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Abstract—Online Social Networks (OSNs) have emerged as
a global media for forming and shaping opinions on a broad
spectrum of topics like politics, e-commerce, sports, etc. So,
research on understanding and predicting opinion dynamics
in OSNs, especially using a tractable linear model, has abound
in literature. However, these linear models are too simple
to uncover the actual complex dynamics of opinion flow in
social networks. In this paper, we propose SLANT+, a novel
nonlinear generative model for opinion dynamics, by extending
our earlier linear opinion model SLANT [7]. To design this
model, we rely on a network-guided recurrent neural network
architecture which learns a proper temporal representation of
the messages as well as the underlying network. Furthermore,
we probe various signals from the real life datasets and offer
a conceptually interpretable nonlinear function that not only
provides concrete clues of the opinion exchange process, but
also captures the coupled dynamics of message timings and
opinion flow. As a result, with five real-life datasets crawled
from Twitter, our proposal gives significant accuracy boost over
six state-of-the-art baselines.

I. INTRODUCTION

The social media and social networking sites often play a
vital role in forming and shaping the users’ opinion. In fact,
in recent days, various agencies routinely use social media
to probe people’s opinion on the issues of interest. Hence,
uncovering the dynamics of opinion flow over a network has
garnered a lot of interest in recent years [3, 4, 7].
Limitations of Prior Work: Research on opinion dynamics
predominantly follows two kinds of models. (i) statistical
physics based models and (ii) data-driven models. The
first type of models [1, 2, 8, 11, 20] is traditionally de-
signed to capture several regulatory real-life phenomena;
e.g. consensus, polarization, etc. However, these models are
barely data-driven and therefore their parameters are difficult
to learn from fine-grained real data. The second class of
models [3, 4, 7] which are surprisingly few, attempts to
overcome these limitations by learning a tractable linear
model from transient opinion dynamics. Most of these
approaches [3, 4] do not consider forecasting opinion at
an arbitrary future time-stamp for evaluating the utility of
their models. Rather, they focus on nowcasting, i.e. they
attempt to predict opinion at the very next time-stamp. Only,
a recent approach, SLANT [7] that incorporates the complex
stochastic dynamics of the messages, can accurately forecast
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opinions even at a distant future.
However, all these existing approaches have looked into the
opinion dynamics phenomenon through the tinted glass of
two restrictive assumptions: (i) linearity of influence between
past events and (ii) independent or decoupled dynamics
of message timings and opinion flow. Opinion dynamics
which is a complex psychological and sociological process
is expected to be nonlinear in general. Therefore, while
linearity is a useful notion for the model to be explainable
and tractable, in reality such an imposition hinders the
detection of any possible presence of nonlinearities in data,
thereby ignoring the inherent complexity. Although, recently
some efforts [9, 17, 19] considered nonlinear modeling of
point processes in different contexts, these solutions are far
from satisfactory – they don’t consider the presence of the
underlying network and so cannot be extended in case of
opinion dynamics in general. Hence, their proposals cannot
be easily extended in the context of opinion dynamics, a
scenario largely propelled by the interactions between users
of a social network.
Present Work and Roadmap: In this paper, we develop
SLANT+, a point process based framework that captures
the nonlinear dynamics of opinion propagation. At an out-
set, this approach extends our previously proposed model
SLANT [7] to a nonlinear joint generative model of users’
opinions and message-timings as a temporal point process
that allows each user’s hidden opinion (message-rate) to
be modulated over time by the opinions (message-timings)
of her neighbors. When a user expresses her opinion, her
neighbors’ current opinions are updated– such updates are
driven by nonlinear interactions. To capture the nonlinear-
ities, SLANT+ views the intensity function as a nonlinear
function of previous opinions and time-stamps. In addition,
the event history is embedded into temporal function which
can be used for predicting the next message-time and opin-
ion. In contrast to the traditional approaches that consider
the intensity functions having fixed parametric forms, our
proposal does not assume any restrictive form, rather it aims
to learn the form of nonlinearity to uncover the underlying
complexity of the process.
In this paper, we design a network-guided recurrent neu-
ral network (RNN) architecture to understand and model
the nonlinear networked-opinion dynamics. Such a neural
architecture is a network of RNN cells, where each RNN



