
Batch Verification of EdDSA Signatures

Sabyasachi Karati, Abhijit Das
Department of Computer Science and Engineering

IIT Kharagpur, India
skarati,abhij@cse.iitkgp.ernet.in

Abstract. In AfricaCrypt 2012 and ACNS 2014, several algorithms are proposed
for the batch verification of ECDSA signatures. In this paper, we make a
comparative study of these methods for the Edwards curve digital signature
algorithm (EdDSA). We describe the adaptation of Algorithms N, N′, S2′

and SP for EdDSA signatures. The randomization methods are also explained
in detail. More precisely, we study seminumeric scalar multiplication and
Montgomery ladders during randomization of EdDSA signatures. Each EdDSA
signature verification involves a square-root computation. One may instead use
an ECDSA-like verification procedure which avoids the expensive square-root
computation. We study both these variants of EdDSA verification. Experimental
results show that for small batch sizes the Algorithms S2′ and SP yield speedup
comparable to what is achieved by Algorithm N′ which is originally proposed as
the default EdDSA batch-verification algorithm.

Keywords: Elliptic Curve, Edwards Curve, Montgomery Ladder, Symbolic
Computation, Batch Verification, ECDSA, EdDSA, Randomization.

1 Introduction

The concept of digital signatures is proposed in [1] by Diffie and Hellman. The first
practically applicable signature scheme RSA is proposed by Rivest, Shamir and Adle-
man in 1978 [2]. The security of the RSA algorithm is based allegedly on the hard-
ness of the factorization of products of two large primes. In 1985, ElGamal proposes a
new type of digital signature scheme based on the discrete logarithm problem in prime
fields [3]. The ElGamal signature scheme is the first digital-signature scheme which is
probabilistic in nature. The Digital Signature Algorithm (DSA) [4] is a variant of the
ElGamal digital signature scheme, proposed as a standard by the National Institute of
Standards and Technology (NIST) in 1991. In 2001, the Elliptic Curve Digital Signa-
ture Algorithm (ECDSA) is proposed by Johnson et al. [5] and is again accepted as a
digital-signature standard. Bernstein et al. in 2011 propose the Edwards curve digital
signature algorithm (EdDSA) [6]. ECDSA and EdDSA derive their security from the
apparent intractability of the discrete logarithm problem in elliptic and Edwards curves
defined over finite fields.

To verify an ElGamal-like signature, one requires two finite-field exponentiations
(for DSA) or two scalar multiplications in the underlying curve (for ECDSA and Ed-
DSA). Each such modular exponentiation or scalar multiplication is considerably more
time-consuming than the other finite-field operations. EdDSA verification additionally

involves a square-root computation in the finite field. This overhead addresses the need
of easy batch verification but incurs significant overhead even during individual verifi-
cation. We can nevertheless adapt the ECDSA verification algorithm to EdDSA, thereby
avoiding the costly square-root computation.

In all these ElGamal-like signature schemes, signature verification is somewhat
slower than the signing procedure. Many applications (often real-time) need to verify
multiple signatures in batches. In 1994, Naccache et al. introduce a method to handle
signature batches [7]. They propose the concept of batch verification, where the veri-
fier simultaneously verifies a batch in time less than the total time associated with the
individual verification of the signatures. An interactive batch-verification procedure is
proposed for DSA signatures in [7]. In 1997, the concept of batch RSA is introduced by
Fiat [8]. Harn, in 1998, proposes an efficient scheme for the batch verification of RSA
signatures [9]. In this scheme (also see [10]), multiple signatures signed by the same
private key can be verified simultaneously. Harn’s scheme uses only one exponentiation
for batches of any size t. However, its drawback is that it does not adapt to the case of
signatures from multiple signers.

The key sizes of ECDSA signatures are much smaller than the key sizes of RSA and
DSA signatures at the same security level. In Table 1 derived from [11], L and N stand
for the bit lengths of the public and the private keys for DSA, k is the bit length of the
modulus in RSA, and f is the order of the base point of the elliptic-curve/Edwards-curve
group. In order to achieve 256-bit security, ECDSA/EdDSA needs only 512-bit keys. At
the same security level, the DSA and RSA key sizes should be at least (15360,512) and
15360 bits. Smaller key sizes make ECDSA/EdDSA attractive to many applications.
Moreover, smaller key sizes lead to faster verification for ECDSA/EdDSA compared to
RSA/DSA.

Table 1. Key sizes for digital-signature algorithms at different security levels

Bits of DSA RSA ECDSA/EdDSA
Security minimum (L,N) minimum k minimum f

80 (1024,160) 1024 160
112 (2048,224) 2048 224
128 (3072,256) 3072 256
192 (7680,384) 7680 384
256 (15360,512) 15360 512

The described batch-verification methods are not directly applicable to ECDSA sig-
natures. ECDSA*, a modification of ECDSA introduced by Antipa et al. [12], permits
an easy adaptation of the DSA batch-verification protocol of Naccache et al. Cheon and
Yi [13] study batch verification of ECDSA* signatures, and report speedup factors of
up to 7 for same signer and 4 for different signers. However, ECDSA* is not accepted as
a standard signature scheme like DSA, RSA or ECDSA [4]. Thus the use of ECDSA*
is unacceptable, particularly in applications where interoperability is of important con-

2

cern. Moreover, ECDSA* increases the signature size by approximately a factor of two
compared to ECDSA without increasing the security.

