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Abstract—With social media platform such as Twitter be-
coming the de facto destination for users’ views and opinions,
it is of great importance to forecast an information outbreak.
In Twitter, tweets are often annotated with hashtags to help its
users to quickly extract their contents. The existing approaches
for modeling the dynamics of tweet-messages are usually limited
to individual or simple aggregates of tweets rather than the
underlying hashtags. In this paper, we develop, STRM, a novel
point process driven model that considers the effect of cross-tweet
impact in hashtag popularity. STRM, by assuming hashtag to
be a heterogeneous collection of tweet-chains. Through extensive
experimentation, we find that our algorithm - STRM, shows
consistent performance boosts with six diverse real datasets
against several strong baselines. Moreover surprisingly, it also
offers significant accuracy gains in popularity-prediction for
individual tweets as compared with the existing paradigms.

I. INTRODUCTION

In Twitter, tweets are usually annotated with a hashtag for
helping people to quickly retrieve their diverse contents. Thus
accurate prediction of hashtag flow would help Twitter to rank
content better, find trending hashtags faster. Altogether, it will
enhance the Twitter service facilities by an improved content
delivery system [1]. As a result, a considerable amount of
research [1–12] on viral marketing and information cascade
emphasizes the analysis of hashtag-popularity and its role in
tweet propagation.

Research on hashtag-popularity predominantly follows two
models. (i). Temporal or dynamical model. (ii) Static feature-
based supervised model. The supervised approaches ( [9, 10]
and the citations therein) to compute hashtag-popularity heav-
ily depend on feature-engineering. However, since hashtag-
virality is inherently a temporal phenomenon, these models
do not fit into online learning because the feature space they
use is static in nature. Apart from this, these approaches do
not take into account the self-exciting1 nature of the hashtag
diffusion. The class of temporal models [1–8] which are close
to the work presented in this paper, primarily focuses on the
propagation of individual tweets rather than the hashtags.

In this paper, we propose a technique to model hashtag
popularity where a hashtag is associated with a collection
of tweet-chains2. The popularity of a hashtag depends on
two factors. (i). The intrinsic popularity/attractiveness of the
hashtag. (ii). The popularity of its associated tweet-chains.

1A tweet-stream is self-exciting if its own retweet-post reinforces the
retweet process.

2A tweet-chain is a set consisting of a tweet and all its retweet instances.

However, these two factors are often convoluted with each
other and hence, it is very difficult to decouple them with
the temporal data. A hashtag often influences the flow of a
tweet via the virality of her sister-tweets3. For example, a
potentially insignificant tweet may suddenly go viral due to the
influence of a popular sister-tweet. Hence, simply extending
the prediction framework [1–8] designed for tweet to hashtag
would not produce accurate result (experimental results also
emphatically establish that).

In this context, we develop STRM: a Sister-Tweet
Reinforcement Model, to accurately capture the role of cross-
tweet dependencies on the hashtag-propagation process. Our
proposal, which is driven by a self exciting point process
model, describes the collective tweet diffusion process by
combining the self-exciting phenomenon with the sister-tweet
influences in a principled way. Such an approach does not
only capture the heterogeneous dependencies between tweets,
but also models a diverse type of tweets in a unified way. For
example, when a popular tweet is retweeted, it may hasten
its own diffusion process, or speed up the flow of many rare-
tweets or trigger new tweets. Indeed, our model can accurately
capture all these three types of possible scenarios following a
popular retweet-post. The proposed model implicitly considers
the role of underlying network structure. But, unlike the
existing works, we do not learn individual edge weights.
Instead, the role of a graph is captured more macroscopically
by the model. As a result, our model is parsimonious, as it
requires a few parameters to be fitted.

In another departure from some of the existing works
(e.g. [1]) that can only predict asymptotic popularity, our
model also leads to a useful predictive formula to compute
hashtag-popularity at any point of time in future. On six diverse
datasets crawled from Twitter, our proposal offers substantial
accuracy gains beyond strong baselines (Table II, Section V).
In addition, we observe that our model performs well in wide
range of sample size variation. More importantly, we found,
though our model is designed to compute hashtag-popularity,
it can also accurately predict the popularity of the individual
tweets better than algorithms specifically catering to prediction
of tweet popularity.

Contributions: Summarizing, the main contributions of our
work are:

1) An inter-tweet influence based model: We develop
a novel stochastic model for hashtag propagation that

3Two tweets are said to be the sisters of each other if they share a common
hashtag.



captures the underlying cross-tweet reinforcement
process (Section III). In this way, it captures both self-
tweet and hashtag- tweet reinforcement processes.

2) Parsimony: Our model requires a few parameters to
be fitted. It makes the model highly scalable.

3) Capturing reality: Despite the few parameters, the
model still captures the complexity of the process. As
a result, it mimics the reality by achieving significant
accuracy boosts over the state-of-the-art methods.

4) Forecasting ability: Our model leads to a useful
predictive formula that can forecast the hashtag pop-
ularity ideally in any point of time in future, even
without the knowledge of the possible events going
to come in-between.

