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Abstract— Key establishment in sensor networks is a challeng-
ing problem since asymmetric cryptosystems are unsuitable for
use in resource constrained sensor nodes, and also because the
nodes are vulnerable to physical capture. The key establishment
schemes proposed recently in the literature are known to yield
higher connectivity and better resilience against node captures
if some prior knowledge of deployment locations of the nodes
are available. In this paper, a location-aware key predistribution
scheme, called the t-neighborhood scheme, is proposed, which
provides unconditional security and works for any deployment
topology. Our scheme provides better trade-off among connectiv-
ity, security and generality compared to the schemes published
so far, and can be adapted to support addition of nodes after the
initial deployment.

I. INTRODUCTION

Sensor networks have been widely deployed in a variety
of applications ranging from military operations like enemy
base monitoring and target tracking to scientific and industrial
operations like environmental and wild-life explorations and
monitoring of nuclear power plants. Typically thousands of
sensor nodes are deployed in the area of operation, that set
up communication with each other and exchange information
among each other. In certain specific situations, typically for
military and medical applications, one requires secrecy and
confidentiality during message transfer. A survey on sensor
network can be found in [1].

An important challenge for securing communication in
sensor networks is the design of protocols to establish cryp-
tographically secure communication links among the sensor
nodes. This protocol is popularly called the bootstrapping
protocol [2]. One should also allow fresh nodes to join the
network after the initial deployment, for example, to replenish
dead, damaged and captured nodes. The biggest technical
difficulty of bootstrapping arises due to the limitations of
computing and communication resources in sensor nodes such
as processing power, available memory and communication
range.

Some techniques [3], [2], [4], [5], [6], [7] are already pro-

posed in the literature for solving the bootstrapping problem.
Eschenauer and Gligor propose the first basic protocol called
the EG scheme [3]. It is based on the predistribution of keys
randomly selected from a big key pool to the key rings of the
sensor nodes. Chan et al. propose three variations of the EG
scheme [2]. Liu and Ning’s polynomial-pool based key predis-
tribution scheme [4] and the matrix-based key predistribution
scheme [7] due to Du et al. improve security considerably.

A key predistribution scheme is said to be location-aware
if it works with prior knowledge (perhaps approximate) of
the deployment area and the deployment locations of the
sensor nodes. This knowledge can be effectively exploited to
tune the key predistribution schemes so as to achieve better
connectivity and higher resilience against node capture. Some
published location-aware schemes include the closest pairwise
scheme [7], the bivariate polynomial-pool based scheme [7]
and the location-aware EG scheme [5]. In this paper, we
propose an improved location-aware polynomial-pool based
scheme.

Section Il gives an overview of some existing location-
aware schemes. In Section Ill, we propose our scheme
called the t-neighborhood scheme. This scheme is based on
the polynomial-pool scheme and is designed to guarantee
unconditional security and to cater to arbitary deployment
configuration. We also provide a theoretical analysis of our
scheme. In Sections 1V and V, we report our simulation results
and compare the performance of the t-neighborhood scheme
with that of the closest pairwise scheme and of the bivariate
polynomial-pool based scheme. We conclude the paper in
Section VI.

Il. EXISTING LOCATION-AWARE KEY PREDISTRIBUTION
SCHEMES

In this section we provide a brief overview of the two
location-aware schemes described in [7]. The location-aware
EG scheme proposed in [5] has a somewhat different flavor
in that it is based on a particular deployment topology. This



limitation makes this scheme not directly comparable with our
scheme and hence a study of this scheme is omitted in this

paper.

A. The Closest Pairwise Key Distribution Scheme (CPKS)

Let there be n sensor nodes in a network with each node
being capable of storing m symmetric keys. The expected
deployment location of each node is provided to the key set-up
server.

Key predistribution phase: For each sensor node u in the
network, the server determines a set S of m other nodes whose
expected locations of deployment are closest to that of . For
every node v in S, for which a pairwise key between u and
v has not already been established, a new random key k., is
generated. The key-plus-id combination (k,,,v) is loaded to
u’s key ring, whereas the pair (k.,,w) is loaded to v’s key
ring.