Edwards curves, a normal form of elliptic curves, are introduced by Edwards in [14].
Bernstein et al. [6] apply these curves to cryptographic usage. Edwards curves offer
faster addition and doubling formulas than elliptic curves. Moreover, the unified ad-
dition and doubling formulas make Edwards-curve cryptosystems resistant to simple
side-channel attacks. A batch-verification procedure is also proposed by Bernstein et
al. for Edwards curve digital signatures (EdDSA).

An application of our batch-verification algorithms is in secure vehicle-to-vehicle
(V2V) communications in vehicular ad hoc networks (VANETs) (see [15] for a sur-
vey). Since signature generation and verification are time-consuming operations, and
since vehicles have to verify signatures repeatedly, any algorithm that speeds up the
authentication process is of great help in V2V communications. In a busy street where
a vehicle needs to authenticate messages from multiple vehicles in real time, individual
verification may result in practical bottlenecks. In this situation, it is also expected that
multiple messages from the same vehicle get accumulated for being verified. This is pre-
cisely the case when our batch-verification algorithms produce the maximum benefits.
Like other batch-verification schemes, this performance gain comes at a cost, namely,
we forfeit the ability to identify individual faulty signatures. Our algorithm (like any
batch-verification algorithm) turns out to be useful only when most signatures are au-
thentic.

The rest of this paper is organized as follows. In Section 2, we provide a brief
introduction to the ECDSA batch-verification algorithms of [16, 17] and the attacks
against those [18]. Sections 3 elaborates the EdDSA algorithm given in [6]. An ECDSA-
like variant of EdDSA verification is also discussed. Section 4 explains the adaptation
of ECDSA batch-verification algorithms to EdDSA signatures. Section 5 deals with
randomization issues in the context of EdDSA batch verification. Our experimental
results are supplied and discussed in Section 6. Section 7 concludes the paper.

2 Background on ECDSA Batch Verification

We work over the elliptic curve

y2 = x3 +ax+b. (1)

defined over a large prime field Fp. We assume that the group E(Fp) is of prime order
n. Let P be a fixed generator of E(Fp).

An ECDSA signature on a message M is a triple (M,r,s), where r is the x-coordinate
of an elliptic-curve point R, and s is an integer that absorbs the hash of M. Both r and
s are reduced modulo the size n of the elliptic-curve group. During verification, two
scalars u,v are computed using modulo n arithmetic, and the point R is reconstructed as
R = uP+vQ, where P is the base point in the elliptic-curve group, and Q is the signer’s
public key. Verification succeeds if and only if x(R) = r.

3

Suppose that we want to verify a batch of t ECDSA signatures (Mi,ri,si). For the
i-th signature, the verification equation is Ri = uiP+viQi. The t signatures can be com-
bined as

t

∑
i=1

Ri =

(
t

∑
i=1

ui

)
P+

(
t

∑
i=1

viQi

)
. (2)

For simplicity, we assume that all of the t signatures come from the same signer, that is,
Qi = Q for all i. In this case, Eqn(2) can be simplified as

t

∑
i=1

Ri =

(
t

∑
i=1

ui

)
P+

(
t

∑
i=1

vi

)
Q. (3)

Since the y-coordinates of Ri are not available in the signatures, we cannot straightaway
compute the sum on the left side. In AfricaCrypt 2012, several batch-verification algo-
rithms are proposed to solve this problem [16]. The naive algorithms are based upon the
determination of the missing y-coordinate of each Ri using a square-root computation
(we have y2

i = r3
i +ari +b). The symbolic-manipulation algorithms treat the unknown

y-coordinates as symbols. Batch verification involves the eventual elimination of all
these y-coordinates from Eqn(2) or (3) using the elliptic-curve equation. The symbolic
algorithm S2′ turns out to be the fastest of the batch-verification algorithms proposed
in [16].

In IndoCrypt 2012, Bernstein et al. [18] propose two attacks on these batch-ver-
ification algorithms. They also suggest that these attacks can be largely eliminated
by randomizing the batch-verification process (a concept introduced by Naccache et
al. [7]). For randomly chosen non-zero multipliers ξ1,ξ2, . . . ,ξt , the individual verifica-
tion equations are now combined as

t

∑
i=1

ξiRi =

(
t

∑
i=1

ξiui

)
P+

(
t

∑
i=1

ξiviQi

)
(4)

or as

t

∑
i=1

ξiRi =

(
t

∑
i=1

ξiui

)
P+

(
t

∑
i=1

ξivi

)
Q (5)

for the case of the same signer. Since the y-coordinates of Ri are not available in the
ECDSA signatures, Eqn(4) or (5) is not directly applicable. Some efficient ways of
randomizing the batch-verification algorithms of [16] are proposed in [19]. We mostly
concentrate on standard ECDSA signatures (M,r,s) on M. If the ECDSA signature
contains an extra bit to identify the correct square-root y of r3+ar+b [20], we call this
an ECDSA# signature. In another variant known as ECDSA* [20, 21], the entire point
R replaces r in the signature. Neither ECDSA# nor ECDSA* is accepted as a standard.
Since ECDSA* results in an unreasonable expansion in the signature size without any
increase in the security, we do not consider this variant in this paper. ECDSA#, however,
adds only one extra bit to a signature, and so we study the implications of having this
extra bit.

4

2.1 ECDSA Batch Verification

The right side of Eqn(3) can be computed numerically using two scalar multiplications
(or one double scalar multiplication). Let this point be (α,β). If Ri are reconstructed as
uiP+viQ, the effort is essentially the same as individual verification. The algorithms of
[16] solve this problem in many ways.

