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Abstract. In an algebraic attack on a cipher, one expresses the encryp-
tion function as a system (usually overdefined) of multivariate polyno-
mial equations in the bits of the plaintext, the ciphertext and the key, and
subsequently solves the system for the unknown key bits from the knowl-
edge of one or more plaintext/ciphertext pairs. The standard eXtended
Linearization algorithm (XL) expands the initial system of equations by
monomial multiplications. The expanded system is treated as a linear
system in the monomials. For most block ciphers (like the Advanced En-
cryption Standard (AES)), the size of the linearized system turns out to
be very large, and consequently, the complexity to solve the system often
exceeds the complexity of brute-force search. In this paper, we propose a
heuristic strategy XL SGE to reduce the number of linearized equations.
This reduction is achieved by applying structured Gaussian elimination
before each stage of monomial multiplication. Experimentation on small
random systems indicates that XL SGE has the potential to improve the
performance of the XL algorithm in terms of the size of the final solvable
system. This performance gain is exhibited by our heuristic also in the
case of a toy version of AES.
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1 Introduction

The security of many cryptosystems is based on the difficulty of solving large
systems of nonlinear multivariate polynomial equations [1]. The main idea of
algebraic cryptanalysis is to express the encryption transform of a cipher as
an overdefined system of multivariate polynomial equations in the bits of the
plaintext, the ciphertext and the key. Algebraic cryptanalysis deals with different
ways of solving the multivariate system from known plaintext/ciphertext pairs.
Techniques based upon Gröbner-basis computation (like Faugère’s F4 and F5

algorithms [2, 3]) usually take exponential (or more) time in the size of the
system, and so are practically infeasible. Kipnis and Shamir [4] introduce an



alternative elimination technique called relinearization which is expected to run
in subexponential time. Several variants of this relinearization technique have
been proposed in the literature (like XL [5], XSL [6] and MutantXL [7]). A third
elimination technique proposed by Bard et al. [8] makes use of SAT solvers.

There are practical examples of algebraic attacks on stream ciphers, block
ciphers and public-key cryptosystems. In 1999, Kipnis and Shamir cryptanalyze
the HFE public-key cryptosystem by their relinearization technique [4]. In 2000,
Courtois et al. [5] propose the XL algorithm (eXtended Linearization). Its modifi-
cation named XSL (eXtended Sparse Linearization) is proposed by Courtois and
Pieprzyk [6] in 2002. In 2007, Courtois and Bard [9] cryptanalyze six rounds of
DES from only one known plaintext/ciphertext pair using SAT solvers. In 2008,
Courtois et al. [10] use slide-algebraic attack to cryptanalyze the KeeLoq block
cipher using SAT solvers, with a complexity equivalent to about 253 KeeLoq en-
cryptions (with 216 known pairs). In 2009, Courtois et al. [11] describe a full-key
recovery attack on the Hitag2 stream cipher. The Master’s thesis of Vörös [12]
lists practical algebraic attacks on some other stream ciphers.

Although algebraic attacks have a few success stories, the general time com-
plexity of these attacks is prohibitively high. The main problem of applying
algebraic attacks to the case of block ciphers is that the size of the final solvable
system becomes unmanageably huge. As a result, the attack complexity exceeds
the complexity of brute-force search. For example, in the case of 128-bit AES,
a direct application of XL produces a solvable system for D = 18 [6], but the
size of the solvable system is very large (about 2110). As a result, the complexity
to solve that system (more than 2220 with sparse system solvers) exceeds the
complexity of brute-force search (at most 2128 encryptions). To bring down the
complexity of algebraic attacks on block ciphers, one possibility is to reduce the
size of the final system so that the system can be generated and solved efficiently.
Since the linearized equations generated by XL are usually sparse, special sparse
system-solving algorithms may be exploited in the context of XL.

