A new key-predistribution scheme for highly
mobile sensor networks

Abhijit Das* Bimal Kumar Roy'

*Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur 721 302, India
abhij@cse.iitkgp.ernet.in

fApplied Statistics Unit
Indian Statistical Institute, Calcutta 700 035, India
bimal@isical.ac.in

Abstract. In this paper, we propose a new deterministic key predistri-
bution scheme for secure communication in wireless sensor networks. Our
scheme provides better trade-off among scalability, computation over-
head, connectivity and resilience against node captures than existing
key predistribution schemes, particularly in situations where the nodes
in the network are highly mobile.

1 Introduction

Secure communication in a network of resource-constrained sensor nodes has
been an important area of research in the recent past. In a network where the
nodes are static (or have only very limited mobility), deployed nodes establish
secure links with neighboring nodes using predistributed keys by a process called
shared key discovery. In this paper, we address the situation where the nodes in
the sensor network are highly mobile. The nodes may reestablish secure links by
carrying out the shared key discovery phase periodically. The resulting overhead
becomes unacceptably high under most of the existing schemes. In view of this,
we look for a key predistribution scheme with modified requirements. We assume
that the nodes are aware of their movements. If not, a node may periodically
probe its neighborhood and invokes a key reestablishment procedure if it finds
a significant change in its neighborhood. Suppose that a node u attempts to
reestablish keys in a new neighborhood, and v is an arbitrary neighbor of . The
reestablishment process should meet the following desirable properties.

— The reestablishment process is initiated by u and requires the cooperation
of each neighboring node v.

— The node u is allowed to perform some reasonable amount of computation.
If m is the number of nodes in the neighborhood of u, then a computation
of amount O(m) is the absolute minimum.

— Each neighboring node v must not be subject to too much computation
and/or communication overhead. A good algorithm corresponds to this over-
head to be of an amount O(1) per neighbor.

The basic scheme [5] and its variants [3], the polynomial-pool scheme [7] and
the matrix-based scheme [4] incur sufficiently more overhead than this desirable
minimum. Several deterministic and hybrid schemes [1,2,6,10] are available in
the literature. These schemes do not make it clear how u can quickly compute the
key ring of v, often without invoking the entire key predistribution procedure.
The scheme of [8] addresses the issue of the essential asymmetry in the key
reestablishment phase as mentioned above. However, the computation overhead
of w in this scheme is very high. Ruj and Roy propose a scheme [9] which seems to
be the most appropriate for mobile networks, but has small maximum supported
network sizes and poor resilience against node captures.

In this paper, we improve Ruj and Roy’s scheme and obtain a trade-off among
scalability, security and connectivity, which appears acceptable in most practical
applications. Our scheme achieves the lower bounds on computation overhead for
both v and v. A matrix-layout based scheme (henceforth referred to as the ML
scheme) is at the heart of our modification (Section 2). The ML scheme achieves
high connectivity, but suffers from somewhat poor resilience, particularly against
selective node captures (Sections 3 and 4).

2 Our matrix-layout based (ML) scheme

2.1 Construction of the layout matrix

Let ¢ denote the maximum number of symmetric keys that each sensor node can
store in its memory. We assume that ¢ is even. We take d = t+2 and construct a
d x d matrix as follows. We first fill the main diagonal of the matrix by a special
symbol which does not stand for the id of any key or node. We then fill out
the triangular region below (and excluding) the main diagonal and above (and
including) the reverse main diagonal in the column-major order by the integers

1,2,3,..., (%)2 Subsequently, we fill out the triangular region above (and ex-

cluding) the main diagonal and above (and including) the reverse main diagonal

in the row-major order by the integers (%)2 + 1, (%)2 +2,...,2 (%)2 Fi-
nally, we reflect about the reverse main diagonal the entries above this diagonal
in order to fill the region below this diagonal, and make the matrix symmetric
with respect to the reverse main diagonal. For example, for t = 4, the layout

matrix is constructed as follows.

* * 10 11 12 13 14 * 10 11 12 13 14
1 =* 1 = 15 16 17 1 =« 15 16 17 13
2 6 x . 2 6 = 18 . 2 6 x 18 16 12
3 7 9 =« 3 7 9 * 3 7 9 * 15 11
4 8 * 4 8 * 4 8 7 6 * 10
5 * 5 * 5 4 3 2 1 *

For easy future references, we call the triangular region in the layout matrix

storing 1,2, .. ., (%)2 as the left triangle (LT), and the triangular region storing

(%)2 +1, (%)2 +2,...,2 (%)2 as the top triangle (TT). Their reflections
about the reverse main diagonal are respectively called the bottom triangle (BT)
and the right triangle (RT).