The naive method N computes yi by taking the square root of r3
i + ari + b. Since

there are two square roots (in general) for each ri, the ambiguity in the sign of yi can
be removed by trying all of the m = 2t combinations. If Eqn(2) holds for any of these
choices, the batch of signatures is accepted. If we use ECDSA#, then the yi values can
be uniquely identified, and we can avoid trying all the m= 2t combinations. This variant
of the naive method is referred to as N′. If the underlying field is large, the square-root
computations may have huge overheads.

The symbolic algorithms S1 and S2 avoid this overhead by computing the left side
of Eqn(2) symbolically. Each yi is treated as a symbol satisfying y2

i = r3
i +ari +b. This

symbolic addition gives (g(y1,y2, . . . ,yt),h(y1,y2, . . . ,yt)) = (α,β), where g and h are
polynomials in yi with each yi-degree 6 1.

Algorithm S1 makes a linearization by repeatedly squaring g(y1, y2, . . . ,yt) = α

(or multiplying by even-degree monomials). At this stage too, the equations y2
i = r3

i +
ari +b are used in order to keep the yi-degrees 6 1 in each generated equation. The lin-
earized system has 2t−1−1= m

2 −1 variables standing for the square-free monomials in
y1,y2, . . . ,yt of even degrees. The linearized system is solved by Gaussian elimination.
The equation h(y1,y2, . . . ,yt) = β is then used to solve for each yi. Finally, it is verified
whether y2

i = r3
i +ari +b for all i.

Algorithm S2 uses a faster elimination trick. The equation g(y1, y2, . . . ,yt) = α is
written as γ(y2,y3, . . . ,yt)y1 + δ (y2,y3, . . . ,yt). Multiplying this by γy1− δ and using
y2

1 = r3
1 + ar1 + b gives an equation free from y1. The other variables y2,y3, . . . ,yt are

eliminated one by one in the same way. Eventually, the batch is accepted if we obtain
the zero polynomial after all yi are eliminated.

An improved variant of S1 and S2 significantly speeds up the symbolic-addition
phase. Let τ = dt/2e. Eqn(2) is rewritten as ∑

τ
i=1 Ri = (α,β)−∑

t
i=τ+1 Ri. The two

sides are individually computed symbolically. These variants of S1 and S2 are referred
to as S1′ and S2′.

In [17], Karati et al. propose a new ECDSA batch-verification algorithm based on
elliptic-curve summation polynomial. This algorithm is known as Algorithm SP and,
is theoretically and experimentally faster than S2′. In this algorithm, Eqns(2)–(5) are
rewritten as

t

∑
i=1

(ri,yi)+(α,−β) = O,

where (α,β) is the numeric sum on the right-hand side. This equation is satisfied if and
only if ft+1(r1,r2, . . . ,rt ,α) = 0, where fk(x1,x2, . . . ,xk) is the k-th summation polyno-
mial that can be defined by induction on k [17].

5

2.2 Attacks on ECDSA Batch Verification

In the first attack of Bernstein et al. [18], the batch verifier handles t− 2 genuine sig-
natures along with the two forged signatures (r,s) and (r,−s) on the same message M.
Since the sum of the elliptic-curve points (r,s) and (r,−s) is O , the entire batch of t
signatures is verified as genuine.

In the second attack, the forger knows a valid key pair (d1,Q1), and can fool the ver-
ifier by a forged signature for any message M2 under any valid public key Q2 along with
a message M1 under the public key Q1. The forger selects a random k2, computes R2 =
k2P and r2 = x(R2). For another random s2, the signature on M2 under Q2 is presented
as (r2,s2). For the message M1, the signature (r1,s1) is computed as R1 = r2s−1

2 Q2,
r1 = x(R1), and s1 = (e1 + r1d1)(k2− e2s−1

2)−1, where e1 = H(m1), e2 = H(m2), and
H is a secure hash function. Now, R1 +R2 and (e1s−1

1 + e2s−1
2)P+ r1s−1

1 Q1 + r2s−1
2 Q2

have the same value as (k2P+r2s−1
2 Q2). These forged signatures are verified if they are

in the same batch.
Both these attacks become infeasible by the use of randomizers. If the verifier

chooses l-bit randomizers, the security of the batch-verification procedure increases by
2l . The randomizers need not be of full lengths (of lengths close to that of the prime or-
der n of the relevant elliptic-curve group). As discussed in [22], much smaller random-
izers typically suffice to make most attacks on batch-verification schemes infeasible. If
the underlying field is of size d bits, then the best known algorithms (the square-root
methods) to solve the ECDLP take O˜(2d/2) times. As a result, d/2-bit randomizers do
not degrade the security of the ECDSA scheme. Another possibility is to take l = 128
to get 128-bit security independent of the security guarantees of ECDSA.

3 Edwards Curve Digital Signature Algorithm (EdDSA)

Bernstein et al. in [6] propose the Edwards Curve Digital Signature Algorithm (Ed-
DSA). This signature scheme is based on the group structure of the twisted Edwards
curve over a prime field Fp defined as

E :−x2 + y2 = 1+dx2y2, (6)

where d is not a square element in Fp and d /∈ {0,−1}. To set up EdDSA signatures,
one fixes the following domain parameters:

b = an integer > 10,
H = a cryptographic hash function whose output is 2b bits long,
p = a prime congruent to 1 modulo 4,
d = a non-square element in Fp, d 6= 0,−1,

l = a prime in the range
[
2b−4,2b−3

]
,

B = a point of the curve that acts as the base point, B 6= (0,1).