Our Contribution: In this paper, we propose a new heuristic to improve the
XL method by reducing the size of the final linearized system. The heuristic uses
the structured Gaussian elimination (SGE) algorithm [13] to reduce the growth
of the number of variables during the expansion stage of XL. It also helps by
decreasing the number of linearly dependent equations. SGE sometimes exhibits
excessive reduction in the system size (a phenomenon called avalanche effect)
which adversely affects the application of SGE in tandem with XL. We control
the avalanche effect by tuning a heuristic parameter. Experiments carried out
on small systems and toy ciphers indicate that our heuristic holds the promise
of bringing down the complexity of XL.

In short, the basic novelty of our work is the application of sparse system-
solving techniques in the expansion phase of the standard XL algorithm. Two
main improvements of the XL algorithm, already available in the literature, are
XSL [6] and MutantXL [7]. Both of these are capable of generating smaller lin-
earized systems compared to XL. However, neither of these seems to be practical
for solving real-life ciphers like 128-bit AES. Our heuristic too does not imme-
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diately lead to a practical cryptanalytic method for AES (or, for that matter,
for any other real-life cipher). It is instead proposed as another improvement
of XL with the hope that it may throw some insight in research pertaining to
algebraic attacks. Indeed, most of the current algebraic attack techniques are es-
sentially heuristic in nature, and many of them lack solid analytic foundations.
Our method too seems promising only from the positive results we obtained
from our experimental experience with it. As a final remark, we mention that
XL SGE is, by design, not competing with XSL or MutantXL. On the contrary,
it can be used to boost the performance of these XL variants in the same way
as it aids XL. Currently, we have experimented with XL only.

The rest of the paper is organized as follows. Section 2 provides some basic
background on algebraic attacks over AES-like block ciphers. In particular, it
describes the XL algorithm. Moreover, we briefly discuss the structured Gaussian
elimination procedure in this section. In Sections 3, we propose our algorithm
XL SGE. In Section 4, we supply our experimental results, and compare the
performance of XL SGE with that of XL. We conclude the paper in Section 5
after highlighting scopes for further research in this direction.

2 Background

In this section, we briefly describe algebraic attacks and the structured Gaussian
elimination procedure.

2.1 Algebraic Attack on AES-like Ciphers

In August 2000, the block cipher Rijndael [14] was selected as the Advanced
Encryption Standard (AES). Rijndael is a key-iterated block cipher with a strong
algebraic structure. AES can be represented as algebraically closed equations
over GF(28) [6]. It can also be represented as a system of multivariate quadratic

equations over GF(2) with plaintext, ciphertext and key bits as variables.
The MQ problem is the problem of solving systems of multivariate quadratic

equations. The MQ problem is NP-Hard for a general field [15]. Solving a system
of quadratic equations over any finite field is NP-Complete [12] (since over a
finite field, one can verify a correct solution in polynomial time). In general,
no polynomial-time algorithm is known to solve the MQ problem. However, for
overdefined systems of multivariate quadratic equations (Number of equations
≫ Number of variables), there exist algorithms which can run in polynomial
time under certain conditions [4, 5].

An algebraic attack consists of two basic steps: (1) Equation generation, and
(2) Solving the system of equations. These steps are briefly described below.

Equation Generation
Usually, a block cipher consists of a linear part and a nonlinear part. The nonlin-
ear part is due to the presence of S-Boxes in the cipher. Constructing equations
for the linear part is trivial. To construct the equations for the nonlinear part
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of the cipher, one follows two different approaches. First, the structure of the
S-Boxes is exploited to generate equations. Second, one uses the null-space equa-
tions for the S-Boxes. For our experiments, we have used a scaled-down version of
AES (Baby Rijndael) as described in [15]. Baby Rijndael has the same algebraic
structure as AES. The block size and the key size of baby Rijndael are 16 bits.
The linear layer of baby Rijndael yields linear equations, whereas the S-Boxes
produce quadratic equations. Using the inverse function used in the S-Box of
baby Rijndael, one obtains 11 quadratic equations per S-Box. Computing the
null space for each S-Box yields 21 linearly independent equations. For details
on how the equations are generated, we refer the reader to [15].

