AN EXPERT SYSTEM FOR DECISION MAKING IN NONMONOTONIC DOMAIN

A. Das ,

A. Mukherjee

& A. Konar

Department of Electronics & Telecommunication Engineering

Jadavpur University, Calcutta 700 032,

Abstract : We propose in this paper a
technique of decision making in

new
nonmonotonic

domain to tackle databasas having uncertain,
impracise, incomplete and inconsistent infor-
mation. The technigue usas a network called

Fuzzy Patri Net (FEN) in order to represent a
sat of propositions and the logical
connectivity among them. We have successfully
applied the technique to develop an expert
system (ES) for criminal investigation.
1. Introduction

A technique for decision making in Petri Nets
using fuzzy logic has been proposed by Looney

[1] and extended by Konar & Mandal [2,3]. A
software realization of +the technique to
design an ES is presented in this paper. The
rule~-base of our ES consists of a set of
default rules (DR) ({4,5] and a set of

production rules (PR) [6,7] and the inference
engine (IE) has been realized by a FPN. DRs
are used to guess about the conclusions to be
proved and the FPN is created automatically
by detecting +the connectivity among the
information (database (DB)) using the set of
PRs. Fuzzy beliefs are assigned at each
proposition of the FPN based on the
authenticity level of the sources of
~information. The beliefs are then updated
till an equilibrium condition is reached.
Conclusions guessed by +the DRs are then
searched in the FPN and in case of presence
of a number of competitive conclusions, the
ona having +the highest fuzzy belisf is
declared as the appropriate conclusion. The
reasoning for that conclusion is also
provided to the user.

The following section provides
fundamental definitions copied from [2]
[8] for reader’s convenience. Section
describes the schematic architecture of
overall system. The next two sections
with the data structures and the algorithms
used in our ES. Results of complexity
analysis of these algorithms are tabulated in
section 6.

some
and

3
the
deal

2. Preliminaries

Def. 1 :

structure

Fuzzy Petri Net (FPN) is a geometric

of four tuples namely i) a set of
nodes, ii) a set of arcs, iii) a set of tran-
sition bars (TB) and iv) Fuzzy Truth Token
(FTT) values at nodes and TBs. Nodes and arcs
in a FPN represent information and +thisr
dependence ralationship. FTT valus at a node
denotes the chance of an information being
true., FTT wvalues at nodes are useful for
token transfer operation, although thesy have
no physical significance. A TB is like a
neurcone that fires and transmits +the FTT
value when it exceeds the threshold marked at
that TB. A node or an activated TB passes
copies of their respective FTT values alor

269

INDIA.

all the arcs emanating from them. Fig 1 shows
a typical FPN.

Fig.

1 : A typical FPN

In Fig 1, n, and tbj reprasent FIT valuas of

node N{ and transition bar TBS respectively.
Def. 2 : A forward path is defined as a
connected graph starting from an initial node
and terminating to a conclusion node, along
which no node is encountered more than once.

Def. 3 Fuzzy gain of a forward path 1is
defined as the result obtained by ANDing the
FTT values carried by all the arcs lying on

the forward path.

Def. 4 Equilibrium or steady-state refers
to a state when updated FTT value is equal to
the previous FTT value at each node and TB of
the FPN. :

Fuzzy updation equations : The FTT values in
the FPN are updated in parallel using the
following squations !

Node updation Equaticn @ If Np is an indepen-
dant node (having no input arcs),

then np (t+1) = np (L)
else np (t+l) = Max { tby (t) 1<=k<{=u }
where u = number of arcs input to the nods.

TB updation equation

Let x = Min-{ nj (t) 1<=j<k=v },

where v = number of arcs input to the TB.
If x>= the threshold marked at the TB,
tbﬁl(t+l) x else tb$ (t+1) = 0.

then

Schematic architecture of the ES

Fig 2 shows the schematic architecture of the
overall system (copied with modificatios from
£sly. The static DB has been organized as =&
three level tree shown as working memory 1
(WM1) (vide Sec 4). An initial 1list of
suspects 1s prepared using DRs and a query
interface module. These names are used for

Decision makin
g e

an
Explanation
Defa | -
f?uuagtt BeLleF

updation

Variable

Instdntigtion FPN
. formation
[wM1} ’ brocess
Production Sedrch fo
Rules lantecedents

in DB

Fig 2 : Schematic architecture of the ES

.instantiating variables appearing in the PRs.
The FPFN is ocreated using the PRz and the
statie DE. Tha FTT valuss of the nodas and
TBs of the FPN are then updated in parallel
‘until a steady-state condition 1is reached.
‘The suspect with the highest FTT wvalue is
then declared as ths culprit. The most

probable reasoning path leading to the oconel-

usion is subsequently provided to the user.
4. Data Structures for the designed ES
Structure of database :

Databases in the ES have been considered as
predicates (Pre) having at most two arguments

