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1 Introduction
In algebraic cryptanalysis, we express the encryption transform of a cipher as an overdefined system of
multivariate polynomial equations in the bits of the plaintext, the ciphertext and thekey, and then solve
that system for the key bits from some known plaintext/ciphertext pairs. In general, solving such systems
over finite fields is an NP-Complete problem. However, when the multivariate system is overdefined,
some reasonable algorithms are known [1, 2, 3, 4, 5, 6, 7]. The XLSGE algorithm [8] has been recently
proposed to improve the complexity of the XL attack [4] by using structured Gaussian elimination
(SGE) [9] during the expansion phase of XL. In this paper, we establishthat XL SGE suffers from some
serious drawbacks. To avoid this problem, we propose three variants ofXL SGE, based upon partial
monomial multiplication, handling of columns of weight two, and deletion of redundant equations. Our
modified algorithms have been experimentally verified to be superior to XLSGE.

We are given a sparse and consistent systemA overGF (2) of multivariate equations, some of which
are quadratic and the rest of which are linear. Such systems are availablefrom block ciphers like AES.

eXtended Linearization (XL)

In addition to the initial systemA, a degree boundD is also supplied as an input to XL [4].

Algorithm 1: Extended Linearization (XL) of multivariate systems

1. Multiply: Generate the new systemB =
⋃

0≤k≤D−dmax

Xk
A, whereXk stands for the set of all

monomials of degreek, anddmax is the maximum degree of the initial system.
2. Linearize: Consider each monomial in the variablesxi of degree≤ D as a new variable, and

perform Gaussian elimination on the systemB. The ordering of the monomials must be such that
all the terms containing single variables (likex1) are eliminated last.

3. Solve: Assume that Step2 yields at least one univariate polynomial equation in some variablex1.
Find the roots of this equation in the underlying finite field.

4. Repeat: Simplify the equations, and repeat the process to solve for the other variables.

Structured Gaussian Elimination (SGE)

Algorithm 2 describes one iteration of structured Gaussian elimination (SGE) [9].

Algorithm 2: Structured Gaussian Elimination (SGE)

1. Delete columns of weight0 and1.
2. Delete rows of weight0 and1.
3. Delete rows of weight1 in the light part. After Step2 and Step3, update column weights.
4. Delete redundant rows.
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A Heuristic Improvement of XL

The problem with XL is that the size of the system increases drastically with the increase in the degree
boundD. Many linearly dependent equations are generated during the expansion process (Step 1) in
XL. The equations generated by XL are very sparse. Moreover, the statistics of the systems obtained in
XL (for D = 2) reveal that the columns of the generated systems can be distinguished as heavy-weight
and light-weight. These observations lead us to propose a new heuristic (XL SGE) [8] to reduce the
number of linearized equations in XL. In XLSGE, the intermediate systems are reduced using structured
Gaussian elimination (SGE). The reduced systems are multiplied with monomials to get systems of
higher algebraic degrees. XLSGE uses only the first three steps of SGE.

Algorithm 3: Extended Linearization with Structured Gaussian Elimination (XLSGE)

1. Expand the initial systemA up to degreed = 2 using XL to obtain a linearized systemA′. Make
a copy of the linearized systemA′ asB.

2. Apply structured Gaussian elimination (SGE) onA
′ with avalanche-control parameterK to obtain

a reduced system of equationsA
′′ of degreed.

3. Multiply each equation inA′′ by each monomial of degree1 to get a systemA′′′ of degreed+ 1.
Append the equations ofA′′′ toB. B now has equations of degrees≤ d+ 1. RenameA′′′ asA′.

4. If the degree of the system of equationsB is D, end the process. Otherwise, go to Step2 with d

incremented by1.

XL SGE controls excessive reduction of intermediate systems due to avalancheeffects by using a
heuristic parameterK during the application of SGE. More specifically, thei-th row and thej-th column
are eliminated if and only if the following three conditions are satisfied: (i) thej-th column has weight
1, (ii) the (i, j)-th entry is non-zero (1, to be precise), and (iii) the weight of thei-th row is at leastK.