Solving the System of Equations
The usual method to solve overdefined multivariate systems of equations is to use
Gröbner-basis algorithms. The fastest of such algorithms are F4 and F5 proposed
by Faugère [2, 3]. The XL (eXtended Linearization) algorithm was proposed as an
efficient alternative [5]. For a system of m quadratic equations with n variables,
the algorithm is expected to run in polynomial time with an exponent O(1/

√
ǫ),

if m ≥ ǫn2, 0 < ǫ ≤ 1/2. In general, the XL algorithm is expected to run in
subexponential time. A third approach based upon SAT solvers is also proposed
in the literature [8] to solve systems of multivariate algebraic equations.

2.2 eXtended Linearization (XL)

The XL algorithm is effective when the number of equations exceeds the number
of variables. The main idea is to increase the number of initial equations by
adding new algebraically dependent equations which are linearly independent of
the initial system. This system expansion is carried out using multiplications by
monomials of limited degrees.

The XL algorithm accepts as input the initial system of equations A (which
has at least one solution), and a degree bound D ∈ N. The steps of the algorithm
are described now.

1. Multiply: Generate the new system A
′:

A
′ =

⋃

0≤k≤D−dmax

Xk
A,

where Xk stands for the set of all monomials of degree k, and dmax is the
maximum degree of the initial system of equations.

2. Linearize: Consider each monomial in the variables xi of degree ≤ D as
a new variable, and perform Gaussian elimination on the system A

′. The
ordering of the monomials must be such that all the terms containing single
variables (like x1) are eliminated last.

3. Solve: Assume that Step 2 yields at least one univariate polynomial equation
in some variable x1. Solve this equation over the underlying finite field using
a standard root-finding algorithm.

4. Repeat: Simplify the equations, and repeat the process to find the values
of the other variables.
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2.3 Structured Gaussian Elimination

Structured Gaussian Elimination (SGE) is an algorithm used to reduce the di-
mension of a sparse matrix by eliminating some of its rows and columns [13]. SGE
exploits the special structure of the matrices arising from integer-factorization
and discrete-logarithm algorithms. It is applicable for sparse matrices where the
columns can be divided into two types: heavy-weight and light-weight. It is a
heuristic procedure that tends to preserve the sparsity of the light columns.

SGE repeats the following steps until no further reduction is possible.

1. Delete columns of weight 0 and 1.

2. Delete rows of weight 0 and 1.

3. Delete rows of weight 1 in the light part. After Step 2 and Step 3, update
column weights.

4. Delete redundant rows.

3 eXtended Linearization with Structured Gaussian
Elimination (XL SGE)

3.1 Motivation

The problem with the XL algorithm is that the size of the system increases
drastically with the increase in the degree bound D used in the algorithm. Many
linearly dependent equations are generated during the expansion process (Step 1)
in XL. The equations generated by the XL algorithm are generally very sparse.
Moreover, we have observed, from the statistics of the system obtained in XL
(for D = 2), that the columns of the generated system can be distinguished
as heavy-weight and light-weight. Depending on these observations, we propose
a new heuristic (XL SGE) to reduce the number of linearized equations in XL.
According to the heuristic, the generated intermediate systems are reduced using
structured Gaussian elimination (SGE). The reduced systems are multiplied with
monomials to get systems of higher algebraic degrees.

The XL SGE algorithm reduces the sizes of the intermediate systems of equa-
tions in XL using the first three steps of structured Gaussian elimination. It does
not use the apparently irrelevant fourth step of SGE. The main motivation be-
hind proposing XL SGE is size reduction. Besides this, XL SGE is expected to
exhibit some side effects, some of which can be exploited to our advantage. For
example, partial elimination of variables before each stage of monomial multipli-
cation may result in the generation of fewer linearized variables (higher-degree
monomials). This, in turn, is capable of reducing the rank deficit. As a result,
we may even expect a smaller degree bound D than XL for arriving at a solvable
system. One should, however, avoid the avalanche effect of SGE, which results
in a slow growth of the linearized system, demanding larger values of D than
needed in XL.
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3.2 XL SGE Algorithm

The XL SGE algorithm accepts as input the initial system of equations (con-
sisting of linear equations and quadratic equations) A (which has at least one
solution), and a degree bound D ∈ N. The basic steps of the XL SGE expansion
procedure are as follows.

