
AN EXPERT SYSTEM FOR DECISION MAKING IN NONMONOTONIC DOMAIN

Department of Electronics & Telecommunication Engineering
A. Das , A. Mukherjee & A. Konar

Jadavpur University, Calcutta 700 032, INDIA.

Abstract : W e propose in this paper a new
technique of decision making in nonmonotonic
domain to tackle databases having uncertain,
imprec.ise, inccmp1et.e and inconsistent infor-
mation. The technique uses a network called
Fuzzy Petri Nnt (FF”) in order to represent a
set of propositions and the logical
Connectivity auong them. We have successfully
applied the technique to develop an expert
system (E S) for criminal investigation.

1. Introduction

A technique for decision making in Petri Nets
using fuzzy logic has been proposed by Looney
C13 and extendeld by Konar & Mandal [2 , 3] . A
software realization of the technique to
design an ES is presented in this paper. The
rule-base of our E6 consists of a set of
default rules (DR) [4 , 5] and a set. of
production rules (PR) [6,7] and the inference
engine (IE) hits been realized by a FPN. DRs
are used to guelss about the conclusions to be
proved and the FPN is created automatically
by detecting the connectivity among the
information (database (UB)) using the set of
PRs. Fuzzy beliefs are assigned at each
proposition CI% the FPN based on the
authenticity level of the sources of
information. The beliefs are then updated
till an equilibrium condition is reached.
Conclusions guessed by the DRs are then
searched in the FF” and in case of prelsenca
of a number of competitive conclusions, the
one having the highest fuzzy belief is
declared as the appropriate conclusion. The
reasoning f o r that conclusian is also

, - provided to the! user.

The following section provides some
fundamental dr3finitions copied from [2] and
18.1 for reader’s convenience. Section 3
describes the schematic architecture of the
overall system. The next two sections deal
with the data structures and the algorithms
used in our ES. Results of complexity
analysis of these algorithms are tabulated in
section 6.

, 2 . Preliminaries

Def. 1 : Fuzzy Petri Net (FPN) i s a geometric
structure of four tuples namely i) a set of
nodes, ii) a stst of arcs, iii) a set of tran-
sition bars (TB) and iv) Fuzzy Truth Token
(FTT) values at nodes and TBs. Nodes and arcs
in a FF” represer.t information and thier
dependence relationship. FTT value at a node
denotes the chance of an information being
true. FTT values at nodes are useful for
token transfer operation, although they have
no physical significance. A TB is like a
neurone that fires and transmits ths PTT
value when it exceeds the threshold marked at
that TB. A node or activated TB passes
copies o f their respective FTT values a l o r 2

all the arcs emanating from them. Fig 1 shows
a typical FPN.

Fig. 1 : A typical FPN

J In Fig 1 , ni and

node Ni and transition bar TB’ respectively.

Def. 2 : A forward path is defined as a
connected graph starting from an initial node
and terminating to a conclusion node, along
which no node is encountered more than once.

Def. 3 : Fuzzy gain of a forward path is
defined as the result obtained by ANDing the
FTT values carried by all the arcs lying on
the forward path.

Def. 4 : Equilibrium or steady-state refers
to a state when updated FTT value is equal to
the previous FTT value at each node and TB of
the FPN.

Fuzzy updation equations : The FTT values in
the FPN are updated in parallel using the
following equations :
Node updation Equation : If Np is an indepen-
dent node (having no input arc6 1 ,
then nb (t+l) = n p (t)
else np-(t+1) = Max { tbk(t) : l<=k<=u }
where U - number of arcs input to the node.
TB updation equation :
Let x = Min { nj (t) : l<=j<=v } ,
where v = number of arcs input to the TB.
If x>= the threshold marked at the TB, than
tb (t+l) = x else tb (t+l) = 0 .

tb’ represent FTT values of

J

9, %
Schematic architecture of the ES

Fig 2 shows the schematic architecture of the
overall system (copied with modificatios from

three level tree shown as working memory 1
(WM1) (vide Sec 4) . An initial list of
suspects is prepared using DRs and a query
interface module. These names are used for