II. RELATED WORKS

Hashtag propagation and popularity analysis have been
widely studied in different guises and formalized in recent
years. Research on hashtag popularity traditionally follows
two type of models. (i) Temporal models. (ii). Feature based
supervised discriminative models.

A. Temporal Models

1) Reinforced Poisson Process (RPP) [5, 6]: Shen et al. in
their paper [4], first exploited the concept of RPP in modeling
popularity dynamics. Their model parameterizes the rate of
posts r(t) with three factors;- the intrinsic attractiveness of the
post, the aging effect and the current number of posts. Later
on, Gao et al. brought out a more sophisticated version [5] by
taking a power-law relaxation function and the user-activity
dynamics into account. A recent paper [6] considers the effect
of network structure in RPP via a mixture process. Though
such models are explainable as they unify three factors in
a principled way, they are non-convex often resulting in an
inefficient parameter-estimation. Moreover, in practice, they
ignore the heterogeneous effects between tweets bearing same
hashtag.

2) Hawkes Process and variants [1, 2, 8, 13–15]: The
problem of non-convexity for RPP can be easily tackled with
Hawkes process, a self exciting point process, that captures
the bursty nature of information flow in the social media. Such
models offer a change in the rate of posts with each new post,
coupled with an aging factor. Recently, Zhao et al. developed a
framework called “SEISMIC” [1], a variant of Hawkes process,
in order to model the tweet-popularity. However, the predictive
power of this model is only limited to computing asymptotic
popularity, i.e. it can’t predict the popularity at any given time
t. Kobayashi et al. advocates incorporating circadian cycle in
the dynamics of Hawkes process [2], since in some cases,
tweet-posts actually follow such patterns.
Some of these models [13–15] advocate the role of network-
topology in tweet-diffusion. However, for the hashtag propa-
gation, the underlying networks are often disconnected, time-
varying and huge, thus these models are difficult to learn.

3) Temporal pattern based models [7, 16]: These models
originate following some observed patterns from temporal
data For example, “RSC: Rest-sleep-comment model” [7]
characterizes four type of patterns in the distribution of inter-
arrival-times of postings. This model, however, fares poorly

when a user frequently changes her behavior. In a similar spirit,
the dynamical model in [16] aims to capture the rise and decay
pattern of an event popularity from temporal data.

B. Feature based supervised models

The supervised approaches ([9, 10] and the citations
therein) attach the popularity to temporal features and
apply various supervised ML techniques (e.g. regression,
classification etc.) to predict the future behavior. They
primarily focus on finding the effective features, but the
efforts needed to access these features are often huge.
Moreover, these models essentially neglect the bursty
behavior of temporal dynamics. Therefore, these models are
not much effective to model hashtag dynamics.

Our work heavily relies on the temporal dynamics of
hashtag propagation. To compare the utility and efficiency of
our proposal, we use the ones in [1, 4, 8, 16] as the baseline-
competitors (Section V-A).

III. PROPOSED MODEL

In this section, we first formulate our model of hashtag
propagation, beginning with the data it is designed for, and then
present methods for popularity prediction and model parameter
estimation.
Temporal data: We define a tweet-chain as the set con-
sisting of a tweet and all its retweet timestamps. For-
mally, a tweet-chain C can be written as, C := T ×
{tj | T is retweeted at time tj}. A hashtag H is formally
defined as H := {C1, C2, ..., CN}, where Ci’s are the tweet-
chains. We record each timestamp of the (re)tweet-messages
as ei = {T [ti], ti}, meaning that at time ti, a tweet T [ti] is
(re)posted. Given a collection of retweets of all tweets of a
hashtag H , the history H(t) = {e1 = (T [t1], t1), . . . , en =
(T [tn], tn)} gathers all messages of H upto but not including
time t, i.e.,

H(t) = {ei = (T [ti], ti)and ti < t}, (1)

Generative process for tweet-chains: We assume the
(re)tweet-messages are being generated through a point-
process model. When a tweet is posted, it evokes a retweet of
the same and other tweets with the given hashtag. Naturally,
the message times are represented by a counting process.
In particular, given a hashtag H , we denote the counting
variable as N(t), where N(t) ∈ {0} ∪ Z+ counts the number
of messages posted until and excluding time ti. Then, we
can characterize the message rate of the users using their
corresponding conditional intensities or post-rates as

E[dN(t) |H(t)] = λ(t) dt, (2)

where dN(t) denotes the number of messages in the window
[t, t+dt) and λ(t) denotes the associated user intensities, which
may depend on the history H(t). Next, we specify the intensity
functions λ(t).

Intensity for messages: There is a wide variety of message
intensity functions one can choose from to model the users’
intensity λ∗(t) [17]. In this work, we emphasize two of the
most popular functional forms used in the growing literature
on social activity modeling using point processes [18, 19]:



a). Hashtag as a collection of het-
erogeneous tweets

b). Effect of cross-tweet reinforce-
ment: rare tweets become popular
later on.