1. Expand the initial system of equations A up to degree d = 2 using XL to
obtain a linearized system A

′.
2. Apply structured Gaussian elimination (SGE) on A

′ to obtain a reduced
system of equations A

′′ of degree d.
3. Multiply the reduced system A

′′ with monomials of degree 1, append the
generated equations to A

′′, and rename this appended system as A
′. A

′ now
contains equations of degrees up to d + 1.

4. If the degree of the system of equations A
′ is D, end the process. Otherwise,

go to Step 2.

If we get a full-rank system (or a close-to-full-rank system) for a particular
D, we solve that system. Otherwise, we increase the degree bound D, and run
XL SGE again to obtain a system of smaller rank deficit. This process is repeated
until the rank deficit becomes zero or goes below a tolerable limit.

We have observed that sometimes due to avalanche effect, most of the equa-
tions are removed in the SGE stage. Consequently, XL SGE suffers from a slow
growth in the size of the linearized system with the increase in the degree bound
D, and the rank deficit in XL SGE decreases much more slowly with D than
in XL. To reduce this avalanche effect, we use a parameter K in Step 2 of
the XL SGE algorithm. Suppose that the j-th column has weight 1 with the
non-zero entry appearing in the i-th row. Only if this row contains at least K
non-zero entries, the i-th row and the j-th column are removed. The value of K
is heuristically chosen depending upon the weight distribution of the rows.

An optional preprocessing of A offers a possibility of initial reduction in the
system size. As mentioned during the description of baby Rijndael, we get both
linear and quadratic equations from the encryption rounds. If we substitute the
linear equations in appropriate quadratic equations, we can eliminate some of
the variables, and remove all the linear equations from the initial system A. The
reduced system consisting only of quadratic equations is expanded. Although the
number of non-zero terms in each quadratic equation increases because of these
substitutions, the effects of this increase can be appropriately handled. However,
whether this initial reduction helps at all is not clear from our experiments.

4 Experimental Results

We have tried the heuristic (XL SGE) on small random sparse quadratic sys-
tems, and have found that the heuristic significantly improves the performance
of the XL algorithm in most cases, in terms of the size of the final system. The
results obtained for some small random systems are shown in Table 1. This table
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corresponds to K = 0, that is, the avalanche effect for SGE is not handled in
these experiments. The initial system size x× y indicates x quadratic equations
in y variables. On the other hand, the final system size x × y indicates x lin-
earized equations in y monomials. For both XL and XL SGE, we report the final
system size. Notice that we apply SGE before each stage of monomial multipli-
cation. This, in turn, implies that the final systems in XL SGE, reported in all
the tables below, are again expected to reduce in size if another round of SGE
is applied to them. Indeed, it is a standard practice to apply SGE to any large
sparse system before solving it. The final systems available from XL would also
experience size reduction upon application of a round of SGE. For both XL and
XL SGE, the sizes reported in the tables correspond to those systems before
that external application of SGE which may be used to solve the systems.

Size of D in System Size Rank D in System Size Rank
Initial System XL SGE after XL SGE Deficit XL after XL Deficit

10 × 6 3 67 × 27 0 3 149 × 42 0
15 × 8 3 231 × 87 0 3 276 × 93 0
20 × 10 3 427 × 156 0 3 500 × 172 0
20 × 10 6 3959 × 655 0 5 7445 × 638 0
20 × 12 7 2809 × 917 11 7 98611 × 3302 0
20 × 12 7 5006 × 1547 10 7 114863 × 3302 0
20 × 12 3 714 × 271 0 3 795 × 299 0
22 × 12 3 708 × 209 0 4 5464 × 794 0
22 × 12 3 897 × 263 0 4 6478 × 794 0
24 × 13 3 1029 × 375 0 3 1137 × 378 0
24 × 14 3 1085 × 449 0 5 44476 × 3473 0

Table 1. Comparison of XL with XL SGE (with K = 0) for random systems

From the experimental results, it is clear that for the same degree bound
(D), the size of the final system obtained from XL SGE is in most cases much
smaller than the size of the final system obtained from XL. There are instances
where larger degree bounds D are needed by XL SGE (than XL) for obtaining a
full-rank system, but the size reduction is always a positive feature of XL SGE.
The performance of the XL SGE algorithm hugely depends on the structure of
the initial system of equations. We have observed that if the initial system of
equations enjoys the following two properties, XL SGE performs significantly
better than XL.

