
Performance comparison of linear sieve and

cubic sieve algorithms for discrete logarithms

over prime fields

Abhijit Das and C. E. Veni Madhavan

Department of Computer Science and Automation
Indian Institute of Science, Bangalore 560 012, India

abhij,cevm@csa.iisc.ernet.in

Abstract. It is of interest in cryptographic applications to obtain prac-
tical performance improvements for the discrete logarithm problem over
prime fields Fp with p of size ≤ 500 bits. The linear sieve and the cu-
bic sieve methods described in Coppersmith, Odlyzko and Schroeppel’s
paper [3] are two practical algorithms for computing discrete logarithms
over prime fields. The cubic sieve algorithm is asymptotically faster than
the linear sieve algorithm.
We discuss an efficient implementation of the cubic sieve algorithm in-
corporating two heuristic principles. We demonstrate through empirical
performance measures that for a special class of primes the cubic sieve
method runs about two to three times faster than the linear sieve method
even in cases of small prime fields of size about 150 bits.

1 Introduction

Computation of discrete logarithms over a finite field Fq is a difficult problem.
No algorithms are known that solve the problem in time polynomially bounded
by the size of the field (i.e. log q). The index calculus algorithm [3, 7, 9–11] is
currently the best known algorithm for this purpose and has a sub-exponential
expected running time given by

L〈q, γ, c〉 = exp
(

(c+ o(1))(log q)γ(log log q)1−γ
)

for some constant c and for some real number 0 < γ < 1. For practical applica-
tions, one typically uses prime fields or fields of characteristic 2. In this paper,
we focus on prime fields only.

Let Fp be a prime field of cardinality p. For an element a ∈ Fp, we denote by
a the representative of a in the set { 0, 1, . . . , p−1 }. Let g be a primitive element
of Fp (i.e. a generator of the cyclic multiplicative group Fp

∗). Given an element
a ∈ Fp

∗, there exists a unique integer 0 ≤ x ≤ p− 2 such that a = gx in Fp. This
integer x is called the discrete logarithm or index of a in Fp with respect to g
and is denoted by indg(a). The determination of x from the knowledge of p, g
and a is referred to as the discrete logarithm problem. In general, one need not
assume g to be a primitive element and is supposed to compute x from a and

295

g, if such an x exists (i.e. if a belongs to the cyclic subgroup of Fp
∗ generated by

g). In this paper, we always assume for simplicity that g is a primitive element
of Fp.

In what follows we denote by L(p, c) any quantity that satisfies

L(p, c) = L〈p, 1/2, c〉 = exp
(

(c+ o(1))
√

ln p ln ln p
)

,

where c is a positive constant and lnx is the natural logarithm of x.1 When p
is understood from the context, we write L[c] for L(p, c). In particular, L[1] is
denoted simply by L.

The näıve index calculus algorithm [10, Section 6.6.2] for the computation of
discrete logarithms over prime fields and the adaptations of this algorithm take
time L[c] for c between 1.5 and 2 and are not useful in practice for prime fields Fp

with p > 2100. Coppersmith, Odlyzko and Schroeppel [3] proposed three variants
of the index calculus method that run in time L[1] and are practical for p ≤ 2250.
A subsequent paper [7] by LaMacchia and Odlyzko reports implementation of
two of these three variants, namely the linear sieve method and the Gaussian
integer method. They were able to compute discrete logarithms in Fp with p of
about 200 bits.

The paper [3] also describes a cubic sieve algorithm due to Reyneri for the
computation of discrete logarithms over prime fields. The cubic sieve algorithm
has a heuristic running time of L[

√
2α] for some 1

3
≤ α < 1

2
and is, there-

fore, asymptotically faster than the linear sieve algorithm (and the other L[1]
algorithms described in [3]). However, the authors of [3] conjectured that the
theoretical asymptotics do not appear to take over for p in the range of practical
interest (a few hundred bits). A second problem associated with the cubic sieve
algorithm is that it requires a solution of a certain Diophantine equation. It’s
not known how to find a solution of this Diophantine equation in the general
case. For certain special primes p a solution arises naturally, for example, when
p is close to a whole cube.

