
Use of SIMD Features to Speed up Eta Pairing

Anup Kumar Bhattacharya1, Sabyasachi Karati1, Abhijit Das1, Dipanwita
Roychowdhury1, Bhargav Bellur2 and Aravind Iyer2

1Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur, India

2General Motors Technical Centre India
India Science Lab, Bangalore, India

1anup, skarati, abhij, drc@cse.iitkgp.ernet.in
2bhargav bellur@yahoo.com, aravind.iyer@gm.com

Abstract. Eta pairing over supersingular elliptic curves is widely
used in designing many cryptographic protocols. Because of efficiency
considerations, curves over finite fields of small characteristics are
preferred. In this paper, we report several of our implementations of
eta pairing over finite fields of characteristics two and three. We exploit
SIMD features available in Intel processors to speed up eta-pairing
computations. We study two ways of vectorizing the computations:
horizontal (intra-pairing) and vertical (inter-pairing). We report our
experimental results using SSE2 and AVX2 features supported by the
Haswell microarchitecture. Our implementations use two popular curves.
Recently proposed discrete-logarithm algorithms make these curves less
secure than previously thought. We discuss the implications of these
developments in the context of our implementations.

Keywords: Supersingular elliptic curves, eta pairing, software imple-
mentation, SIMD, SSE intrinsics, AVX intrinsics.

1 Introduction

Pairing over algebraic curves are extensively used [11, 12, 23] in designing crypto-
graphic protocols. There are two advantages of using pairing in these protocols.
Some new functions are realized using pairing [11, 23]. Many other protocols [12]
achieve small signature sizes at the same security level.

Miller’s algorithm [31] is an efficient way to compute pairing. Tate and Weil
are two main variants of pairing functions on elliptic curves, with Tate pairing
computation being significantly faster than Weil pairing for small fields. In the
last few years, many variants of Tate pairing [8, 20, 28] are proposed to reduce
the computation complexity of Tate pairing substantially. Eta pairing [8] is one
such variant defined for supersingular curves. Some pairing-friendly families [15]
of curves are defined over prime fields and over fields of characteristics two and
three. Vercauteren [38] proposes the concept of optimal pairing which gives lower
bounds on the number of Miller iterations required to compute pairing.

There have been many attempts to compute pairing faster. Barreto et al. [9]
propose many simplifications of Tate-pairing algorithms. Final exponentiation is
one such time-consuming step in pairing computation. Scott et al. [35] propose
elegant methods to reduce the complexity of final exponentiation. Ahmadi et
al. [3] and Granger et al. [18] describe efficient implementations of arithmetic in
fields of characteristic three for faster pairing computation. Multi-core implemen-
tations of Tate pairing are reported in [5, 10]. Beuchat et al. [10] provide an esti-
mate on the optimal number of cores needed to compute pairing in a multi-core
environment. GPU-based implementations of eta pairing are reported in [13, 25].

Many low-end processors are released with SIMD facilities which provide the
scope of parallelization in resource-constrained applications. SIMD-based imple-
mentations of pairing are reported in [5, 10, 19]. All these data-parallel implemen-
tations vectorize individual pairing computations, and vary in their approaches
to exploit different SIMD intrinsics in order to speed up the underlying field
arithmetic. This technique is known as horizontal vectorization.

The other SIMD-based vectorization technique, vertical vectorization, has
also been used for efficient implementation purposes. Montgomery [32] applies
vertical vectorization to Elliptic Curve Method to factor integers. For RSA imple-
mentations using SSE2 intrinsics, Page and Smart [33] use two SIMD-based tech-
niques called inter-operation and intra-operation parallelisms. Grabher et al. [17]
propose digit slicing to reduce carry-handling overhead in the implementation of
ate pairing over Barreto-Naerhig curves defined over prime fields. Implementa-
tion results with both inter-pairing and intra-pairing parallelism techniques are
provided and a number of implementation strategies are discussed.

Intuitively, so long as different instances of some computation follow fairly
the same sequence of basic CPU operations, parallelizing multiple instances (ver-
tical vectorization) would be more effective than parallelizing each such instance
individually (horizontal vectorization). Computation of eta pairing on curves
over fields of small characteristics appears to be an good setting for vertical
vectorization. This is particularly relevant because all the parties in a standard
elliptic-curve-based protocol typically use the same curve and the same base
point (unlike in RSA where different entities use different public moduli).

Each of the two vectorization models (horizontal and vertical) has its pri-
vate domains of applicability. Even in the case of pairing computation, vertical
vectorization does not outperform horizontal vectorization in every step. For ex-
ample, comb-based multiplication [29] of field elements is expected to be more
efficient under vertical vectorization than under horizontal vectorization. On the
contrary, modular reduction using polynomial division seems to favor horizontal
vectorization more than vertical vectorization, since the number of steps in the
division loop and also the shift amounts depend heavily on the operands. This
problem can be bypassed by using defining polynomials with a small number
of non-zero coefficients (like trinomials or pentanomials). However, computing
inverse by the extended polynomial gcd algorithm cannot be similarly tackled.
Moreover, vertical vectorization is prone to encounter more cache misses com-
pared to horizontal vectorization and even to non-SIMD implementation. The

effects of cache misses are rather pronounced for algorithms based upon lookup
tables (like comb methods).

Despite all these potential challenges, vertical vectorization may be helpful
in certain cryptographic operations. Our experimentation with SSE2 and AVX2
intrinsics reveals that this is the case for eta pairing on supersingular curves over
fields of characteristics two and three. More precisely, horizontal vectorization
leads to speedup of up to 30% over non-SIMD implementation. Vertical vector-
ization, on the other hand, yields speedup in the range 25–55%. In short, the
validation of the effectiveness of vertical vectorization in pairing computations
is the main technical contribution of this paper.

