
SIMD-Based Implementations of Sieving

in Integer-Factoring Algorithms

Binanda Sengupta and Abhijit Das

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur, West Bengal, PIN: 721302, India

{binanda.sengupta,abhij}@cse.iitkgp.ernet.in

Abstract. The best known integer-factoring algorithms consist of two
stages: the sieving stage and the linear-algebra stage. Efficient parallel
implementations of both these stages have been reported in the litera-
ture. All these implementations are based on multi-core or distributed
parallelization. In this paper, we experimentally demonstrate that SIMD
instructions available in many modern processors can lead to additional
speedup in the computation of each core. We handle the sieving stage
of the two fastest known factoring algorithms (NFSM and MPQSM),
and are able to achieve 15–40% speedup over non-SIMD implementa-
tions. Although the sieving stage offers many tantalizing possibilities of
data parallelism, exploiting these possibilities to get practical advantages
is a challenging task. Indeed, to the best of our knowledge, no similar
SIMD-based implementation of sieving seems to have been reported in
the literature.

Keywords: Integer Factorization, Sieving, Number-Field Sieve Method,
Multiple-Polynomial Quadratic Sieve Method, Single Instruction Multi-
ple Data, Streaming SIMD Extensions, Advanced Vector Extensions.

1 Introduction

Factoring large integers has been of much importance in cryptography and com-
putational number theory. Many cryptosystems like RSA derive their security
from the apparent intractability of factoring large integers. Indeed, the integer
factorization problem can be dubbed as the fundamental computational problem
in number theory. Despite many attempts to solve this problem efficiently, re-
searchers could not come up with any polynomial-time algorithm so far. Further
studies of factoring and efficient implementation issues continue to remain an
important area of research of both practical and theoretical significance.

Given a composite integer n, the integer factorization problem can be for-
mally framed as to find out all the prime divisors p1, p2, . . . , pl of n and their
corresponding multiplicities vp1 , vp2 , . . . , vpl

, where

n = p
vp1
1 p

vp2
2 · · · pvpll =

l∏

i=1

p
vpi
i .

B. Gierlichs, S. Guilley, and D. Mukhopadhyay (Eds.): SPACE 2013, LNCS 8204, pp. 40–55, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

SIMD-Based Implementations of Sieving in Integer-Factoring Algorithms 41

Many algorithms are proposed to solve the integer factorization problem. The
older algorithms have running times exponential in the input size (the number
of bits in n, that is, log2 n or lg n). The time and space complexities of the
modern integer-factoring algorithms are subexponential in lg n. These algorithms
typically consist of two stages. In the first stage, a large number of candidates
are generated. Each such candidate that factors completely over a factor base, a
set of small primes, yields a relation. In the second stage, the relations obtained
in the first stage are combined, by solving a set of linear equations modulo 2,
to get a congruence of the form x2 ≡ y2 (mod n). If x �≡ ±y (mod n), then
gcd(x − y, n) is a non-trivial factor of n.

The sieving stage is introduced in the quadratic sieve method [1] in an attempt
to make the relation-collection stage more efficient compared to trial division.
Let p be small prime, and g an integer-valued polynomial function of a variable
c such that g(c) ≡ x (mod p) for some x ∈ Z. If γ is a solution of the congruence,
then all of its solutions are of the form c = γ + kp, where k ∈ Z. This is how
trial divisions are avoided in sieving.

SIMD (Single Instruction Multiple Data)-based architecture is a recent tech-
nology that comes with vector instructions and register sets. The size of these
special SIMD registers is larger than (usually a multiple of) that of the general-
purpose registers. Multiple data of the same type can be accommodated in an
SIMD register. This is frequently called packing. A binary operation on two
packed registers can be performed using a single vector instruction. The individ-
ual results are extracted from the output SIMD register. This extraction process
is known as unpacking. The less the packing and unpacking overheads are, the
more are the advantages that can be derived from SIMD-based parallelization.

The sieving part turns out to be the most time-consuming stage in factoring
algorithms. As a result, efficient implementations of the sieving stage is of the
utmost importance in the context of factoring algorithms. Sieving is, however,
massively parallelizable on multi-core and even on distributed platforms. Our
work is not an attempt to exploit parallelism in the multi-core or distributed
level. On the contrary, we attempt to investigate how SIMD-based parallelism
can provide additional speedup within each single core. In sieving, both index cal-
culations and subtractions of log values involve data-parallel operations. SIMD
intrinsics have the potential of increasing the efficiency of both these steps. Un-
fortunately, frequent packing and unpacking of data between regular registers
(or memory locations) and SIMD registers stand in the way of this potential
benefit of data parallelism. Our major challenge in this work is to reduce the
packing and unpacking overheads. So far, we have been able to achieve some
speedup in the index-calculation process. Achieving similar speedup in the sub-
traction phase still eludes us. To the best of our knowledge, no SIMD-based
parallelization attempts on sieving algorithms for integer factorization are re-
ported in the literature. The early implementations described in [2,3] use the
term SIMD but are akin to multi-core parallelization in a 16K MasPar SIMD
machine with 128× 128 array of processing elements.

42 B. Sengupta and A. Das

Our Contribution: In this paper, we concentrate on efficient implementations
of sieving using Intel’s SSE2 (Streaming SIMD Extensions) and AVX (Advanced
Vector Extensions) features. We handle the sieving stages of two factoring algo-
rithms stated below. Currently, these are the most practical factoring algorithms.