Fig. 1: Role of tweets on hashtag propagation. Panel a) indi-
cates most probable situations for a hashtag, where few tweets
are very popular and most tweets are rare. Panel b) describes
a cross-talk between tweets where a rare tweet becomes
popular due to the presence of a popular sister tweet. This
also shows the heterogeneous reinforcement process where a
popular tweet-chain changes a rare-tweet dynamics but not the
vice-versa.

I. Poisson process. The intensity is assumed to be independent
of the history H(t) and constant, i.e., λ(t) = λ0.
II. Hawkes processes. The intensity captures a mutual excita-
tion phenomenon between message events and depends on the
whole history of message events H(t) before t:

λ(t) = λ0 + β
∑

ti∈H(t)

e−ω0(t−ti) = λ0 + β(κ(t) ? dN(t)) (3)

where the first term, λ0 > 0, models the initial publication-
rate of messages, and the second term, with β > 0, assigns
weight to the influence due to the publication of the previous
messages. Here, κ(t) = e−ω0t is an exponential triggering
kernel modeling the decay of influence of the past events over
time and ? denotes the convolution operation.

A. STRM: A sister-tweet reinforcement model.

Our model mainly takes into account two crucial factors
in modeling the dynamics of a hashtag. (i). The inherent
popularity-dynamics which drives the spreading process of
each individual tweet-chain. (ii). The mutual reinforcement
process between sister-tweets bearing a same hashtag. How-
ever, the cross-tweet reinforcement is not homogeneous across
tweets. For example, when a popular tweet is often re-tweeted,
the dynamics of its sister-tweets gets more and more bursty,
whereas, a rare-tweet hardly affects their dynamics. Such
scenarios can be often captured by formulating a suitable trig-
gering or intensity kernel κ(t) in the Hawkes process (Eq. 3).
In fact, κ(t) should be non-uniform across the popularity
distribution of tweets in a hashtag. That is, the kernel should
be further parameterized by tweet-popularity k, to have κk(t).
In particular, κk(t) should be chosen in such way that,

• For popular hashtags, i.e. when k goes high, κk(t)
pushes λ(t) more towards a Hawkes process.

• For non-popular hashtags, κk(t) goes low, suggesting
a relatively small λ(t).

We take

κk(t) = e−(ω0+ω
k )t

Hence the arrival rate of tweets can be written as:

λ(t;k(t)) = λ0e
−εt + β

∑
ti∈H(t)

e
−(ω0+ ω

k(ti)
)(t−ti)

= λ0e
−εt + β

∫ t

0

e−(ω0+ ω
k(θ)

)(t−θ)dN(θ) (4)

Here, k(ti) is the popularity of tweet posted at time ti and
k(t) := {k(ti)|ti ∈ H(t)}. Clearly, as k increases, the value
of κk(t) rises, resulting a large influence of a popular-tweets
in other subsequent retweets. On the other hand, a retweet of
not-so-popular tweet scarcely influences other tweets. An ad-
ditional decay factor e−εt is incorporated in order to diminish
the effect of initial condition, which we found to work well in
practice.
Popularity distribution. In practice, given a hashtag, the
distribution of the popularity of the individual-tweets usually
follows a power-law:

p(k) = ck−α with, c = α− 1 (5)

where k is the popularity of a tweet-chain.

Hence, the expected arrival rate of the process having
tweet-chains with random popularity can be formulated as:

λ̃(t) = Ek[λ(t;k(t))] =

∫ ∞
1

cλ(t;k(t))k−αdk (6)

where, c is a constant given by Eq. (5).
Model Insights. Apart from considering the cross-tweet in-
teractions, the proposed model offers following interesting
insights.

(i) STRM models any hashtag as a distributed tweet collection
in our proposal. It does not consider individual tweet-chain
but an aggregate of tweet-chain in a more non uniform
way.

(ii) STRM captures a heterogeneous cross-tweet influence
via a popularity-parameterized triggering kernel (Eq. (4)
and subsequent explanations). That said, the effect of a
tweet-chain on its sister-chains varies across the popularity
distribution. More is its popularity, more is this effect
(Figure 1(b)).

(iii) Unlike prior work, STRM properly models both popular
and rare tweet propagation in a unified way (Figure 1(a)).
Consequently, such a unified approach accurately models
the crosstalk between diverse tweet-dynamics, e.g. it can
properly capture the phenomena where the retweet of a
popular tweet may hasten its own diffusion process, and/or
speed-up the flow of many rare-tweets and/or trigger new
tweets. This makes STRM also an efficient predictive
model for the popularity of individual tweets.

(iv) Another aspect of STRM is that it captures the hashtag
dynamics by incorporating two reinforcement factors. (i).
The self-exciting process of the individual tweets. (ii). The
hashtag-tweet reinforcement process, which subsequently
influences the hashtag dissemination.

B. Popularity forecasting

Our goal here is to develop efficient methods that leverage
our model to forecast a hashtag’s popularity at a given time t.