Direct key establishment (shared key discovery) phase:
After the deployment of the sensor nodes, two nodes u and
v can establish a secure communication link, if they share
a predistributed pairwise key. To identify a common key is
trivial, because each pairwise key in a particular node is
accompanied by the id of the other node holding the key.

The network connectivity and security against node com-
promise of CPKS are as follows:

1) Connectivity: Connectivity of CPKS depends upon the
deployment error. The benefits of location-awareness decrease
as the error between expected and actual deployment loca-
tions increases. For sufficiently large errors, CPKS essentially
degrades to the random pairwise keys scheme [2].

2) Security: Each predistributed pairwise key is randomly
generated. Thus, no matter how many nodes are captured, the
pairwise keys between uncompromised sensor nodes remain
secure. Since the size of the total key space is typically much
bigger than the size of the network, it is assumed that random
pairwise keys are not repeated (birthday paradox [8]). In this
sense, CPKS provides unconditional security.

B. The Location-Aware Key Distribution using Bivariate Poly-
nomials (Bivariate Poly-Pool Scheme)

The deployment region is partitioned into a two-dimensional
array of rectangular cells. Let the partition consist of R
rows and C columns. The cell located at the i-th row
and the j-th column is denoted by C;;. The neighbors
of the cell C;; are taken to be the four adjacent cells:
Ci—1,j7C¢+1,j,ci,j—17ci,j+1-

The key set-up server chooses RC random symmetric
t-degree bivariate polynomials f; ;(X,Y) € F,[X,Y],

i=12,...,R,j =1,2,...,C, where F, is a finite field
with ¢ large enough to accomodate a cryptographic key.
Let the expected deployment location of node w lie in
the cell C;; called the home cell of w. The key ring of
u is loaded with the shares (evaluated at w) of the five
polynomials corresponding to the home cell and the four
neighboring cells. That is, u gets the five polynomial shares:

fij(Xou), fic1;(X ), fiyr,;(X ), fij—1(X, ), fi jr1(X, ).

The key set-up server also stores in u’s memory the id (i, j)
of its home cell.

In the direct key establishment phase, each node « broad-
casts the id (4, j) of its home cell (or some messages encrypted
by potential pairwise keys). Those physical neighbors of w,
whose home cells are either the same as or neighboring to
that of u, can establish pairwise keys with w.

The network connectivity and security against node com-
promise of this scheme are as follows:

1) Connectivity: Analogous to CPKS, connectivity of the
bivariate poly-pool scheme depends on the deployment error.
Larger error leads to poorer connectivity.

2) Security: As long as no more than ¢ polynomial shares
of a bivariate polynomial are disclosed, an attacker knows
nothing about the non-compromised pairwise keys established
using this polynomial. Thus, the security of this scheme
depends on the average number of nodes sharing the same
polynomial, or equivalently on the number of nodes that are
expected to be located in each cell and its four adjacent cells.
If that number is larger than ¢, the bivariate poly-pool scheme
is not unconditionally secure.

I1l. THE LOCATION-AWARE ¢t-NEIGHBORHOOD SCHEME

Let us now introduce our location-aware t-neighborhood
scheme. Our scheme is based on shares of symmetric bivariate
polynomials over finite fields. The basic goals that this scheme
tends to achieve are as follows:

o Unconditional security: Let ¢ be the degree of each
bivariate polynomial to be used. No more than ¢ shares
of a polynomial are distributed among the nodes.

o Generality: Our scheme works for any deployment con-
figuration. There is no need to assume a rectangular area
of deployment (as in [7]) or a rectangular grid-based
deployment (as in [5]).

A. Key Predistribution

The key set-up server generates a pool of s randomly
generated symmetric bivariate polynomials of degree ¢ over
a finite field F,. For each polynomial f(x,y) in the pool
only ¢ shares of f(x,y) are distributed to the nodes as per
the following rules. We assume that each node is capable of
storing a maximum of s’ shares.



