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Abstract. In this paper, we report our parallel implementations of the
Lanczos sparse linear system solving algorithm over large prime fields,
on a multi-core platform. We employ several load-balancing methods
suited to these platforms. We have carried out process-level and thread-
level parallel implementations under two different arithmetic libraries,
and the best speedup obtained is 6.57 on eight cores. To the best of our
knowledge, no implementation of the Lanczos algorithm on a multi-core
platform is ever reported in the literature. Moreover, we seem to have
achieved significantly larger speedup compared to all previously reported
implementations of this algorithm.
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1 Introduction

The discrete logarithm problem over finite fields serves as the basis of several
cryptographic primitives. For example, the Diffie-Hellman key-agreement proto-
col, the ElGamal public-key cryptosystem and the digital signature algorithm
(DSA) [1] rely on the difficulty of solving the discrete logarithm problem, for
their security. The fastest known algorithms for solving the discrete logarithm
problem require the solution of large sparse linear systems over finite rings. As
the size of the system of equations increases, standard Gaussian elimination be-
comes impractical. Some alternative methods prove to be computationally more
attractive than Gaussian elimination, particularly for large and sparse linear
systems. Efficient implementations of these iterative system solvers are quite
challenging, and the linear-algebra phase often turns out to be the practical bot-
tleneck in the context of solving the discrete logarithm problem. The Lanczos
method [2–5] and the Wiedemann method [6–8] are two iterative system solvers
that outperform Gaussian elimination for large sparse linear systems. In this
paper, we concentrate upon solving linear systems modulo primes q using the
Lanczos algorithm.

The sieving part of standard discrete-logarithm algorithms turns out to be
massively parallelizable. On the contrary, the system-solving part offers some
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resistance to massive parallelization. The main focus of this paper is the estab-
lishment of good parallelization potentials of the Lanczos system solver, at least
for a limited number of processing elements.

Published results pertaining to parallelizing the Lanczos algorithm are either
abstract in nature [9], or focused towards systems over GF(2) [10]. The best
speedup is obtained by [10] and is about 6. The parallel Lanczos implementation
over large prime fields, reported by [11], achieves a modest speedup of about 4.5
on 8 processors and a speedup of about 9 on 32 processors. A common feature
of all these implementations is that they have been carried out in distributed
environments.

In this paper, we report our parallel implementation of the Lanczos algorithm
over large finite fields in multi-core shared-memory architectures. We perform
both thread-level parallelism using Pthreads and OpenMP [12] and process-level
parallelism using shared memory and semaphores. Our process-level implementa-
tions outperform our thread-level implementations in terms of scalability. Using
novel load-balancing ideas, we have been able to achieve a speedup of 6.57 on 8
cores.

The rest of the paper is organized as follows. In Section 2, we briefly describe
the standard Lanczos algorithm. Implementation details of the sequential Lanc-
zos algorithm are presented in Section 3. In Section 4, we describe our parallel
implementations with emphasis on load-balancing strategies and issues involved
in thread-level and process-level parallelism. The experimental results are pre-
sented in Section 5. We conclude the paper in Section 6 after highlighting some
directions for future research.

2 The Lanczos Algorithm

We are given an m × n matrix B over a prime field GF(q) with m > n to
represent the linear system

Bx ≡ u (mod q). (1)

We assume that the equations are consistent and u is in the column space of B.
The computation of discrete logarithms requires the solution x to be unique, that
is, the matrix B to be of full column rank. Since the system is overdetermined,
this requirement is ensured with a high probability. The Lanczos algorithm is
classically applicable to systems of the form

Ax = b, (2)

where A is a symmetric, positive-definite matrix over the field of real numbers.
In order to adapt this algorithm to the case of finite fields, we transform Eqn.(1)
to Eqn.(2) by letting

A = BtB, (3)

b = Bt
u, (4)
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where Bt denotes the transpose of B. Now, A is a symmetric matrix, but the
requirement of positive definiteness makes no sense in a setting of finite fields.
The algorithm continues to work if we instead require that w

t

i
Awi 6= 0 for

wi 6= 0. If the modulus q is large, this condition is satisfied with a very high
probability. A solution of Eqn.(1) is definitely a solution of Eqn.(2). The converse
too is expected with a high probability.