cell captures the opinion and message dynamics of corre-
sponding user and the connection between two RNN cells
conforms the edge between corresponding users. Each RNN
cell receives input from the current events of the neighbors
as well as from the hidden units, process them to recursively
construct the states (history embeddings) for the next-time
step and finally generates the distribution of the next event.
In a pivotal departure from prior work, our proposal also
attempts to design the nonlinear form in a principled and
interpretable way. To do so, we further scrutinize the crawled
datasets and surprisingly observe that the extent of disagree-
ment between two users has a strong effect on both message
and opinion dynamics. Such a disagreement factor helps our
model to capture the coupled dynamics between message
and opinion and hence it intuitively articulates the reality
very well, without drastically changing the model-setting.
On the five datasets collected from Twitter, our proposal
offers substantial accuracy gains, enabling the model to
forecast opinions even at a distant time-stamp.

II. PROBLEM FORMULATION & TEMPORAL POINT
PROCESS

We define the problem more formally, the solution of the
problem is based upon temporal point process which we
outline next.
A. Problem Definition

Setting: Given a directed social network G = (V, E), we
denote N (u) as the set of users followed by a user u and
each post e as e := (t,m, u), where the triplet means that
the user u ∈ V posted a message with sentiment m at time
t. We denote Hu(t) = {ei = (ti,mi, ui)|ui = u and ti < t}
as a collection of all messages posted by user u until time t
and H(t) := ∪u∈VHu(t) as the entire history of messages
posted by any user upto and excluding time t.
Given a set of messages H(T ) = {ei = (ti,mi, ui)}ni=1

collected in time (0, T ], we wish to build a suitable math-
ematical model for opinion dynamics which should be able
to predict the value of the opinion posted at T + ∆t time
for a given ∆t > 0.

B. Temporal Point Process

Modeling and mining activities in social media have been
addressed from various perspectives [21, 15, 16]. In this
paper, we represent the timestamps of users’ activities or
messages by a set of counting processes. In particular, we
denote the set of counting processes as a vector N(t), in
which the u-th entry, Nu(t) ∈ {0}∪Z+, counts the number
of messages user u posted until time t. Then, we characterize
the counting process using the conditional intensity function
λ∗u(t) for user u, which is the conditional probability that u
posts a message in an infinitesimal window [t, t+ dt) given
the history H(t), i.e.,

λ∗u(t) dt = P {event in [t, t+ dt) |H(t)} = E[dNu(t) |H(t)],

where dNu(t) := Nu(t + dt) − Nu(t) ∈ {0, 1}, the sign ∗

means that the intensity may depend on the history H(t),
and the functional form of the intensity is often designed to
capture the phenomena of interest [7, 12, 13, 10].

C. SLANT–A point process driven opinion model [7]

SLANT offers a semi-coupled generative dynamics of mes-
sage opinion and intensity.
Stochastic process for opinion: The opinion x∗u(t) of a user
u at time t is affected by the sentiments of posts posted by
her neighbours as:

x∗u(t) = αu +
∑

v∈N(u)

avu
∑

ei∈Hv(t)

miκ(t− ti) (1)

where the first term, αu ∈ R, models the original opinion
a user u starts with, the second term, with avu ∈ R,
models updates in user u’s opinion due to informational in-
fluence from her neighbors. Here, κ(t) denotes a nonnegative
triggering kernel which models the decay of informational
influence over time.
Stochastic process for intensity: Slant models the message
intensities using Multivariate Hawkes processes that captures
a mutual excitation phenomena between message events and
depends on the whole history of message events H(t) before
t. Here, the intensity λ∗u(t) is governed by,

λ∗u(t) = µu +
∑

v∈u∪N(u)

bvu
∑

ei∈Hv(t)

ζ(t− ti) (2)

where the first term, µu ≥ 0, models the publication of
messages by user u on her own initiative, and the second
term, with bvu ≥ 0, models the temporal influence of the
other posts. Here, similar to κ(t), ζ(t) is a nonnegative
triggering kernel modeling the decay of temporal influence
over time.

