ
∑
St+1

P (St+1|St=s)v(St+1)

= Rt+1(St=s) + γ
∑
s′∈S

P (St+1=s
′|St=s)v(St+1=s

′)= R(s) + γ
∑
s′∈S
Pss′v(s′)
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Agenda Terminology Markov Decision Process

Bellman Equation in Matrix Form

So, we have seen,

v(s) = R(s) + γ
∑
s′∈S
Pss′v(s′)

Where are the time subscripts? Hint: Think about (1). Definition of value
function, (2). Expectation operation.

The Bellman equation can be expressed concisely using matrices.

v = R+ γPv

where v and R are column vectors with one entry per state.
v(s1)
v(s2)

...
v(sn)

 =


R(s1)
R(s2)

...
R(sn)

+ γ


P11 P12 · · · P1n

P21 P22 · · · P2n

...
...

. . .
...

Pn1 Pn2 · · · Pnn



v(s1)
v(s2)

...
v(sn)


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Agenda Terminology Markov Decision Process

Solving Bellman Equation

§ The Bellman equation being a linear equation, it can be solved
directly.

v = R+ γPv(
I− γP

)
v = R

v =
(
I− γP

)−1R
§ As computational complexity is O(n3) for n states, direct solution is

only feasible for small MRPs.

§ There are many iterative methods for large MRPs, e.g., Dynamic
programing, Monte-Carlo, Temporal difference learning
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Agenda Terminology Markov Decision Process

Existence of Solution to Bellman Equation

§ We need to show that
(
I− γP

)
is invertible and for that we will use

the following result from linear algebra - The inverse of a matrix
exists if and only if all its eigenvalues are non-zero.

§ For a stochastic matrix (row sum equal to 1 and all entries are ≥ 0),
the largest eigenvalue is 1.

Proof

As P is a stchoastic matrix, P1 = 1 where 1 = [1, 1, · · · 1]T . This means 1 is an
eigenvalue of P.
Now, lets suppose ∃λ > 1 and non-zero x such that Px = λx.
Since the rows of P are non-negative and sum to 1, each element of vector Px is
a convex combination of the components of the vector x.
A convex combination can’t be greater than xmax, the largest component of x.
However, as λ>1, at least one element (λxmax) in the R.H.S. (i.e., in λx) is
greater than xmax. This is a contradiction and so λ>1 is not possible.
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Agenda Terminology Markov Decision Process

Existence of Solution to Bellman Equation

§ So the largest eigenvalue of P is 1.

Theorem and its proof
For all eigenvalues λi of a square matrix A and corresponding eigenvectors vi
such that Avi = λivi,

eig(I+ γA) = 1 + γλi [γ is any scalar]
Proof:

Avi = λivi

γAvi = γλivi

vi + γAvi = vi + γλivi

(I+ γA)vi = (1 + γλi)vi

§ So the smallest eigenvalue of
(
I− γP

)
is 1− γ. For γ < 1 which is

> 0. And hence,
(
I− γP

)
is invertible.
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Agenda Terminology Markov Decision Process

Markov Decision Process

A Markov decision process is a Markov reward process with actions.

Definition

A Markov Decision Process is a tuple 〈S,A,P,R, γ〉, where

§ S is the state space (can be continuous or discrete)

§ A is the action space (can be continuous or discrete)

§ P is the state transition probability matrix.
Pass′ = P (St+1 = s′|St = s,At = a) = p(s′/s, a)

§ R is a reward function, R = E
[
Rt+1|St = s,At = a

]
= R(s, a)

§ γ is a discount factor, γ ∈
[
0, 1
]
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Agenda Terminology Markov Decision Process

Example: Student MDP

0.2

0.4

R	=	-1
Facebook

0.4

R	=	-1
Quit

R	=	-1
Facebook

R	=	0
Sleep

R	=	-2
Study

R	=	-2
Study

R	=	+1
Pub

R	=	+10
Study

Figure credit:David Silver, DeepMind
Abir Das (IIT Kharagpur) CS60077 Sep 14 and 15, 2020 29 / 43