The standard Lanczos algorithm solves Eqn.(2) by starting with the ini-
tializations: w0 = b, v1 = Aw0, w1 = v1 − w0(v

t

1Aw0)/(wt

0Aw0), a0 =
(wt

0w0)/(wt

0Aw0), x0 = a0w0. Subsequently, for i = 1, 2, 3, . . . , the steps in
Algorithm 1 are repeated until w

t

i
Awi = 0, which is equivalent to the condition

wi = 0 (with high probability). When this condition is satisfied, the vector xi−1

is a solution to Eqn.(2).

Algorithm 1 An iteration in the Lanczos Algorithm
1: vi+1 = Awi

2: wi+1 = vi+1 −

wi(v
t

i+1Awi)

(wt

i
Awi)

−

wi−1(v
t

i+1Awi−1)

(wt

i−1Awi−1)

3: ai =
(wt

ib)

(wt

i
Awi)

4: xi = xi−1 + aiwi−1

For more details on the Lanczos algorithm, we refer the reader to [5].

3 Sequential Implementation

In this section, we describe our sequential implementation of the standard Lanc-
zos algorithm, modulo a large prime q. This sequential implementation is paral-
lelized later. Systems of linear equations were available to us from an implemen-
tation of the linear sieve method [13]. Larger systems were generated randomly in
accordance with the statistics followed by the entries in the linear-sieve matrices.

3.1 Representing the Matrix B

Due to the nature of the sieving algorithm, the coefficients of the system of
equations have very small positive or negative magnitudes. For the current set
of matrices, we have the coefficients ∈ [−2, c], where c ≤ 50. Most of these
coefficients are ±1. Each such coefficient can be stored as a signed single-precision
(32-bit) integer.

Matrices generated by the sieve algorithms are necessarily very sparse. In
our case, each row contains only O(log q) non-zero entries. We store the matrix
in a compressed row storage (CRS) format, where each row is represented by
an array of coefficient-column index pairs (val, col ind) for the non-zero entries
only. We concatenate the arrays for different rows into a single one-dimensional
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array, and use a separate array row ptr to mark the start indices of the rows
in the concatenated (val, col ind) array. If there are N non-zero entries in the
matrix, then the concatenated array of (val, col ind) pairs requires a storage
proportional to N . The array row ptr demands a size of m + 1 for pointing to
the start indices of the rows. As an example, the CRS format of the matrix

B =

















10 0 0 0 −2
3 9 0 0 0
0 7 8 7 0
3 0 8 0 5
0 8 0 −1 0
0 4 0 0 2

















is shown in Fig. 1. We assume that array indexing starts from 1.

val 10 −2 3 9 7 8 7 3 8 5 8 −1 4 2

col ind 1 5 1 2 2 3 4 1 3 5 2 4 2 5
row ptr 1 3 5 8 11 13 15

Fig. 1. The Compressed Row Storage format of B

val 10 3 3 9 7 8 4 8 8 7 −1 −2 5 2

row ind 1 2 4 2 3 5 6 3 4 3 5 1 4 6
col ptr 1 4 8 10 12 15

Fig. 2. The Compressed Column Storage format of B

We apply the Lanczos method on the modified matrix A = BtB. Since A
is expected to be significantly less sparse than B, we do not compute A explic-
itly. We instead store both B and Bt. The multiplication Awi is computed as
Bt(Bwi). The CRS format of storage of B is not suitable during the outer mul-
tiplication. We need Bt in the CRS format, or equivalently B in the compressed
column storage (CCS) format, as illustrated in Fig. 2. Although this leads to
duplicate storage for the same matrix, the resulting overhead in the running time
turns out to be negligible, and the extra space requirement tolerable.

3.2 The Structure of the Matrix B

The most time-consuming step in the Lanczos iteration is the matrix-vector
multiplication Awi = Bt(Bwi). Optimizing strategies to speed up this operation
call for an investigation of the structure of the matrix B. As we see later, this
structure also has important bearings on load balancing.

The n columns of B are composed of two blocks. The first t columns of B cor-
respond to small primes in the factor base (see the linear-sieve algorithm [13]).
The remaining columns of B correspond to the 2M+1 variables arising out of the
sieving interval. For 1 ≤ i ≤ t, the i-th column heuristically contains about m/pi
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non-zero entries, where pi is the i-th prime. For small values of i, these columns
are, therefore, rather dense. The last 2M +1 entries in each row contain exactly
two non-zero entries which are −1. The two −1 values may happen to coincide,
resulting in a single non-zero entry of −2, but this event has a very low probabil-
ity and is ignored in our subsequent discussion. Each of the last 2M +1 columns
contains 2m/n non-zero entries on an average. For m ≤ 2n, this value is ≤ 4.