[SI). The static DB has been organized as a

269

JFPNJ

7 y p Pre Argl Ikg21Pos-t I k x t I T h r I Nc
I I

Pre 1 A t g l IAt-92
4

r 1
Antecedents I\nkedents
without with
cornbCement4tron comi&men&L:on Conclusion

Fig 4 : Structure of DRs and PRs

I t I 9 1 t I f 1

Fig 5 : Structure of a node in FPN

I I l l 1

Fig 6 : Graph-links from a node

The datatree :
For efficient searching of DB, the DB of our
ES has been organized as a three-level data-
tree (vide Fig 7). The root holds the start-
ing link of the tree. The second level
consists of all the predicates and the third
level comprises of various clauses correspon-
ding to each predicate in the second level.

Initially the. static DB is represented in the
form of the datatree. When PRs fire during
FPN formation, the consequence clauses add to
the DB thereby increasing the search area for
the following PRs. It is,tharefore, necessary
to dynamically append the datatree with the
new clauses during FPN formation.

To illustrate the efficiency of searching
let's have P predicates and C clauses against
each predicate. So there are P*C clauses in
total. To search a particular clause in the
datatree requires at most (P + C) comparisons,

270

W ~ W ~ W S sesuk~-it,ial search i n absence of the
daratrea calls f o r iP*C) compari~ons in the
worst case.

Root

Fig 7 : A typical datatree

5 , The deaign philosophy of the ES
~n this sevtiou wr s h a i i descsibe t 4 k w a i g s -
rithms used in our ES.

1.
2.

3.
4 .
5 .

6.

7 .

8 .
9.

Creation of datatree :
Create root of datatree.
Open datafile (i.e. the fi19 containing
the static DE.).
If eof (dataf ile) then gsoto 8 .
Read clause :from datafile.
I f the predicate is found in the second
level of the datatree, then mark tils node,
else create .E! new node in the second level
to represent the predicate and mark it.
Search the clause among the children of
the marked predicate.
If the clause is not found, then include
the clause a!mong the children of the pred-
icate.
Goto 3 .
Close dataf ile. Stop.

Searoh for a clauae in the datatree :
1. Search the predicate in the second level.
2. I f the search fails, then goto 6.
3. Search the clause among the children of

4 . If the search fails, then goto 6 .
5. Search is successful. Stop.
8 . eearch is nclt successful. Stop.

the predicate.

Use of default rules :
1. Prepare a list of names of the persons

involved in the criminal investigation

2 Collect information about the persons and
structure those in the form of a datatree.

3. i=l.
4 . Pick up lSRi
5. Instantiate its arguments with names of

persons involved.
E ; . Chsck whether all antecedents without com-

plementatioii and no antecedents with com-
plementation are present in the datatree.

7. If so, include the name of the person in
the consequence clause of the DR in the
list of suspects.

8. I f all instantiations are used then goto 9
else with a new set of instantiation
goto 6.

9. iti+l.
10. If i < = (number of DRs) then goto 4 .

case.

11 Stop.

Formation of FPN :
1. i.1.
2. Pick up PKi
3 . Instantiate variables with name5 of

suspects.
4 . Check whether all the antecedents of the

Fh: balorig to the datatree.
5. It 50 , append the FPN by establishing

cconnectivity f rom antecedent nodes to a TE
and f r o m the TE to the consequence node.
A l n ~ append the datatree by the
consequence clause.

6 . If all instantiations are used then goto 7
else with a new set of instantiation
goto 4.

7. ii-i+l.
8 . If i<= (number of PRs) then goto 2.
9. Stop.

Establishing reverse connections :
After a conclusion is reached at the end of
the belief revision process, we have to find
out the m05c probable forward path that leads
to 'che cunclusion. There are two
possibilities. We can find out all forward
paths startirig from initial nodes and termin-
ating ai. iinal nodes and then consider only
t hose paths that lead to the accepted conclu-
sion. But this means much wasted task, since
not all forward paths lead to the accepted
conclusion. So the second and Eetter strategy
is to start from the conclusion node and
traverse bacKward until we reach initial
nodes.