1. Number of equations ≫ Number of variables
2. Number of equations ≪ Number of one-degree terms + Number of two-

degree terms

There are cases where XL performs better than XL SGE. In some cases,
XL generates a full-rank system, whereas XL SGE fails to generate a full-rank
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system. Consider the example of Row 5 of Table 1. In this case, we get a full-rank
system for D = 7 using XL. For the same D, the rank deficit in case of XL SGE
is 11. However, the size of the final system in case of XL is much larger, that
is, a slightly increased rank deficit for XL SGE is more than compensated by a
dramatic reduction in the system size. Interestingly, for the same initial system,
we obtain a system of size 502× 253 and rank deficit 2 using XL SGE for D = 3
(using XL with D = 3, the system size is 639 × 296 with rank deficit 10).

The performance of XL SGE also depends on the proportion of linear equa-
tions and quadratic equations present in the initial system. For some systems,
we get a full-rank system after few iterations of XL SGE (say, for D = 3). So
the size of the final system is small in those cases. For some other systems of
the same initial size, we get full-rank systems after more number of iterations
of XL SGE (say, for D = 6). In those cases, the size of the final system is large.
Consider the examples of Row 3 and Row 4 of Table 1. In both cases, the sizes
of the initial systems are the same. The initial system of the third row contains
4 linear equations and 16 quadratic equations. The initial system of the fourth
row contains 2 linear equations and 18 quadratic equations. In the case of Row 3,
XL SGE gives a full-rank system of size 427×156 for D = 3, whereas for Row 4,
we get a full-rank system of size 3959 × 655 for D = 6.

The main problem with XL SGE is the avalanche effect suffered by the SGE
stage. If any intermediate generated system of XL SGE experiences avalanche
effect, no further increment in the size of the system is possible. In that case,
XL SGE fails to generate a full-rank system, no matter how large the degree
bound D is. In some cases, little reduction takes place (depends on the structure
of the initial system) with XL SGE. In those cases, the performances of XL SGE
and XL are similar.

Size of D in K in System Size Rank D in System Size Rank
Initial System XL SGE XL SGE after XL SGE Deficit XL after XL Deficit

22 × 12 3 4 513 × 292 0 3 534 × 298 0
23 × 13 4 4 2863 × 1073 0 5 11219 × 2379 0
24 × 13 3 0 726 × 377 0 3 726 × 377 0
24 × 15 4 0 6400 × 1940 0 4 6451 × 1940 0
24 × 16 4 7 6311 × 2516 0 4 6587 × 2516 0
24 × 16 4 5 6513 × 2516 0 4 6527 × 2516 0
25 × 17 4 6 8609 × 3213 0 4 8609 × 3213 0
25 × 18 5 6 34027 × 12615 0 5 36825 × 12615 0

Table 2. Comparison of XL with XL SGE (with K ≥ 0) for random systems

Table 2 lists results on some small random systems with the avalanche effect
taken into account. For a given D, we have tuned the parameter K in the se-
quence 0, 1, 2, . . . until we obtain a value of K for which the rank deficit of the
expanded system is zero. In all our experiments, we could locate suitable values
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for K (although there is no theoretical guarantee that such a K must exist).
These results once again illustrate the superiority of XL SGE over XL in terms
of the size of the final solvable system.

Table 3 describes the variation of the performance of the XL SGE expansion
procedure with the parameter K for a random initial system of size 25 × 18.
This is the same system reported in the last row of Table 2. In general, for
small values of K, the size reduction in SGE may be too high, that is, the
avalanche effect may set in. This may lead XL SGE to obtain higher rank deficits
compared to XL for the same degree bound D. On the other hand, if K is too
large, SGE fails to reduce the intermediate system sizes, and consequently, the
performance of XL SGE becomes identical to that of XL. A good value of K can
be experimentally chosen for a given input system.