– The multiple polynomial quadratic sieve method (MPQSM) uses the same
concept as the quadratic sieve method (QSM), except that the MPQSM
works with a general polynomial instead of a fixed one. By varying the
coefficients of this general polynomial, we generate different instances of
sieving, which can run in parallel, independent of one another. We assume
that on a core the polynomial remains fixed, and a sieving interval is provided
to us. We use SIMD operations to sieve this interval for the given polynomial.
The MPQSM is widely accepted as the second fastest factoring algorithm.

– The general number field sieve method (NFSM) is the fastest known algo-
rithm for factoring integers, and is based upon the theory of algebraic num-
ber fields. In particular, a number ring O and a homomorphism O → Zn are
used. The sieving procedure is carried out in both the rings (algebraic and
rational sieving). We apply SIMD parallelization to both these sieves.

The rest of the paper is organized as follows. In Section 2, we briefly discuss
the background needed for the following sections. This includes a description of
the sieving procedures in the MPQSM and in the NFSM, and also of Intel’s SSE2
and AVX components. Section 3 illustrates our implementation details for the
sieving in the MPQSM and the NFSM. In Section 4, we present our experimental
results, and analyze the speedup obtained in our experiments. In the concluding
Section 5, we provide some ways in which this work can be extended.

2 Background

2.1 A Summary of Known Integer-Factoring Algorithms

Modern integer-factoring algorithms typically aim to find a congruence of the
form x2 ≡ y2 (mod n). If x �≡ ±y (mod n), then gcd(x − y, n) is a non-trivial
factor of n.

J. D. Dixon [4] proposes the simplest variant of such a factoring method.
Based on the work of Lehmer and Powers [5], Morrison and Brillhart introduce
another variant known as the CFRAC method [6], where relations are obtained
from the continued fraction expansion of

√
n.

In Pomerance’s quadratic sieve method (QSM) [1], the polynomial T (c) =
J + 2Hc+ c2 (where H = �√n � and J = H2 − n) is evaluated for small values
of c (in the range −M � c � M). If some T (c) factors completely over the first
t primes p1, p2, . . . , pt, we get a relation. In Dixon’s method, the smoothness
candidates are O(n), whereas in CFRAC and QSM, these are O(

√
n), resulting

in a larger proportion of smooth integers (than Dixon’s method) in the pool
of smoothness candidates. Moreover, QSM replaces trial divisions by sieving
(subtractions after some preprocessing). This gives QSM a better running time
than Dixon’s method and CFRAC.

SIMD-Based Implementations of Sieving in Integer-Factoring Algorithms 43

R. D. Silverman introduces a variant of QSM, called the multiple polynomial
quadratic sieve method (MPQSM) [7]. Instead of using the fixed polynomial
T (c), the MPQSM uses a more general polynomial T (c) = Wc2 + 2V c + U so
that the smoothness candidates are somewhat smaller than those in the QSM.

The number field sieve method (NFSM) is originally proposed for integers of
a special form [8], and is later extended to factor arbitrary integers [9]. Pollard
introduces the concept of lattice sieving [10] as an efficient implementation of
the sieves in the NFSM. The conventional sieving is called line sieving.

Some other methods for factoring integers include the cubic sieve method
(CSM) [11] and the elliptic curve method (ECM) [12].

The linear-algebra phase in factoring algorithms can be reasonably efficiently
solved using sparse system solvers like the block Lanczos method [13]. We do
not deal with this phase in this paper.

2.2 SSE2 and AVX

SSE (Streaming SIMD Extensions) is an extension of the previous x86 instruction
set, and SSE2, introduced in Pentium 4, enhances the SSE instruction set further.
This architecture comes with some 128-bit SIMD registers (XMM). In these
registers, we can accommodate multiple data of some basic types (like four 32-bit
integers, four single-precision floating-point numbers, and two double-precision
floating-point numbers). The basic idea to exploit this architecture is to pack
these registers with multiple data, perform a single vector instruction, and finally
unpack the output XMM register to obtain the desired individual results.

AVX (Advanced Vector Extensions), introduced in Intel’s Sandy Bridge pro-
cessor, is a recent extension to the general x86 instruction set. This architecture
is designed with sixteen 256-bit SIMD registers (YMM). Now, we can accom-
modate eight single-precision or four double-precision floating-point numbers in
one YMM register. The AVX instruction set is currently applicable for only
floating-point operations.

Programming languages come with intrinsics for high-level access to SIMD
instructions both for SSE2 [14] and AVX [15]. We can use these intrinsics directly
in our implementations to exploit data parallelism.

2.3 MPQSM

The multiple polynomial quadratic sieve method (MPQSM) [7] is a variant of
the quadratic sieve method (QSM) [1]. Instead of using a single polynomial (with
fixed coefficients), the MPQSM deals with a general polynomial, and tune its co-
efficients to generate small smoothness candidates. This variant is parallelizable
in the sense that different polynomials can be assigned to different cores. Our
aim is to speed up each multi-core implementation, so we work with one of these
polynomials. We have implemented the sieving part in the MPQSM using SIMD
intrinsics mentioned above. Relations are collected in the MPQSM as follows.