Recently, a new variant of the index calculus method based on general number
field sieves (NFS) has been proposed [6] and has a conjectured heuristic run time
of

L〈p, 1/3, c〉 = exp
(

(c+ o(1))(log p)
1

3 (log log p)
2

3

)

.

Weber et. al. [12, 14, 15] have implemented and proved the practicality of this
method. Currently the NFS-based methods are known to be the fastest algo-
rithms for solving the discrete logarithm problem over prime fields.

In this paper, we report efficient implementations of the linear sieve and the
cubic sieve algorithms. To the best of our knowledge, ours is the first large-scale
implementation of the cubic sieve algorithm. In our implementation, we employ
ideas similar to those used in the quadratic sieve algorithm for integer factoriza-
tion [1, 5, 13]. Our experiments seem to reveal that the equation collecting phase
of the cubic sieve algorithm, whenever applicable, runs faster than that in the
linear sieve algorithm.

1 We denote log x = log
10

x, lnx = loge x and lg x = log
2
x.

296

In the next two sections, we briefly describe the linear sieve and the cubic
sieve algorithms. Performance of our implementation and comparison of the two
algorithms for a randomly chosen prime field are presented in Sections 4 and 5.
Our emphasis is not to set a record on the computation of discrete logarithms,
but to point out that our heuristic principles really work in practical situations.
We, therefore, experimented with a small prime (of length around 150 bits).
Even for this field we get a performance gain between two and three. For larger
prime fields, the performance improvement of the cubic sieve method over the
linear sieve method is expected to get accentuated. We conclude the paper in
Section 6.

2 The linear sieve algorithm

The first stage for the computation of discrete logarithms over a prime field
Fp using the currently known subexponential methods involves calculation of
discrete logarithms of elements of a given subset of Fp, called the factor base.
To this end, a set of linear congruences are solved modulo p − 1. Each such
congruence is obtained by checking the factorization of certain integers computed
deterministically or randomly. For the linear sieve algorithm, the congruences
are generated in the following way.

Let H = ⌊√p⌋+1 and J = H2 − p. Then J ≤ 2
√
p. For small integers c1, c2,

the right side of the following congruence (henceforth denoted as T (c1, c2))

(H + c1)(H + c2) ≡ J + (c1 + c2)H + c1c2 (mod p) (1)

is of the order of
√
p. If the integer T (c1, c2) is smooth with respect to the first t

primes q1, q2, . . . , qt, that is, if we have a factorization like J+(c1+c2)H+c1c2 =
∏t

i=1
qαi

i , then we have a relation

indg(H + c1) + indg(H + c2) =
t

∑

i=1

αi indg(qi). (2)

For the linear sieve algorithm, the factor base comprises of primes less than
L[1/2] (so that by the prime number theorem t ≈ L[1/2]/ ln(L[1/2])) and integers
H+c for −M ≤ c ≤ M . The bound M on c is chosen such that 2M ≈ L[1/2+ ǫ]
for some small positive real ǫ. Once we check the factorization of T (c1, c2) for
all values of c1 and c2 in the indicated range, we are expected to get L[1/2+ 3ǫ]
relations like (2) involving the unknown indices of the factor base elements. If
we further assume that the primitive element g is a small prime which itself is in
the factor base, then we get a relation indg(g) = 1. The resulting system with
asymptotically more equations than unknowns is expected to be of full rank and
is solved to compute the discrete logarithms of elements in the factor base.