2 Improvements of XL SGE
XL SGE is designed to reduce the size of the final solvable system in comparisonwith XL. However,
there are many instances where this size reduction is not substantial. Our experiments reveal that SGE
onA′ for d = 2 yields sizable reduction in the system size. Subsequently, ford ≥ 3, SGE progressively
loses effectiveness in bringing down the system size. This is the expectedbehavior of XLSGE.

To ensure reduction of system sizes by SGE for all degrees ofA
′, two possibilities are explored.

First, we investigate how variables of column weight one may reappear in the system. Second, we
modify SGE to work even when all variables have column weights≥ 2.

• Partial monomial multiplication: Carefully skipping certain monomial multiplications during
the expansion stage has some benefits. First, fewer equations are generated, and second, SGE
may again discover variables of column weight one. On the darker side, generation of fewer
equations may adversely affect the rank profile of the expanded system.If too many monomial
multiplications are not skipped, we hope not to encounter a big trouble with the rank profile.
Therefore, two important issues are of relevance in this context: which monomial multiplications
would be skipped, and how many.

• Deletion of variables with weight more than one: Suppose that a variablez appears int ≥ 2
equations in an expanded system. If we add one of these equations to the remainingt−1 equations,
the column weight ofz reduces to one, so SGE (Algorithm 2) can remove this variable in Step 1.
This, however, increases the weight of theset − 1 equations. This increase in row weights may
increase weights of certain columns. That is, an effort to forcibly eliminatez may stand in the
way of the elimination of other variables. However, ift = 2, this processing ofz followed by the
removal of the only equation containingz does not increase the total weight of the system. Still,
the density (average weight per row or column) of the system increases (since one equation and
one variable are now removed), but the expanded systems, particularly iflarge, are expected to
absorb this problem without sufficient degradation of the performance of XL SGE.
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XL SGE with Random Monomial Multiplication (XL SGE-2)

As a first attempt, we skip monomial multiplications randomly, and the amount of skipping is governed
by a probabilityp ∈ (0, 1]. More precisely, each equation is multiplied by each monomial of degree
one with probabilityp (and skipped with probability1 − p). If p = 1, we have the original XLSGE
algorithm. Forp < 1, we expect more size reduction than XLSGE.

XL SGE-2 accepts as input the initial system of equationsA, a degree boundD ∈ N, the avalanche-
control parameterK ∈ N, and a multiplication probabilityp ∈ (0, 1].

Algorithm 4: XL SGE with Random Monomial Multiplication (XLSGE-2)

1. Expand the initial systemA up to degreed = 2 using XL to obtain a linearized systemA′. Make
a copy of the linearized systemA′ asB.

2. Apply structured Gaussian elimination (SGE) onA
′ with avalanche-control parameterK to obtain

a reduced system of equationsA
′′ of degreed.

3. Multiply each equation inA′′ by each monomial of degree1 with probability p (that is, with
probability1− p, a multiplication is skipped) to obtain a systemA′′′ of degreed+ 1. Append the
equations ofA′′′ toB. B now contains equations of degrees up tod+ 1. RenameA′′′ asA′.

4. If the degree of the system of equationsB is D, end the process. Otherwise, go to Step2 with d

incremented by1.

If we get a full-rank (or close-to-full-rank) system for a particularD, we solve that system. Other-
wise, we increase the degree boundD, and run XLSGE-2 again to reduce the rank deficit.

The multiplication probabilityp has been heuristically chosen in our experiments. We have worked
with several fixed values ofp in different layers (degreesd of A′). From our experimental experiences,
we recommend values ofp ≥ 0.5. A slight modification in the above algorithm for XLSGE-2 is also
studied. In this variant, monomial multiplications are randomly skipped even in Step1 (that is, since the
very beginning of the expansion process).

Another possibility is to use different probabilities in different layers of multiplication. We study
two models for varyingp with the degreed of A′. In the first model, we takep1 = 1 −

1

d+1
. For

this choice, we initially restrict the expansion of the system. If the initial restriction leads to large rank
deficits, we progressively remove the restriction on the growth of the system. In the second model, we
take the gradually decreasing sequence of probabilitiesp2 = D−d

D−d+1
. Initially, the system size is small,

so we can afford the system to grow at this stage. Asd increases,A′ becomes increasingly large, and
restricting the growth of the system gradually controls the eventual growth of the system. Note also that
higher-degree monomials appear in the linearized system from a larger number of sources. Hence, more
restriction in the growth is required to generate more variables with column weight one asd increases.