About three-fourth of the non-zero entries of B are +1. Most of the remaining
non-zero entries are −1. While multiplying a vector by B or Bt, one gives special
attention to the matrix entries ±1. In a typical sum of the form

∑

r
brwir with

non-zero entries br of B and entries wir of the vector wi, the addition of the
product brwir is replaced by the addition of wir if br = 1 or by the subtraction
of wir if br = −1. Moreover, if we know beforehand a particular value of br

(like br = −1 in the last 2M + 1 rows of Bt), a multi-way branching based
upon the value of br may be replaced by a single unconditional operation (like
subtraction for br = −1). Finally, as pointed out in [11], a good strategy to speed
up the matrix-vector multiplication is to perform the modulo q reduction after
the entire expression

∑

r
brwir is evaluated. Since br are single-precision integers

and wir are general elements of GF(q), the word size of
∑

r
brwir is only slightly

larger than that of q, even when there are many terms in the sum (like during
multiplication by the first row of Bt).

During the matrix-vector multiplication operation, when a particular row of
B or Bt is to be multiplied by a vector, only those vector entries which corre-
spond to the indices of the non-zero matrix entries are needed for multiplication.
Since B is a sparse matrix, these indices are usually widely apart. This, in turn,
indicates that almost every multiplication of a matrix entry by a vector entry
encounters a page fault while accessing the vector entry. The effect of these page
faults is more pronounced in a parallel implementation, where multiple processes
or threads vie for shared L2 cache memory. This problem can be solved by rear-
ranging the rows and columns of B so as to bring the non-zero entries as close
to each other as possible. For linear-sieve matrices, the m × (2M + 1) block of
the entries with value −1 readily yields to such rearrangement possibilities. Our
experience suggests that it is possible to bring the −1 values close to each other
for over 50% of the occurrences.

It is important to comment here that although the above optimization tricks
are applied to matrices generated from the linear-sieve method, they apply iden-
tically to matrices generated by other sieving algorithms. The cubic-sieve method
[13] generates matrices with the only exception that exactly three (instead of
two) non-zero entries of −1 are present in the last 2M + 1 columns in each row.
Matrices generated by the number-field-sieve method [14] do not contain the
block of −1’s. They instead contain two copies of the block resembling the first t
columns of linear-sieve matrices. One of these blocks corresponds to small ratio-
nal primes and has small positive entries, whereas the other block corresponds
to small complex primes and has small negative entries. In any case, most of the
non-zero entries of the matrices are ±1.
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4 Parallel Implementation

We now elaborate our efforts to parallelize the Lanczos iteration given as Algo-
rithm 1. The different iterations of the Lanczos loop are inherently sequential,
that is, no iteration may start before the previous iteration completes. We instead
parallelize each iteration separately. More precisely, each of the following opera-
tions is individually parallelized: matrix-vector product, vector-vector product,
scalar-vector product, vector-vector addition and subtraction, and vector copy.

4.1 Load Balancing

Suppose that each basic operation is distributed to run in parallel in P pro-
cessors. In order to avoid long waits during synchronization, each parallelization
step must involve careful load balancing among the P processors. For most of the
operations just mentioned, an equitable load distribution is straightforward. For
example, each addition, subtraction or multiplication operation on two (dense)
vectors of size n is most equitably distributed if each processor handles exactly
n/P entries of the operand vectors.

Non-trivial efforts are needed by the matrix-vector product vi+1 = Bt(Bwi).
This operation is actually carried out as two matrix-vector products:

a. z = Bwi

b. vi+1 = Bt
z

The first of these products involves multiplication of the vector wi by the rows
of B. The rows of B do not show significant variations among one another, in
terms of both the number of non-zero entries and the values of these entries. As
a result, it suffices to distribute an equal number m/P of rows to each processor.
For small values of P (like P ≤ 8), the number m/P is large enough to absorb
small statistical variations among the different rows.