We take two popular supersingular elliptic curves defined over the fields F21223

and F3509 . At the time we started this work, eta pairing over these curves were be-
lieved to offer 128-bit security. Recently proposed finite-field discrete-logarithm
algorithms [6, 24] indicate that their security guarantees are much less. For ex-
ample, Adj et al. [2] estimate that the curve over F3509 offers slightly more than
80-bit security. As a result, we have to use curves over much larger fields in
order to restore the security level to 128 bits. In another paper, Adj et al. [1]
demonstrate that a curve defined over F23041 provides 129-bit security. All our
SIMD-based techniques can be ported mutatis mutandis to curves defined over
fields larger than what we study in this paper. However, larger fields imply
slower implementations of eta pairing, and that in turn highlights the necessity
of achieving better speedup figures. We expect that our SIMD-based implemen-
tations of eta pairing appropriately address this necessity.

The rest of the paper is organized as follows. Section 2 reviews the notion of
pairing, and lists the algorithms used to implement field and curve arithmetic.
Section 3 describes horizontal and vertical vectorization models. We intuitively
explain which of the basic operations are likely to benefit more from vertical vec-
torization than from horizontal vectorization. We give special attention to field
multiplication. Our experimental results are tabulated in Section 4. We conclude
the paper in Section 5 after highlighting some potential areas of future research.

2 Background on Eta Pairing

In this section, we briefly describe standard algorithms that we have used for
implementing arithmetic in extension fields of characteristics two and three.
We subsequently state Miller’s algorithm for the computation of eta pairing on
supersingular curves over these fields.

2.1 Eta Pairing in a Field of Characteristic Two

We implemented eta pairing over the supersingular elliptic curve y2+y = x3+x
defined over the binary field F21223 represented as an extension of F2 by the
irreducible polynomial x1223 + x255 + 1. An element of F21223 is packed into an
array of 64-bit words. The basic operations on such elements are done as follows.

– Addition: We perform word-level XOR to add multiple coefficients together.

– Multiplication: Computing products c = ab in the field is costly, but needed
most often in Miller’s algorithm. Comb-based multiplication [29] with four-
bit windows is used in our implementations.

– Inverse: We use the extended Euclidean gcd algorithm for polynomials to
compute the inverse of an element in the binary field.

– Square: We use a precomputed table of square values for all possible 8-bit
inputs.

– Square Root: The input element is written as a(x2)+xb(x2). Its square root
is computed as a(x) + x1/2b(x), where x1/2 = x612 + x128.

– Reduction: Since the irreducible polynomial defining F21223 has only a few
non-zero coefficients, we use a fast reduction algorithm (as in [34]) for com-
puting remainders modulo this polynomial.

The embedding degree for the supersingular curve stated above is four. So
we need to work in the field F(21223)4 . This field is represented as a tower of
two quadratic extensions over F21223 . The basis for this extension is given by
(1, u, v, uv), where g(u) = u2 + u + 1 is the irreducible polynomial for the first
extension, and h(v) = v2 + v + u defines the second extension. The distortion
map is given by ψ(x, y) = (x+ u2, y + xu+ v).

Addition in F(21223)4 uses the standard word-wise XOR operation on elements
of F21223 . Multiplication in F(21223)4 can be computed by six multiplications in
the field F21223 [19].

Algorithm 1 describes the computation of eta pairing ηT . This is an imple-
mentation [19] of Miller’s algorithm for the supersingular curve E2 : y2 + y =
x3 + x under the above representation of F21223 and F(21223)4 . Here, the point
P ∈ E2(F21223) on the curve has prime order r. Q too is a point with both coor-
dinates from F21223 . The distortion map is applied to Q. Algorithm 1 does not
explicitly show this map. The output of the algorithm is an element of µr, the
order-r subgroup of F∗

(21223)4 .

Algorithm 1 Eta Pairing Algorithm for a Field of Characteristic Two

Input: P = (x1, y1), Q = (x2, y2) ∈ E(F21223)[r]
Output: ηT (P,Q) ∈ µr

T ← x1 + 1
f ← T · (x1 + x2 + 1) + y1 + y2 + (T + x2)u+ v

for i = 1 to 612 do

T ← x1

x1 ←
√
x1, y1 ←

√
y1

g ← T · (x1+x2) + y1 + y2 + x1 + 1 + (T+x2)u+ v

f ← f · g
x2 ← x2

2, y2 ← y2
2

end for

return f (q2−1)(q−
√
2q+1), where q = 21223.

The complexity of Algorithm 1 is dominated by the 612 iterations (called
Miller iterations), and exponentiation to the power (q2 − 1)(q −

√
2q + 1) (re-

ferred to as the final exponentiation). In each Miller iteration, two square roots,
two squares, and seven multiplications are performed in the field F21223 . In the
entire Miller loop, 1224 square roots and 1224 squares are computed, and the
number of multiplications is 4284. Evidently, the computation of the large num-
ber of multiplications occupies the major portion of the total computation time.
Each multiplication of F(21223)4 (computation of f ·g) is carried out by six multi-
plications in F21223 . In these six multiplications, three variables appear as one of
the two operands. Therefore only three precomputations (instead of six) are suf-
ficient for performing all these six multiplications by the Lopez-Dahab method.
For characteristic-three fields, such a trick is proposed in [37]. Using Frobenius
endomorphism [19, 35], the final exponentiation is computed, so this operation
takes only a small fraction of the total computation time.

2.2 Eta Pairing in a Field of Characteristic Three

The irreducible polynomial x509−x318−x192+x127+1 defines the extension field
F3509 . The curve y2 = x3 − x+ 1 defined over this field is used. Each element of
the extension field is represented using two bit vectors [36]. The basic operations
on these elements are implemented as follows.