Select a node u randomly that has less than s’ sharesin its
memory and distribute a share of f(z,y) to u. The remaining
t — 1 shares of f(z,y) are distributed among the expected
neighbors of u. The left over shares, if any, are distributed to
the neighbors of neighbors of u, and so on. A share is never
given to a node which has already been loaded fully (i.e,
which has already been distributed s’ shares).

B. Shared Key Discovery

After deployment, two nodes » and v that are in commu-
nication ranges of one another exchange their ids as well as
the ids of the polynomials whose shares they possess. If they
have the share of a common polynomial f(z,y), they calculate
the pairwise key f(u,v) = f(v,u) for use in future secure
communication.

C. Dynamic Node Addition

To dynamically add new nodes to the network, it makes
no sense to use shares of polynomials which are not already
employed during initial key set-up, since new polynomials do
not allow the new nodes to establish any communication link
with the nodes previously deployed. It is also not a good idea
to give the shares of polynomials already used in the network,
as it will make the number of shares of some polynomials
exceed ¢ thereby violating unconditional security. Instead of
distributing ¢ shares in the key predistribution phase, less than
t shares of the polynomials can be distributed. Suppose that i
shares of a certain polynomial are distributed in the first phase.
Some of the remaining (¢t — h) shares are to be distributed to
the new nodes according to their expected locations. However,
since ¢ is a finite number (typically < 200), this method
imposes a restriction on the number of times new nodes can
be added.

D. Theoretical Analysis of the t-neighborhood Scheme

For the sake of simplicity, we assume that the target field is
two-dimensional, so that every point in that region is expressed
by two co-ordinates = and y. Assume that « is a sensor
node whose expected location is (u.,u,) Whereas its actual
location is (u},, uy, ). This corresponds to a deployment error of
ey = (uy — ug, uy — u,). The actual location (or equivalently
the error e,,) can be modeled as a continuous random variable
that can assume values in R2. The probability density function
Ju(uly, uy,) of (u),, uy) characterizes the pattern of deployment

error. As in [7] we assume that (u,w;) is uniformly dis-
tributed within a circle with center at (u,,u,) and radius e

called the maximum deployment error. We have:

it (u), —ug)? + (u), —uy)? <€
otherwise
D

1
roay Te2

Another strategy (see [5]) is to model (u},,u;) as a random
variable following the two-dimensional normal (Gaussian)
distribution with mean (u,,u,) and variance 2. The corre-
sponding probability density function is:

1
fu(u/zvu;) =

2mo?
However, it is quite clumsy to work with this distribution and
so we will stick to the uniform distribution.

(e —ua) -y —uy)?1/(20%) ()

Two nodes are called physical neighbors if they lie in each
other’s communication range. They are called key neighbors if
they possess shares of a common polynomial. They are called
direct neighbors if they are both physical and key neighbors.

Let v and v be two deployed nodes. Assume that each
node has a communication range p and that the different
nodes are deployed independently i.e., (uf,u;) and (v;,v;)
are independent random variables.

The probability that « and v are in each other’s communi-
cation range can be calculated by

p(u,v) = /// Cfu(u;,u;)fv(v;,vg/)du; duy, dvy, dv,,

@)
where C' is the region (u), — v},)? + (u], — v})* < p®. This
expression makes use of the fact that » and v are independently

deployed.

Let d be the number of physical neighbors of u. Assume that
the key neighbors of « are uniformly distributed in a circle of
radius p’. Since w shares pairwise keys with at most s’(t — 1)

nodes, the expected value of p’ is p' = p x /<D 1f v is
a key neighbor of u, the probability that v lies in the physical
neighborhood of w is given by

po) = — [ [ stwo)drdy @

where C” is the region (z — uy)? + (y — uy)? < p’2. Since
u is expected to have s’'(t — 1) x p(u) direct neighbors, the
probability that « can establish a pairwise key with a physical
neighbor is given by

s'(t—1
p=pl) < T — gy ®)
where \ = % The probability p (averaged over all nodes
u) measures the local connectivity of the network.