The second product involves multiplication of z by the columns of B. There
exist marked variations among the different columns of B, in terms of both the
count of non-zero entries and the values of these entries. A blind distribution
of n/P columns of B to each processor leads to very serious load imbalance
among the processors. The implementation of [10] starts with the distribution
of an equal number of columns to each processor. It subsequently interchanges
columns among the processors until each processor gets an approximately equal
share of non-zero entries. In the end, this strategy achieves both an equal number
of columns and an equal number of non-zero entries, for each processor.

Since we work in a shared-memory architecture, data transmission delays are
not of concern to us, so we drop the requirement of equality in the number of
columns across different processors. Second, we consider the fact that an equality
in the number of non-zero entries is not a good measure of the actual load, since
our implementation handles the three types of non-zero values of a matrix entry
(1, −1 and anything else) differently. We assign appropriate weights to these
three types of entries, based upon the time needed to perform the respective
arithmetic operations by the underlying multiple-precision integer library. A
scheme that worked well for our implementations is to assign a weight of 1.0 to
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each matrix entry +1, a weight of 1.2 to each matrix entry −1, and a weight of
1.5 to a non-zero entry other than ±1.

Such a system of assigning a fixed weight to each non-zero value, although
justifiable and capable of producing nearly optimal solutions, looks somewhat
heuristic and can be improved upon. The trouble is we do not explicitly con-
sider the dependence of the timing of an arithmetic operation on the values of
its operands. For example, each non-zero entry of B other than ±1 involves a
multiplication, the running time of which may depend on the value of the ma-
trix entry. Moreover, the value of the accumulating sum also plays a role in the
timing. An exact characterization of this dependence appears well beyond the
control of a programmer, because several factors (including the implementation
of the multiple-precision library, the effects of the compiler, the instruction set
of the processor) play potentially important roles in this connection.

In view of this, we suggest the following strategy. We actually record the
timing against each non-zero entry of B, when Bt is multiplied by a vector z.
This vector z may be chosen randomly from GF(q)m. Another strategy is to run
a few iterations of the Lanczos loop itself and record the element-wise timings
during the product Bt

z. (For a few initial iterations, the vector wi remains
sparse, so timing data for, say, the first ten iterations may be discarded.) Data
obtained from a reasonable number of multiplications Bt

z is averaged to assign
a true weight to each non-zero entry of B.

The weight of a column is the sum of the weights of its non-zero entries. We
distribute columns to P processors in such a way that each processor receives
an equal share of the total load. To each processor, we first assign a chunk from
the first t columns. The resulting load imbalance is later repaired by distributing
chunks from the remaining 2M +1 columns. In a linear-sieve matrix, 2M +1 ≫ t
(for example, t = 7, 000 and 2M +1 = 60, 001 for the matrix we have from [13]).
Moreover, each of the last 2M + 1 columns is rather low-weight. As a result, a
fine load balancing among the processors is easy to achieve.

4.2 Load Balancing in Parallel

A limitation of the above load-balancing scheme is that the timing figures are
measured by a sequential version of the code. However, we apply these timing
data in a parallel environment which may be quite different from a sequential
environment. This means that operations that are equitably distributed accord-
ing to sequential timing data may lead to improper load balancing. We solve this
problem by measuring the timings from runs of the matrix-vector multiplication
in parallel. We start with a crude load-balancing scheme in which the columns
of B are alternately distributed to the processes/threads. Unfortunately, a prac-
tical implementation of this strategy did not yield better performance in our
experiments. Nonetheless, we mention this strategy here with the hope that it
may prove to be useful in related settings.
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4.3 Thread-level vs Process-level Parallelism

We carried out our implementations on an eight-core machine using thread-level
parallelism (TLP) provided by Pthreads and OpenMP, and process-level paral-
lelism (PLP) involving shared memory and semaphores. The Lanczos algorithm
was initially programmed using functions from the GMP [15] library, prefixed
with mpz. These functions allocate dynamic memory to output operands, giving
rise to heap contention. Assigning each thread its own heap, as can be achieved
by the Hoard memory allocator [16], eliminated the problem. As an alternative
approach, we considered the fast, low-level mpn routines provided by GMP. Un-
like mpz, the mpn functions do not allocate memory to its output operands and
assume that an appropriate amount of memory is already allocated to each out-
put operand. Before starting the Lanczos loop, we allocated memory to all loop
variables. This made fast GMP routines usable even in a thread-level implemen-
tation, without costly waits arising out of heap contention.