TABLE I: Statistics of hashtags collected

Events-type Datasets #Hashtags Example-Hashtags #Tweets Total #Chains Avg. chain-length
Entertainment Oscars 8 #leonardodicaprio,#bearstory 10735 31 365
Entertainment MTV-Awards 5 #mtvawardsstar,#blaonedirection 6427 277 23

Disaster Nepal-earthquake 14 #kathmanduquake,#nepalrelief 42228 1182 35
E-Commerce BBD 8 #aslidealsonebay,#bigbillionsale 7455 733 10

Sports Copa 3 #copaamericaentd, #aocopa 8378 355 23
Sports ICCTw20 12 #ICCWT20,#T20WorldCup 6652 10 665

In a similar spirit to [1], we measure popularity at time t, by
the total number of retweet-counts for a hashtag. In the context
of our model, we aim to compute N∗(t) = EH(t)[N(t)], the
expected value of total retweet counts of all tweets. Here the
expectation indicates the average of all random number of
tweets, over the history from 0 to t.

N∗(t) = EH(t)[N(t)] (7)

= EH(t),k(t)

[ ∫ t

0

λ(t;k(t))dt
]

= EH(t)

[ ∫ t

0

λ̃(t)dt
]

(8)

Theorem 1: Assume t0 := 0, then the expected popularity
of a hashtag is given by

EH(t)

[ ∫ t

0

λ̃(τ)dτ
]

=
1

ε
λ0(1− e−εt) + λ0

∫ t

0

G(t) ? e−εtdt

(9)

where G(t) =
[∑∞

k=0
(bt(2−α))k

Γ((2−α)k)e
−ω0t

]
and b =

ω
(1−α)
0 β(α−1)π
sin((α−1)π) . It is interesting to note that G(t) =
d
dtE(2−α)(−bt(2−α)), where E(2−α)(−bt(2−α)) is the Mittag-
Leffler function of order (2− α) [20].

Proof: The proof is given in Appendix A.
In the following, we give the predictive formulas for the
asymptotic behavior of a hashtag-popularity. The nature of
asymptotic behavior is different in two cases: ε > 0 and ε = 0.
We describe them in two separate lemmas.

Lemma 2: The expected asymptotic retweet count for a
hashtag, where ε > 0 is given by,

lim
t→∞

E(N(t)) =

∫ ∞
0

E(λ(t))dt =
λ0

ε
.

ω0

ω0 − β(α−1)π
sin((α−1)π)

(10)

Proof: The proof is given in Appendix B.

Lemma 3: The trajectory of the expected asymptotic
retweet count for a hashtag, where ε = 0 is given by,

lim
t→T

E(N(t))→ λ0ω0T

ω0 − β(α−1)π
sin((α−1)π)

(11)

Proof: The proof is given in Appendix C.

C. Parameter Estimation:

Given a collection of messagesH(T ) = {(Ti, ti)} recorded
during a time period [0, T ), our goal is to find the optimal
parameters λ0 and β by solving a maximum likelihood estima-
tion (MLE) problem. We assign the decay parameters through

cross-validation. Given that the (i− 1)-th tweet has arrived at
time ti−1, the likelihood that the next tweet will come at time
ti can be expressed as follows:

p(ti|ti−1) = λ(ti)e
−

∫ ti
ti−1

λ(t)dt

Hence the likelihood of the observed message H(T ) is,

L(λ0, ε, β, ω0, ω) =
∏

i∈H(T )

p(ti|ti−1)

To this end, it is easy to show that the log-likelihood of the
messages is given by

log[L(λ0, ε, β, ω0, ω)] =
∑

ti∈H(T )

log(λ(ti))−
∫ T

0

λ(t)dt

= −λ0

ε
[1− e−εT ] +

∑
ti∈H(T )

∫ k

1

log[λk(t)]k−αdk

− β
∑

ti∈H(T )

∫ ∞
1

k

kω0 + ω
(1− e−ω0(T−ti)−ωk (T−ti))dk

(12)

Note that the MLE problem is concave and thus can be solved
efficiently.

IV. DATASETS

We implemented our proposal on hashtags associated with
a diverse set of real events. The events are selected in such
a way that they provide significant number of messages.
Moreover, we took care of the choice of events, so that:

1) These events occurred in different time period and
the duration of those events varies,

2) The associated hashtags have a variation in terms of
the number of tweet chains associated with them.

Therefore we focus on popular events from entertainment,
sports, e-commerce and disaster. We used Twitter search API
to collect all the tweets (corresponding to a 2-3 weeks period
around the event date) of the following events/topics, also
summarized in Table I.

• Oscars: 2016 Academy Award ceremony, from Feb
24 to Feb 29, 2016. It has 8 hashtags with 31
chains. Some important hashtags of this event are,
#leonardodicaprio, #bearstory.

• MTV-Awards: 2016 MTV Award Star program, col-
lected from April 3 to April 12, 2016. It contains 5
hashtags with 277 tweet-chains. Couple of popular
hashtags are, #mtvawardsstar, #blaonedirection .



• Nepal-Earthquake: Earthquake in Nepal, from April
25 to May 1, 2015. It contains 14 hashtags with 1182
chains. In this case, some hashtags like #kathman-
duquake, #nepalrelief are actually used to speed-up
counter-disaster managements.