We use the communication range p as the basic unit of
distance measurement, i.e., p = 1. One can compute the
probability p for the density function given by Equation(1)
and establish that p ~ 1 for small deployment errors.

Since each node holds at most s’ polynomial shares, each
key ring requires a space of s’(¢t + 1) log ¢ bits, which is the
same as is needed for storing m = s’(¢ + 1) symmetric keys.



Fig. 1.

Two random deployment models

The value of ¢ depends on the value of s’. For example, we
have ¢ = 39 when s’ = 5 and m = 200.

IV. SIMULATION RESULTS

For the simulation of our scheme we have considered several
arbitary deployment models of which two are shown in Figure
1. Each dot in the figures represents the expected deployment
location of a sensor node.

We have taken the following parameters for the simulation:

o Number of nodes in the network, n = 10000.
« Average number of neighbors of a node, d < 100.
« Size of the key ring of a node (in number of symmetric

keys), m = 200.
« Size s of the polynomial pool is chosen so that the
maximum supported network size becomes n = (tt—l)s

For example, s = 1250 when n = 10000, s’ = 5 and
t =39.

Figure 2 shows that the analytical and simulation re-
sults of direct network connectivity tally closely for the t-
neighborhood scheme with the parameter values d = 80,
s =1250,s" =5, and ¢t = 39. This figure indicates that when
the error e increases, the connectivity of the network degrades.
The simulation results of direct network connectivity for the
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Fig. 2. Analysis v.s. simulation results of direct connectivity of the ¢-
neighborhood scheme, with d = 80, s = 1250, s’ = 5, and ¢t = 39.
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Fig. 3. Direct network connectivity of the ¢-neighborhood scheme with

s = 200,454, 800, 1250, s’ = 2,3,4, 5, and ¢ = 99, 65, 49, 39.

t-neighborhood scheme are plotted in Figure 3 for different
values of s’. This figure also shows that when the error ¢
increases, the connectivity of the network degrades.

V. COMPARISON WITH PREVIOUS SCHEMES

The proposed scheme is compared with two other schemes,
the closest pairwise scheme (CPKS) and the bivariate poly-
pool scheme. The simulation results for the three schemes
are shown in Figure 4. The performance of our scheme is
slightly poorer than the other schemes. This degradation of
performance of our scheme can be justified as an acceptable
trade-off between connectivity and certain important criteria
considered below.

The ¢-neighborhood scheme distributes polynomial shares
to a randomly selected node and to its neighbors. So, it works
for any topology. In case of CPKS, if nodes « and v belong to
two uneven distribution zones, v may be among of ’s closest
neighbors but « may not be v’s [7]. Our scheme eliminates this
problem by distributing shares of each polynomial centered
around a chosen node.
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Fig. 4. Network connectivity of the ¢-neighborhood scheme, the bivariate

poly-pool scheme, and the closest pairwise scheme.
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Fig. 5.  Direct network connectivity of the t¢-neighborhood scheme for

dynamic node addition, with s = 200, 454,800,1250, s’ = 2,3,4,5,

t =99,65,49,39, and h = 60, 44, 28, 20.

In CPKS dynamic node addition becomes difficult. A new
deployed node has to be distributed some keys already present
in the network. Repeated use of the keys may make the
network vulnerable to node captures. On the other hand, for
the t-neighborhood scheme dynamic addition of nodes does
not affect the security but degrades the connectivity only
nominally, as demonstrated in Figure 5.

The ¢-neighborhood scheme is unconditionally secure. This
means that no matter how many nodes are captured, the
remaining uncaptured nodes in the network can communicate
with 100% secrecy. CPKS also possesses this security guar-
antee. In case of the bivariate poly-pool scheme, the average
number of shares of a single polynomial may be more than
t, making this scheme less secure than the ¢-neighborhood
scheme.

V1. CONCLUSION

In this paper, we propose a location-based scheme called
the t-neighborhood scheme which takes advantages of prior
knowledge of deployment locations of the sensor nodes. Our

scheme provides better security compared to the previous
schemes, ensures reasonable connectivity and supports dy-
namic node addition.
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