Let us consider a polynomial

T (c) = Wc2 + 2V c+ U (1)

44 B. Sengupta and A. Das

with V 2 − UW = n. We search for the smooth values of T (c), where c can take

integer values in the interval [−M,M]. W is selected as a prime close to
√
2n
M ,

such that n is a quadratic residue modulo W . V is the smaller square root of

n modulo W , and we take U = V 2−n
W (which is also an integer). Multiplying

Eqn (1) by W , we get WT (c) = (Wc + V)2 + (UW − V 2) = (Wc + V)2 − n,
which in turn gives

(Wc+ V)2 ≡ WT (c) (mod n). (2)

The factor base consists of the first t primes p1, p2, . . . , pt, where t is cho-
sen based on a bound B. Only those primes are needed, modulo which n is a
quadratic residue. First, we calculate the values of T (c) for all c in the range
−M � c � M . Now, we try to find those values of c, for which T (c) is B-smooth,
that is, T (c) factors completely into primes� B. If T (c) = pα1

1 pα2
2 · · · pαt

t for some
non-negative integral values of αi, we can write Eqn (2) as

(Wc+ V)2 ≡ Wpα1
1 pα2

2 · · · pαt
t (mod n). (3)

We include W itself in the factor base. After many such relations like Eqn (3)
are collected, we combine those relations to obtain a congruence of the form
x2 ≡ y2 (mod n).

It is required that the number of relations obtained be larger than the number
of primes present in the factor base. The advantage of the MPQSM over the QSM
is that the coefficients U, V,W of the polynomial are not fixed. We can choose a

different prime close to
√
2n
M as W , modulo which n is a quadratic residue. For a

given W , we get fixed values of V and U . Thus, by varying the coefficients, we
can generate more relations, keeping M and B fixed.

The methods proposed earlier than QSM use trial divisions to find the B-
smooth values of smoothness candidates. QSM introduces a technique called
sieving to locate the smooth values using additions/subtractions instead of di-
visions (along with some preprocessing).

Now, we discuss sieving in the MPQSM briefly. In the MPQSM, we have
different values of T (c) for different c in [−M,M], as shown in Eqn (1). We
have to locate those c for which T (c) is smooth over the factor base. We take
an array A indexed by c. Initially, we store log |T (c)| in A[c], truncated after
three decimal places. Indeed, we can avoid floating-point operations by storing
	1000 log |T (c)|
 in A[c].

After this initialization, we try to find solutions of the congruence T (c) ≡
0 (mod ph), where p is a small prime in the factor base, and h is a small positive
exponent. Thus, we have to solve the congruence

Wc2 + 2V c+ U ≡ 0 (mod ph)

which implies

c ≡ −2V ±√
4V 2 − 4UW

2W
≡ −V ±√

n

W
≡ W−1(−V ±√

n) (mod ph). (4)

SIMD-Based Implementations of Sieving in Integer-Factoring Algorithms 45

For h = 1, we use a root-finding algorithm to compute the square roots of n
modulo p. For h > 1, we obtain the solutions modulo ph by lifting the solutions
modulo ph−1.

Let s be a solution of T (c) ≡ 0 (mod ph). Then, all the solutions of T (c) ≡
0 (mod ph) are s± kph, k ∈ N. Therefore, we subtract 	1000 logp
 from all the
array locations A[c] such that c = s± kph.

When all such powers of small primes in the factor base are tried out, the array
locations storing A[c] ≈ 0 correspond to the smooth values of T (c). We apply
trial division on these smooth values of T (c). If some T (c) value is not smooth,
then the corresponding array entry A[c] holds an integer � 	1000 logpt+1
.

2.4 NFSM

The relation-collection phase of the number field sieve method (NFSM) [9] and
some mathematical background are described below.

NFSM involves a monic irreducible polynomial f(x) ∈ Z[x] of a small degree
d and an integer m ≈ n1/d such that f(m) ≡ 0 (mod n), n being the integer
to be factored. One possibility is to take m = 	n1/d
, and express n in base m
as n = md + cd−1m

d−1 + · · · + c0, with the integers ci varying in the range 0
to m − 1. For this choice, we take f(x) = xd + cd−1x

d−1 + · · · + c0, provided
that it is an irreducible polynomial in Z[x]. We have f(m) = n, implying that
f(m) ≡ 0 (mod n), as desired.

Theorem 2.4.1: If θ ∈ C is a root of a monic irreducible polynomial f(x) of
degree d with rational coefficients, then the set of all algebraic integers in Q(θ),
denoted by O, forms a subring of the field Q(θ).

Theorem 2.4.2: If θ ∈ C is a root of a monic irreducible polynomial f(x) of
degree d with integral coefficients, then the set of all Z-linear combinations of
the elements 1, θ, θ2, . . . , θd−1, denoted by Z[θ], is a subring of O.

Theorem 2.4.3: If θ ∈ C is a root of a monic irreducible polynomial f(x) of
degree d with integral coefficients and m ∈ Z is an integer such that f(m) ≡
0 (mod n), then there exists a ring homomorphism φ : Z[θ] → Zn defined by
φ(θ) = m (mod n) (and φ(1) = 1 (mod n)).

Now, let S be a set of pairs of integers (a, b) satisfying

∏

(a,b)∈S

(a+ bθ) = α2,

∏

(a,b)∈S

(a+ bm) = y2,

46 B. Sengupta and A. Das

for some α ∈ Z[θ] and y ∈ Z. Let φ(α) = x ∈ Zn. Then, we get

x2 ≡ φ(α)2 ≡ φ(α2) ≡ φ(
∏

(a,b)∈S

(a+ bθ))

≡
∏

(a,b)∈S

φ(a+ bθ) ≡
∏

(a,b)∈S

(a+ bm) ≡ y2 (mod n).