• BBD: Bigbillionday sale of Flipkart India, from
October 6 to October 8, 2014. It has 8 hashtags with
733 chains. Couple of popular hashtags for this event
are, #aslidealsonebay, #bigbillionsale.

• Copa: Copa America Football tournament, from June
3 to June 26, 2016. It has 3 hashtags with 355 chains.
The hashtags for this event are, #copaamericaentd,
#aocopa.

• ICCWT20: ICC world cup T20, India, from March
8 to April 3, 2016. It has 12 hashtags with 10
chains. Couple of important hashtags are, #ICCWT20,
#T20WorldCup.

V. EXPERIMENTS

We compare STRM against several strong baselines which
are state-of-the-art algorithms in the existing literature (see
below). Apart from this, we also analyze the stability of our
proposal through a wide variation of training-set size. Fur-
thermore, to have a microscopic analysis of our approach, we
carried out various experiments that reveal important insights
about our model.

A. Baselines

We choose various types of baselines like RPP [4], simple
Hawkes process [8], SEISMIC [1], SpikeM [16]. We also
experimented with RSC [7] and NetRate [13], but because
of their severely poor performances, we only present a com-
parative analysis with the first four models. The baselines are
chosen in such a way, so that the performance of our model
can be compared with a diverse class of existing temporal
models. For example, RPP, Hawkes and SEISMIC represent
the self-exciting processes, whereas, SpikeM and RSC are
rather temporal pattern based approaches. These baselines have
been primarily proposed for single tweet popularity prediction.
We have extended them for hashtags by aggregating the
corresponding tweets. An alternate way would have been to
predict each individual tweet stream using the models and
then aggregate the prediction. However, the models perform
well only with popular tweets chains, but would make gross
error with large number of rare tweet-chain present in the
hashtag collection. An account of these paradigms is given in
Section II, we here, briefly state their predictive mechanism.

1) Reinforcement Poisson Process, RPP [4]: Once the
parameters are learned, the popularity can predicted as,

cd(t) = (m+ nd)e
λ∗
d(Fd(t;θd∗)−Fd(T ;θ∗d)) −m

where, m is the effective number of posts for all hashtags, nd is
the number of posts for a particular tweet received, λd(t) is an
intrinsic attractiveness of an item, Fd(t; θd) =

∫ t
0
fd(t; θd)dt

with fd(t; θd) being a general temporal relaxation function,
and id(t) is a reinforcement factor.

2) Hawkes Process [8]: To replicate this model, we use the
aggregate of tweets as input to this model. Given a Hawkes
process has the form,

λ(t) = µ+ α

∫ t

−∞
exp(−βt)dN(t)

. The prediction function can be written as

N(t) =
λ(tn)

α− β
(e(α−β)t − 1) +

βµ

α− β

[e(α−β)t − 1

α− β
− t
]

3) SEISMIC [1]: This model estimates the final size of
an information cascade given the posting timestamps and the
follower counts of users who are posting. It is a variant of
Hawkes process characterizing posts by their infectiousness
termed as a measure of re-share probability. The prediction
function is defined as

R̂∞(t) = Rt + αt
p̂t(Nt −Ne

t )

1− γtp̂tn∗
, 0 < αt, γt < 1 (13)

where pt is the infectiousness, Ne
t - effective cumulative

degree of re-sharers by time t, Nt - cumulative degree of re-
sharers by time t.

4) SpikeM [16]: This approach generalizes the empirical
observations of temporal behavior of popularity in social
media. SpikeM captures the behavior of the users as the
following equations

∆B(n+1) = p(n+1).(U(n)

n∑
t=nb

(∆B(t)+S(t)).f(n+1−t)+ε̂)

B(n) and U(n) refer to the number of affected and unaffected
users at time tn respectively. At any given time instant, the
model predicts the number of infected users indicating the
number of users who have tweeted on an event. The number of
attention received is estimated as the number of people affected
in this process.

B. Metrics

We use the following performance metrics for our proposal
and all the baselines.

1) Mean Absolute Percentage Error (MAPE): It is a com-
monly used measure of the mean deviation between the
observed and the predicted popularity for a hahstag up to time
t. It is defined by the formula

MAPE(H) =
1

MH

MH−1∑
i=0

∣∣∣∣∣N̂H(ti)−NH(ti)

NH(ti)

∣∣∣∣∣ .
Here N̂H(t) and NH(t) are the estimated and actual number
of retweets for a hashtag H respectively, at time t. For a given
dataset, we report MAPE as the average of all MAPE(H) over
the hashtags H of that dataset.
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Fig. 2: Variation of popularity forecasting performance with time using a 20% held-out set for each real-world dataset. Time-scales
are given minutes except Nepal-Earthquake dataset which is given in hours. Performance is measured in terms of Mean Absolute
Percentage Error (MAPE) of the total retweet count.

2) Accuracy: This is a measure that the fraction of retweet
count correctly predicted for a hashtag given error tolerance
ε1. Formally,

Accuracy(H) =
1

MH

MH−1∑
i=0

1
[ ∣∣∣∣∣N̂H(ti)−NH(ti)

NH(ti)

∣∣∣∣∣ < ε1].