In order to check for the smoothness of the integers T (c1, c2) = J + (c1 +
c2)H+c1c2 for c1, c2 in the range −M, . . . ,M , sieving techniques are used. First
one fixes a c1 and initializes to zero an array A indexed −M, . . . ,M . One then

297

computes for each prime power qh (q is a small prime in the factor base and h is
a small positive exponent), a solution for c2 of the congruence (H + c1)c2+(J +
c1H) ≡ 0 (mod qh). If the gcd (H + c1, q) = 1, i.e. if H + c1 is not a multiple
of q, then the solution is given by d ≡ −(J + c1H)(H + c1)

−1 (mod qh).
The inverse in the last equation can be calculated by running the extended
gcd algorithm on H + c1 and qh. Then for each value of c2 (−M ≤ c2 ≤ M)
that is congruent to d (mod qh), lg q is added2 to the corresponding array
locations Ac2 . On the other hand, if qh1 ||(H + c1) with h1 > 0, we compute
h2 ≥ 0 such that qh2 ||(J + c1H). If h1 > h2, then for each value of c2, the
expression T (c1, c2) is divisible by qh2 and by no higher powers of q. So we add
the quantity h2 ln q to Ac2 for all −M ≤ c2 ≤ M . Finally, if h1 ≤ h2, then we
add h1 ln q to Ac2 for all −M ≤ c2 ≤ M and for h > h1 solve the congruence as

d ≡ −
(

J+c1H
qh1

)(

H+c1
qh1

)

−1

(mod qh−h1).

Once the above procedure is carried out for each small prime q in the factor
base and for each small exponent h,3 we check for which values of c2, the entry
of A at index c2 is sufficiently close to the value lg (T (c1, c2)). These are pre-
cisely the values of c2 such that for the given c1, the integer T (c1, c2) factorizes
smoothly over the small primes in the factor base.

In an actual implementation, one might choose to vary c1 in the sequence
−M,−M + 1,−M + 2, . . . and, for each c1, consider only the values of c2 in the
range c1 ≤ c2 ≤ M . The criterion for ‘sufficient closeness’ of the array element
Ac2 and lg (T (c1, c2)) goes like this. If T (c1, c2) factorizes smoothly over the small
primes in the factor base, then it should differ from Ac2 by a small positive or
negative value. On the other hand, if the former is not smooth, it would have a
factor at least as small as qt+1, and hence the difference between lg (T (c1, c2))
and Ac2 would not be too less than lg qt+1. In other words, this means that the
values of the difference lg (T (c1, c2)) − Ac2 for smooth values of T (c1, c2) are
well-separated from those for non-smooth values and one might choose for the
criterion a check whether the absolute value of the above difference is less than 1.

This completes the description of the equation collecting phase of the first
stage of the linear sieve algorithm. This is followed by the solution of the linear
system modulo p−1. The second stage of the algorithm involves computation of
discrete logarithms of arbitrary elements of Fp

∗ using the database of logarithms
of factor base elements. We do not deal with these steps in this paper, but refer
the reader to [3, 7, 8] for details.

2 More precisely, some approximate value of lg q, say, for example, the integer
⌊1000 lg q⌋.

3 The exponent h can be chosen in the sequence 1, 2, 3, . . . until one finds an h for
which none of the integers between −M and M is congruent to d.

298

3 The cubic sieve algorithm

Let us assume that we know a solution of the Diophantine equation

X3 ≡ Y 2Z (mod p) (3)

X3 6= Y 2Z

withX,Y, Z of the order of pα for some 1

3
≤ α < 1

2
. Then we have the congruence

(X +AY)(X +BY)(X + CY) ≡

Y 2

[

Z + (AB +AC +BC)X + (ABC)Y

]

(mod p) (4)

for all triples (A,B,C) with A+B + C = 0. If the bracketed expression on the
right side of the above congruence, henceforth denoted as R(A,B,C), is smooth
with respect to the first t primes q1, q2, . . . , qt, that is, if we have a factorization
R(A,B,C) =

∏t
i=1

qβi

i , then we have a relation like

indg(X +AY) + indg(X +BY) + indg(X + CY) ≡
2 indg(Y) +

∑t
i=1

βi indg(qi) (mod p− 1) (5)

If A, B, C are small integers, then R(A,B,C) is of the order of pα, since each
of X, Y and Z is of the same order. This means that we are now checking
integers smaller than O(p

1

2) for smoothness over first t primes. As a result, we
are expected to get relations like (5) more easily than relations like (2) as in the
linear sieve method.