We also investigated an alternative implementation of the Lanczos algorithm,
using both TLP and PLP. A proprietary library CCrypto was used for this
implementation. This library was written and optimized for 32-bit architectures.
With some efforts, it could be ported to 64-bit architectures, but absence of
platform-specific optimization tricks resulted in a library somewhat slower than
GMP. Since our primary focus was to investigate the parallelization possibilities
of the Lanczos algorithm, we continued to work with the slow library. Indeed,
the highest speedup figures were obtained by PLP under the CCrypto library.

5 Experimental Results

The computations were carried out on an Intelr Xeonr E5410 dual-socket quad-
core Linux server. The eight processors run at a clock speed of 2.33 GHz and
support 64-bit computations. The machine has 8 GBytes of main memory and
a shared L2 cache of size 24 MBytes across 8 cores. One of the linear systems
(q-149) used in testing the algorithm was obtained by the linear-sieve method.
Larger systems were generated imitating the distribution of elements in the q-149
matrix. Here, we report our implementation on a 1, 600, 000× 2, 200, 000 system
(q-512) modulo a 512-bit prime. The thread-level parallelism was obtained sepa-
rately using Pthreads and OpenMP version 4.3.2. We also exploited process-level
parallelism under low-level shared-memory and semaphore constructs. All these
implementations used GMP version 4.3.1, for multi-precision computations. The
CCrypto library, on the other hand, was used in conjunction with Pthreads
(TLP) and also with shared memory and semaphores (PLP).

Fig. 3 shows the process-level and the thread-level speedups for the system
q-512, obtained as a function of the number of cores, by GMP and CCrypto.
We obtained a maximum speedup of 6.57 using a combination of PLP and
CCrypto, whereas a maximum speedup of 5.11 was registered using a combi-
nation of PLP and GMP. For the thread-level implementations, the maximum
speedup obtained was 4.51 with GMP and 5.96 with CCrypto. From Fig. 3(b),
we notice that the speedup figures obtained by Pthreads and OpenMP were
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Fig. 3. Speedup: (a) Process-level parallelism (b) Thread-level parallelism

almost identical. However, it remains unexplained why thread-level implementa-
tions consistently exhibit somewhat poorer performance than the corresponding
process-level implementations.
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Fig. 4. Speedup obtained by individual modules of Lanczos (a) CCrypto (b) GMP

Fig. 4 shows the speedup values achieved by the major modules of the Lanczos
loop. In these figures, matvecmul stands for multiplication by B, matvecmulT
denotes multiplication by Bt, and vecvecmul stands for the average over the
three products v

t

i+1vi+1, v
t

i+1vi, w
t

i
vi+1. Finally, update-w stands for the com-

putation of wi+1 (Step 2 of Algorithm 1) without the vector-vector products,
and update-x represents the computation of xi (Steps 3 and 4 of Algorithm 1).
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It is evident from Fig. 4 that the matrix-vector products (particularly the multi-
plication by Bt) constitute the practical bottleneck in the parallelization of the
Lanczos algorithm.

6 Conclusion

In this paper, we report an aggressive attempt to parallelize the Lanczos sparse
linear system solving algorithm modulo large primes, on a multi-core architec-
ture. Using process-level parallelism in conjunction with shared memory and
semaphores, we have been able to achieve a record speedup of 6.57 on eight
cores. Our efforts, however, open up a host of questions, the pursuit of which
would further our implementation study.

a) The matrix-vector multiplication operation consumes nearly three-fourth of
the total parallel execution time and constitutes the practical bottleneck in
parallelization attempts. An improved speedup in this operation may reduce
the absolute running time considerably, and this calls for further research
endeavor tailored to this specific operation only.

b) Use of multiple multi-core machines to parallelize the Lanczos solver indi-
cates a new combination of distributed and shared-memory computation
and may lead to more positive results in favor of the parallelizability of the
Lanczos algorithm.

c) Structured Gaussian elimination [4] is a technique that reduces the size of a
sparse matrix and is often applied before invoking a sparse system solver like
the Lanczos algorithm. Typically, structured Gaussian elimination results
in smaller but considerably denser matrices. It is an interesting study to
compare the performance of the Lanczos algorithm on a (relatively) dense
reduced matrix with that on the original sparse matrix.
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