Agenda Terminology Markov Decision Process

Policy

Definition

A policy π is a distribution over actions given states,

π(a/s) = P
[
At = a|St = s

]
§ The Markov property means the policy depends on the current state

(not the history)

§ The policy can be either deterministic or stochastic

§ The policy can be either stationary or non-stationary
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Agenda Terminology Markov Decision Process

Policy

§ For a deterministic environment p(s′/s, a) = 1,
else for stochastic environment 0 ≤ p(s′/s, a) ≤ 1

§ In a stochastic environment, there is always some
chance to end up in s′ starting from state s and
taking any action.

S	→ s’
a

§ So, probability of ending up in state s′ from s irrespective of the
action (i.e., taking any action according to the policy), = probability
of taking action 1 from state s× probability of ending up in state s′

taking action 1 + probability of taking action 2 from state s×
probability of ending up in state s′ taking action 2 + · · ·
§ This means pπ(s

′|s) =
∑
a
π(a|s)p(s′|s, a)

§ Similarly, the one-step expected reward for following policy π is given
by rπ(s) =

∑
a
π(a|s)r(s, a)

§ Side note: The above is given by rπ(s) =
∑
a
π(a|s)

∑
s′
p(s′|s, a)r(s, a, s′)

when reward is a function of the transiting state s′ also.
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Agenda Terminology Markov Decision Process

Value Functions

Definition

The state-value function vπ(s) of an MDP is the expected return starting
from state s, and then following policy π

vπ(s) = Eπ
[
Gt|St = s

]
(4)

Definition

The action-value function qπ(s, a) of an MDP is the expected return
starting from state s, taking action a, and then following policy π

qπ(s, a) = Eπ
[
Gt|St = s,At = a

]
(5)
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Agenda Terminology Markov Decision Process

Example: State-Value function for Student MDP

0.2

0.4

R	=	-1
Facebook

0.4

R	=	-1
Quit

R	=	-1
Facebook

R	=	0
Sleep

R	=	-2
Study

R	=	-2
Study

R	=	+1
Pub

R	=	+10
Study

-2.3 0

-1.3 2.7 7.4

𝑣" 𝑠 for	𝜋 𝑎 𝑠 = 0.5, 𝛾 = 1

Figure credit:David Silver, DeepMind
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Agenda Terminology Markov Decision Process

Relation between vπ and qπ

s

𝑣"(𝑠) 𝑠

𝑞"(𝑠, 𝑎) a a′
𝑞"(𝑠, 𝑎′)

vπ(s) =
∑
a∈A

π(a|s)qπ(s, a)

s

𝑞"(𝑠, 𝑎) 𝑠

𝑣"(𝑠′)
𝑠′ 𝑠′′

𝑣"(𝑠′′)

𝑟

qπ(s, a) = r(s, a)+γ
∑
s′∈S

p(s′|s, a)vπ(s′)

s

𝑣"(𝑠) 𝑠

𝑎

𝑣"(𝑠′) 𝑠′

𝑟

vπ(s) =
∑
a∈A

π(a|s)

{
r(s, a) +

γ
∑
s′∈S

p(s′|s, a)vπ(s′)

}

𝑞"(𝑠, 𝑎) 𝑠

𝑠′

𝑟

𝑞"(𝑠′, 𝑎′)

qπ(s, a) = r(s, a) + γ
∑
s′∈S

p(s′|s, a){∑
a′∈A

π(a′|s′)qπ(s′, a′)

}
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𝑟

qπ(s, a) = r(s, a)+γ
∑
s′∈S

p(s′|s, a)vπ(s′)

s

𝑣"(𝑠) 𝑠

𝑎

𝑣"(𝑠′) 𝑠′

𝑟

vπ(s) =
∑
a∈A

π(a|s)