D. Limitations of the parameterized representation

In the aforesaid specifications of point processes, the form
of intensity functions is already assumed (Eqs. (2), (1)).
Somehow, such forms encode our prior knowledge about
the latent variables of the model. However, the reality in
general may or may not conform with prior intuitions.
Therefore such fixed parameterizations often constrain the
demonstrative power of the model. Therefore, in practice,
to get a best predictive performance, one needs to try with
various forms of intensity functions and as a result, most
often we end up with an inaccurate model suffering certain
errors due to model misspecification.
In the context of opinion propagation process, traditionally
the message dynamics and opinion dynamics are assumed to
be decoupled. However, in practice, the difference in opin-
ions strongly influence the message propagation process.
E.g. an open minded user may prefer an intense exchange
of dialogues with her neighbors disagreeing with her. On
the other hand, other users may prefer to stay apart if they



substantially differ in opinions. Therefore, opinion dynamics
influences the message flow in a social network in general.
Recurrent marked temporal process: In order to overcome
the limitations of the parametric models of intensity func-
tion, Du et al. [9] has proposed Recurrent Marked Temporal
Point Process (RMTPP) to simultaneously model the event
timings and the markers. However, their method aims to
capture the nonlinear dependencies in case of univariate
temporal point process and hence cannot be modified to
reproduce the dynamics of a multivariate Hawkes process
via an easy extension. In addition, their method does not
offer modeling of continuous time opinion dynamics, which
is crucial in our work.

III. OUR APPROACH

Given a directed social network G = (V, E), the history
H(t) := ∪u∈VHu(t) of the messages, the intensity of
messages λ∗(t) := (λ∗u(t))u∈V and the opinion x(t) :=
(x∗u(t))u∈V , the joint nonlinear dynamics of opinion and the
message intensity follow as,

λ∗u(t) = fu(∪v∈N (u)Hv(t)), x∗u(t) = gu(∪v∈N (u)Hv(t))
More specifically, if H(t) := {tj ,mj , uj}j=ij=1

λ∗u(ti+1) = fu(∪v∈N (u)Hv(t+i )),

x∗u(ti+1) = gu(∪v∈N (u)Hv(t+i )) (3)

where f(.) = (fu(.))u∈V and g(.) = (gu(.))u∈V are
arbitrary nonlinear functions in contrary to the restrictive
form given in Eqs. (1) and (2). In this section, we aim to
estimate these nonlinear functions f(.), g(.) with reasonable
approximation exploiting the sophisticated state-of-the-art
techniques of deep recurrent neural network.

A. An RNN driven approach

Theoretically, a finite-sized recurrent neural network with
sigmoidal activation units can approximate a universal Tur-
ing machine [14] which is why it is considered to be a
powerful tool for modeling a broad spectrum of applica-
tions (See [9] and the citations therein). At a high level,
any RNN is a feedforward neural network structure with
some auxiliary edges. These extra edges, referred to as the
recurrent edges, connect the output signals of the hidden
units at the current time into the network as the future
inputs at the next time step. This type of neural structure
can also be equivalently represented as a connected series
of simple neural blocks, replicated at each time step to form
an infinite cascade. It has been observed [9] that due to the
presence of such recursive structure along with its inbuilt
memory mechanism, RNN allows an efficient modeling of
mutually exciting temporal processes in an accurate and
tractable way. The memory factor quantifies the amount of
loss of information the process allows from a past event.
While such memory is often captured (in linear models) by
an exponential kernel, in practice, the influence of memory

can be more complicated. RNN uses the signals from the
hidden units in the last time-step to generate a feedback
mechanism that again creates an additional internal state in
the network to memorize the effect of each past data sample.