We assume that matrix indexing is zero-based. Thus, the top-left element
of the layout matrix has index (0,0), and the bottom-right element has index
(t+1,t+1). The following formula converts an index (7, j) to the entry of the
layout matrix at the (4, j)-th location.

* if i =7,
. —j2H(t+ 1))+ ifi>jandi<t+1-—j,
[, j) = f(t+21—j,t+1—i) ifi>jandi>t+1—j,
(%) +£G.0) if i <.
Given (i,7), one can compute f(i,7) in O(1) time (using a few single-precision
operations only).

2.2 Key predistribution

Before deployment of the sensor nodes, the key-ring of each node is loaded
with ¢ symmetric keys (like AES keys). These keys are selected from a pool

of T =2 (#)2 randomly chosen keys having the ids 1,2,3,...,7. The maxi-

mum number of nodes supported by our scheme is also N = 2 (%)2 The nodes
in the network are also given ids in the range 1,2,3,..., N.

For each position (i,7) in the triangle LT in the layout matrix, one first
computes u = f(i,7). All the entries in the j-th column in the matrix are then
considered, except u itself and the special symbol *. The ¢ keys with ids equal
to these t elements are loaded in the key-ring of v along with the respective key
ids. In addition, the location (7, j) is also stored in the memory of w.

Subsequently, for each position (¢, j) in the triangle TT, one computes u =
fl,9) = (%)2 + f(4,7). The key-ring of u is loaded with the keys whose ids
are the elements of the i-th row of the matrix (except v and *).

2.3 Shared key discovery

Suppose that a node u wants to establish a key with a node v. Let (u;,u;) and
(vs,v;) denote the locations of the nodes w and v in the layout matrix.

Assume that v is located in the triangle LT in the layout matrix. Figures 1
and 2 explain this situation. First consider the case that (v;,v;) too is in the
triangle LT. If u; = v;, then u and v share the ¢ — 1 keys with ids f(¢, u;) for
i # u;,v;,u; (Figure 1(c)).

If v and v are both in the triangle LT and u; # v;, we have a situation
described in Figure 1(a). By construction, the v;-th column of the layout matrix
is identical to its (¢ + 1 — v;)-th row. The u;-th column and the (¢ + 1 — v;)-th
row intersect at the unique location (¢t + 1 — vj, u;). If this location is distinct
from (u;, u;), then u and v share the unique key with id f(t +1 —v;,u;). If, on
the other hand, u; =t + 1 — v;, then v and v do not share a key (Figure 2(a)).

Finally, suppose that (v;,v;) is in the triangle TT of the layout matrix. In
this case, v and v share the unique key with id f(v;,u;) (Figure 1(b)), unless
v; = u; (Figure 2(b)) or v; = u; (Figure 2(c)).

Fig. 1. Two nodes u, v sharing keys
Ku

() k' (9

Fig. 2. Two nodes u, v not sharing keys

To sum up, the node u identifies in O(1) time a key shared with v (provided
that such a key exists). If m denotes the number of neighbors of w in its new
neighborhood, then using only O(m) computation and communication overhead
u can reestablish its key connectivity records, whereas each new neighbor of u
incurs only O(1) computation and communication overhead. No key predistri-
bution schemes proposed earlier achieve such a high efficiency.

3 Analysis of the ML scheme

3.1 Connectivity

Figure 2 shows the three situations in which two nodes u and v do not share a key.
The number of such ordered pairs (u,v) is (¢ + 1)(t + 2)(2t +3)/3 = O(t3). The
total number of ordered pairs (u,v) is N(N — 1) = O(t*), where N = 2 (%)2

Proposition The connectivity of the ML scheme is p = 1 — @ (%) More
precisely, p ~ 1 — % except for very small values of ¢. In particular, p is very
close to 1 for all practical values of t. Moreover, the number of ordered pairs of
nodes sharing t — 1 common keys is t(t + 2)(2t +5)/6 = O(t3), i.e., most pairs

of connected nodes share unique keys.

Table 1. Comparison of parameters for several schemes (¢ = 100)

Key-pool|Max net-|Connec- Simulated values of C(s) for s =
Scheme size |work size| tivity | 10 | 20 | 50 | 100 | 150 | 200 | 250
Basic 5202 - 0.859 [0.176/0.322{0.621{0.856|0.946|0.979(0.992
2922 - 0.971 |0.294/0.502|0.825(0.969|0.995|0.999/1.000
2832 - 0.974]0.302|0.513{0.834(0.973]|0.995|0.999(1.000

Ruj & Roy I | 1326 1326 1.0 {0.166|0.470{0.918(0.998]|1.000{1.000{1.000
Ruj & Roy II| 1326 2652 1.0 |0.113{0.393]0.898(0.998(1.000|1.000{1.000
ML I 5202 5202 0.974 10.236/0.414(0.702(0.898]|0.964|0.989(0.993
ML II 5202 10404 | 0.971 |0.176]0.324|0.612]|0.863]0.945|0.979(0.991

3.2 Security analysis

The computational efficiency and high connectivity of the ML scheme come at
a cost. The resilience of the network against node captures is somewhat poor.
Capturing only ¢ + 2 nodes (one node from each column of the triangle LT and
one node from each row of the triangle TT) reveals all the keys to an adver-
sary. However, if we adopt a model of random node capture, we get a resilience
similar to the basic scheme [5] under the assumption that the deterministically
distributed keys behave as randomly distributed keys. This assumption is, how-
ever, not very accurate, and we obtain a resilience slightly smaller than that of
the basic scheme with the same pool size.