If x �≡ ±y (mod n), then gcd(x − y, n) is a non-trivial factor of n.
The NFSM involves a rational factor base and an algebraic factor base. The

rational factor base (RFB) consists of the first t1 primes p1, p2, . . . , pt1 , where
t1 is chosen based on a bound Brat. The algebraic factor base (AFB) consists of
some primes of small norms in O. Application of the homomorphism φ lets us
rewrite the AFB in terms of t2 rational (integer) primes p1, p2, . . . , pt2 , where t2
is chosen based on a bound Balg.

Now, we describe the rational sieve and the algebraic sieve of the NFSM. Here,
we deal with incomplete sieving, that is, higher powers of factor-base primes are
not considered in sieving.

Let T (a, b) = a + bm. First, we calculate the values of T (a, b) for all b in
the range 1 � b � u and a in the range −u � a � u. Now, we try to find
those (a, b) pairs with gcd(a, b) = 1 and b �≡ 0 (mod p), for which T (a, b) is
Brat-smooth, that is, T (a, b) factors completely into the primes p1, p2, . . . , pt1 .
The determination whether a small prime pi divides some a+ bm is equivalent
to solving the linear congruence a + bm ≡ 0 (mod pi). The sieving bound u is
determined based upon certain formulas which probabilistically guarantee that
we can obtain the requisite number of relations from the entire sieving process.

We take a two-dimensional array A indexed by a and b. Initially, we store
log |T (a, b)| in A[a, b], truncated after three decimal places. We avoid floating-
point operations by storing 	1000 log |T (a, b)|
 in A[a, b].

After this initialization, we try to find solutions of the congruence T (a, b) ≡
0 (mod p), where p is a small prime in RFB. For a fixed b, the solutions are
a ≡ −bm (mod p). Let γ be a solution of T (a, b) ≡ 0 (mod p) for a particular
b. Then, all the solutions of T (a, b) ≡ 0 (mod p) for that b are γ ± kp, k ∈ N.
Therefore, we subtract 	1000 logp
 from all the array locations A[a, b] such that
a = γ±kp. We repeat this procedure for all small primes p in the RFB and for all
allowed values of b. After this, the array locations storing A[a, b] ≈ 0 correspond
to the smooth values of T (a, b). We apply trial division on these smooth values.

The algebraic sieve uses the norm function N : Q(θ) → Q. Its restriction to
Z[θ] yields norm values in Z. For an element of the form a+ bθ ∈ Z[θ], we have
the explicit formula:

N(a+ bθ) = (−b)df(−a/b) = ad − cd−1a
d−1b+ · · ·+ (−1)dc0b

d,

where f(x) = xd + cd−1x
d−1 + · · ·+ c0.

An element α ∈ Z[θ] is smooth with respect to the small primes of O if and
only if N(α) ∈ Z is Balg-smooth. For each small prime p in the AFB, we compute
the set of zeros of f modulo p, that is, all r values satisfying the congruence

SIMD-Based Implementations of Sieving in Integer-Factoring Algorithms 47

f(r) ≡ 0 (mod p). For a particular b with b �≡ 0 (mod p) and 1 � b � u, the
norm values with N(a + bθ) ≡ 0 (mod p) correspond to the a values given by
a ≡ −br (mod p) for some root r of f modulo p. It follows that the same sieving
technique as discussed for the rational sieve can be easily adapted to the case of
the algebraic sieve.

An (a, b) pair for which both a + bm and a + bθ are smooth gives us a re-
lation. When sufficiently many relations are obtained from the two sieves, they
are combined using linear algebra to get the set S of (a, b) pairs such that∏

(a,b)∈S(a+ bm) = y2 and
∏

(a,b)∈S(a+ bθ) = α2.

3 Implementation Details

In this section, we describe our work on SIMD-based implementations of the
sieving step of the MPQSM and that of the NFSM. We assume that the integer
to be factored is odd (because powers of 2 can be easily factored out from an
even integer). The largest integer factored using a general-purpose algorithm is
RSA768 (768 bits, 232 decimal digits). It was factored by Kleinjung et al. on
December 12, 2009 [16]. So, we consider integers having up to 250 decimal digits.
We have implemented incomplete sieving for the NFSM. Here, we take d = 3 if
the number of digits in n is less than 80, and d = 5 otherwise [3,17]. We have
experimented with two integers n1 (having 60 digits) and n2 (having 120 digits),
where

n1 = 433351150461357208194113824776813009031297329880309298881453

is a product of two 30-digit primes, and

n2 = 633735430247468946533694483906799272905632912233239606907495845\
279708185676334289089791539738517232800233047583258907971

is a product of two 60-digit primes. Such composite products are frequently used
in RSA cryptosystems.

3.1 Sequential Implementation

The sequential implementation is rather straightforward for both the MPQSM
and the NFSM.

MPQSM. We take a small prime p from the factor base. Let H be the small
integer, up to which there exists a solution of Eqn (4) with c ∈ [−M,M]. For
each such h ∈ {1, 2, . . . , H}, we take the precomputed solutions, and for each
such solution s, we sieve the array A, that is, subtract 	1000 logp
 from the
array locations c such that c = s± kph for some k. We repeat this procedure for
all primes in the factor base.

48 B. Sengupta and A. Das

NFSM. We carry out the rational and the algebraic sieves independently on
two two-dimensional arrays. The pairs (a, b) indicating smoothness in both the
sieves are finally subjected to the test gcd(a, b) = 1. If this gcd is one, then a
relation is located. By varying the sieving bound u, we obtain different numbers
of relations. We have not attempted to find a complete solvable system. But then,
since different cores in one or multiple machine(s) can handle different sieving
ranges, and our objective is to measure the benefits of SIMD parallelization, this
is not an important issue.