This observation leads to the formulation of the cubic sieve algorithm as
follows. The factor base comprises of primes less than L[

√

α/2] (so that t ≈
L[
√

α/2]/ ln
(

L[
√

α/2]
)

), the integer Y (or Y 2) and the integers X + AY for

0 ≤ |A| ≤ M , where M is of the order of L[
√

α/2]. The integer R(A,B,C) is,

therefore, of the order of pαL[
√

3α/2] and hence the probability that it is smooth

over the first t primes selected as above, is about L[−
√

α/2]. As we check the

smoothness for L[
√
2α] triples (A,B,C) (with A + B + C = 0), we expect to

obtain L[
√

α/2] relations like (5).

In order to check for the smoothness of R(A,B,C) = Z + (AB + AC +
BC)X + (ABC)Y over the first t primes, sieving techniques are employed. We
maintain an array A indexed −M . . . + M as in the linear sieve algorithm. At
the beginning of each sieving step, we fix C, initialize the array A to zero and let
B vary. The relation A + B + C = 0 allows us to eliminate A from R(A,B,C)
as R(A,B,C) = −B(B + C)(X + CY) + (Z − C2X). For a fixed C, we try to
solve the congruence

−B(B + C)(X + CY) + (Z − C2X) ≡ 0 (mod qh) (6)

299

where q is a small prime in the factor base and h is a small positive exponent. This
is a quadratic congruence in B. If X + CY is invertible modulo qh (i.e. modulo
q), then the solution for B is given by

B ≡ −C

2
+

√

(X + CY)−1(Z − C2X) +
C2

4
(mod qh) (7)

where the square root is modulo qh. If the expression inside the radical is a
quadratic residue modulo qh, then for each solution d of B in (7), lg q is added
to those indices of A which are congruent to d modulo qh. On the other hand, if
the expression under the radical is a quadratic non-residue modulo qh, we have
no solutions for B in (6). Finally, if X + CY is non-invertible modulo q, we
compute h1 > 0 and h2 ≥ 0 such that qh1 ||(X + CY) and qh2 ||(Z − C2X). If
h1 > h2, then R(A,B,C) is divisible by qh2 and by no higher powers of q for each
value of B (and for the fixed C). We add h2 lg q to Ai for each −M ≤ i ≤ M . On
the other hand, if h1 ≤ h2, we add h1 lg q to Ai for each −M ≤ i ≤ M and try

to solve the congruence −B(B +C)
(

X+CY
qh1

)

+
(

Z−C2X
qh1

)

≡ 0 (mod qh−h1) for

h > h1. Since
X+CY
qh1

is invertible modulo qh−h1 , this congruence can be solved

similar to (7).
Once the above procedure is carried out for each small prime q in the factor

base and for each small exponent h, we check for which values of B, the entry of
A at index B is sufficiently close to the value lg(R(A,B,C)). These are precisely
the values of B for which R(A,B,C) is smooth over the first t primes for the
given C. The criterion of ‘sufficient closeness’ of AB and lg(R(A,B,C)) is the
same as described in connection with the linear sieve algorithm.

In order to avoid duplication of effort, we should examine the smoothness of
R(A,B,C) for −M ≤ A ≤ B ≤ C ≤ M . With this condition, it can be easily
shown that C varies from 0 to M and for a fixed C, B varies from −C/2 to
min(C,M − C). Though we do not use the value of A directly in the sieving
procedure described above, it’s useful4 to note that for a fixed C, A varies from
max(−2C,−M) to −C/2. In particular, A is always negative.

After sufficient number of relations are available, the resulting system is
solved modulo p− 1 and the discrete logarithms of the factor base elements are
stored for computation of individual discrete logarithms. We refer the reader to
[3, 7, 8] for details on the solution of sparse linear systems and on the computation
of individual discrete logarithms with the cubic sieve method.

Attractive as it looks, the cubic sieve method has several drawbacks which
impair its usability in practical situations.