– Addition and subtraction: We use the formulas given in [26].
– Multiplication: Comb-based multiplication [3] with two-bit windows is used

in our implementations.
– Inverse: We use the extended Euclidean gcd algorithm for polynomials to

compute the inverse of an element in the field.
– Cube: We use a precomputed table of cube values for all possible 8-bit inputs.
– Cube Root: The input element is first written as a(x3) + xb(x3) + x2c(x3).

Its cube root is computed as a(x)+x1/3b(x)+x2/3c(x), where x1/3 = x467+
x361−x276+x255+x170+x85, and x2/3 = −x234+x128−x43 [3, 7]. We have
not used the cube-root-friendly representation of F3509 prescribed in [4].

– Reduction: We use a fast reduction algorithm [34] for computing remainders
modulo the irreducible polynomial.

The embedding degree in this case is six, so we need to work in the field
F(3509)6 . A tower of extensions over F3509 is again used to represent F(3509)6 . The
first extension is cubic, and is defined by the irreducible polynomial u3 − u− 1.
The second extension is quadratic, and is defined by v2+1. The basis of F(3509)6

over F3509 is therefore (1, u, u2, v, uv, u2v). The distortion map in this case is
ψ(x, y) = (u− x, yv).

For multiplying two elements of F(3509)6 , we have used 18 multiplications in
F3509 [27]. The method reported in [16], which uses only 15 such multiplications,
is not implemented.

Algorithm 2 describes the computation of eta pairing [10] in the case of
characteristic three. P and Q are points with both coordinates from F3509 . The

Algorithm 2 Eta Pairing Algorithm for a Field of Characteristic Three

Input: P = (xP , yP), Q = (xQ, yQ) ∈ E(F3509)[r]
Output: ηT (P,Q) ∈ µr

xP ← 3
√
xP + 1

yP ← − 3
√
yP

t← xP + xQ

R← −(yP t− yQv − yPu)(−t2 + yP yQv − tu− u2)
XP [0]← xP , YP [0]← yP
XQ[0]← xQ, YQ[0]← yQ

for i = 1 to 254 do

XP [i]← 3

√

XP [i− 1]
XQ[i]← X3

Q[i− 1]

YP [i]← 3

√

YP [i− 1]
YQ[i]← Y 3

Q[i− 1]
end for

for i = 1 to 127 do

t← XP [2i− 1] +XQ[2i− 1]
w ← YP [2i− 1]YQ[2i− 1]
t′ ← XP [2i] +XQ[2i]
w′ ← YP [2i]YQ[2i]
S ← (−t2 + wv − tu− u2)(−t′2 + w′v − t′u− u2)
R← R · S

end for

return f (q3−1)(q+1)(q+
√
3q+1), where q = 3509.

distortion map is applied to Q. Algorithm 2 does not show this map explicitly.
The order of P is a prime r, and µr is the order-r subgroup of F∗

(3509)6 .
The first for loop of Algorithm 2 is a precomputation loop. The second

for loop implements the Miller iterations. The final exponentiation in the last
line uses Frobenius endomorphism [19, 35]. The most time-consuming operations
involved in Algorithm 2 are 508 cubes, 508 cube roots and 3556 multiplications
in the field F3509 (given that one multiplication of F(3509)6 is implemented by 18
multiplications in F3509). The final exponentiation again does not incur a major
computation overhead in Algorithm 2.

3 Horizontal and Vertical Vectorization

Many modern CPUs, even in desktop machines, support a set of data-parallel
instructions operating on SIMD registers. For example, Intel has been releasing
SIMD-enabled CPUs since 1999 [21, 30]. As of now, most vendors provide support
for 128-bit SIMD registers and parallel operations on 8-, 16-, 32- and 64-bit data.
Recently, CPUs with 256-bit SIMD registers are also available. We work with
Intel’s SSE2 (128-bit) and AVX2 (256-bit) registers. Since we use 64-bit words
for packing of data, using these SIMD intrinsics can lead to speedup of nearly

two or four. In practice, we expect less speedup for various reasons. First, all
steps in a computation do not possess inherent data parallelism. Second, the
input and output values are usually available in chunks of machine words which
are 32 or 64 bits in size. Before the use of an SIMD instruction, one needs to pack
data stored in normal registers or memory locations to SIMD registers. Likewise,
after using an SIMD instruction, one needs to unpack the content of an SIMD
register back to normal registers or memory locations. Frequent conversion of
data between scalar and vector forms may be costly. Finally, if the algorithm is
memory-intensive, SIMD features do not help much.

We use SIMD-based vectorization techniques for the computation of eta pair-
ing. These vectorization techniques provide speedup by reducing the overheads
due to packing and unpacking. We study two common SIMD-based vectorization
techniques called horizontal and vertical vectorization. Though vertical vector-
ization is capable of reducing data-conversion overheads substantially, it en-
counters an increased memory overhead in terms of cache misses. Experimental
results of eta pairing computation over fields of characteristics two and three
validate the claim that vertical vectorization achieves better performance gains
compared to horizontal vectorization.

3.1 Horizontal Vectorization

Figure 1 explains the working of horizontal vectorization using AVX2 (256-bit)
registers. One single operation ⋆ between two multi-word operands is to be per-
formed. Four 64-bit machine words of individual operands are first packed into
SIMD registers, and one SIMD instruction for ⋆ is used to compute the output
in a single SIMD register. The result stored in the output SIMD registers can
further be used in remaining computations.

As an example, consider operands a and b each stored in an array of twenty
64-bit words. Suppose that we need to compute the bit-wise XOR of a and b, and
store the result in c. A usual 64-bit implementation calls for twenty invocations
of the CPU instruction for XOR. AVX2-based XOR handles 256 bits of the
operands in one CPU instruction, and finishes after only five invocations of this
instruction. The output array c of SIMD registers is available in the packed
format required in future data-parallel operations in which c is an input.