These domain parameters are same for all the entities participating in a network. The
Edwards-curve group is an additive group, where the sum of two points P1 = (x1,y1)

6

and P2 = (x2,y2) on the curve is the point P3 = P1 +P2 = (x3,y3) that can be computed
using the twisted Edwards-curve addition formula as given in [23]:

(x3,y3) = (x1,y1)+(x2,y2) =

(
x1y2 + x2y1

1+dx1x2y1y2
,

y1y2 + x1x2

1−dx1x2y1y2

)
(7)

Now, we describe the three parts of the EdDSA signature scheme. The signer creates
his/her key pair using Algorithm 1. Let M be a message, and the EdDSA signature of
the message be (R,S). Algorithm 2 generates the signature of the message. The validity
of the signature is checked by Algorithm 3.

Algorithm 1 EdDSA Key Generation
INPUT: Domain Parameters.
OUTPUT: Public key A, private key k.

– Choose a random b-bit string as k.
– Compute H(k) = (h0,h1, . . . ,h2b−1).
– Compute a = 2b−2 +∑3≤i≤b−3 2ihi.
– Compute A = aB.

Algorithm 2 EdDSA Signature Generation
INPUT: Domain Parameters, message M, private key k, and H(k) = (h0,h1, . . . ,h2b−1).
OUTPUT: The EdDSA signature (R′,S) on M.

– Compute r = H(hb, . . . ,h2b−1,M).
– Compute R = rB ∈ E.
– R′ = (the sign bit of the x-coordinate of R) || (the y-coordinate of R).
– Compute S = r+H(R′,A,M)a (mod l).

Algorithm 3 EdDSA Signature Verification
INPUT: Domain Parameters, message M, public key A, and signature (R′,S).
OUTPUT: Accept or reject.

– Compute H(R′,A,M).
– Compute R from R′ (using a square-root computation as described in the text).
– Accept the signature if and only if the equation SB = R+H(R′,A,M)A holds.

In the verification Algorithm 3, we have to compute R from R′ which contains the
sign bit of the x-coordinate and the y-coordinate of the point R. From the known y-

7

Algorithm 4 Alternative EdDSA Signature Verification
INPUT: Domain Parameters, message M, public key A, and signature (R′,S).
OUTPUT: Accept or reject.

– Compute H(R′,A,M).
– Extract the y-coordinate Ry of R from R′.
– Accept the signature if and only if the equation Ry = y(SB−H(R′,A,M)A) holds.

coordinate, we first compute two x-coordinates by x ≡ ±
√

y2−1
dy2+1 (mod p), and then

solve the sign problem using the sign bit present in R′. We can avoid the square-root
computation in the verification method. We propose an alternative signature-verification
Algorithm 4 which is a straightforward adaptation of the ECDSA signature-verification
algorithm. The correctness of Algorithm 4 can be easily proved as follows. We have
S = (r+H(R′,A,M)a) (mod l), that is, r = S−H(R′,A,M)a. Multiplying both sides by
B, we get rB = SB−H(R′,A,M)aB, that is R = SB−H(R′,A,M)A. Therefore y(R) =
y(SB−H(R′,A,M)A).

4 Batch Verification of EdDSA

Like ECDSA, only the y-coordinate of an Edwards-curve point is sent in an EdDSA sig-
nature. An extra bit to identify the correct x-coordinate is included in the signature. All
the batch-verification algorithms studied in connection with ECDSA apply equally well
to EdDSA signatures. Suppose that we want to verify a batch (M1,R′1,S1),(M2,R′2,S2),
. . . ,(Mt ,R′t ,St) of t EdDSA signatures. Let Ri be the corresponding point of R′i. We
combine the individual verification equations for the t signatures as:(

t

∑
i=1

Si

)
B−

t

∑
i=1

H(R′i,Ai,Mi)Ai =
t

∑
i=1

Ri. (8)

If all the signatures are from the same signer, that is, A1 = A2 = · · · = At = A, then
Eqn(8) simplifies to:(

t

∑
i=1

Si

)
B−

(
t

∑
i=1

H(R′i,Ai,Mi)

)
A =

t

∑
i=1

Ri. (9)

Eqn(9) requires only two scalar multiplications. Unlike ECDSA, an EdDSA signature
contains an extra bit of information to identify the x-coordinate of R uniquely (after
solving a quadratic equation). We can compute the full Edwards-curve point Ri from R′i
for all i. This calls for t square-root computations modulo p. This algorithm is similar to
Algorithm N′ of [16] and is called Algorithm EdN′ here. If the extra bit is not available
in the EdDSA signature (or is ignored) to uniquely distinguish the x-coordinate, we have
to try all the 2t combinations of points to verify the batch. We call this naive method
Algorithm EdN. The original EdDSA paper [6] recommends Algorithm EdN′ as the
default batch-verification algorithm.