(Arg 1 & Arg 2) and represented by a record
structure (vide Fig.3). For a unary
predicate, Arg 2 is an underscore.
pre Argq [Atgo
Fig 3 Structure of Database
Structure of a rule :
Each DR and PR has a format as shown in
Fig 4.
Antecedents Antecedents
without with ‘ .
complementation complementation Conclvsion
Prey |Argy |Argip| [Pre (|ATg, | 1ATS PmlArs‘]Argg
Prez Ao [Argadl (Pra,olAg, ([0,
. ' . . ' PR
. - L Threshold
Preq IA"Qm\ l’i"gm‘z R'en l’ﬁ@mlp‘rgﬁ

Fig 4 Structure of DRs and PRs

270

Example of PR IF { hasknife(X) AND finger-
print_found_on_knife(X) AND enemy(X,Y) } AND
{ NOT has_alibi(X) } THEN suspect(X).
This can be represented as in Fig 4.

Structure of a node in FPN :

The software realization of the FPN is as
follows. As shown in Fig 5, each node of FPN
consists of an identifier(Typ) indicating the
type of the node (Node, TB, initial ncde or
conclusion), two pointers L and R to maintain
a tree structure, a pointer G to maintain the
graph-links, another pointer H to maintain
the reverse links, past and next FTT values,
threshold (Thr) (significant for TB), Pre,
Argl, Arg? and number of children(Ne). L and
R are used to maintain connectivity of a gen-
aral tree structure representsd in the form
of an equivalent binary tree. G and H head
two link-lists

of pointers each pointing a
node in the FPN, as shown in Fig 6.
TyP | Pre | Argy |Argo|Past | Next [Thr | Nc
7 1 1 I
T e
Fig b Structure of a node in FPN
€]
Nodey Iy
, [—:{-——b N\
= 2| graph-links
extending
v ?F'rom
3 gknk Nodek
4
= x
Fig 6 : Graph-links from a node

The datatree :

For efficient searching of DB,
ES has been organized as a
tree (vide Fig 7). The root holds the start-
ing link of the tree. The second level
consists of all the predicates and the third
level comprises of various clauses correspon-
ding to each predicate in the second level.

the DB of our
three-level data-

Initially the static DB is represented in the
form of the datatree. When PRs fire during
FPN formation, the donsequence clauses add to
the DB thereby increasing the search area for
the following PRs. It is,therefore, necessary
to dynamically append the datatree with the
new clauses during FPN formation.

To illustrate the efficiency of searching
let’s have P predicates and C clauses against
sach predicate. 8o there are P#(clauses in
total. To search a particular clause in the
datatree reguires at most (P+C) <comparisons,

wheress sequentisl sesrch in absence of the
daratres calls for (P*C) comparisons in the
worst cas

Root

has-revotver(x)

enemy(X,Y>
has-rev l\g\ "F?emy (joy[)
Tom)

has- revoL\/er enemy(Tom has -alibi (Raul)
. art$

has-alibl (X)

Fig 7 A typical datatree
5., The design philosophy of the ES

In thig section we shall describe the
rithms used in our ES.

algo-

Creation of datatree

1. Create root of datatree.

2. Open datafile (i.e. the file containing

the static DB).

If eof(datafile) then goto 9.

Kead clause from datafile

If +the predicate is found in the second

levael of thes datatrss, then mark the node,

else create a new node in the second level

to represent the predicate and mark it.

6. Search the clause among the children of
the marked predicate.

7. If the clause 1is not found, +then include

the clause among the chlldren of the pred-

icate.

Goto 3.

Close datafile.

O o L3

Stop.

earch for a clause in the datatree

Search the predicate in the second 1evel
If the search fails, then goto 6.

Search the clause among the children of
the predicate.

If the search fails, then goteo 6.

Search is successful. Stop.

Search is not successsful. Btop.

o0 N (AR G s] w o

Use of default rules
1.

Prepare a list of names of the persons
involved in +the criminal investigation
case. .

2 Collect information about the persons and

structure those in the form of a datatree.

i=l.

Pick up DR{.

Instantiate its arguments

persons involved.

6. Check whether all antecedents without com-
plementation and no antecedents with com-
plementation are present in the datatree.

7. If so, include the name of the person in
the consequence clause of the DR in the
list of suspects.

8. If all instantiations are used then goto 9

oo

with names of

else with =& new set of instantiation
goto 8.

9. i€ i+1,

10. If 1 <= (number of DRs) then goto 4.

11. Stop.

271

Formation of FPN
1. i=1.
2. Pick up PR

3. Instantiate variables with names of
suspects.
4. Check whether all the antecedents of the

PR belong to the datatree.

5. If =0 , append +the FPN by establishing
connectivity from antecedent nodes to a TB
and from the TBE to the consequence node.
Also append the datatreaa by the
consequence clause.

6. If all instantiations are used then goto 7

@lse with a new set of instantiation
goto 4.