K D = 3 D = 4 D = 5
System Size Rank Deficit System Size Rank Deficit System Size Rank Deficit

0 922 × 975 271 6015 × 4047 294 28070 × 12615 131
5 958 × 976 244 6357 × 4047 132 30043 × 12615 38
6 1032 × 982 192 7043 × 4047 19 34027 × 12615 0
8 1050 × 983 179 7214 × 4047 10 35014 × 12615 0
10 1086 × 987 154 7556 × 4047 4 36988 × 12615 0

Table 3. Dependence of the performance of XL SGE on the parameter K

Depending on the initial structure of the system, some modifications of the
XL SGE algorithm may improve the performance of the algorithm. The exact
nature of this dependence is not clear yet. To see whether XL SGE works well on
the systems generated by AES-like block ciphers, we have generated systems of
equations for the toy version of AES (Baby Rijndael) as described in Section 2.1.
On this system, XL SGE exhibits slightly better performance than XL. The
results are shown in Table 4.

Number of Size of K in System Size Rank System Size Rank
Rounds Initial System XL SGE after XL SGE Deficit after XL Deficit

1 232 × 64 0 142945 × 43745 0 178892 × 43745 0
2 448 × 112 3 634810 × 233633 24 642423 × 234225 48
3 664 × 160 7 1755432 × 682273 576 1768628 × 682401 576

Table 4. Comparison of XL with XL SGE for baby Rijndael for D = 3

We have also reduced the initial system (according to the last paragraph of
Section 3) of baby Rijndael for one round, and get a system of 192 quadratic
equations in 24 variables. After expanding that system using XL SGE, we get
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a final system of size 97447 × 12919 for D = 4 with rank deficit 36. On the
other hand, XL gives a final system of size 97943×12919 with rank deficit 36 for
the same D. It, therefore, remains uncertain whether the preprocessing of the
initial system (that is, absorbing the linear equations in the quadratic equations)
produces any noticeable benefits at all.

The programs for generating equations and expanding equations using XL
and XL SGE were written in the C programming language. The PARI/GP pack-
age was used to carry out some intermediate calculations needed to generate
equations. The mathematical package Sage (Version 4.4.2) was used to calculate
the rank of sparse matrices available from XL and XL SGE.

5 Conclusion

The main problem with algebraic attacks on block ciphers is that the solvable
system size becomes large, and so the complexity to solve the system often ex-
ceeds the complexity of brute-force search. XL generates too many linearly de-
pendent equations while expanding the initial system of equations. The number
of variables also grows rapidly during the expansion stage of XL. Our proposed
heuristic XL SGE uses structured Gaussian elimination in order to improve the
performance of XL by reducing the growth of variables and of linearly dependent
equations in the expansion stage of the XL algorithm. Experiments reveal that
XL SGE performs better than XL in many cases for random systems and also
for a toy version of AES.

We end this paper after highlighting some directions for future research.

– It is not yet clear on which factors the performance of XL SGE depends. A
theoretical analysis of XL SGE is required, and accordingly modifications of
our present algorithm are called for to make it more versatile and effective.
As an example, the nature of dependency of the performance of XL SGE on
the choice of the heuristic parameter K needs to be analytically investigated.

– Columns of weight two can be eliminated in the SGE phase without increas-
ing the number of non-zero entries in the matrix. However, elimination of
columns of weight three or more cannot be so gracefully handled.

– Partial monomial multiplication during the expansion phase can effectively
reduce the size (both the number of variables and the number of equations)
of the final solvable system. Moreover, after each application of SGE, all
columns have weight at least two. Complete monomial multiplication on this
system can never generate columns of weight zero or one. Partial monomial
multiplication can potentially solve this problem, but possibly at the cost of
degradation in the rank profile with increasing D.

– Another important area of investigation is to use SGE in conjunction with
the variants of XL (like XSL and MutantXL) already proposed in the lit-
erature. Comparisons with other algebraic-attack algorithms (like F4, F5,
SAT-solver techniques) are also worth studying.
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