8

4.1 Adaptation of Algorithm S2′

We can remove the overhead of square-root computations altogether. The adaptation of
Algorithm S2′ can solve this problem. Let us call this adapted version Algorithm EdS2′.
We first divide the t Edwards-curve points R1,R2, . . . ,Rt in two groups. Then, we rewrite
Eqn (8) as:b t

2c
∑
i=1

Ri

=

(
t

∑
i=1

Si

)
B−

(
t

∑
i=1

H(R′i,Ai,Mi)

)
A−

 t

∑
i=b t

2c+1

Ri

 . (10)

We treat the x-coordinates of the points Ri as symbols and compute the symbolic sum
of the two sides of Eqn(10). Let the symbolic sum on the left-hand side of Eqn(10)
be Q1, and that on the right-hand side be Q2. For a valid batch, Q1 and Q2 are two
symbolic representations of the same point. We have y(Q1) ∈ Fp

[
x1,x2, . . . ,xb t

2c
]

and

y(Q2) ∈ Fp

[
xb t

2c+1,xb t
2c+2, . . . ,xt

]
. Let φ = y(Q1)− y(Q2), so φ is a polynomial in

Fp[x1,x2, . . . ,xt]. In φ , the maximum degree of any xi is 1. We write φ as ux1+v, where
u,v ∈ Fp[x2, . . . ,xt]. Multiplying φ with ux1− v, we get

(ux1− v)φ = (ux1− v)(ux1 + v) = u2x2
1− v2.

Substituting x2
1 by y2

1−1
dy2

1+1
, we get φ ′=(ux1−v)φ = u2

(
y2

1−1
dy2

1+1

)
−v2. To keep the degrees

of all remaining xi to 6 1, a substitution phase follows this elimination, in which we

replace x2
i by y2

i −1
dy2

i +1
for all i = 2,3, . . . , t. Using the same procedure, we eliminate all

the symbolic x-coordinates x2,x3, . . . ,xt one by one. At the end, if we obtain the zero
polynomial, we accept the batch of signatures, else we reject it.

4.2 Edwards-Curve Summation Polynomials and Adaptation of Algorithm SP

Here, we mention the adaptation necessary to make Algorithm SP of [17] work for
EdDSA batch verification. The two base cases f2 and f3 of Edwards-curve summation
polynomials, and the recurrence relation to compute the summation polynomial ft for
t ≥ 4 are:

f2(y1,y2) = y1− y2,

f3(y1,y2,y3) = c2(V −d2Uy2
1y2

2)y
2
3−2y1y2(V −dU)y3 +(V y2

1y2
2−U),

where U = (c2− y2
1)(c

2− y2
2) and V = (1− c2dy2

1)(1− c2dy2
2),

ft(y1,y2, . . . ,yt) = ResY (ft−k(y1, . . . ,yt−k−1,Y), fk+2(yt−k, . . . ,yt ,Y))

for t > 4 and for any k in the range 1 6 k 6 t−3.

The summation polynomial ft evaluated at the t arguments y1,y2, . . . ,yt is zero if and
only if there exists an xi in Fp for each yi, where 1 6 i 6 t, such that −x2

i + y2
i = 1+

dx2
i y2

i . If the batch-verification condition of Eqn(8) or (9) is expressed as ∑
t
i=1(xi,yi)+

(−α,β) = O , it therefore suffices to check whether ft+1(y1,y2, . . . ,yt ,β) = 0. To re-
strict our attention to curve points defined over Fp only, we need to carry out the sanity
check introduced in [17]. The sanity check for Edwards curves follows the same proce-

dure as for elliptic curves (check whether the Legendre symbol
(
(y2

i −1)/(dy2
i +1)

p

)
= 1).

9

5 Randomization of EdDSA Batch-Verification Algorithms

EdDSA signatures can be randomized easily by methods similar to the randomization
methods for ECDSA. For randomly chosen multipliers ξ1,ξ2, . . . ,ξt , we now verify
whether the following equality holds:(

t

∑
i=1

ξiSi

)
B−

t

∑
i=1

ξiH(R′i,Ai,Mi)Ai =
t

∑
i=1

ξiRi. (11)

For the case of the same signer, that is, A1 = A2 = · · ·= At = A, Eqn(11) simplifies to:(
t

∑
i=1

ξiSi

)
B−

(
t

∑
i=1

ξiH(R′i,Ai,Mi)

)
A =

t

∑
i=1

ξiRi. (12)

The default batch-verification algorithm for EdDSA is EdN′, in which we explicitly
and uniquely compute the points Ri by square-root computations modulo p. Subse-
quently, their multiples ξiRi can be computed numerically. We finally check whether
the condition of Eqn(11) or (12) holds. The process does not involve any symbolic or
summation-polynomial computation. In a variant denoted by EdN, we assume that Ri
cannot be uniquely determined, so we need to try all possible combinations of the signs
of xi. For each combination, randomization proceeds numerically as in the case of EdN′.

We may, however, ignore the presence of the extra bit in R′i identifying the correct
value of xi. By doing so, we can adapt the randomized Algorithms EdS2′ and EdSP to
work for EdDSA. This is motivated by a need to avoid costly square-root computations
of Algorithm EdN′.

In order to apply Algorithm EdS2′ to the batch-verification Eqn(11) or (12), it suf-
fices to compute the y-coordinates of all ξiRi. As in the case of ECDSA, we can uniquely
compute y(ξiRi) from the knowledge of ξi and y(Ri) alone. More precisely, let R= (x,y)
be a point on the Edwards curve. Any multiple uR of R can be expressed as (hx,k),
where h,k ∈ Fp are fully determined by (u and) the y-coordinate of R. R itself is so ex-
pressed with h= 1 and k = y. The sum of two multiples P1 = (h1x,k1) and P2 = (h2x,y2)
of R is P1 +P2 = (h3x,k3), where

h3 = (h1k2 +h2k1)/(1+dh1h2k1k2 f),

k3 = (k1k2 +h1h2 f)/(1−dh1h2k1k2 f),

with f precomputed as f = x2 = (y2−1)/(dy2+1)∈ Fp. For Edwards curves, the dou-
bling formula is the same as the addition formula. That is, the double of P1 = (h1x,k1)
is 2P1 = (h4x,k4), where

h4 = 2h1k1/(1+dh2
1k2

1 f),

k4 = (k2
1 +h2

1 f)/(1−dh2
1k2

1 f).