1. It is currently not known how to solve the congruence (3) for a general p.
And even when it is solvable, how large can α be? For practical purposes α
should be as close to 1

3
as possible. No non-trivial results are known to the

authors, that can classify primes p according as the smallest possible values
of α they are associated with.

4 for a reason that will be clear in Section 5

300

2. Because of the quadratic and cubic expressions in A, B and C as coefficients
of X and Y in R(A,B,C), the integers R(A,B,C) tend to be as large as

p
1

2 even when α is equal to 1/3. If we compare this scenario with that for
T (c1, c2) (See Equation (1)), we see that the coefficient of H is a linear func-

tion of c1 and c2 and as such, the integers T (c1, c2) are larger than p
1

2 by a
small multiplicative factor. This shows that though the integers R(A,B,C)
are asymptotically smaller than the integers T (c1, c2), the formers are, in
practice, around 104–106 times smaller than latter ones, even when α as-
sumes the most favorable value (namely, 1/3). In other words, when one
wants to use the cubic sieve algorithm, one should use values of t (i.e. the
number of small primes in the factor base) much larger than the values
prescribed by the asymptotic formula for t.

3. The second stage of the cubic sieve algorithm, i.e. the stage that involves
computation of individual logarithms, is asymptotically as slow as the equa-
tion collection stage. For the linear sieve algorithm, on the other hand, indi-
vidual logarithms can be computed much faster than the equation collecting
phase.

In this paper, we address this second issue related to the cubic sieve algo-
rithm. We report an efficient implementation of the cubic sieve algorithm for the
case α = 1/3, that runs faster than the linear sieve method for the same prime.
Our experimentation tends to reveal that the cubic sieve algorithm, when ap-
plicable, outperforms the linear sieve method, even when the cardinality of the
ground field is around 150 bits long.

4 An efficient implementation of the linear sieve method

Before we delve into the details of the comparison of the linear and cubic sieve
methods, we describe an efficient implementation of the linear sieve algorithm.
The tricks that help us speed up the equation collecting phase of the linear sieve
method are very similar to those employed in the quadratic sieve algorithm for
integer factorization (See [1, 5, 13] for details).

We first recall that at the beginning of each sieving step, we find a solution
for c2 modulo qh in the congruence T (c1, c2) ≡ 0 (mod qh) for every small prime
q in the factor base and for a set of small exponents h. The costliest operation
that need be carried out for each such solution is the computation of a modular
inverse (namely, that of H+ c1 modulo qh). As described in [7] and as is evident
from our experiments too, calculations of these inverses take more than half of
the CPU time needed for the entire equation collecting stage. Any trick that
reduces the number of computations of the inverses, speeds up the algorithm.

One way to achieve this is to solve the congruence every time only for h = 1
and ignore all higher powers of q. That is, for every q (and c1), we check which
of the integers T (c1, c2) are divisible by q and then add lg q to the corresponding
indices of the array A. If some T (c1, c2) is divisible by a higher power of q, this
strategy fails to add lg q the required number of times. As a result, this T (c1, c2),

301

even if smooth, may fail to pass the ‘closeness criterion’ described in Section 2.
This is, however, not a serious problem, because we may increase the cut-off
from a value smaller than lg qt to a value ζ lg qt for some ζ ≥ 1. This means that
some non-smooth T (c1, c2) will pass through the selection criterion in addition
to some smooth ones that could not, otherwise, be detected. This is reasonable,
because the non-smooth ones can be later filtered out from the smooth ones and
one might use even trial divisions to do so. For primes p of less than 200 bits,
values of ζ ≤ 2.5 work quite well in practice [1, 13].

The reason why this strategy performs well in practice is as follows. If q
is small, for example q = 2, we should add only 1 to Ac2 for every power of
2 dividing T (c1, c2). On the other hand, if q is much larger, say q = 1299709
(the 105th prime), then lg q ≈ 20.31 is large. But T (c1, c2) would not be, in
general, divisible by a high power of this q. The approximate calculation of
logarithm of the smooth part of T (c1, c2), therefore, leads to a situation where
the probability that a smooth T (c1, c2) is actually detected as smooth is quite
high. A few relations would be still missed out even with the modified ‘closeness
criterion’, but that is more than compensated by the speed-up gained by the
method.