Here 1(.) is the indicator function. Like MAPE, we report
accuracy as the average of all accuracy(H) over the hashtags
H of that dataset.

TABLE II: MAPE (%) of proposed and baseline algorithms
on all datasets with 80% training-set.

Datasets STRM RPP Hawkes SEISMIC SpikeM
Oscars 10.25 18.30 10.80 17.34 27.22

MTV-Awards 2.69 11.17 9.74 31.32 22.40
Nepal-earthquake 4.91 11.58 6.13 13.89 35.27

BBD 5.06 16.72 5.34 29.12 5.16
Copa 4.68 8.58 7.34 24.11 20.34

ICCTw20 5.05 8.61 9.63 32.01 14.73

C. Performance Comparison - MAPE

As we mentioned earlier, we compared our method with
four baselines. Table II dissects a comparative sketch in terms
of MAPE with 80% training-set size. We observe that for all
datasets, STRM gains substantial MAPE against all baselines.
Also in terms of accuracy, our algorithm gives much better
results for most of the datasets.
The performance of SEISMIC is consistently poor. SEISMIC
assumes that the spreading rate of a tweet is proportional
to the out-degree of the node which it is being exposed to.
As a result, whenever a high-degree user views a tweet,
SEISMIC assigns it a high probability of getting popularized.
However, this may not be true in practice. For example, a
inconsequential message may not be further retweeted even
if it is introduced by a very influential node. Therefore,
SEISMIC fails to properly model the dynamics of rare tweets.
As a result, it cannot accurately predict the popularity of
hashtags that usually contain a large number of rare tweets.
The poor performance of SEISMIC can also be attributed
to its limited predictive mechanism;- it can only provide an
estimate of asymptotic popularity. That’s why when tested on
a small held-out temporal data, the model fares quite poorly.
Apart from these, the nature of αt (Eq. (13)) also makes
the model weak in terms of predictive performance. The
choice of αt relies on the assumption that the posts get stale
and outdated as time passes. This assumption immediately
rules out the bursty nature of the data;-which is an important
characteristics of any message-streams of social media.

The performance of SpikeM is better than SEISMIC for
most of the datasets. This is due to the fact that SpikeM
does not use user-specific information. Consequently, it is
less over-fitting than SEISMIC. But this model does not
perform well w.r.t. the other baselines e.g. Hawkes or RPP.
This is because, this model emphasizes on modeling realistic
patterns from the temporal data (e.g. periodicity). However,
the temporal pattern in training-set may not (usually does not)
match with that in the test-set. Such a non-invariance nature
of temporal datasets often restricts the model from foreseeing
the long-term nature in the hashtag-dynamics. For example,
this model cannot capture a situation when a unpopular
hashtag becomes popular later on. In fact, a more careful
scrutiny reveals that spikeM is useful only for short-term
forecasting [16, Section 7]. Apart from that, its predictive
power is further limited since it can capture only the tail-part
of the trajectory of posts [16, Section 4.4]. Indeed, the model
emphasizes to capture a set of temporal patterns, forecasting
ability is not its primary objective.
The performance of RPP is relatively better than SEISMIC
and SpikeM. It does not function based on a fixed set of
patterns from the temporal data. Unlike SEISMIC, it does
not over-emphasize the role of individual user information.
Instead, they attempt to capture a more fundamental property
of the data, the self exciting nature which is often one of
the major characteristics of the tweet-streams. In fact, it also
takes into account the individual tweet-attractiveness, a key
factor, however, often ignored by the other models. Moreover,
it attempts to capture the aging of the posts too. Despite
these strengths, RPP has several drawbacks that makes it
a weaker model than STRM and Hawkes. First, it treats
hashtag as homogeneous aggregates of tweets. As a result,
it fails to capture the effect of the inherent popularity of the
hahstag and the way it impacts the popularity of constituent
tweets. Apart from this, the non-convexity of the learning
problem is another crucial problem of RPP. This makes the
actual parameters difficult to estimate and consequently the
parameters are often unidentifiable.
The performance of Hawkes process is better than RPP; it
is the second best proposal among all we have experimented
with. There are mainly two distinctive features that help
Hawkes to obtain a significant performance-boost w.r.t. RPP.
First, Hawkes process takes into account the temporal effect
of each and every post rather than their simple collective
effect. This often helps Hawkes to capture better the bursty
nature present in the datasets. Apart from that, underlying the
learning problem is convex for this approach. As a result, one
can accurately estimate the parameters, making it a robustly
identifiable learning model. However, like all the existing
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Fig. 3: Effect of training set size on the MAPE

models, it fails to capture the real hashtag dynamics as it
ignores the cross-tweet dependence.
On the other side, STRM properly models the cross-talk
between tweets to accurately record the effect of inherent
attractiveness of the hashtags. It also captures the self-exciting
phenomenon of the tweet-streams like Hawkes and RPP.
Moreover, our model is convex and parsimonious. These
factors, together, help our model to achieve significant
improvement for almost all datasets.