We henceforth refer to this computation of y(ξiRi) as the seminumeric randomization
method.

10

We can also use Montgomery ladders [24] to compute y(ξiRi). For deriving the
Montgomery-ladder formulas, let P1 = (h1,k1) and P2 = (h2,k2) be two points on the
curve. For point addition, we need the y-coordinate of the point P1−P2 as follows.

y(P1 +P2) =
2k1k2(1+dh2

1h2
2)

1−dh2
1h2

2(k1k2)2 − y(P1−P2).

Here, h2
i = (k2

i −1)/(dk2
i +1) for i = 1,2. Finally, point doubling uses the formula

y(2P1) =
k2

1 +h2
1

1−dh2
1k2

1
,

where h2
1 = (k2

1 − 1)/(dk2
1 + 1). These formulas can be easily converted to projective

coordinates.
Let us now theoretically compare the performance of the seminumeric method with

that of the Montgomery-ladder method. Let P1 = (α1x,β1,γ1) and P2 = (α2x,β2,γ2) be
two points on the curve in standard projective coordinates. The seminumeric method
computes the sum P3 = P1 +P2 = (α3x,β3,γ3) and the double P4 = 2P1 = (α4x,β4,γ4)
as given below:

Point Addition

A = γ1 · γ2, B = A2, C = α1 ·α2, C1 =C · fx, D = β1 ·β2, E = d ·C1 ·D, F = B−E,

G = B+E, α3 = A ·F · ((α1 +β1) · (α2 +β2)−C−D), β3 = A ·G · (D+C1),

γ3 = F ·G.

Point Doubling

B = (α1 +β1)
2, C = α

2
1 , C1 =C · fx, D = β

2
1 , E1 =C1 +D, E2 =C+D, H = γ

2
1 ,

J = E1−2 ·H, α4 = (B−E2) · J, β4 = E1 · (C1 +D), γ4 = E1 · J.
Each of seminumeric point addition and point doubling requires one extra field mul-
tiplication than the optimized implementation given in [25]. More precisely, seminu-
meric point addition and doubling take (11M + 1S) and (4M + 4S) field operations
respectively (ignoring the negligible time consumed by multiplication by d and field
addition).

The Montgomery-ladder method requires (14M+6S) field operations for each ad-
dition and doubling combined in each iteration.

We can use any windowed variant of point multiplication in the seminumeric point
multiplication method. On the contrary, no effective windowed variant is known for
Montgomery ladders. Moreover, the practical ladder described in [26] is efficient only
for constant multipliers, which is not the case with randomized batch verification. We
therefore use only the binary ladder.

Let us use l-bit randomizers. If we use the w-NAF method in the seminumeric com-
putation, the precomputation stage needs (4M+4S)+(2w−1−1)(11M+1S) field oper-
ations, and

(l
w+1

)
(11M+1S) field operations are required to perform the scalar multi-

plication. The seminumeric scalar multiplication is faster than the Montgomery-ladder
method if

(4M+4S)+(2w−1−1)(11M+1S)+(4M+4S)l +
(

l(11M+1S)
w+1

)
6 l(14M+6S).

11

Putting w = 4 and assuming 1M ≈ 1S, we deduce that for l > 10 the seminumeric
method is faster than the Montgomery-ladder method.

6 Experimental Results

The algorithms are implemented in a 2.33 GHz Xeon server running Ubuntu Linux
Version 2012 LTS. The algorithms are implemented using the GP/PARI calculator [27]
(version 2.5.0 compiled by the GNU C compiler 4.6.2). We have used the symbolic-
computation facilities of the calculator in our programs. All other functions (like scalar
multiplication and square-root computation) are written as subroutines with minimal
function-call overheads. Since the algorithms are evaluated in terms of the numbers of
field operations, this gives a fair comparison of experimental data with the theoreti-
cal estimates. We have implemented windowed, w-NAF and frac-w-NAF methods for
square-root computations and for numeric and seminumeric randomization methods.
We have used affine and standard projective coordinates. We have performed all the
experiments on the Edwards curve Ed25519 [6].

Table 2 lists the overheads associated with all the batch-verification algorithms. We
present the times required for the numeric and seminumeric scalar multiplications in
Table 4. The best results obtained are highlighted and used in speedup computations. In
the randomization of the batch-verification algorithms, the scalars are not constant, so
we have to compute the addition chain for each scalar multiplication. The timing figures
presented in Table 4 include the addition-chain computation times. Table 3 shows the
square-root computation times obtained by various windowed algorithms. The times
needed to carry out the Montgomery-ladder scalar multiplication are supplied in Ta-
ble 5. Finally, the overall speedup figures obtained by the four batch-verification al-
gorithms EdN, EdN′, EdS2′ and EdSP are listed in Table 6. In the speedup table, we
include the results using both the default signature-verification Algorithm 3 and the
ECDSA-like signature-verification Algorithm 4.