T. ie i+l

8. If i<= (number of PRs) then goto 2.

9. Btop.

Establishing reverse connections

After a conclusion is reached at the end of
the belief revision process, we have to find
out the most probable forward path that leads
to the conclusion. There are two
possibilities. We can find out all forward
paths starting from initial nodes and termin-
ating at final nodes and then consider only
those paths that lead to the accepted conclu-
sion. PBut this means much wasted task, since
not all forward paths lead to +the accepted
conclusion. So the second and better strategy

is to start from the conclusion node and
traverse backward until we reach initial
nades.

With pointers, +traversing each step backward
requires an exhaustive search on the entire
FEN. To aveid such sxpeansive ssarches, it is

expedient +to establish reverse connections.
If +thare is a link from node i to nede § in
the FPN, then we establish a reverse link

from node j to node i. Traversing backward in
the FPN means +traversing forward in the
direction of the reverse links.

Finding the most probable reasoning path

For each conclusion, a conclusion tree is
created. The conclusion is at the root of the
tree. Each 1link of the tree represents a
reverse connection. The leaves of the tree
are, therefore, initial nodes.

Presence of loops poses two problems. First,
loops cannot exist in forward paths.Secondly,
the conclusion tree grows indefinitely. To
avoid, we propose the following strategy.

Whenever a node is created in the conclusion
tree, we search for other occurrences of the
same node in the tree.If the search succeeds,
we check whether the last occurrence 1is
present as a leaf of the subtree headed by
each previous occurrence. If at least one
such case is detected, the last occurrence is
destroyed.

An example for clarification.We Consider the
FPN of Fig 1. The conclusion tree for N11 is
shown in Fig 8. Both Ng and N ¢ are initially
included as children of T3 . But a previous
occurrence of Mg is detected in the tree and
the last occurrence is a leaf of +the tree
headed by the previous occurrence. - So- the
last occurrence is destroyed. - In Fig 1, this
is equivalent to destroying the loop Ng- TBy-

Ny

Npo N3

Ns

Conclusion tree for the node Ny
of Fig 1

Fig 8

N{o - TBg- Ng by opening the link from Nyo to
TBy .

The conclusion tree gives all forward
paths leading +o the conclusion. Tha path
with +the highest fuzzy gain gives the most

probable reasoning path.
6. Complexity analysis resultis

Let’s explain the following notations

P B number of predicates in datatree

ey = number of clauses against the
predicate. .

b

= c

i=1

number

number

number of DRs

number of PRs

average number of variables per rule

maximum number of variables per rule

average number of antecedents per rule

ith

the

54

total number of clauses in
datatree

of persons involved

of suspects

it

LB L T T A A 1

L << xoLo s

During the formation of FPN, the datatree is

dynamically appended. p, and to are values
of p and t before FPN formation process 1is
started. We make two assumptions

1. The consequence pradicates of the
PRs are different from each other.

2. No consaguence predicate of the FPhs
is present in the database before FPN
formation.

We can deduce the following expressions. for

the number of comparisons of the database for
different algorithms

272

Agorithm | Average Case Worst Case
i 4 2 2
Formation %[%ﬂp— 2p] | Lre%t-p2-1]
if (,=C zeer=C
=2 :{/pP
S i 1 2
dofcres” | zp [P+] pLPt]
Use of v v 2
ORs 49m"r 4p+ dam’ [p+m~]
16 m(m+1)]
Formation v Ve o2
oF FPN 3_[‘11"[%%+ 2(r+1)| rgn [QT“
32 " Ly n(n+n)] +5(r+1)]
Table Number of comparisons in the database
for different algorithms
Conclusion
Our ES8 exploits the combined facilities of
structured objects and production rules. This
also bridges the gap between relational

database and procedural programming. A proce-

dural language 1like Pascal or (providing
pointer facilities and easy mathematical
operations is indeed the best cheice for our
References :

1. G.C.Looney - Fuzzy Petri Nets for
Rule~based Decision Making, IEEE Trans.
System, Man and Cybernatics, vol 18, no.1,
Jan/Feb 1990.

2. A Konar & A K.Mandal, "8tability
Analysis of a nonmonotonic Petri Net for
diagnostic Bystems using Fuzzy Logic", Proc.

33rd. Midwest Symp.

Computers, Aug 1990.
3. A.Konar & A.K.Mandal,

making nonmonotonic domain

on Circuits, Systems and
"Decision

in using Fuzzy

Petri Nets", Proc. Int. Conf. on Automation,
Robotics and Comp. Vision, Sep 1980.

4. P.Bernard, "An Introduction to
Default Logic", Springer - verlag, 1989, Ch
3,pp 13-30.

5. R.Retier, "A Logic for Default
Reasoning", Artificial Intelligence, Vol 13,
Apr 1880.

6. B.G.Buchanan & E.H.Shortliffe, Rule-
based ES The MYCIN Expts of the Stanford

Univ. heuristic programming projects. Reading
MA : Addison Wesley,13984.

7. E.H.Shortliffe, "Computer-based
Madical Consultatisns ! "MYCIN" NY American
Elsevier.

8. A.Das & A.Mukherjes "Nonmonotonic
Reasoning in an Expert System for Criminal
Investigation”, IEEE Student Paper Contest

1981, Organized by IEEE Calcutta Section.