There are, however, situations where horizontal vectorization requires un-
packing of data after a CPU instruction. Consider the unary left-shift oper-
ation on an array a of twenty 64-bit words. Let us index the words of a as
a1, a2, . . . , a20. The words a4i−3, a4i−2, a4i−1, a4i are packed into an SIMD reg-
ister Ri. Currently, SIMD intrinsics do not provide facilities for shifting Ri as
a 256-bit value by any amount (except in multiples of eight). What we instead
obtain in the output SIMD register is a 256-bit value in which all the 64-bit
components are individually left-shifted. The void created in the shifted version
of a4i−k needs to be filled by the most significant bits of the pre-shift value of
a4i−k+1. More frustratingly, the void created in a4i by the shift needs to be filled
by the most significant bits of the pre-shift value of a4i+1 which is a 64-bit mem-
ber of a separate SIMD register Ri+1. The other 64-bit members in Ri+1 must

Fig. 1. Horizontal Vectorization

★ ★

.

. . .

Operand 1 Operand 2

Packing SIMD operation

Result

Input
Instance

not interfere with the shifted value of Ri. Masking out these members from Ri+1

eats up a clock cycle. To sum up, horizontal vectorization may result in frequent
scalar-to-vector and vector-to-scalar conversions, and suffer from packing and
unpacking overheads.

3.2 Vertical Vectorization

Vertical vectorization using AVX2 (256-bit) registers and 64-bit words works as
shown in Figure 2. Four instances of the same operation are carried out on two
different sets of data. Data of matching operands from the four instances are
packed into SIMD registers, and the same sequence of operations is performed
on these registers using SIMD intrinsics. Each one-fourth of an SIMD register
pertains to one of the instances. After an SIMD instruction, each one-fourth
of the output SIMD register contains the result for one of the four instances.
Thus, data from four separate instances are maintained in 64-bit formats in
these SIMD registers throughout a sequence of operations. When the sequence
is completed, data from the final output SIMD registers are unpacked into the
respective 64-bit storage outputs for the four instances.

The advantage of this vectorization technique is that it adapts naturally to
any situation where two identical sequences of operations are performed on four
separate sets of data. The algorithm does not need to possess inherent data
parallelism. However, the sequence of operations must be identical (or nearly
identical) on four different sets of data. Finally, a computation using vertical
vectorization does not require data conversion after every SIMD operation in the
CPU, that is, potentially excessive packing and unpacking overheads associated
with horizontal vectorization are significantly eliminated.

Let us now explain how vertical vectorization gets rid of the unpacking re-
quirement after a left-shift operation. Suppose that four operands a, b, c, d need to
be left-shifted individually by the same number of bits. The i-th words ai, bi, ci, di
are packed in an SIMD register Ri. First, a suitably right-shifted version of Ri+1

is stored in another SIMD register Si+1. After that, Ri is left-shifted by a single
SIMD instruction causing all of ai, bi, ci, di to be left-shifted individually. This

Fig. 2. Vertical Vectorization

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

★ ★ ★

Operand 2Operand 1

SIMD operationPacking

Instance 1

Instance 2

Instance 3

Instance 4

Result 1

Result 2

Result 3

Result 4

shifted SIMD register is then XOR-ed with the SIMD register Si+1. The indi-
vidual 64-bit words ai+1, bi+1, ci+1, di+1 are not needed in the unpacked form.

3.3 Vectorization of Eta Pairing

Eta pairing on supersingular curves defined over fields of characteristics two and
three can be computed using bit-wise operations only (that is, no arithmetic
operations are needed). More precisely, only the XOR, OR, AND, and the left-
and right-shift operations on 64-bit words are required. As explained earlier,
both horizontal and vertical vectorizations behave gracefully for the XOR, OR
and AND operations. On the contrary, shift operations are efficient with vertical
vectorization only. Therefore the presence and importance of shift operations
largely determine the relative performance of the two vectorization methods.
We now study each individual field operation (in F21223 or F3509) in this respect.

– Addition/Subtraction: Only XOR, OR and AND operations are needed to
carry out addition and subtraction of two elements in both types of fields.
So both the vectorization models are suitable for these operations.

– Multiplication (without reduction): We use comb-based multiplication al-
gorithms in which both left- and right-shift operations play a crucial role.
Consequently, multiplication should be faster for vertical vectorization than
horizontal vectorization.

– Square/Cube (without reduction): Since we have used precomputations in
eight-bit chunks, byte-level shifts suffice, that is, both models of vectorization
are efficient for these operations.

– Modular reduction: Reduction using the chosen irreducible polynomials call
for bit-level shift operations, so vertical vectorization is favored.

– Square-root/Cube-root with modular reduction: Extraction of the polyno-
mials a, b (and c for characteristic three), and multiplication by x1/2 (or x1/3

and x2/3) involve several shift operations. So vertical vectorization seems to
be the better choice.

– Inverse: The extended Euclidean algorithm is problematic for both hori-
zontal and vertical vectorization models. On the one hand, bit-level shifts
impair the performance of horizontal vectorization. On the other hand, the
sequence for a gcd calculation depends heavily on the operands, rendering
vertical vectorization infeasible to implement. We therefore use only non-
SIMD implementations for the inverse operation.

Multiplication (with modular reduction) happens to be the most frequent op-
eration in Algorithms 1 and 2. Vertical vectorization is therefore expected to out-
perform horizontal vectorization for these algorithms. We present our horizontal
and vertical multiplication algorithms as Algorithms 3 and 4. These pertain to
the curve over F21223 . Multiplication in F3509 can be similarly handled.