For batch sizes in the range 2 6 t 6 7, the speedup obtained by Algorithms EdS2′

and EdSP is competitive with that obtained by the default batch-verification Algo-
rithm EdN′. Algorithms EdS2′ and EdSP outperform Algorithm EdN′ if we use the de-
fault Algorithm 3 for individual verification. On the other hand, if we use the ECDSA-
like verification Algorithm 4 for individual verification, Algorithm EdS2′ outperforms
Algorithm EdN′ for batch sizes t 6 7, and Algorithm EdSP is faster than Algorithm
EdN′ for batch sizes 6 5.

In short, replacing square-root computations by symbolic or resultant computations
does not degrade the batch-verification process, so long as we restrict only to small
batches of signatures. However, the overhead of the default batch-verification algorithm
EdN′ increases linearly with the batch size, whereas that of EdS2′ or EdSP increases ex-
ponentially. Consequently, EdN′ must eventually take over the exponential algorithms
(not demonstrated in the experimental results though).

7 Conclusion

In this paper, we port several batch-verification algorithms proposed for ECDSA to
EdDSA signatures. We also address the issues of randomizing the batch-verification

12

Table 2. Overhead (in ms) of different batch-verification algorithms for EdDSA

Batch Size Algorithm
t EdN EdN′ EdS2′ EdSP
2 0.08 0.03 0.06 0.06
3 0.24 0.04 0.12 0.10
4 0.63 0.06 0.24 0.12
5 1.54 0.07 0.52 0.28
6 3.71 0.08 0.96 1.36
7 8.74 0.10 2.02 2.72

Table 3. Times (in ms) of square-root computations in the underlying field

↓ Algorithm Times (in ms)
w = 3 0.36

w-numeric (affine) w = 4 0.28
w = 5 0.28
w = 3 0.28

w-NAF-numeric (affine) w = 4 0.28
w = 5 0.32
w = 3 m = 1 0.33

m = 1 0.28
w = 4 m = 3 0.32

m = 5 0.32
m = 1 0.32

Frac-w-NAF-numeric (affine) m = 3 0.32
m = 5 0.32

w = 5 m = 7 0.36
m = 9 0.32

m = 11 0.32
m = 13 0.36

13

Table 4. Times (in ms) of the numeric and seminumeric randomization methods

↓ Algorithm Numeric Methods SemiNumeric Methods
l = 128 l = 255 l = 128 l = 255

w = 3 2.28 4.40 2.40 4.68
w-numeric (affine) w = 4 2.28 4.41 2.44 4.61

w = 5 2.45 4.40 2.60 4.69
w = 3 2.28 4.53 2.44 4.81

w-NAF-numeric (affine) w = 4 2.20 4.40 2.33 4.64
w = 5 2.28 4.25 2.36 4.48
w = 3 m = 1 2.44 4.77 2.61 5.01

m = 1 2.45 4.76 2.52 4.96
w = 4 m = 3 2.44 4.73 2.53 4.97

m = 5 2.44 4.73 2.56 4.89
m = 1 2.40 4.61 2.53 4.80

Frac-w-NAF-numeric (affine) m = 3 2.48 4.60 2.52 4.85
m = 5 2.44 4.64 2.57 4.85

w = 5 m = 7 2.49 4.69 2.56 4.88
m = 9 2.48 4.73 2.60 4.88

m = 11 2.48 4.68 2.60 4.89
m = 13 2.52 4.72 2.64 4.89

w = 3 1.28 2.48 1.40 2.76
w-numeric (Jacobian projective) w = 4 1.28 2.36 1.44 2.68

w = 5 1.36 2.44 1.52 2.68
w = 3 1.32 2.60 1.48 2.88

w-NAF-numeric (Jacobian projective) w = 4 1.24 2.49 1.44 2.81
w = 5 1.28 2.44 1.44 2.73
w = 3 m = 1 1.53 2.92 1.60 3.12

m = 1 1.48 2.88 1.64 3.12
w = 4 m = 3 1.48 2.84 1.60 3.12

m = 5 1.48 2.84 1.64 3.12
m = 1 1.49 2.80 1.60 3.04

Frac-w-NAF-numeric (Jacobian projective) m = 3 1.48 2.85 1.64 3.04
m = 5 1.48 2.80 1.60 3.04

w = 5 m = 7 1.48 2.84 1.60 3.09
m = 9 1.52 2.84 1.65 3.08

m = 11 1.53 2.81 1.64 3.04
m = 13 1.52 2.84 1.64 3.08

Table 5. Times (in ms) of the Montgomery-ladder randomization method

Coordinate system l = 128 l = 255
Affine 2.96 5.85
Standard projective 1.96 3.88

14

Table 6. Speedup (over individual verification) obtained by different randomized and non-
randomized batch-verification methods in the case of the same signer for two verification al-
gorithms

Batch Verification Randomization Batch Algorithm 3 Algorithm 4
Algorithm Algorithm Size None∗ l = 128 None∗ l = 128

2 1.87 1.29 1.77 1.22
3 2.60 1.60 2.46 1.51

EdN Numeric 4 3.11 1.78 2.94 1.68
5 3.30 1.84 3.12 1.74
6 3.01 1.75 2.85 1.65
7 2.32 1.49 2.19 1.41
2 1.89 1.30 1.78 1.23
3 2.69 1.63 2.54 1.54

EdN′ Numeric 4 3.41 1.87 3.22 1.77
5 4.06 2.06 3.84 1.94
6 4.66 2.20 4.41 2.08
7 5.20 2.31 4.92 2.19
2 2.09 1.33 1.98 1.26
3 3.10 1.68 2.93 1.59