Column-weight Two Reduction

The original SGE procedure (Algorithm 2) can be modified so as to remove columns of weights two
or more. In order that the rank profile of the expanded system does notdeteriorate too much, we have
experimented with deletion of columns of weight two only.

Algorithm 5: Structured Gaussian Elimination with Column-weight Two Reduction (SGE′)

1. Delete columns of weight0 and1.

2. Delete columns of weight2: If a column has weight2, delete one equation corresponding to that
variable. Substitute that equation in the other equation, and delete the column.

3. Delete rows of weight0 and1.

4. Delete rows of weight1 in the light part. After Steps2–4, update column weights.

Although this heuristic modification of SGE seems to be effective, in the current form it does not
work very well. One must not use Algorithm 5 to reduce the initial quadratic system (available after
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Step 1 of XLSGE or XL SGE-2), since random systems at this stage exhibit the tendency of losing all
quadratic variables. Using the modified SGE for alld ≥ 3 sometimes shows good performance. But the
general observation is that the system suffers from drastic reduction insize (a form of avalanche effect)
resulting in degraded rank profile and demanding a large number of iterations (that is, large values of
D). It appears that the modified SGE procedure of Algorithm 5 should be skipped for certain small
values ofd (in addition tod = 2). However, the exact range of applicability of Algorithm 5 (that is, the
minimumd from which it is safe to use this algorithm) has not yet been experimentally or theoretically
determined. Such a study would require initial systems larger than what we have experimented with.

3 XL SGE with Row Deletion (XL SGE-3)
XL SGE-2 demonstrates the benefits of using partial monomial multiplication. Instead of blindly skip-
ping certain multiplications, we can adopt a more intelligent strategy. We first carry out all monomial
multiplications. Subsequently, by analyzing the column statistics of the expandedsystem, we mark
some equations as less important than the others. We delete the less important equations from the sys-
tem and then perform SGE before the next stage of multiplication. This variant, henceforth referred to as
XL SGE-3, has one potential advantage over XLSGE-2. Now, we have a better control over the initial
reduction in the system size in the sense that the degradation of the rank profile can be carefully handled.

Algorithm 6: XL SGE with Row Deletion (XLSGE-3)

1. Expand the initial systemA up to degreed = 2 using XL to obtain a linearized systemA′. Make
a copy of the linearized systemA′ asB.

2. Apply structured Gaussian elimination (SGE) with avalanche-control parameterK onA′ to obtain
a reduced system of equationsA

′′ of degreed.

3. Multiply the reduced systemA′′ with monomials of degree1 and linearize the system to obtain a
systemA′′′ of degreed+ 1.

4. Identify and delete some rows ofA
′′′. Append the equations ofA′′′ toB. B now contains equations

of degrees up tod+ 1. Rename the systemA′′′ asA′.

5. If the degree of the system of equationsB is D, end the process. Otherwise, go to step2 after
incrementingd by 1

Depending upon how we identify the redundant rows for deletion in Step 4,we have different vari-
ants of XL SGE-3, some of which are elaborated below. The deletion of redundant equations can also
be employed after Step 1 of Algorithm 6.

XL SGE-3 with Deterministic Deletion Strategy (XL SGE-3d)

We have considered only the variables of column weight two. Among the two equations containing a
variable with column weight two, we delete (at most) one equation as follows.

Strategy 1

• If any of these two equations contains a variable with column weight one, thenskip the
deletion of both the equations. (In this case, the equation with the variable with column
weight one is anyway deleted by SGE, thereby reducing the weight of the variable with
column weight two.)

• Otherwise, delete the equation with the larger row weight. If both the equationshave the
same row weight, delete any one of these arbitrarily.

Strategy 2

• If any of these two equations contains a variable with column weight one, thenskip the
deletion of both the equations.
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• If both the equations have the same right side (0 or 1), delete the equation with the larger
row weight. Make arbitrary choices to break ties.