{
r(s, a) +

γ
∑
s′∈S

p(s′|s, a)vπ(s′)

}

𝑞"(𝑠, 𝑎) 𝑠

𝑠′

𝑟

𝑞"(𝑠′, 𝑎′)

qπ(s, a) = r(s, a) + γ
∑
s′∈S

p(s′|s, a){∑
a′∈A

π(a′|s′)qπ(s′, a′)

}
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Bellman Expectation Equations

Like MRPs, the value function can be decomposed into two parts -
immediate reward r(s) and the discounted value of successor state γv(s′).
But, as action is involved in MDP, the form is a little different.

vπ(s) =
∑
a∈A

π(a|s)
∑
s′∈S

p(s′|s, a)
{
r(s, a, s′) + γvπ(s

′)
}

[when r is a function of s, a, s′]

=
∑
a∈A

π(a|s)

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)vπ(s′)

}
[when r is a function of s, a]

= r(s) + γ
∑
a∈A

π(a|s)
∑
s′∈S

p(s′|s, a)vπ(s′)

[when r is a function of s] (6)
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Bellman Expectation Equations

qπ(s, a)=Eπ
[
Gt|St = s, at = a

]
[eqn. 3.13 in SB]

=Eπ
[
rt+1 + γrt+2 + γ2rt+3...|St = s, at = a

]
=Eπ

[
rt+1 + γ(rt+2 + γrt+3...)|St = s, at = a

]
=Eπ

[
rt+1 + γGt+1|St = s, at = a

]
[By definition, eqn. 3.11 in SB]

=Eπ
[
rt+1|St = s, at = a

]
+ γEπ

[
Gt+1|St = s, at = a

]

=Eπ
[
rt+1|St = s, at = a

]
+

γEπ
[
Eπ
[
Gt+1|St = s, at = a, St+1 = s′, at+1 = a′

]
|St = s, at = a

]
(Above applies the formula E

[
Y |X

]
= E

[
E
[
Y |X,Z

]
|X
]
)

[Get the intuition behind the formula in this youtube link]

=Eπ
[
rt+1|St = s, at = a

]
+

γEπ
[
Eπ
[
Gt+1|St+1 = s′, at+1 = a′

]
|St = s, at = a

]
[Gt+1depends only on st+1 and at+1]

= Eπ
[
rt+1|St=s, at=a

]
+ γEπ

[
qπ(s

′, a′)|St=s, at=a
]

[Using definition of qπ]
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Bellman Expectation Equations

= r(s, a) +
∑
s′∈S

∑
a′∈A

qπ(s
′, a′)p(a′, s′|s, a)

= r(s, a) +
∑
s′∈S

∑
a′∈A

qπ(s
′, a′)p(a′|s′, s, a)p(s′|s, a)

= r(s, a) +
∑
s′∈S

∑
a′∈A

qπ(s
′, a′)p(a′|s′)p(s′|s, a) [Markov property]

= r(s, a) +
∑
s′∈S

p(s′|s, a)
∑
a′∈A

qπ(s
′, a′)p(a′|s′)
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Agenda Terminology Markov Decision Process

Bellman Expectation Equation for Student MDP

0.2

0.4

R	=	-1
Facebook

0.4

R	=	-1
Quit

R	=	-1
Facebook

R	=	0
Sleep

R	=	-2
Study

R	=	-2
Study

R	=	+1
Pub

R	=	+10
Study

-2.3 0

-1.3 2.7 7.4

𝑣" 𝑠 for	𝜋 𝑎 𝑠 = 0.5, 𝛾 = 1

7.4	=	0.5*{10+0}	+	0.5*{1+1*(-0.2*1.3+0.4*2.7+0.4*7.4)}

Figure credit:David Silver, DeepMind
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Agenda Terminology Markov Decision Process

Optimal Policies and Optimal Value Functions

§ Solving a reinforcement learning task means, roughly, finding a policy
that achieves a lot of reward (maximum) over the long run.