EdS2′ Seminumeric 4 4.03 1.93 3.81 1.82
5 4.78 2.08 4.52 1.97
6 5.30 2.17 5.01 2.06
7 5.23 2.16 4.95 2.05
2 2.09 1.33 1.98 1.26
3 3.11 1.69 2.94 1.59

EdSP Seminumeric 4 4.13 1.95 3.90 1.84
5 5.00 2.12 4.73 2.01
6 4.96 2.11 4.69 2.00
7 4.75 2.08 4.49 1.96

* without randomization

15

process. Our experimental results demonstrate that the default batch-verification algo-
rithm proposed for EdDSA can be slightly improved by using the new developments
based on symbolic and resultant computations, at least for small batch sizes. Further
advances in this new area of research can substantially enhance the applicability of the
new proposals for EdDSA signatures. It is a challenging open problem whether the time
complexities of the new algorithms can be brought down from exponential to polyno-
mial. Prospects of achieving breakthroughs are expected to keep research in this area
alive in near future.

References

1. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Informa-
tion Theory 22 (1976) 644–654

2. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-
key cryptosystems. Communications of the ACM 21 (1978) 120–126

3. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete loga-
rithms. IEEE Transactions on Information Theory 31 (1985) 469–472

4. NIST: The digital signature standard. Communications of the ACM 35(7) (1992) 36–40
5. Johnson, D., Menezes, A., Vanstone, S.A.: The elliptic curve digital signature algorithm

(ECDSA). Int. J. Inf. Sec. 1(1) (2001) 36–63
6. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-security

signatures. Journal of Cryptographic Engineering 2(2) (2012) 77–89
7. Naccache, D., M’Raihi, D., Rapheali, D., Vaudenay, S.: Can DSA be improved: Complexity

trade-offs with the Digital Signature Standard. In: Eurocrypt ’94, Spinger (1994) 85–94
8. Fiat, A.: Batch RSA. Journal of Cryptology 10 (1997) 75–88
9. Harn, L.: Batch verifying multiple RSA digital signatures. Electronics Letters 34(12) (1998)

1219–1220
10. Hwang, M.S., Lin, I.C., Hwang, K.F.: Cryptanalysis of the batch verifying multiple RSA

digital signatures. Informatica 11(1) (2000) 15–19
11. NIST: SP 800-52 Rev. 1. NIST Special publication (2013)
12. Antipa, A., Brown, D., Gallant, R., Lambert, R., Struik, R., Vanstone, S.: Accelerated verifi-

cation of ECDSA signatures. In: SAC. Volume 3897 of Lecture Notes in Computer Science.,
Springer (2006) 307–318

13. Cheon, J.H., Yi, J.H.: Fast batch verification of multiple signatures. In: PKC. Volume 4450
of Lecture Notes in Computer Science., Springer (2007) 442–457

14. Edwards, H.M.: A normal form for elliptic curves. Bulletin of American Mathematical
Society 44(3) (2007) 393–422

15. Das, A., Choudhury, D.R., Bhattacharya, D., Rajavelu, S., Shorey, R., Thomas, T.: Authen-
tication schemes for VANETs: A survey. International Journal of Vehicle Information and
Communication Systems 3(1) (2013) 1–27

16. Karati, S., Das, A., Chowdhury, D.R., Bellur, B., Bhattacharya, D., Iyer, A.: Batch verifica-
tion of ECDSA signatures. In Mitrokotsa, A., Vaudenay, S., eds.: AFRICACRYPT. Volume
7374 of Lecture Notes in Computer Science., Springer (2012) 1–18

17. Karati, S., Das, A.: Faster batch verification of standard ECDSA signatures using summation
polynomials. In: ACNS. Volume 8479 of Lecture Notes in Computer Science., Springer
(2014) 438–455

16

18. Bernstein, D.J., Doumen, J., Lange, T., Oosterwijk, J.J.: Faster batch forgery identification.
In: INDOCRYPT. Volume 7668 of Lecture Notes in Computer Science., Springer (2012)
454–473

19. Karati, S., Das, A., Chowdhury, D.R.: Using randomizers for batch verification of ecdsa
signatures. IACR Cryptology ePrint Archive 2012 (2012) 582

20. Antipa, A., Brown, D.R.L., Gallant, R.P., Lambert, R.J., Struik, R., Vanstone, S.A.: Acceler-
ated verification of ECDSA signatures. In: Selected Areas in Cryptography. (2005) 307–318

21. Cheon, J.H., Yi, J.H.: Fast batch verification of multiple signatures. In Okamoto, T., Wang,
X., eds.: Public Key Cryptography. Volume 4450 of Lecture Notes in Computer Science.,
Springer (2007) 442–457

22. Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponentiation and
digital signatures. In: EUROCRYPT. Volume 1403 of Lecture Notes in Computer Science.,
Springer (1998) 236–250

23. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted Edwards curves. In:
Africacrypt. Volume 5023 of Lecture Notes in Computer Science., Springer (2008) 389–405

24. Montgomery, P.L.: Speeding up pollard and elliptic curve methods of factorization. In:
Mathematics of Computation. Volume 48(177). (1987) 243–264

25. Bernstein, D.J., Lange, T.: Explicit-formulas database (2007) Available at http://www.
hyperelliptic.org/EFD/index.html.

26. Montgomery, P.L.: Evaluating recurrences of form Xm+n = f (Xm,Xn,Xm−n) via Lucas
chains. Microsoft research article (1992) 582

27. PARI Group: PARI/GP home (2008) Available at http://pari.math.u-bordeaux.
fr/.

17

