
Faster Batch Verification of Standard ECDSA

Signatures Using Summation Polynomials

Sabyasachi Karati and Abhijit Das

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur, India

{skarati,abhij}@cse.iitkgp.ernet.in

Abstract. Several batch-verification algorithms for original ECDSA
signatures are proposed for the first time in AfricaCrypt 2012. Two of
these algorithms are based on the naive idea of taking square roots in the
underlying fields, and the others perform symbolic manipulation to verify
small batches of ECDSA signatures. In this paper, we use elliptic-curve
summation polynomials to design a new ECDSA batch-verification
algorithm which is theoretically and experimentally much faster than
the symbolic algorithms of AfricaCrypt 2012. Our experiments on NIST
prime and Koblitz curves demonstrate that our proposed algorithm
increases the optimal batch size from seven to nine. We also mention
how our algorithm can be adapted to Edwards curves.

Keywords: Elliptic Curve, ECDSA, Batch Verification, Summation
Polynomial, Koblitz Curve, Edwards Curve, EdDSA.

1 Introduction

When multiple signatures sharing common system parameters need to be veri-
fied, the concept of batch verification turns out to be useful. The basic incentive
is a reduction in the running time of individually verifying the signatures. The
elliptic-curve digital signature algorithm (ECDSA) [12] has been accepted as a
standard signature scheme. An ECDSA signature on a messageM is a pair (r, s),
where r is x-coordinate of an elliptic-curve point R = (r, y), and s absorbs the
hash of M and the private key of the signer. The absence of the y-coordinate
of the point R in an ECDSA signature resists a straightforward adaptation
of the previously proposed batch-verification methods [16,11]. There exist two
y-coordinates corresponding to the x-coordinate r. This results in an ambigu-
ity in identifying the correct y-coordinate and leads to a sizable overhead for
eliminating the y-coordinate from the batch-verification equation. In a variant
ECDSA* [7], the entire point R replaces r in the signature. As a result, batch
verification of ECDSA* signatures is straightforward. However, since ECDSA* is
not standardized and leads to an expansion in the signature size without any in-
crease in security, batch verification of standard ECDSA signatures continues to
remain a problem of both theoretical and practical importance in cryptography.

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 438–456, 2014.
c© Springer International Publishing Switzerland 2014

Faster Batch Verification of Standard ECDSA Signatures 439

Karati et al. [13] propose several batch-verification algorithms for standard
ECDSA signatures. Their naive algorithm N is based upon the computation
of the y-coordinate by taking a square root in the underlying field. The algo-
rithms S1 and S2 of [13] trades the square-root computation time by symbolic
manipulations that treat the y-coordinates as symbols satisfying the elliptic-
curve equation. Algorithm S1 performs linearization during the elimination of
the unknown y-coordinates. Algorithms S2 adopts a separate and more efficient
elimination method. Both S1 and S2 outperform the naive method N for small
batch sizes. For a batch of size t, S1 runs is O(m3) time and S2 runs in O(mt2)
time, where m = 2t, and the running times are measured in the number of field
operations. Since m is already an exponential function in t, these algorithms be-
come impractical except only for small batch sizes. Reducing the running time
to below O(mt2) is stated as an open problem in [13].

In this paper,we address this openproblem.Wepropose anewbatch-verification
algorithm (we call it SP) which is theoretically more efficient and experimentally
faster than the symbolic-computation algorithms of [13]. Our proposed algorithm
uses a separate elimination technique which is based on Semaev’s elliptic-curve
summationpolynomials [21].AlgorithmSPhas a running-time complexity ofO(m)
and so is theoretically superior than the earlier symbolic algorithms. Practically,
Algorithm SP can handle batches of size up to ten, whereas the earlier symbolic al-
gorithms are effective for batch sizes t� 8 only.We show thatAlgorithmSP (like S1
and S2) supplies security guarantees equivalent to the standard batch-verification
algorithm for ECDSA* [7].

Algorithms S1 and S2 proceed in two phases. In the first phase, a sum of the
elliptic-curve points (ri, yi) is computed. In this phase, ri are known and yi are
treated as symbols. The second phase eliminates all yi values using more symbolic
manipulations. The elimination phase effectively determines the running times
of S1 and S2 as O(m3) and O(mt2), respectively. Algorithm SP, on the contrary,
completely avoids the symbolic addition phase, and manages the elimination of
all yi values in O(m) time only.

The rest of the paper is organized as follows. Section 2 introduces the notations
and a quick overview of the ECDSA scheme and the batch-verification algorithms
of [13]. In section 3, we propose the new Algorithm SP. Section 4 contains the
complexity analysis and the security analysis of Algorithm SP. NIST Koblitz
curves are dealt with in Section 5. We provide our experimental results for NIST
prime and Koblitz curves in Section 6. Section 7 deals with the adaptation of
Algorithm SP to Edwards curves. The security of Algorithm SP depends on
the structures of the elliptic-curve groups over quadratic extensions of the base
fields. These structures are studied in Section 8 for some of the NIST curves.
Section 9 concludes the paper after highlighting some pertinent open problems.

2 Notations and Background

In the rest of this paper, we plan to verify a batch of t ECDSA signatures
(M1, r1, s1), (M2, r2, s2), . . . , (Mt, rt, st).