Algorithms 3 and 4 implement comb-based multiplication [29] with four-bit
windows. We take 64-bit words and 256-bit SIMD registers (AVX2). We pack
four words in an SIMD register. In the algorithms, word variables are denoted
by lower-case letters, and SIMD registers by upper-case letters. We use the sub-
scripts 64 and 256 to differentiate between word-level and SIMD-level operations.
For example, a[i][j] ≪64 41 indicates 41-bit left-shift of the word a[i][j]. Likewise,
T1 ⊕256 T2 stands for an AVX2 XOR operation. Switching between word-based
and SIMD representations is denoted by pack and unpack. Comb-based multi-
plication has three stages: precomputation, intermediate product computation,
and reduction. The reduction stage is shown separately as Algorithm 5.

An element of F21223 is stored in twenty 64-bit words. The inputs of hori-
zontal vectorization are two arrays A,B of five 256-bit values. The intermediate
product is output as an array c of forty 64-bit words (actually, 39 words suffice).
Precomputations are done on the second input B. A 16× 20 table t is prepared
in this stage. During intermediate product computation, we use 256-bit XOR,
but both the operands of this operation are packed and the result is unpacked,
inside the loop. Finally, the shift-intensive reduction of c (see Algorithm 5) would
proceed at the 64-bit word level. As a consequence, horizontal vectorization is
expected to show poor performance.

In vertical vectorization, four pairs of inputs are packed in two arrays, each
consisting of 20 SIMD registers. The intermediate products are output as an
array of 40 SIMD registers. Since four pairing computations now proceed in
parallel, the precomputed table t is now a 64× 20 array of 64-bit words. During
intermediate product computation, entries from t are packed in an SIMD register
P and XOR-ed with an appropriate register in the output array C. This entry in
C does not need to be packed inside the loop. Likewise, after the XOR operation,
there is no need to unpack the entry in C inside the loop. We can pass the packed
intermediate product C straightaway to the reduction function which can now
operate on SIMD registers. This is how vertical vectorization shows the promise
of improved performance. It would be nice if we could additionally avoid the
packing of entries of t in P . But since the indices in t of the words to be packed
depend very much on the four inputs in A, this overhead seems unavoidable.

Algorithm 3 Horizontal Vectorization of Multiplication in F21223

Input: A[0, . . . , 4], B[0, . . . , 4].
Output: c[0, . . . , 39].

Initialize all the words of c to 0, U ← pack(0xF, 0xF, 0xF, 0xF), and v[0]← 0.
for i = 0 to 4 /* Precomputation loop */ do

j ← i≪64 2, k ← j + 1, T ← B[i], u← unpack(T).
v[1]← u[1]≫64 61, v[2]← u[2]≫64 61, v[3]← u[3]≫64 61.
V ← pack(v[0, 1, 2, 3]), t[0][j, j + 1, j + 2, j + 3]← (0, 0, 0, 0)
T1 ← T , t[1][j, j + 1, j + 2, j + 3]← unpack(T1).
T2 ← (T ≪256 1)⊕256 (V ≫256 2), t[2][j, j + 1, j + 2, j + 3]← unpack(T2).
T3 ← T ⊕256 T2, t[3][j, j + 1, j + 2, j + 3]← unpack(T3).
T5 ← (T ≪256 2)⊕256 (V ≫256 1).
for k = 1 to 3 do

if (k = 1) then T4 ← T5,
else if (k = 2) then T4 ← (T ≪256 3)⊕256 V , else T4 ← T4 ⊕256 T5.
t[4k][j, j + 1, j + 2, j + 3]← unpack(T4).
t[4k + 1][j, j + 1, j + 2, j + 3]← unpack(T4 ⊕256 T1).
t[4k + 2][j, j + 1, j + 2, j + 3]← unpack(T4 ⊕256 T2).
t[4k + 3][j, j + 1, j + 2, j + 3]← unpack(T4 ⊕256 T3).

end for

v[0]← t[0][0]≫64 61.
end for

j ← 15.
while (j ≥ 0) /* Intermediate product computation loop */ do

l← j ≪64 2.
for i = 0 to 4 do

T ← (A[i]≫256 l) AND256 U .
for k = 0, 4, 8, 12, 16 do

T1 ← pack(c[4i+ k, 4i+ k + 1, 4i+ k + 2, 4i+ k + 3]).
T2 ← pack(t[u[0]][k], t[u[0]][k + 1], t[u[0]][k + 2], t[u[0]][k + 3]).
T3 ← T1 ⊕256 T2.
c[4i+ k, 4i+ k + 1, 4i+ k + 2, 4i+ k + 3])← unpack(T3).

end for

for l = 1 to 3 do

for k = 0 to 19 do

c[4i+ k + l]← c[4i+ k + l]⊕64 t[u[l]][k].
end for

end for

end for

if (j = 0) then break.
v1 ← 0.
for i = 0 to 39 do

t1 ← c[i], v0 ← t1 ≫64 60, c[i]← (t1 ≪64 4)⊕64 v1, v1 ← v0.
end for

j ← j − 1.
end while

Algorithm 4 Vertical Vectorization of Multiplication in F21223

Input: A[0, . . . , 19], B[0, . . . , 19]
Output: C[0, . . . , 39]

L1 ← pack(0x1, 0x1, 0x1, 0x1), L2 ← pack(0x3, 0x3, 0x3, 0x3),
L3 ← pack(0x7, 0x7, 0x7, 0x7). V0 ← pack(0, 0, 0, 0).
T63 ← pack(0xF 15E, 0xF 15E, 0xF 15E, 0xF 15E),
T62 ← pack(0xF 15C, 0xF 15C, 0xF 15C, 0xF 15C),
T61 ← pack(0xF 158, 0xF 158, 0xF 158, 0xF 158).
for i = 0 to 19 /* Precomputation loop */ do