3.2 SIMD-Based Implementation

In our SIMD-based implementations, we have effectively parallelized index cal-
culations. We are provided with 128/256-bit SIMD registers. We want to do
one vector addition for 32-bit operands (integers or floating-point numbers) on
these registers. For this, two such SIMD registers are loaded with four (or eight)
operands each (this is called packing). Then, a single SIMD addition instruction
with these two registers as input operands is used to obtain four (or eight) sums
in another SIMD register. The four (or eight) results are then extracted from
this output register (this is known as unpacking). We carry out this SIMD-based
implementation using SSE2 and AVX instruction sets. Notice that unpacking of
the output register is necessary for obtaining the four (or eight) indices to sub-
tract log values. However, it is not necessary to repack these indices so long as
the sieving bound is not exceeded in these array indices. Unpacking does not
destroy the content of an SIMD register, so we can reuse the packed output
register as an input during the next parallel index increment.

Implementation on SSE2. While using the SSE2 instruction set, we use 128-
bit registers.

MPQSM

– The Basic Idea: This method is similar to the sequential implementation. The
major difference is that when we get four integer solutions si, we sieve four
array locations simultaneously for these four solutions. The four si values
need not correspond to the same p and/or the same h. However, the si values
are taken as the minimum solutions in the range [−M,M]. We perform four
si + kphi

i operations on 128-bit SIMD registers storing array indices (see
Fig. 1), and subtract log p values from the corresponding array locations.

A drawback of this method is that four ph values may vary considerably.
For each solution modulo ph, we sieve at roughly 	(2M +1)/ph
 locations. If
one phi

i is larger than other ph values in a register, the number of iterations

of data-parallel sieving is restricted by 	(2M +1)/phi

i
, leading to some loss
of efficiency. Moreover, if the ph values in a register are considerably different
from one another, the spatial proximity of their sieving locations decreases,
and this potentially increases the number of cache misses.

SIMD-Based Implementations of Sieving in Integer-Factoring Algorithms 49

s1
s2
s3
s4

+

ph1
1

ph2
2

ph3
3

ph4
4

=

s1 + ph1
1

s2 + ph2
2

s3 + ph3
3

s4 + ph4
4

,

s1 + ph1
1

s2 + ph2
2

s3 + ph3
3

s4 + ph4
4

+

ph1
1

ph2
2

ph3
3

ph4
4

=

s1 + 2ph1
1

s2 + 2ph2
2

s3 + 2ph3
3

s4 + 2ph4
4

, · · · .

Fig. 1. Parallel index increments during sieving in the MPQSM

– Improvements: The above problems can be reduced to some extent using the
following improvement techniques.

• So far, we have fixed p (a small prime in the factor base) and varied
h in the solutions of T (c) ≡ 0 (mod ph). The sieving locations cor-
responding to different values of h vary considerably. If, on the other
hand, we fix h and allow p to vary, the variation in sieving locations
is significantly reduced. In other words, we first consume the solutions
of T (c) ≡ 0 (mod pi) for i = 1, 2, 3, . . . , t in groups of four. Next, we
process solutions of T (c) ≡ 0 (mod p2i) for i = 1, 2, 3, . . . , t, again in
groups of four, and so on. Now, the quantity 	(2M + 1)/ph
 is roughly
of the same order for all of the four ph values packed in a register. So,
the number of iterations in the sieving loop is optimized. Moreover, the
probability to hit the same cache line, while accessing locations in A,
increases somewhat (particularly, for small values of p and h).

• If ph � 2M +1 and T (c) ≡ 0 (mod ph) has a solution s ∈ [−M,M], then
this is the unique solution for c in the range −M � c � M . We carry
out no index calculations s+ kph, but substract log p only from A[s].

• If the overhead associated with packing and unpacking dominates over
the benefits of parallelization itself, then data parallelization should be
avoided. More precisely, for large values of ph, we have a very few array
locations to sieve, and obtaining these sieving locations using SIMD in-
structions is not advisable to avoid the packing and unpacking overheads.
The threshold, up to which parallelizing solutions modulo ph remains
beneficial, depends on M and B, and is determined experimentally.

• Usually, the congruence T (c) ≡ 0 (mod ph) has two solutions (for an
odd prime p). In the rare case where there is a unique solution of this
congruence, we perform sieving with respect to this solution sequentially.
Indeed, even numbers of solutions are aligned in pairs in 4-segment SIMD
registers. An odd number of solutions disturbs this alignment, making
the implementation less efficient.

NFSM. Here we do not take into account the exponents h of the small primes
in the factor bases. We process four integer solutions for four different p, and
we sieve four array locations simultaneously for these four solutions. The initial
solutions γ are chosen to be as small as possible in the range [−u, u]. We perform
four γ + kp operations on 128-bit SIMD registers storing array indices, and
subtract log p values from the corresponding array locations. Fig. 2 demonstrates

50 B. Sengupta and A. Das

γ1
γ2
γ3
γ4

+

p1
p2
p3
p4

=

γ1 + p1
γ2 + p2
γ3 + p3
γ4 + p4

,

γ1 + p1
γ2 + p2
γ3 + p3
γ4 + p4

+

p1
p2
p3
p4

=

γ1 + 2p1
γ2 + 2p2
γ3 + 2p3
γ4 + 2p4

, · · · .