We propose a network-guided recurrent neural network
architecture (Figure 1) in order to model the nonlinear de-
pendencies between past events with memory. We assign one
RNN (RNNu) per each user u (see panel (b) in Figure 1),
and RNNu takes events ∪v∈N (u)ev as input and outputs
the message intensity of the next candidate event posted
by u along with the distribution of updated opinion mu.
Specifically, as shown in the panel (c) of Figure 1, an event
(ti,mi, v) posted at time ti by node v, goes as an input to
RNNu corresponding to each of her followees v, that in turn
generates the distributions of the timings and the opinions
of the potential next event (ti+1,mi+1, u) posted by u. The
hidden states of each RNNu capture the history Hu(t) via
the embeddings hi(u) recursively computed from hi−1(u)
using the events from her followees as input. Due to the
recursive structure, such embeddings also encapsulate the
memory of influence from the past timings and opinions.
The recurrent neural network in each node offers a varying
number of layers for different individual. As a consequence,
such a network-guided recurrent neural network architecture
gives an enormous advantage over the fixed parametric
representations, by capturing any nonlinear dependencies
between past events. As a result our proposed formulation
can encapsulate a general form of representation of the
intensity function.
While an intricate nonlinear modeling is often a key to
uncover the complexity of an opinion propagation process,
a conceptual and interpretable design of the nonlinear form
is also crucial to a complete understanding of the inherent
dynamics. To do that, we tap various signals from the dataset
and find that the disagreement between the users play a
strong role on message and opinion dynamics. More in
detail, we find that the users with little or no disagreement
trigger higher post-rate (dialogue in the neighborhood) than
the conflicting ones, while opinion change occurs when
there is a certain amount of disagreement between users – a
simple, intuitive yet crucial factor that was left un-addressed
in the literature. We encode this additional feature into a
suitable functional form (Eq. (4)) that in turn is plugged
into the nonlinearity to be learned. Such an apriori notion
often helps to accurately learn the process from limited and
missing data.

B. SLANT+

Now, we describe the implementation of SLANT+.
Input layer: On the arrival of event ei, the input layer
in RNNu converts the message-sentiments mi into yiu =
Auui

mi + αu. Here Auui
is a vector indicating influence

between user u and ui and αu gives the biases.Auui usually
depends on the attributes of nodes u and ui [6, 5]. Simi-
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Figure 1: The neural network architecture of SLANT+. Panel (b) shows the high level representation of the network-guided
RNN formation corresponding to the sample network in panel (a). In this network-guided architecture, the output from
RNNx goes as input to RNNy if y follows x. Panel (c) shows the architecture for RNNu.

larly, the message-timings undergo a similar transformation
θiu = Buui

ti + µu. In contrast to the existing works that
assume influence to be a scalar, here we model the inter-
user influence as a vector capturing influence in various
dimensions.
In a notable addition, the input layer makes an additional
nonlinear transformation (zuv) on the message sentiments
which capture the effect of disagreement between users.
As mentioned previously, the consensual users would more
likely to interact with each other in contrast to the con-
flicting ones. On the other hand, users with certain level of
disagreement can mutually influence each other to change
their opinion. To model these traits, we design zuv(t) as,

zuv(ti) = (wzuv
1 σ(w(1)

uv .|∆muv|) + wzuv
2 σ(w(2)

uv .|∆muv|))+
(4)

Here σ(x) = 1/(1 + exp(−x)) is the usual sigmoid
function. However, parameters of this curve in general are
different across users, since some users may be open to
discussion with the users with different opinions and others
may not be. For example, if wzuv

1 .wzuv
2 > 0, then u is

open to discussion (and perhaps change opinion) even with
an intensely conflicting user v. If wzuv

1 .wzuv
2 < 0, the

disagreement function is simply a bell shaped curve. That
said, a reasonable amount disagreement between two users
would intensify their conversions in which they may like to
resolve their conflicts. However if either of the weights is
zero, it indicates that the users with similar opinion prefer
to carry on the conversions.
Hidden Layer: The purpose of the layer is to appropriately
embed the history. In order to do that, RNNu, the RNN
cell corresponding to the node u, updates hi(u) recursively
using hi−1(u) and the signals of current events from appro-
priate nodes. In this paper, the generative dynamics of the
embedding function hi(u) is governed by the following.

hi+1(u) = σ(whuhi(u)+wθ
u.θ

i
u+wy

u.y
i
u+wzu

∑
v

zuv) (5)

Output Layer: The nonlinear embeddings hi(u) thus
obtained are fed as inputs in the output layer and converted

into the intensities and opinions. The intensity λ∗u is,

λ∗u(t) = exp(ωhuhi+1 + ωtu(t− ti) + bt) (6)