With pointers, traversing each step backward
requires an exhaustive search on the entire
FPN. To avaid tiucli expensive s~arshes, it is
expedient to establish reverse connections.
If there ia a link from node i to node 3 in
the FPN, then we establish a reverse link
from node j to node i. Traversing backward in
the FPN means traversing forward in the
direction of the reverse links.

Finding the most probable reasoning path :
For each conclusion, a conclusion tree is
created. The conclusion is at the root of the
tree. Each link of the tree represents a
reverse connection. The leaves of the tree
are, therefore, initial nodes.

Presence of loops poses two problems. First,
loops cannot exist in forward paths.Secondly,
the conclusion tree grows indefinitely. To
avoid, we propose the following strategy.

Whenever a code is created in the conclusion
tree, we search for other occurrences of the
same node in the tree.lf the search succeeds,
we check whether the last occurrence is
present as a l e a f of the subtree headed by
each previous occurrence. If at least one
such case is detected, the last occurrenee is
destroyed.

An example for clarification.We Consider the
FFN of Fig 1. The conclusion tree f o r N j 1 is
f i h C ~ W I 1 in F i g El. Both f.ss and N , o are initially
included as children ofTB3 . But a previous
ociaarrence of Nlo is detected in the tree and
the last occurrence is a leaf of the tree
headed by the previous occurrence. .So- the
last occurrence is destroyed. In Fig 1, this
is equivalent to destroying the loop &3- TB4-

27 I

Fig 8 : Conclusion tree for the node
of Fig 1

N to - TB3- N 8 by opening the link from N 10 to
TI33 .

The conclusion tree gives all forward
paths leading to the concluaion. The path
with the highest fuzzy gain gives the most
probable reasoning path.

6 . Complexity analyaia results

Let's explain the following notations
p number of predicates in datatree
c i = number of clauses against the ith

t = C c.= total number of clauses in the

m = number of persons involved
n = number of suspects
d = number of DRs
r = number of PRs
v = average number of variables per rule
V = maximum number of variables per rule
q = average number of antecedents per rule

During the formation of FPN, the datatree is
dynamically appended. po and to are values
of p and t before FFN formation process is
started. We make two assumptions :

1. The consequence predicates of the
FRs are different from each other.

2 , Nu cunsuquence prediaate of the PRs
is present in the database before FPN

We can deduce the following expressions for
the number of comparisons of the database for
different algorithms :

:

predicate.
P

i=l ' datatree

formation

Algorithm Avet-uge Case 1 worst Case

Table : Number of comparisons in the database
f o r different algorithms

Conclusion

O u r ES exploits the combined facilities of
structured objects and production rules. This
also bridges the gap between relational
database and procedural programming. A proce-
clural language like Pascal or C providing
pointer facilities and easy mathematical
operations is indeed the best choice fur our
ES .
References :

1. G.C.Looney - FUZZY Petri Nets f o r
Rule-based Decision Making, IEEE Trans.
System, Man and Cybernatics, vol 18, no.1,
Jan/Feb 1990.

2. A.Konar & A.K.Manda1, "Stability
Analysis of a nonmonotunic Petri Net f o r
diagnostic Systems using Fuzzy Logic" , Froc.
33i -d . Midwest Symp. on Circuits, Systems and
Computers, Aug 1990.

3. A.Konar & A.K.Manda1, "Decision
making in nonmonotonic domain using Fuzzy
Petri Nets" Proc. Int. Conf. on Automation,
Robotics and Comp. Vision, Sep 1990.

4. P. Bernard, "An Introduction to
Default Logic", Springer - verlag, 1989, Ch
3,pp 13-30.

5. R.Retier, " A Logic for Default
Reasoning", Artificial Intelligence, Yo1 13,
Apr 1960.

6. B.G.Ruchanan & E.H.Shortliffe, Rule-
based ES : The MYCIN Expts of the Stanford
Univ. heuristic programming projects. Reading
MA : Addison Wesley,1984.

7 . E.H.Shortliffe, I ' Computer - ba s ed
Medical C u n s u l t a t i a n s ! "MYCIN" NY : American
Elsevier.

8 . A.Das & A.MukherJee : "Nonmonotonic
Reasoning in an Expert System for Criminal
Investigation", IEEE Student Paper Contest
1991, Organized by IEEE Calcutta Section.

212