Fig. 2. Parallel index increments during sieving in the NFSM

these parallel index calculations. We again emphasize that unpacking to obtain
the individual array indices γi+kpi is needed. However, both the packed registers
can be reused in all these SIMD additions so long as the primes pi remain
constant, and the array indices γi + kpi remain within the sieving bound u.

A similar procedure is followed for the algebraic sieve where solutions of four
different (r, p) pairs are taken at a time.

Implementation on AVX. We follow the same basic idea in conjunction with
the improvements discussed above. Sandy Bridge comes with 256-bit SIMD reg-
isters, using which we can perform vector operations on eight single-precision
floating-point data at a time. The AVX instruction set does not support 256-bit
vector integer operations. In order to exploit the power of 256-bit registers, we
make floating-point index calculations. But then, we also need conversions be-
tween floating-point numbers and integers, since array indices must be integers.

Implementation Issues. Some points concerning our parallel implementations
(SSE2 and AVX) are listed below.

– To utilize the SIMD registers properly, we break them into 32-bit segments,
and vector operations on 32-bit integers and single-precision floating-point
numbers are used such that four addition operations take place using a sin-
gle instruction. We avoid 64-bit vector operations (only two operations at
the cost of one instruction) because packing and unpacking overheads can
outperform the gain from parallelization. Moreover, in typical factoring al-
gorithms, array indices safely fit in 32-bit unsigned integer values.

– AVX does not provide instructions for 256-bit vector integer operations,
so we transform 32-bit integers to 32-bit single-precision floating-point num-
bers, and conversely. The mantissa segment of 32-bit single-precision floating-
point numbers is only 23 bits long (IEEE Floating-Point Standard). This
restricts the choice of M , B, u, Brat, and Balg. For example, array indices
can be as large as 223 only. However, since this is already a value which is not
too small, this restriction is not unreasonable. In fact, we work with these re-
strictions in our sequential and 128-bit SIMD implementations also. Indeed,
only for very large-scale implementations, we need array indices larger than
223. Even then, this limitation is not a problem so long as each individual
core handles a sieving range no larger than 223.

SIMD-Based Implementations of Sieving in Integer-Factoring Algorithms 51

m128i xmm p = mm load si128 (m128i *P);

m128i xmm l = mm load si128 (m128i *L);

m128i xmm l = mm add epi32 (m128i xmm l, m128i xmm p);

mm store si128 (m128i *L, m128i xmm l);

Fig. 3. SSE2 intrinsics used for index calculations

m256 ymm p = mm256 load ps (float *P);

m256 ymm l = mm256 load ps (float *L);

m256 ymm l = mm256 add ps (m256 ymm l, m256 ymm p);

mm256 store ps (float *L, m256 ymm l);

Fig. 4. AVX intrinsics used for index calculations

– Fig. 3 shows the SSE2 intrinsics used in our implementation.1 The header
file emmintrin.h contains the definition of the data type m128i (represent-
ing 128-bit registers) and the declarations for the intrinsics mm load si128,
mm add epi32 and mm store si128. The registers xmm p (for ph or p values)
and xmm l (for s or γ values) are packed each with four contiguous 32-bit inte-
gers starting from the locations P and L, respectively, using mm load si128.
Then, they are added with a single vector instruction corresponding to
mm add epi32. Finally, the output SIMD register xmm l is unpacked and its
content is stored in the location L. However, unpacking is not destructive,
that is, we can reuse this output register later, if required. Now, we subtract
the log values from the array locations stored in L[0], L[1], L[2] and L[3].
To use the intrinsics mm load si128 and mm store si128, it is necessary
that the addresses P and L are 16-byte aligned. If they are not, we have to use
the more time-consuming intrinsics mm loadu si128 and mm storeu si128.
Another important point is that the packing overhead is high if we attempt
to pack from four non-contiguous locations using mm set epi32 or similar
intrinsics. So, we avoid them in our implementations.

– The intrinsics we employ in our implementation using AVX are shown in
Fig. 4. The header file immintrin.h contains the definition of the data
type m256 (representing 256-bit registers) and the declarations for the in-
trinsics mm256 load ps, mm256 add ps and mm256 store ps. Two 256-bit
SIMD registers (ymm p and ymm l) are packed each with eight contiguous
32-bit floating-point numbers starting from the locations P and L, respec-
tively, using mm256 load ps. A single vector instruction corresponding to
mm256 add ps is used to add them. The individual results in the output
SIMD register ymm l are then extracted in the location starting from the
address L. Now, we need to convert the floating-point values L[0], L[1],

1 Only the intrinsics are shown in the figure. The loop structure and other non-SIMD
instructions are not shown. The first two intrinsics are used before the sieving loop,
whereas the last two intrinsics are used in each iteration of the sieving loop.

52 B. Sengupta and A. Das

L[2], L[3], L[4], L[5], L[6] and L[7] to integers to obtain the array lo-
cations for sieving. If the addresses P and L are not 32-byte aligned, we
need to use the slower intrinsics mm256 loadu ps and mm256 storeu ps.
We avoid using mm256 set ps or similar intrinsics which are used to pack
eight floating-point numbers from arbitrary non-contiguous locations.

4 Experimental Results and Analysis

4.1 Experimental Setup

Version 4.6.3 of GCC supports SSE2 and AVX intrinsics. Our implementation
platform is a 2.40GHz Intel Xeon machine (Sandy Bridge microarchitecture with
CPU Number E5-2609). The GP/PARI calculator (Version 2.5.0) is used to cal-
culate the log values of large integers, to find the zeros of f modulo p (for NFSM),
and to validate the results. We use the optimization flag -O3 with GCC for all
sequential and parallel implementations. To avoid the AVX-SSE and SSE-AVX
conversions, we use the flag -mavx in the AVX implementation. To handle large
integers and operations on them, we use the GMP library (Version 5.0.5) [18].