The above strategy helps us in a way other than by reducing the number of
modular inverses. We note that for practical values of p, the small primes in the
factor base are usually single-precision ones. As a result, the computation of d
(See Section 2) can be carried out using single-precision operations only.

Throughout the rest of this section we compare the performance of the
modified strategy with that of the original strategy for a value of p of length
around 150 bits. This prime is chosen as a random one satisfying the conditions
(i) (p − 1)/2 is also a prime, and (ii) p is close to a whole cube. This second
condition is necessary, because for these primes, the cubic sieve algorithm is also
applicable, so that we can compare the performance of the two sieve algorithms
for these primes. Our experiments are based on the Galois Field Library routines
developed by the authors [4] and are carried out on a 200 MHz Pentium machine
running Linux version 2.0.34 and having 64 Mb RAM. The GNU C Compiler
version 2.7 is used.

Table 1. Performance of the linear sieve algorithm

p = 1320245474656309183513988729373583242842871683
t = 7000, M = 30000
No. of No. of CPU Time

Algorithm ζ Relations (ρ̄) Variables (ν̄) ρ̄/ν̄ (seconds)

Exact 0.1 108637 67001 1.6214 225590

Approximate 1.0 108215 67001 1.6151 101712
1.5 108624 67001 1.6212 101818
2.0 108636 67001 1.6214 102253
2.5 108637 67001 1.6214 102250

302

In Table 1 we compare the performance of the ‘exact’ version of the algorithm
(where all relations are made available by choosing values of h ≥ 1) with that of
the ‘approximate’ version of the algorithm (in which powers h > 1 are neglected).
The CPU times listed in the table do not include the time for filtering out the
‘spurious’ relations obtained in the approximate version. It is evident from the
table that the performance gain obtained using the heuristic variant is more than
2. It’s also clear that values of ζ between 1.5 and 2 suffice for fields of this size.

5 An efficient implementation of the cubic sieve method

For the cubic sieve method, we employ strategies similar to those described in
the last section. That is, we solve the congruence R(A,B,C) ≡ 0 (mod q) for
each small prime q in the factor base and ignore higher powers of q that might
divide R(A,B,C). As before, we set the cut-off at ζ lg qt for some ζ ≥ 1. We are
not going to elaborate the details of this strategy and the expected benefits once
again in this section. We concentrate on an additional heuristic modification of
the equation collecting phase instead.

We recall from Section 3 that we check the smoothness of R(A,B,C) for
−M ≤ A ≤ B ≤ C ≤ M . With this condition, C varies from 0 to M . We
note that for each value of C, we have to execute the entire sieving operation
once. For each such sieving operation (that is, for a fixed C), the sieving interval
for B is (i.e. the admissible values of B are) −C/2 ≤ B ≤ min(C,M − C).
Correspondingly A = −(B+C) can vary from max(−2C,−M) to −C/2. It’s easy
to see that in this case total number of triples (A,B,C) for which the smoothness

of R(A,B,C) is examined is τ =

M
∑

C=0

(

1 + ⌊C/2⌋ +min(C,M − C)

)

≈ M2/2.

The number of unknowns, that is, the size of the factor base, on the other hand,
is ν ≈ 2M + t.