• If exactly one of the two equations has right side1, then keep that equation, and delete the
other.

Strategy 3

• If any one of the equations contains a variable with column weight one, determine whether
that variable can reappear in the system in a future monomial-multiplication stage.If not,
none of the equations is deleted. Otherwise, delete the equation containing thevariable with
column weight one.

• If both the equations contain variables of column weight one that can reappear from a future
monomial-multiplication stage, then delete one of them depending on their row weights (as
in Strategy1).

• If both the equations contain no variables of column weight one, then take decision as in
Strategy1.

Let z = x1x2x3 be a monomial with column weight one, and let the equation containingz also
contain a variable with column weight two. In Strategy3, we check whetherz can reappear in the next
multiplication layer (like multiplication ofx1x3 by x2). If that is the case, the current rank degradation
incurred by the deletion of the equation containingz will be repaired later.

XL SGE-3 with Random Deletion Strategy (XL SGE-3r)

Let z be a variable (monomial) with weightt. We deletem of thet equations in whichz appears. If the
system is overdefined, this deletion is not expected to have a bad effect on the rank profile. The details
of this strategy are given below. In our experiments, we have worked witht = 2 and3, andm = 1.

• Find an equation with a variable of column weightt.

• If the equation contains a variable of column weight one, skip the deletion.

• Otherwise, delete the equation with probabilitypd.

• Repeat this process until there are no removable equations with variables of column weightt.

4 Experimental Results
We have experimented with several variants of XLSGE on small random systems (Table 1), and also
on the initial system of size890 × 208 obtained from four-round baby-Rijndael (Table 2). XLSGE-2
and XL SGE-3 significantly improves the performance of XL and XLSGE.

5 Conclusion
The chief technical contribution of this paper is our efforts to improve uponthe XL family of alge-
braic attacks. We suggest variants of XLSGE. Our experiments establish the effectiveness of using our
modifications in tandem with XLSGE. Our proposals address some of the open problems of XLSGE,
but some other issues continue to remain unattended. Most importantly, a theoretical analysis of the
XL SGE family is needed. Here, we state some new avenues for research, that this paper opens up.

• The domains of applicability of XLSGE′ need to be experimentally or theoretically determined.

• The dependence of the system size and rank profile on the seed (multiplication/deletion decisions)
for XL SGE-2 and XLSGE-3r should be studied.

• An optimal choice forp (in XL SGE-2) andpd (in XL SGE-3r) requires more experimentation
and theoretical analysis.
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Table 1: Performances of XL and variants of XLSGE for random systems
Size ofB

Size ofA XL XL SGE XL SGE-2 XL SGE-3d XL SGE-3r
15× 10 2712× 637 2528× 619 1447× 631 1939× 637 1360× 637
16× 11 2846× 561 2119× 561 943× 561 1322× 560 934× 561
17× 12 749× 298 748× 298 460× 298 714× 298 394× 298
18× 14 5347× 1470 4796× 1469 2199× 1461 4356× 1469 2462× 1469
19× 14 4831× 1470 3620× 1470 2333× 1468 3447× 1470 2414× 1470
20× 15 3783× 1940 3963× 1940 2907× 1940 3149× 1940 3073× 1940
20× 16 6402× 2516 6094× 2516 3700× 2514 5407× 2516 3994× 2516
23× 18 117996× 31179 122701× 31175 86200× 31175 112307× 31172 85227× 31179

Table 2: Performances of XL and variants of XLSGE for four-round baby-Rijndael (D = 3).
Algorithm K p pd Size ofB Rank Deficitδ

XL 0 1 0 2594060× 1498713 96936
XL SGE 3 1 0 2571848× 1476481 93172

XL SGE-2 0 0.75 0 2276971× 1442363 89387
XL SGE′ 0 1 0 2556116× 1449153 81576

XL SGE-3d 0 1 0 1934149× 1163740 79630
XL SGE-3r 0 1 0.20 2355165× 1449152 85470
XL SGE-3r 0 1 0.25 2283125× 1449152 89640
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