4.2 Speeding Up Implementations of the MPQSM Sieve Using
SSE2 and AVX

Timing and speedup figures for the implementations of the MPQSM sieve are
summarized in Table 1. Timings are reported in milliseconds, and for each
n,M,B values we have used in our experiments, we take the average of the
times taken by fifty executions. We have incorporated all the improvement pos-
sibilities discussed in Section 3.2. The rows in the same cluster have the same
values for M and B, but differ in the count of digits in the integer being factored.

From Table 1, we observe that the speedup is higher for smaller values of B,
and increases when the sieving limit M increases. This is expected, since larger
sieving bounds or smaller factor base bounds allow parallel index calculations
to proceed for a larger number of iterations. On an average, speedup varies
between 20–35%, except in the last two clusters where M and B are large. The
speedup with AVX is below the expected result and it happens to be almost
the same as that with SSE2, despite the use of 256-bit SIMD registers for AVX.
The explanation is that, in the AVX implementation, we have to do a lot of
conversions between integer and floating-point formats.

4.3 Speeding Up Implementations of the NFSM Sieve Using SSE2
and AVX

Timing and speedup figures for the implementations of the NFSM sieve (in case
of n1 and n2) are summarized in Table 2 and Table 3, respectively. Timings are
measured in milliseconds. For each data set, we record the average of the times

SIMD-Based Implementations of Sieving in Integer-Factoring Algorithms 53

Table 1. Timing and speedup figures for the MPQSM sieve

Number Sieving Bound on Sequential SSE2 Parallelization AVX Parallelization
of digits limit small primes Time Time Speedup Time Speedup
in n M B (in ms) (in ms) (in %) (in ms) (in %)

39 500000 46340 9.14 7.00 23.38 7.02 23.17

100 500000 46340 10.66 8.40 21.22 8.45 20.74

152 500000 46340 15.21 10.65 29.99 11.46 24.68

247 500000 46340 10.34 7.84 24.24 7.97 22.97

89 2000000 46340 69.37 49.54 28.59 49.86 28.12

187 2000000 46340 76.51 49.67 35.08 50.08 34.55

247 2000000 46340 85.59 56.19 34.35 58.31 31.88

93 5000000 46340 319.63 216.38 32.30 228.93 28.38

152 5000000 46340 398.74 260.60 34.64 262.27 34.22

241 5000000 46340 196.84 156.62 20.44 160.11 18.66

65 3000000 300000 120.36 92.22 23.38 94.57 21.43

158 3000000 300000 206.41 124.75 39.56 124.88 39.50

241 3000000 300000 115.81 91.59 20.91 92.35 20.26

100 5000000 463400 333.82 265.41 20.49 259.05 22.40

187 5000000 463400 258.99 193.09 25.45 194.93 24.74

241 5000000 463400 217.96 177.25 18.67 179.33 17.72

65 5000000 803400 231.10 187.93 18.68 189.14 18.16

158 5000000 803400 370.68 264.92 28.53 256.66 30.76

247 5000000 803400 295.03 253.97 13.92 256.43 13.08

65 4000000 4000000 211.23 183.36 13.19 192.86 8.70

187 4000000 4000000 248.04 207.85 16.21 208.36 16.00

251 4000000 4000000 260.76 211.87 18.75 212.01 18.70

65 5000000 5000000 274.38 242.38 11.66 244.66 10.83

158 5000000 5000000 370.98 312.51 15.76 312.53 15.76

241 5000000 5000000 256.53 238.41 7.06 240.24 6.35

Table 2. Timing and speedup figures for the NFSM sieve for n1

Sieving Bound on Sequential SSE2 Parallelization AVX Parallelization
limit small primes Time Time Speedup Time Speedup
u B′ (in ms) (in ms) (in %) (in ms) (in %)

Rational
Sieve

500000 50000 95.59 79.40 16.93 79.11 17.24
3000000 50000 1677.30 1208.97 27.92 1206.97 28.04
3000000 300000 1816.98 1358.18 25.25 1354.13 25.47

Algebraic
Sieve

500000 50000 90.49 71.69 20.78 71.66 20.81
3000000 50000 1564.31 1116.66 28.62 1118.55 28.50
3000000 300000 1700.84 1266.34 25.55 1260.98 25.86

54 B. Sengupta and A. Das

Table 3. Timing and speedup figures for the NFSM sieve for n2

Sieving Bound on Sequential SSE2 Parallelization AVX Parallelization
limit small primes Time Time Speedup Time Speedup
u B′ (in ms) (in ms) (in %) (in ms) (in %)

Rational
Sieve

600000 60000 126.32 100.02 20.82 101.59 19.58
2000000 60000 970.24 607.13 37.42 605.07 37.64
2000000 200000 993.67 666.97 32.88 663.11 33.27

Algebraic
Sieve

600000 60000 111.50 83.10 25.47 83.52 25.10
2000000 60000 866.23 523.22 39.60 527.01 39.16
2000000 200000 912.86 581.89 36.26 579.06 36.57

taken over fifty executions. We take Brat = Balg = B′ as the bounds on the
small primes in the two sieves. We document the results for 1 � b � 10.