D. Forecasting Capability

In order to have a better understanding of the performance
of all the models, we further probed into regular time-stamps
in the 20% held-out set and computed MAPE for each sample
point. Figure 2 shows the change of predictive-performance
of popularity with time (MAPE of sample points aggregated
over time). We observe the forecasting performance of STRM
is better than the other methods. However, as time elapses,
the performance of all the approaches degrades. It is because,
as time increases, the task of predicting popularity becomes
more and more difficult, as one misses the possible important
signals that appears in-between. However, the degradation-rate
is relatively lower in RPP, Hawkes and STRM because unlike
the other proposals, they can accurately compute the expected
future-events. Moreover, the consideration of heterogeneous
cross-tweet dependencies further boosts the performance of
STRM.

E. Stability to sampling

Figure 3 shows the variation of MAPE with training-
set size. We observe that almost all the algorithms show
improvement in performance with increase in training-set size.
It can be observed that the performance of STRM quickly
improves as the training-set size increases, whereas, the rate
of decrease of MAPE is relatively low for all competitors. In
fact the performance variation of SEISMIC is almost steady
throughout the variation of training-set size. Since SEISMIC
can only compute the asymptotic popularity, it cannot accu-
rately compute the popularity of any hashtag in any finite-time.

F. Variation of performance with length of tweet-chains

Figure 4 shows that the performance of STRM is best
across hashtags whether we sort them with respect to
the largest or average number of tweet-chain it contains.
We observe, as the length of the largest chain increases
(Figure 4(a)), the performance of all the baselines (except
Hawkes) degrades. Perhaps surprisingly, RPP fares poorly for
popular hashtags. A careful scrutiny reveals that, in case of

RPP, the rate of post is directly proportional to the number of
previous posts, but not the time of each post. As a result, as
time goes, RPP has a tendency of over-estimating the count
of popular-tweets. Although, RPP models the aging effect, for
highly popular posts, the effect cannot offset the error which
gradually enters into the system over time. However, it is
overcome by STRM and Hawkes, since both of them assign
an aging factor to each post. The cross-tweet reinforcement
factor gives our proposal a further boost, which results in its
better performance than Hawkes.
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G. Variation of performance with change of λ of training and
testing

In real-life temporal data, the distribution of tweet-posts
are bursty and full of irregularities. The learning models are
usually favored by two similar distributions in training and
test set. However, as we said, such assumption is not valid
in a real-life temporal dataset. As a result, a predictive model
should be enough robust to capture the irregularities of the
datasets. Figure 5A depicts the variation of performance with
the difference (δ) in post-rates in training and test set. We
observe that the performance of SpikeM is very poor. It is
because, SpikeM attempts to learn from a set of fixed patterns
of the training-set. However, this set of patterns may not be
present in the test-set in most cases. Our model not only
performs better across a wide variation of δ, but also it
is consistently steady which indicates that STRM picks up
important signals from the training data.

TABLE III: Accuracy (%) of proposed and baseline algorithms
on all datasets with 80% training-set.

Datasets STRM RPP Hawkes Seismic SpikeM
Oscars 80 63 80 59 78

MTV-Awards 95 92 65 40 84
Nepal-earthquake 99 80 94 55 70

BBD 94 53 99 60 83
Copa 94 74 84 40 49

ICCTw20 88 84 70 35 70
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H. Performance comparison in terms of Accuracy

We have also reported accuracy by taking the error
tolerance (ε1) as 0.15 across all the baselines in Table III.
For five out of six datasets, STRM performs best among all
competitors. We also observe that with respect to this metric
(unlike MAPE) RPP gives Hawkes a very fair competition
and as a result, in MTV-Awards and ICCTw20 datasets,
it performs much better than Hawkes. This means for a
reasonable number of hashtags, RPP is being able to predict
their popularities within a tolerable limit. However, for
cases when RPP fails to accurately predict, it gives very
poor predictions and as a result, the performance of RPP is
consistently poor w.r.t Hawkes if the performance is measured
in terms of MAPE. We further vary the value of ε1 and find
that the trend of performance of various methods remains
roughly similar across all dataset. For reference the result for
dataset ICCTw20 is reported as Figure 5B.

I. Prediction performance in popular tweet-chains

In this subsection, we turn our attention from hashtag
and try to predict the count of most popular tweets within
a hashtag. As we know STRM does not explicitly compute
the popularity of a tweet-chain but derives the spread (de-
noted by N(t)) of the underlying hashtag. From N(t) one
can approximately find the popularity of a tweet-chain C as
NC(t) = pC · N(t). Here pC is the fraction of tweets of the
tweet-chain (C) present in the training-set. The parameters of
both Hawkes and RPP are assigned following two different
protocols: (i). assigning same set of parameters to all tweet-
chains within a hashtag. and (ii). assigning different parameter-
sets to each individual chain.