If we remove the restriction A ≥ −M and allow A to be as negative as −λM
for some 1 < λ ≤ 2, then we are benefitted in the following way. As before, we
allow C to vary from 0 to M keeping the number of sieving operations fixed.
Since A can now assume values smaller than −M , the sieving interval increases
to −C/2 ≤ B ≤ min(C, λM − C). As a result, the total number of triples

(A,B,C) becomes τλ =
M
∑

C=0

(

1+⌊C/2⌋+min(C, λM−C)

)

≈ M2

4
(4λ−λ2−1),

whereas the size of the factor base increases to νλ ≈ (λ + 1)M + t. (Note that
with this notation the value λ = 1 corresponds to the original algorithm and
τ = τ1 and ν = ν1.) The ratio τλ/νλ is approximately proportional to the
number of smooth integers R(A,B,C) generated by the algorithm divided by
the number of unknowns. Therefore, λ should be set at a value for which this
ratio is maximum. If one treats t and M as constants, then the maximum is

attained at λ∗ = −U +
√
U2 + 4U + 1, where U =

M + t

M
= 1 +

t

M
. As we

increase U from 1 to ∞ (or, equivalently the ratio t/M from 0 to ∞), the value

303

of λ∗ increases monotonically from
√
6− 1 ≈ 1.4495 to 2. In the following table

(Table 2), we summarize the variation of τλ/νλ for some values of U . These
values of U correspond from left to right to t ≪ M , t ≈ M/2, t ≈ M and
t ≈ 2M respectively. The corresponding values of λ∗ are respectively 1.4495,
1.5414, 1.6056 and 1.6904. It’s clear from the table, that for practical ranges of
values of U , the choice λ = 1.5 gives performance quite close to the optimal.

Table 2. Variation of τλ/νλ with λ

τλ/νλ (approx)
λ U = 1 U = 1.5 U = 2 U = 3

1 0.2500M 0.2000M 0.1667M 0.1250M
1.5 0.2750M 0.2292M 0.1964M 0.1527M
2 0.2500M 0.2143M 0.1875M 0.1500M
λ∗ 0.2753M 0.2293M 0.1972M 0.1548M

We note that this scheme keeps M and the range of variation of C constant
and hence does not increase the number of sieving steps and, in particular, the
number of modular inverses and square roots. It is, therefore, advisable to apply
the trick (with, say, λ = 1.5) instead of increasing M . With that one is expected
to get a speed-up of about 10 to 20% and obtain a larger database.

In what follows, we report about the performance of the cubic sieve algorithm
for various values of the parameters ζ and λ. We also compare the performance
of the cubic sieve algorithm with that of the linear sieve algorithm. We work in
the prime field Fp with

p = 1320245474656309183513988729373583242842871683

as in the last section. For this prime, we have

X = ⌊ 3
√
p⌋+ 1 = 1097029305312372, Y = 1, Z = 31165

as a solution of (3).
To start with, we fix λ = 1.5 and examine the variation of the performance

of the equation collecting stage with ζ. We did not implement the ‘exact’ version
of this algorithm in which one tries to solve (6) for exponents h > 1 of q. Table 3
lists the experimental details for the ‘approximate’ algorithm. As in Table 1,
the CPU times do not include the time for filtering out the spurious relations
available by the more generous closeness criterion for the approximate algorithm.
For the cubic sieve method, the values of ζ around 1.5 works quite well for our
prime p.

In Table 4, we fix ζ at 1.5 and tabulate the variation of the performance of the
cubic sieve algorithm for some values of λ. It’s clear from the table that among
the cases observed, the largest value of the ratio ρ̄/ν̄ is obtained at λ = 1.5.
(The theoretical maximum is attained at λ ≈ 1.6) We also note that changing

304

Table 3. Performance of the cubic sieve algorithm for various values of ζ

p = 1320245474656309183513988729373583242842871683
t = 10000, M = 10000, λ = 1.5

No. of No. of CPU Time
ζ Relations (ρ̄) Variables (ν̄) ρ̄/ν̄ (seconds)

1.0 54805 35001 1.5658 43508
1.5 54865 35001 1.5675 43336
2.0 54868 35001 1.5676 43492

the value of λ incurs variation in the running time by at most 1%. Thus our
heuristic allows us to build a larger database at approximately no extra cost.