Here, the term ωhuhi+1 indicates the past influence of the
events and ωtu(t− ti) indicates the current influences.
The opinion is generated as follows:

x∗u(t) = tanh(νhuhi+1 + νtu(t− ti) + kt) (7)

C. Parameter Estimation

Given a collection of messages H(T ) recorded during a
time period [0, T ) we find the optimal parameters of the
RNNs by maximizing the following likelihood

L =
∑

ei∈H(T )

[
(xui(ti)−mi)

2

σ2
+ log λ∗ui

(ti)

]
−
∑
u∈V

∫ T

0

λ∗u(τ)dτ

To train the model, we exploit the Back Propagation Through
Time (BPTT) approach [18] that we implement in Tensor-
Flow 1 with a few lines of code.

IV. EXPERIMENTS

In this section we provide the details of the experiments
beginning with a brief description of the datasets, the metrics
used, the evaluation protocol, and finally give a comparative
sketch of the performances of various models on various
datasets.

A. Datasets & Baselines

We used the five real datasets to validate our proposal.
Among these datasets, the first four datasets are collected
from [7]. For the new one (Series), we followed the similar
way adopted in our previous work [7], on the tweets related
to the discussion of Season 6 of The Game of Thrones, from
April 8 to 15, 2015. We compare our results with several
state-of-the-art baseline models for example, DeGroot [8],
Voter Model [20], Biased Voter Model [3], Asynchronous
Linear Model [4], and SLANT [7].

1https://www.tensorflow.org/



Mean Squared Error
Dataset SLANT+ SLANT BVoter Voter AsLM DeGroot Flocking
Movie 0.007 (90.79) 0.076 0.755 0.822 1.367 0.499 0.69
Politics 0.038 (82.16) 0.213 0.771 0.670 1.023 0.875 0.76
Fight 0.045 (79.82) 0.223 1.351 1.477 1.514 0.963 1.31
Bollywood 0.049 (88.71) 0.434 2.015 2.132 3.579 1.724 1.94
Series 0.049 (32.88) 0.073 0.287 0.536 0.796 0.533 0.49

Failure Rate
Movie 0.00 (–) 0.0 0.0 0.0 0.0 0.0 0.0
Politics 0.03 (80.0) 0.15 0.51 0.51 0.51 0.46 0.58
Fight 0.06 (53.85) 0.13 0.59 0.59 0.54 0.43 0.54
Bollywood 0.01 (93.33) 0.15 0.43 0.44 0.50 0.42 0.43
Series 0.01 (66.67) 0.03 0.31 0.41 0.33 0.47 0.48

Table I: Opinion forecasting performance with forecasting at 6 hrs., using a 10% held-out set for each dataset. The first half
of the table dissects forecasting error in terms of MSE and the second half shows FR. In each cell, The cells with light
orange (blue) color indicates the best (second best) predictor. Numbers in the bracket denote percentage improvement over
the nearest baseline. Numbers in the italics indicate the best performer among the six state-of-the-art baselines.

Dataset |V| |E| |H(T )| E[m] std[m]

Politics 548 5271 20026 0.0169 0.1780
Movie 567 4886 14016 0.5969 0.1358
Fight 848 10118 21526 -0.0123 0.2577
Bollywood 1031 34952 46845 0.5101 0.2310
Series 947 10253 20026 -0.0216 0.3177

Table II: Real datasets statistics

B. Metrics

We report the utility of our proposal by the following
metrics. Suppose that, given at any time ti, the expressed
sentiment of a user u is mu and our proposal forecasts the
corresponding opinion to be xiu, then we define the following
measures of the errors:
Mean Square Error (MSE): MSE at the time ti is defined
as follows,

MSE =
1

|V|
∑
u∈V

(xiu −mu)2 (8)

Failure Rate (FR): Failure rate indicates how accurately we
can detect the polarity of users at future. It is defined as,

Failure Rate =
1

|V|
∑
u∈V

1(sign(xiu) 6= sign(mu)) (9)

C. Evaluation protocol

Given a stream of message H, we first split it into training
and test set where training set comprises of the first 90%
of the total number of messages (|H|). These messages are
used to train our model for estimating the parameters. The
estimated model is thereafter used to predict the opinions of
the messages in the test set. For the discrete-time baselines,
we simulate NT times in (t− T, t), where NT is the no. of
posts in time T .