Table IV provides a comparative performance analysis of
top-5 tweet-chains in terms of popularity across all datasets.
Since, the existing approaches cannot work on rare tweets
due to insufficient training points, this analysis is limited to
only popular tweets. report the average MAPE over top 5
popular tweet-chains from all hashtags in the dataset. We find
that although the primary objective of STRM is to compute
the popularity of hashtag, it performs significantly well even
in predicting the popularity of individual-tweet-chain. In this
context, Table IV shows that the method, wherein parame-
ters corresponding to each tweet-chain are learned, generally
performs the worse. Its performance is particularly poor in
case of BBD and Nepal-earthquake datasets. It is because,
for both these datasets, the users mainly relied on Twitter
for getting news updates. As a result, many tweet-posts in
these two datasets triggered various diverse kind of reaction
tweets. Thus, simply assigning many parameters to individual

TABLE IV: Performance of top-5 popular tweet-chains across
all the datasets

Learning parameters
from hashtag

Learning parameters
from individual chain

Datasets STRM Hawkes RPP Hawkes RPP
BBD 0.158 0.491 1.212 2.231 1.795

Oscars 0.102 0.630 0.110 0.123 0.282
Nepal-earthquake 0.369 0.234 0.086 1.207 0.099

MTV-Awards 0.142 0.293 5.194 0.105 4.414

tweet-chains without considering the entire eco-system, leads
to over-fitting of such models. STRM accurately models this
inter-tweet interactions and therefore performs better in most
of the cases. However, for Nepal earthquake, STRM fails to
beat Hawkes for top 5 popular tweet-chains. It is because,
this particular event was more topic-centric and we believe, a
more generalized version of STRM needs to be derived that
will consider cross-tweet dependencies from different hashtags
of the same topic.

VI. CONCLUSION

In this paper, we develop, STRM, a novel point-process
driven framework, which takes into account the cross-tweet
reinforcement process for modeling hashtag dynamics. This
model unifies the self-exciting nature of the individual tweets
and crosstalk between sister-tweets in a principled way. Such
a unified approach does not only accurately predict a hashtag
popularity for which it is designed, but also gives a good
measure of the popularity of individual tweets. Through rigor-
ous experimentation, we validate the utility of our approach
against six state-of-the-art algorithms. We also provide a
detailed explanation behind this improvement. We observe that
STRM performs well across a wide range of training-set size,
indicating the stability of our proposal. As a future work,
one may extend this work to model the building process of
a story in various social media. It would help to understand
the dynamics of trending topics in Twitter, the metamorphosis
of articles in various forums, wikipedia etc.

APPENDIX

A. Proof of Theorem 1

Proof: From Eq. (6), we have

λ̃(t) = λ0e
−εt + cβ

∫ ∞
1

∫ t

0

e−(ω0+ω
k )(t−θ)k−αdN(θ)dk

(14)

Changing the order of the integration of the second part

λ̃(t) =

∫ ∞
1

ck−αλ0e
−εtdk

+ cβ

∫ t

0

∫ ∞
1

e−(ω0+ω
k )(t−θ)k−α.dkdN(θ) (15)

Integration with respect to k of the second term is given
by,∫ ∞

1

e−(ω0+ω
k )(t−θ)k−αdk ≈ e−ω0(t−θ)

∫ ∞
0

e−
ω
k (t−θ)k−αdk

= e−ω0(t−θ)(ω(t− θ))1−αΓ(α− 1)



Hence Eq. (15) becomes,

λ̃(t) = λ0e
−εt + a

∫ t

0

e−ω0(t−θ)(ω(t− θ))1−αdN(θ) (16)

where a = cβΓ(α− 1) = βΓ(α).
Now since, E(dN(θ)|H(θ),k(θ)) = λ(θ)dθ, we have, from
Eq. (16)

EH(t)(λ̃(t)) = λ0e
−εt

+ a

∫ t

0

e−ω0(t−θ)(ω(t− θ))1−αEH(θ)(λ̃(θ))dθ (17)

Taking Laplace transform (LT) with Laplace variable s, we get

Λ(s) =
λ0

s+ ε
+
aω1−αΓ(2− α)

(s+ ω0)2−α Λ(s) (18)

where Λ(s) is the LT of EH(t)(λ̃(t)). From eq. (18), we have,

Λ(s) =
λ0

s+ ε

(s+ ω0)2−α

(s+ ω0)2−α − b
(19)

where b = (aω1−αΓ(2 − α)) =
ω1−α

0 β(α−1)π
sin((α−1)π) (using the

relation between gamma and sine functions).

which gives, λ̃(t) = λ0e
−εt + λ0

[ ∞∑
k=0

(bt(2−α))k

Γ((2− α)k)
e−ω0t

]
? e−εt

It directly concludes Eq. (9)

B. Proof of Lemma 2

Proof: Equation (18) directly gives limt→∞ E(N(t)) =∫∞
0

E(λ(t))dt=lims→0 s
(

Λ(s)
s

)
= λ0

ε .
ω0

ω0− β(α−1)π
sin((α−1)π)

C. Proof of Lemma 3

Proof: Equation (18) gives limt→∞ E(N(t)) =∫∞
0

E(λ(t))dt=lims→0 s
(

Λ(s)
s

)
= lims→0

λ0

s .
ω0

ω0− β(α−1)π
sin((α−1)π)

which, from Tauberian theorem [21], gives λ0ω0T

ω0− β(α−1)π
sin((α−1)π)
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