T1 ← ((V0 ≫256 2) AND256 L1) OR256 ((B[i]≪256 1) AND256 T63),
T2 ← ((V0 ≫256 1) AND256 L2) OR256 ((B[i]≪256 2) AND256 T62),
T3 ← (V0) OR256 ((B[i]≪256 3) AND256 T61).
S1 ← B[i]⊕256 T1, S2 ← T2 ⊕256 T3.
t0[0, 1, 2, 3]← unpack(B[i]), t1[0, 1, 2, 3]← unpack(T1),
t2[0, 1, 2, 3]← unpack(T2), t3[0, 1, 2, 3]← unpack(T3).
s1[0, 1, 2, 3]← unpack(S1), s2[0, 1, 2, 3]← unpack(S2).
for j = 0 to 3 do

t[16j][i]← 0, t[16j + 1][i]← t0[j], t[16j + 2][i]← t1[j], t[16j + 3][i]← s1[j],
t[16j + 4][i]← t2[j], t[16j + 5][i]← t2[j]⊕64 t0[j], t[16j + 6][i]← t2[j]⊕64 t1[j],
t[16j + 7][i]← t2[j]⊕64 s1[j], t[16j + 8][i]← t3[j], t[16j + 9][i]← t3[j]⊕64 t0[j],
t[16j + 10][i]← t3[j]⊕64 t1[j], t[16j + 11][i]← t3[j]⊕64 s1[j],
t[16j + 12][i]← s2[j], t[16j + 13][i]← s2[j]⊕64 t0[j],
t[16j + 14][i]← s2[j]⊕64 t1[j], t[16j + 15][i]← s2[j]⊕64 s1[j].

end for

end for

Initialize C to zero, U ← pack(0xF, 0xF, 0xF, 0xF), and j ← 15.
while (j ≥ 0) /* Intermediate product computation loop */ do

l← j ≪64 2
for i = 0 to 19 do

U ← (A[i]≫256 l) AND256 U , (u1, u2, u3, u4)← unpack(U), ival← i, k ← 0.
while k < 20 do

P ← pack(t[u4][k], t[u3][k], t[u2][k], t[u1][k]),
C[ival]← C[ival]⊕256 P .
P ← pack(t[u4][k + 1], t[u3][k + 1], t[u2][k + 1], t[u1][k + 1]),
C[ival + 1]← C[ival + 1]⊕256 P .
P ← pack(t[u4][k + 2], t[u3][k + 2], t[u2][k + 2], t[u1][k + 2]),
C[ival + 2]← C[ival + 2]⊕256 P .
P ← pack(t[u4][k + 3], t[u3][k + 3], t[u2][k + 3], t[u1][k + 3]),
C[ival + 3]← C[ival + 3]⊕256 P .
k ← k + 4, ival← ival + 4.

end while

end for

if (j = 0) break.
Initialize V0 to zero.
for i = 0 to 39 do

V1 ← C[i]≫256 60, C[i]← V0 ⊕256 (C[i]≪256 4), V0 ← V1.
end for

j ← j − 1.
end while

Algorithm 5 Reduction of the Intermediate Product

Input: The intermediate product γ[0 . . . 38]
Output: The reduced product stored in γ[0 . . . 19]

for i = 38 down to 20 do

α← γ[i], γ[i− 20]← γ[i− 20]⊕ (α≪ 57), γ[i− 19]← γ[i− 19]⊕ (α≫ 7),
γ[i− 16]← γ[i− 16]⊕ (α≪ 56), γ[i− 15]← γ[i− 15]⊕ (α≫ 8).

end for

α← γ[19]≫ 7, γ[0]← γ[0]⊕ α, γ[3]← γ[3]⊕ (α≪ 63),
γ[4]← γ[4]⊕ (α≫ 1), γ[19]← γ[19] AND δ.

Algorithm 5 shows the reduction of the intermediate product for both models
of vectorization. In horizontal vectorization, γ is the array c of 64-bit words, α
a 64-bit variable, δ = 0x7F , and all operations are on 64-bit words. In vertical
vectorization, γ is the array C of 256-bit SIMD registers, α a 256-bit variable,
δ = pack(0x7F, 0x7F, 0x7F, 0x7F), and all operations are on SIMD registers.

4 Experimental Results

We have carried out our experiments on an Intel Corei7-4770S platform (CPU
clock 3.10 GHz) running the 64-bit Ubuntu operating system version 13.10. The
programs are compiled by version 4.8.1 of the gcc compiler with the -O3 opti-
mization flag. In some of our experiments, the widely available SSE2 (Streaming
SIMD Extension) intrinsics are used [21, 30]. SSE2 uses 128-bit SIMD regis-
ters, so we can pack two 64-bit words in a single SIMD register. The Sandy
Bridge architecture released by Intel in 2011 introduces 256-bit SIMD registers
AVX (Advanced Vector Extension). AVX supports 256-bit floating-point vector
operations only. The Haswell architecture released in 2013 introduces another
extension AVX2 which supports 256-bit integer vector operations. Our machine
supports all these SIMD features. In addition to SSE2, we have also worked with
AVX2 intrinsics [21]. With AVX2, we can pack four 64-bit words in a register
and hope to exploit data parallelism more than what can be achieved with SSE2.

The timing results are reported in clock cycles. For non-SIMD and horizontal-
SIMD implementations, the timings correspond to the execution of one field
operation or one eta-pairing computation. For the vertical-SIMD implementa-
tion, two (for SSE2) or four (for AVX2) operations are performed in parallel.
The times obtained by our implementation are divided by two or four in the
tables below in order to indicate the average time per operation. This is done
to make the results directly comparable with the results from the non-SIMD
and horizontal-SIMD implementations. We use gprof and valgrind to profile our
program. Special cares are adopted to minimize cache misses [14].