D. Comparison with Baselines

Table I dissects a comparative analysis of the prediction-
error (MSE and Failure Rate) of six state-of-the-art algo-
rithms along with three additional variations of our algo-

rithms. The top-half of the table reports the Mean Squared
Error (actual opinion prediction error) while the rest reports
the Failure Rate (polarity prediction error). We observe that
for all the datasets, the overall performance of our proposal
is substantially better than all the baselines. Among the
baselines, we find that SLANT performs best. However, the
variants of SLANT+ show a significant performance boost
w.r.t. SLANT (upto 92%) which conforms the utility of our
proposal.
Linear models: We observe that the forecasting perfor-
mance of AsLM and DeGroot are substantially poor. During
the forecasting phase, these models were iterated multiple
rounds to compute the predicted opinion. However, since
they are discrete-step Markov linear models, their training
only permits a reasonably good prediction at the very
next-step. As a result, the predictive performance degrades
appallingly despite its modest performance in nowcasting.
Voter and Biased Voter Model: Voter model allows
a user to update her opinion randomly from one of her
neighbors. As a result it cannot sense the signals from
the actual dynamics. Moreover, such an update strategy
restricts the set of opinions in a network invariant throughout
the opinion exchange process. This inherent property of
voter model constrains the opinion-values to remain in a
smaller space, as opposed to the spirit of continuous opinion-
model. This assists the model to perform better than AsLM
but worse than DeGroot. Biased Voter Model attempts to
overcome these by introducing node weights but succeeds
only partially.
Flocking model: It is interesting that MSE for flocking is
substantially lower than other baselines in most cases. Recall
that this model updates the opinion of a node by averaging
those of her neighbours, that are very close to her. Such
a selective averaging strategy makes it functionally similar
with the DeGroot model. As a result the performance of this
model is better than AsLM as well as Voter model and its
variants.



SLANT: We observe that SLANT performs better than all
other baselines. Since SLANT takes the message dynamics
into consideration, which was left unaddressed by its older
counterparts, it can properly leverage the effect of message
dynamics on opinion exchange and as a consequence, it can
properly anticipate the dynamics of conversation in future.
While the earlier approaches rely on discrete-time modeling
of opinion flow which is a continuous-time process, SLANT
adopts a principled approach to exploit the continuous
dynamics for forecasting opinion. However, the model offers
a linear dynamics of opinion flow. In addition, it considers
a fixed parameterized representation of the dynamics which
often does not match with the reality. As a result, it performs
poorer than SLANT+.
SLANT+: SLANT only considers the effect of message dy-
namics on opinion propagation, but not vice-versa. However,
SLANT+ also considers the effect of opinion propagation
on message dynamics. As a result, it captures the coupled
dynamics of both message and opinion dynamics. More
importantly, SLANT+ captures the nonlinear influences of
the past events for each individual user. Hence it is able to
accurately capture the intrinsic complexity of the process,
which none of the existing baselines could do. Consequently
it gains a much higher mileage in terms of forecasting
opinions even at a distant future.
Failure Rate: In general, we observe that SLANT+ out-
performs the other baselines in predicting polarity of the
users. However, for Movie dataset, all the users have positive
polarity across time, as a result all the algorithms can
perfectly predict polarity of users. Apart from this, we
also observe that Flocking model fares poorly in polarity
prediction as compared to its performance in MSE. This is
because it associates more weights to opinions “close” to
one’s own opininion. However, the notion of “closeness” is
absolute and hence polarity difference is ignored.

V. CONCLUSION

In this paper, we build SLANT+, a novel nonlinear
generative model for opinion dynamics, that extends our
previous linear model SLANT [7]. To devise such a non-
linear model, we propose a novel network-guided recurrent
neural network architecture which captures a generic form
of nonlinear dependencies between the past events and
the underlying social network. Moreover, our proposal also
emphasizes a principled design of the nonlinearity. As a
result, our approach outperforms the existing approaches in
terms of both actual opinion prediction error (MSE) as well
as polarity prediction error (FR).
Acknowledgement: A.De is supported by Google India under
Google India PhD Fellowship 2013.
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