Table 4. Performance of the cubic sieve algorithm for various values of λ

p = 1320245474656309183513988729373583242842871683
t = 10000, M = 10000, ζ = 1.5

No. of No. of CPU Time
λ Relations (ρ̄) Variables (ν̄) ρ̄/ν̄ (seconds)

1.0 43434 30001 1.4478 43047
1.5 54865 35001 1.5675 43336
1.6 56147 36001 1.5596 43347
2.0 58234 40001 1.4558 43499

5.1 Performance comparison with linear sieve

The speed-up obtained by the cubic sieve method over the linear sieve method
is about 2.5 for the field of size around 150 bits. For larger fields, this speed-up
is expected to be more. It is, therefore, evident that the cubic sieve algorithm,
at least for the case α = 1/3, runs faster than the linear sieve counterpart for
the practical range of sizes of prime fields.

6 Conclusion

In this paper, we have described various practical aspects for efficient imple-
mentation of the linear and the cubic sieve algorithms for the computation of
discrete logarithms over finite fields. We have also compared the performances
of these two algorithms and established the superiority of the latter method over
the former for the cases when p is close to a whole cube. It, however, remains
unsettled whether the cubic sieve algorithm performs equally well for a general
prime p. More importantly, the applicability of the cubic sieve algorithm banks
on the availability of a ‘favorable’ solution of a certain Diophantine equation.

305

Finding an algorithm for computing the solution of this Diophantine equation or
even for certifying if a solution exists, continues to remain an open problem and
stands in the way of the general acceptance of the cubic sieve algorithm. Last
but not the least, we need performance comparison of the cubic sieve method
with the number field sieve method.

References

1. Bressoud, D.M.: Factorization and Primality Testing, UTM, Springer-Verlag, 1989.
2. Cohen, H.: A course in computational algebraic number theory, GTM 138,

Springer-Verlag, 1993.
3. Coppersmith, D., Odlyzko, A.M., Schroeppel, R.: Discrete logarithms in GF (p),

Algorithmica 1 (1986), 1–15.
4. Das, A., Veni Madhavan, C.E.: Galois field library: Reference manual, Technical

report No. IISc-CSA-98-05, Department of Computer Science and Automation,
Indian Institute of Science, Feb 1998.

5. Gerver, J.: Factoring large numbers with a quadratic sieve, Math. Comp. 41 (1983),
287–294.

6. Gordon, D.M.: Discrete logarithms in GF (p) using the number field sieve, SIAM
Journal of Discrete Mathematics 6 (1993), 124–138.

7. LaMacchia, B.A., Odlyzko, A.M.: Computation of discrete logarithms in prime
fields, Designs, Codes, and Cryptography 1 (1991), 46–62.

8. LaMacchia, B.A., Odlyzko, A.M.: Solving large sparse linear systems over finite
fields, Advances in Cryptology – CRYPTO’90, A. J. Menezes and S. A. Vanstone
(eds.), LNCS 537 (1991), Springer-Verlag, 109–133.

9. McCurley, K.S.: The discrete logarithm problem, Cryptology and Computational
Number Theory, Proc. Symp. in Appl. Math. 42 (1990), 49–74.

10. Menezes, A.J., ed.: ‘Applications of finite fields’, Kluwer Academic Publishers,
1993.

11. Odlyzko, A.M.: Discrete logarithms and their cryptographic significance, Advances
in Cryptology: Proceedings of Eurocrypt’84, LNCS 209 (1985), Springer-Verlag,
224–314.

12. Schirokauer, O., Weber, D., Denny, T.: Discrete logarithms: the effectiveness of
the index calculus method, Proc. ANTS II, LNCS 1122 (1996), Springer-Verlag,
337–361.

13. Silverman, R.D.: The multiple polynomial quadratic sieve, Math. Comp. 48 (1987),
329–339.

14. Weber, D.: Computing discrete logarithms with the general number field sieve,
Proc. ANTS II, LNCS 1122 (1996), Springer-Verlag, 99–114.

15. Weber, D., Denny, T.: The solution of McCurley’s discrete log challenge, Crypto’98,
LNCS 1462 (1998), Springer-Verlag, 458–471.

306