§ The notion of maximality leads to optimality in MDPs.

§ What is meant by a policy is better than some other policy?

§ A policy π is defined to be better than or equal to a policy π′ if its
expected return is greater than or equal to that of π′ for all states.

Definition

π ≥ π′ iff vπ(s) ≥ vπ′(s), ∀s ∈ S
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Agenda Terminology Markov Decision Process

Optimal Policies and Optimal Value Functions

Definition

The optimal state-value function v∗(s) is the maximum state-value
function over all policies

v∗(s) = max
π

vπ(s), ∀s ∈ S

The optimal action-value function q∗(s, a) is the maximum action-value
function over all policies

q∗(s, a) = max
π

qπ(s, a), ∀s ∈ S and , ∀a ∈ A

§ An MDP is “solved” when we know the optimal value function
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Agenda Terminology Markov Decision Process

Optimal Action-Value Function for Student MDP
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Figure credit:David Silver, DeepMind
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Agenda Terminology Markov Decision Process

Optimal Policy

Theorem

For any Markov Decision Process

§ There exists an optimal policy π∗ that is better than or equal to all
other policies, π∗ ≥ π, ∀π
§ All optimal policies achieve the optimal value function vπ∗(s) = v∗(s)

§ All optimal policies achieve the optimal action-value function
qπ∗(s, a) = q∗(s, a)

An optimal policy can be found by maximising over q∗(s, a).

π∗(a|s) =

1 if a = argmax
a∈A

q∗(s, a)

0 otherwise

§ There is always a deterministic optimal policy for any MDP.

§ If we know q∗(s, a), we immediately have the optimal policy.
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Agenda Terminology Markov Decision Process

Relation between v∗ and q∗

s

𝑣∗(𝑠) 𝑠

𝑞∗(𝑠, 𝑎) a a′
𝑞∗(𝑠, 𝑎′)

v∗(s) = max
a∈A

q∗(s, a)

s

𝑞∗(𝑠, 𝑎) 𝑠

𝑣∗(𝑠′)
𝑠′ 𝑠′′

𝑣∗(𝑠′′)

𝑟

q∗(s, a) = r(s, a)+γ
∑
s′∈S

p(s′|s, a)v∗(s′)

s

𝑣∗(𝑠) 𝑠

𝑎

𝑣∗(𝑠′) 𝑠′

𝑟

v∗(s) = max
a∈A

{
r(s, a) +

γ
∑
s′∈S

p(s′|s, a)v∗(s′)

}

𝑞∗(𝑠, 𝑎) 𝑠

𝑠′

𝑟

𝑞∗(𝑠′, 𝑎′) 𝑎′

q∗(s, a) = r(s, a) + γ
∑
s′∈S

p(s′|s, a)

max
a′∈A

q∗(s
′, a′)
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Appendices Conditional Independence Eigenvalues

1. Independence

Independence

A⊥⊥B =⇒ P (A|B) = P (A)

Conditional Independence

A⊥⊥B|C =⇒ P (A|B,C) = P (A|C)

Proof:

P (A|B,C) = P (A,B,C)

P (B,C)
=
P (A,B|C)��

�P (C)

P (B|C)��
�P (C)

(7)

=
P (A|C)P (B|C)

P (B|C)
[ From definition of conditional independence]

= P (A|C)
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Appendices Conditional Independence Eigenvalues

2. Independence

Theorem

Eigenvalues of the transpose AT are the same as the eigenvalues of A

Proof

Eigenvalues of a matrix are roots of its characteristic polynomial. Hence if
the matrices A and AT have the same characteristic polynomial, then they
have the same eigenvalues.

det(AT − λI) = det(AT − λIT ) (8)

= det(A− λI)T

= det(A− λI) [Since det(A) = det(AT )]
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