Tables 1 and 2 summarize the average computation times of basic field op-
erations in F21223 and F3509 . For the addition and multiplication operations,
SIMD-based implementations usually perform better than the non-SIMD im-
plementation. For the square, square-root, cube and cube-root operations, the

Table 1. Timing for field operations in F21223 (clock cycles)

Mode Addition Multiplication∗ Square∗ Square root∗

Non-SIMD 52.5 10546.2 279.7 2806.9
SSE2 (H) 27.2 11780.3 415.0 2565.1
SSE2 (V) 27.5 8192.6 285.5 1663.7
AVX2 (H) 10.3 5525.1 276.9 3140.5
AVX2 (V) 6.6 5478.9 244.4 853.7

Hankerson et al. [19] 8200 600 500
Beuchat et al. [10] 5438.4 480 748.8
Aranha et al. [5] 4030 160 166

∗Including modular reduction

Table 2. Timing for field operations in F3509 (clock cycles)

Mode Addition Multiplication∗ Cube∗ Cube root∗

Non-SIMD 132.3 14928.4 773.9 4311.9
SSE2 (H) 64.1 11025.2 835.4 5710.6
SSE2 (V) 54.4 6494.6 442.8 1953.3

Hankerson et al. [19] 7700 900 1200
Beuchat et al. [10] 4128 900 974.4

∗Including modular reduction

Table 3. Times for computing one eta pairing (in millions of clock cycles)

Implementation Characteristic Time Speedup

Non-SIMD
2 40.6
3 53.7

SSE2 (H)
2 41.5 –2.2%
3 37.7 29.8%

SSE2 (V)
2 29.5 27.3%
3 24.9 53.6%

AVX2 (H) 2 29.1 28.3%
AVX2 (V) 2 27.2 33.0%

Hankerson et al. [19]
2 39
3 33

Beuchat et al. [10]
2 26.86
3 22.01

Aranha et al. [5] 2 18.76

performance of the horizontal implementation is often poorer than that of the
non-SIMD implementation, whereas the performance of the vertical implemen-
tation is noticeably better than that of the non-SIMD implementation. The
experimental results tally with our theoretical observations discussed in Sec-
tion 3.3. That is, field operations involving bit-level shifts significantly benefit
from the vertical model of vectorization. In particular, with SSE2, the time of
each multiplication operation can be reduced by up to 25% using horizontal
vectorization. For vertical vectorization, this reduction is in the range 25–50%.
AVX2 can produce an additional speedup of 30–50% over SSE2.

In Table 3, we mention the average times for computing one eta pairing for
non-SIMD, horizontal-SIMD and vertical-SIMD implementations. The speedup
figures tabulated are with respect to the non-SIMD implementation. Vertical
vectorization is seen to significantly outperform both non-SIMD and horizontal-
SIMD implementations. Once again, we obtain noticeably higher benefits if we
use AVX2 in place of SSE2.

In Tables 1–3, we also mention other reported implementation results on
finite-field arithmetic and eta-pairing computation. Hankerson et al. [19] use only
SIMD features, and our implementations are already faster than their implemen-
tations in both characteristics two and three. Our implementations are, however,
slower than the implementations reported in the other two papers [5, 10]. In
fact, these two papers employ other parallelization techniques (multi-threading
in multi-core machines). SIMD-based parallelization is not incompatible with
multi-core implementations. Indeed, these two parallelization techniques can go
hand in hand, that is, SIMD techniques may provide additional speedup in the
computation of every individual core. The scope of our work is to compare the
performances of horizontal and vertical vectorization techniques in the context
of eta pairing over finite fields of small characteristics. To this end, our experi-
mental results, although slower than the best reported implementations, appear
to have served our objectives.

5 Conclusion

In this paper, we establish the superiority of the vertical model of SIMD vector-
ization over the horizontal model for eta-pairing computations over finite fields
of small characteristics. Some possible extensions of our work are stated now.

– We have studied vectorization for bit-wise operations only. It is unclear how
the two models compare when arithmetic operations are involved. Eta pair-
ing on elliptic curves defined over prime fields heavily use multiple-precision
integer arithmetic. These form a class of curves still immune to the recent
attacks [1, 2, 6, 24]. Other types of pairing and other cryptographic primi-
tives also require integer arithmetic. Managing carries and borrows during
addition and subtraction stands in the way of effective vectorization. Multi-
plication poses a more potent threat to data-parallelism ideas.

– Porting our implementations to curves over larger fields of small character-
istics (in order to achieve 128-bit security) is important.

– In near future, Intel is going to release the Broadwell architecture which is
promised to feature 512-bit SIMD registers (AVX-512) [22]. These registers
should produce some additional speedup in eta-paring computations.

– It needs experimentation to understand the extent to which multi-threaded
implementations of [5, 10] additionally benefit from the application of SIMD-
based vectorization techniques.

References

1. Adj, G., Menezes, A., Oliveira, T., Rodŕıguez-Henŕıquez, F.: Weakness of F36·1429

and F24·3041 for discrete logarithm cryptography. In: IACR Eprint Archive (2013),
http://eprint.iacr.org/2013/737

2. Adj, G., Menezes, A., Oliveira, T., Rodŕıguez-Henŕıquez, F.: Weakness of F36·509

for discrete logarithm cryptography. In: IACR Eprint Archive (2013), http://

eprint.iacr.org/2013/446

3. Ahmadi, O., Hankerson, D., Menezes, A.: Software implementation of arithmetic
in F3m . In: International Workshop on the Arithmetic of Finite Fields (WAIFI
2007). pp. 85–102 (2007)

4. Ahmadi, O., Rodriguez-Henriquez, F.: Low complexity cubing and cube root com-
putation over F3m in polynomial basis. IEEE Transactions on Computers 59, 1297–
1308 (2010)

5. Aranha, D.F., López, J., Hankerson, D.: High-speed parallel software implementa-
tion of the ηT pairing. In: CT-RSA 2010. pp. 89–105 (2010)

6. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A quasi-polynomial algorithm for
discrete logarithm in finite fields of small characteristic. In: IACR Eprint Archive
(2013), http://eprint.iacr.org/2013/400

7. Barreto, P.S.L.M.: A note on efficient computation of cube roots in characteristic
3. In: IACR Eprint Archive (2004), http://eprint.iacr.org/2004/305

8. Barreto, P.S.L.M., Galbraith, S.D., OÉigeartaigh, C., Scott, M.: Efficient pairing
computation on supersingular abelian varieties. Designs, Codes and Cryptography
42(3), 239–271 (2007)

9. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-
based cryptosystems. In: CRYPTO 2002. pp. 354–368 (2002)

10. Beuchat, J.L., López-Trejo, E., Mart́ınez-Ramos, L., Mitsunari, S., Rodrguez-
Henŕıquez, F.: Multi-core implementation of the Tate pairing over supersingular
elliptic curves. In: Cryptology and Network Security. pp. 413–432 (2009)

11. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In:
CRYPTO 2001. pp. 213–229 (2001)

12. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. Journal
of Cryptology 17, 297–319 (2004)

13. Bose, U., Bhattacharya, A.K., Das, A.: GPU-based implementation of 128-bit se-
cure eta pairing over a binary field. In: Africacrypt 2013. pp. 26–42. LNCS (2013)

14. Drepper, U.: What every programmer should know about memory (2007), http:
//lwn.net/Articles/250967/

15. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
Journal of Cryptology 23, 224–280 (2010)

16. Gorla, E., Puttmann, C., Shokrollahi, J.: Explicit formulas for efficient multipli-
cation in F36m . In: SAC. pp. 173–183 (2007), http://portal.acm.org/citation.
cfm?id=1784881.1784893

17. Grabher, P., Großschädl, J., Page, D.: On software parallel implementation of
cryptographic pairings. In: SAC. pp. 35–50 (2008)

18. Granger, R., Page, D., Stam, M.: Hardware and software normal basis arithmetic
for pairing-based cryptography in characteristic three. IEEE Trans. Computers
54(7), 852–860 (2005)

19. Hankerson, D., Menezes, A., Scott, M.: Software Implementation of Pairings. In:
Identity Based Cryptography, pp. 188–206. IOS Press (2008)

20. Hess, F., Smart, N.P., Vercauteren, F.: The eta pairing revisited. IEEE Transac-
tions on Information Theory 52(10), 4595–4602 (2006)

21. Intel: Intelr C++ compiler XE 13.1 user and reference guide: Compiler reference:
Intrinsics (2013), http://software.intel.com/sites/products/documentation/
doclib/iss/2013/compiler/cpp-lin/GUID-712779D8-D085-4464-9662-B630681

F16F1.htm
22. Intel: Intel instruction set architecture extensions (2014), http://software.

intel.com/en-us/intel-isa-extensions
23. Joux, A.: A one round protocol for tripartite Diffie-Hellman. Journal of Cryptology

17, 263–276 (2004)
24. Joux, A.: Faster index calculus for the medium prime case application to 1175-bit

and 1425-bit finite fields. In: Eurocrypt 2013. pp. 177–193. LNCS (2013)
25. Katoh, Y., Huang, Y.J., Cheng, C.M., Takagi, T.: Efficient implementation of the

ηT pairing on GPU. In: IACR Eprint Archive (2011), http://eprint.iacr.org/
2011/540

26. Kawahara, Y., Aoki, K., Takagi, T.: Faster implementation of ηT pairing over
GF (3m) using minimum number of logical instructions for GF(3)-addition. In:
Pairing. pp. 282–296 (2008)

27. Kerins, T., Marnane, W.P., Popovici, E.M., Barreto, P.S.L.M., Brazil, S.P.: Effi-
cient hardware for the Tate pairing calculation in characteristic three. In: CHES.
pp. 412–426 (2005)

28. Lee, E., Lee, H.S., Park, C.M.: Efficient and generalized pairing computation on
abelian varieties. IEEE Transactions on Information Theory 55, 1793–1803 (2009)

29. López, J., Dahab, R.: High speed software implementation in F2m . In: Indocrypt
2000. pp. 93–102. LNCS (2000)

30. Microsoft: MMX, SSE, and SSE2 Intrinsics (2010), http://msdn.microsoft.com/
en-us/library/y0dh78ez(v=vs.90).aspx

31. Miller, V.: The Weil pairing and its efficient calculation. Journal of Cryptology 17,
235–261 (2004)

32. Montgomery, P.L.: Vectorization of the elliptic curve method. ACM (1991)
33. Page, D., Smart, N.P.: Parallel cryptographic arithmetic using a redundant Mont-

gomery representation. IEEE Transactions on Computers 53, 1474–1482 (2004)
34. Scott, M.: Optimal irreducible polynomials for GF(2m) arithmetic. In: IACR

Eprint Archive (2007), http://eprint.iacr.org/2007/192
35. Scott, M., Benger, N., Charlemagne, M., Perez, L.J.D., Kachisa, E.J.: On the final

exponentiation for calculating pairings on ordinary elliptic curves. In: Pairing-
Based Cryptography – Pairing 2009. pp. 78–88. LNCS (2009)

36. Smart, N.P., Harrison, K., Page, D.: Software implementation of finite fields of char-
acteristic three. LMS Journal Computation and Mathematics 5, 181–193 (2002)

37. Takahashi, G., Hoshino, F., Kobayashi, T.: Efficient GF(3m) multiplication algo-
rithm for ηT pairing. In: IACR Eprint Archive (2007), http://eprint.iacr.org/
2007/463

38. Vercauteren, F.: Optimal pairings. IEEE Transactions on Information Theory 56,
455–461 (2010)