3.3 Doubling the maximum supported network size

The key-rings of the nodes in the triangle LT (resp. TT) are based on the columns
(resp. rows) of the matrix. We now distribute the same keys to a new set of

N =2 (#)2 nodes. In this case the key rings of the nodes in the triangle LT
(resp. TT) are based on the rows (resp. columns) of the layout matrix. The
connectivity among the new nodes remains identical with that among the old
nodes. The cross connectivity among the old nodes and the new nodes contin-
ues to remain 1 — ©(1/t). The maximum supported network size now becomes

4 (%)2 ~ t2. This extended scheme is called the ML Scheme II.

4 Comparison with other schemes

In Table 1, we compare our schemes with the basic scheme [5] and Ruj and
Roy’s schemes [9]. We take the capacity of the key-ring in each sensor node to
be t = 100 keys. By C(s), we denote the fraction of compromised links among
uncaptured nodes, when s randomly chosen nodes are captured.

Let us first compare our scheme with Ruj and Roy’s scheme. By reducing
the amount of overlap between key rings, we have increased both the key-pool
size and the maximum supported network size by a factor of nearly 4. This gain

comes at the cost of some marginal loss of connectivity. For ¢ = 100, the loss of
connectivity is less than 3%. When the number of captured nodes is quite small,
Ruj and Roy’s schemes provide better resilience than our schemes because of
larger overlaps of key rings of the nodes. However, as the number of captured
nodes increases, a smaller key-pool size in Ruj and Roy’s schemes makes their
resilience noticeably poorer than that of ML schemes.

The basic scheme supports networks of any size. When we use the same key-
pool size as the ML schemes, the basic scheme yields poorer connectivity but
higher resilience against node captures. On the other hand, if we reduce the
key-pool size for the basic scheme so as to achieve the same connectivity as the
ML schemes, its resilience becomes poorer than that for the ML schemes.

5 Conclusion

In this paper, we propose the matrix-layout (ML) scheme for deterministic key
predistribution in a sensor network. Our scheme is very suitable for mobile net-
works, since it optimizes the computation and communication overhead of key
reestablishment. However, poor resilience of our scheme against node captures
(particularly selective captures) is expected to attract further research atten-
tion. Several ad hoc techniques (like using multiple copies of the ML scheme)
can increase resilience at the cost of decreased connectivity.

References

1. S. A. Camtepe and B. Yener, ‘Combinatorial design of key distribution mechanisms
for wireless sensor networks’, ESORICS 2004, LNCS 3193, 293-308, 2004.

2. D. Chakrabarti, S. Maitra and B. K. Roy, ‘A key pre-distribution scheme for wire-
less sensor networks: merging blocks in combinatorial design’, Intl. JI. Inf. Sec.
5(2), 105-114, 2006.

3. H. Chan, A. Perrig and D. Song, ‘Random key predistribution for sensor networks’,
IEEE Symposium on Security and Privacy, 197-213, 2003.

4. W. Du, J. Deng, Y. S. Han and P. K. Varshney, ‘A pairwise key pre-distribution
scheme for wireless sensor networks’, CCS’03, 42-51, 2003.

5. L. Eschenauer and V. D. Gligor, ‘A key management scheme for distributed sensor
networks’, CCS’02, 41-47, 2002.

6. J. Lee and D. R. Stinson, ‘Deterministic key predistribution schemes for distributed
sensor networks’, SAC 2004, LNCS 3357, 294-307, 2005.

7. D. Liu and P. Ning, ‘Establishing pairwise keys in distributed sensor networks’,
CCS’03, 52-61, 2003.

8. M. Mehta, D. Huang and L. Harn, ‘RINK-RKP: A scheme for key predistribution
and shared-key discovery in sensor networks’, IPCCC’05, 193—-197, 2005.

9. S. Ryj and B. Roy, ‘Key predistribution using partially balanced designs in wireless
sensor networks’, ISPA 2007, LNCS 4742, 431-445, 2007.

10. D. S. Sanchez and H. Baldus, ‘A deterministic pairwise key pre-distribution scheme
for mobile sensor networks’, Securecomm’05, 277-288, 2005.