From Table 2 and Table 3, we make the following observations. On an average,
we get a speedup between 15–40%. The speedup increases with the increase in
the sieving limit u. The speedup is found to be somewhat higher for the algebraic
sieve (compared to the rational sieve), although we cannot supply a justifiable
explanation for this experimental observation.

5 Conclusion

In this work, we have implemented the sieving phase of the MPQSM and that of
the NFSM efficiently, using SSE2 and AVX instruction sets. In general, we get
a non-negligible performance gain over the sequential (non-SIMD) implementa-
tions. This work can be extended in many ways.

– So far, we have implemented only index calculations in a data-parallel fash-
ion. Our efforts on data-parallelizing the subtraction operations have not
produced any benefit. More investigation along this direction is called for.
Unlike the index-calculation stage, the subtraction stage cannot reuse its
output SIMD register.

– In case of the MPQSM, improving the performance of our SIMD-based im-
plementations for large values of M and B deserves further attention.

– In case of the NFSM, the sieving we implemented here is called line sieving.
A technique known as lattice sieving is proposed as an efficient alternative
[10]. Data-parallel implementations of lattice sieving are worth studying.

– Our implementations of the MPQSM and NFSM sieves are not readily
portable to polynomial sieves used in the computation of discrete logarithms
over finite fields of small characteristics (for example, see [19,20]). Fresh ex-
perimentation is needed to investigate the effects of SIMD parallelization on
polynomial sieves.

SIMD-Based Implementations of Sieving in Integer-Factoring Algorithms 55

References

1. Pomerance, C.: The quadratic sieve factoring algorithm. In: Beth, T., Cot, N.,
Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 169–182. Springer,
Heidelberg (1985)

2. Dixon, B., Lenstra, A.K.: Factoring integers using SIMD sieves. In: Helleseth, T.
(ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 28–39. Springer, Heidelberg (1994)

3. Bernstein, D.J., Lenstra, A.K.: A general number field sieve implementation. In:
The Development of the Number Field Sieve. Lecture Notes in Mathematics,
vol. 1554, pp. 103–126 (1993)

4. Dixon, J.D.: Asymptotically fast factorization of integers. Mathematics of Compu-
tation 36, 255–260 (1981)

5. Lehmer, D.H., Powers, R.E.: On factoring large numbers. Bulletin of the American
Mathematical Society 37, 770–776 (1931)

6. Morrison, M.A., Brillhart, J.: A method of factoring and the factorization of F7.
Mathematics of Computation 29, 183–205 (1975)

7. Silverman, R.D.: The multiple polynomial quadratic sieve. Mathematics of Com-
putation 48, 329–339 (1987)

8. Lenstra, A.K., Lenstra, H.W., Manasse, M.S., Pollard, J.M.: The number field
sieve. In: STOC, pp. 564–572 (1990)

9. Buhler, J.P., Lenstra, H.W., Pomerance, C.: Factoring integers with the number
field sieve. In: The Development of the Number Field Sieve. Lecture Notes in
Mathematics, vol. 1554, pp. 50–94 (1993)

10. Pollard, J.M.: The lattice sieve. In: The Development of the Number Field Sieve.
Lecture Notes in Mathematics, vol. 1554, pp. 43–49 (1993)

11. Coppersmith, D., Odlyzko, A.M., Schroeppel, R.: Discrete logarithms in GF(p).
Algorithmica 1(1), 1–15 (1986)

12. Lenstra, H.W.: Factoring integers with elliptic curves. Annals of Mathematics 126,
649–673 (1987)

13. Montgomery, P.L.: A block Lanczos algorithm for finding dependencies over GF(2).
In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp.
106–120. Springer, Heidelberg (1995)

14. Microsoft Corporation: Streaming SIMD Extensions 2 Instructions: Microsoft Spe-
cific, http://msdn.microsoft.com/en-us/library/kcwz153av=vs.80.aspx

15. Intel Corporation: Intrinsics for Intel(R) Advanced Vector Extensions,
http://software.intel.com/sites/products/documentation/hpc/composerxe/

en-us/2011Update/cpp/lin/intref cls/common/intref bk advectorext.htm

16. Kleinjung, T., et al.: Factorization of a 768-bit RSA modulus. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 333–350. Springer, Heidelberg (2010)

17. Briggs, M.E.: An introduction to the general number field sieve. Master’s thesis,
Virginia Polytechnic Institute and State University (1998)

18. Free Software Foundation: The GNU Multiple Precision Arithmetic Library,
http://gmplib.org/

19. Adleman, L.M., Huang, M.D.A.: Function field sieve method for discrete logarithms
over finite fields. Information and Computation 151(1-2), 5–16 (1999)

20. Gordon, D.M., McCurley, K.S.: Massively parallel computation of discrete log-
arithms. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 312–323.
Springer, Heidelberg (1993)

http://msdn.microsoft.com/en-us/library/kcwz153av=vs.80.aspx
http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/2011Update/cpp/lin/intref_cls/common/intref_bk_advectorext.htm
http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/2011Update/cpp/lin/intref_cls/common/intref_bk_advectorext.htm
http://gmplib.org/

	SIMD-Based Implementations of Sieving in Integer-Factoring Algorithms
	Introduction
	Background
	A Summary of Known Integer-Factoring Algorithms
	SSE2 and AVX
	MPQSM
	NFSM

	Implementation Details
	Sequential Implementation
	SIMD-Based Implementation

	Experimental Results and Analysis
	Experimental Setup
	Speeding Up Implementations of the MPQSM Sieve Using SSE2 and AVX
	Speeding Up Implementations of the NFSM Sieve Using SSE2 and AVX

	Conclusion