440 S. Karati and A. Das

2.1 ECDSA over NIST Prime Fields

Let
E : y2 = x3 + ax+ b (1)

be an elliptic curve defined over the prime field Fp. The size of the group E(Fp)
is assumed to be a prime n close to p. Let P be a fixed generator of E(Fp).

An ECDSA private key d is randomly chosen from {1, 2, . . . , n−1}. The public
key is computed as Q = dP .

The ECDSA signature (r, s) on a messageM is generated as follows. A random
session key k ∈ {1, 2, . . . , n−1} is selected. The point R = kP is computed, and r
is taken as the x-coordinate x(R) of R reduced modulo n. Finally, s is computed
as s = k−1(H(M) + dr) (mod n), where H is a cryptographic hash function like
SHA-1 [18].

By Hasse’s theorem, we have |n−p−1| � 2
√
p. If n � p, then r as an element

of Zn has a unique representation in Zp, otherwise it has two representations.
The density of elements of Zn having two representations in Zp is � 2/

√
p which

is close to zero if p is large. Consequently, we ignore the cases where the modulo n
and the modulo p values of r may be different.

To verify an ECDSA signature (M, r, s), we compute w = s−1 (mod n),
u = H(M)w (mod n) and v = rw (mod n). The point R is reconstructed as

R = uP + vQ. (2)

The signature is accepted if and only if x(R) = r (mod n).
As mentioned before, an ECDSA* signature on M is the pair (R, s). Verifica-

tion proceeds as in the case of ECDSA signatures, and the validity of Eqn(2) is
used as the acceptance criterion.

For a given x-coordinate r, there are in general two y-coordinates ±y. The
point R is one of (r, y) and (r,−y). In another variant of ECDSA, henceforth re-
ferred to as ECDSA#, an extra bit is appended to a standard ECDSA signature
in order to identify which of (r,±y) is equal to R. Unlike ECDSA*, ECDSA#—
although not accepted as a standard—does not suffer from an unacceptable
expansion in the signature size. Since ECDSA# has important bearings on the
naive batch-verification algorithm of [13], we refer to it in Section 6. ECDSA*
is considered only in the security proof of Algorithm SP.

2.2 Batch Verification of ECDSA Signatures

We assume that all of the t signatures (Mi, ri, si) come from the same signer
with public key Q (an adaptation to the case of multiple signers being straight-
forward). A batch-verification attempt aggregates the t signatures as

t∑

i=1

Ri =

(
t∑

i=1

ui

)
P +

(
t∑

i=1

vi

)
Q. (3)

The right side of Eqn(3) can be computed numerically using two scalar multi-
plications (or one double scalar multiplication). Let this point be (α, β). If Ri

Faster Batch Verification of Standard ECDSA Signatures 441

are reconstructed as uiP + viQ, the effort is essentially the same as individual
verification. The algorithms of [13] get around this difficulty in several ways.

The naive method N computes yi by taking the square root of r3i + ari + b.
Since there are two square roots (in general) for each ri, the ambiguity in the sign
of yi can be removed by trying all of the m = 2t combinations. If Eqn(3) holds
for any of these choices, the batch of signatures is accepted. If we use ECDSA#,
then the yi values can be uniquely identified, and we can avoid trying all the
m = 2t combinations. This variant of the naive algorithm is referred to as N′. The
computation of the square roots of r3i + ari+ b cannot be avoided in Algorithms
N and N′. If the underlying field is large, this overhead may be huge.

The symbolic-manipulation algorithms S1 and S2 avoid computing these square
roots altogether. They instead compute the left side of Eqn(3) symbolically. Each
yi is treated as a symbol satisfying y2i = r3i + ari + b. This symbolic addition gives
an equality of the form

(g(y1, y2, . . . , yt), h(y1, y2, . . . , yt)) = (α, β), (4)

where g and h are polynomials in yi with each yi-degree � 1.
Algorithm S1 makes a linearization by repeatedly squaring g(y1, y2, . . . , yt) =

α (or multiplying by even-degree monomials). At this stage too, the equations
y2i = r3i + ari + b are used in order to keep the yi-degrees � 1 in each generated
equation. The linearized system has 2t−1 − 1 = m

2 − 1 variables standing for the
square-free monomials in y1, y2, . . . , yt of even degrees. The linearized system
is in general dense, and is solved by Gaussian elimination in O(m3) time. The
equation h(y1, y2, . . . , yt) = β is subsequently used to solve for each yi. Finally,
it is verified whether y2i = r3i + ari + b for all i.

Algorithm S2 avoids the massive O(m3) overhead of Gaussian elimination as
follows. The equation g(y1, y2, . . . , yt) = α is rewritten as γ(y2, y3, . . . , yt)y1 +
δ(y2, y3, . . . , yt). Multiplying this by γy1 − δ and using y21 = r31 + ar1 + b gives
an equation free from y1. The other variables y2, y3, . . . , yt are eliminated one
by one in the same way. Eventually, the batch is accepted if we obtain the zero
polynomial after all yi are eliminated. This elimination phase takes O(mt2) time.

An improved variant of S1 and S2 significantly speeds up the symbolic-
addition phase. Let τ = �t/2�. Eqn(3) is rewritten as

∑τ
i=1 Ri = (α, β) −∑t

i=τ+1Ri. The two sides are individually computed symbolically. This reduces
the running time of the symbolic-addition phase from O(mt2) to O(

√
mt2). These

variants of S1 and S2 are referred to as S1′ and S2′. The elimination phases of
S1′ and S2′ run in O(m3/2) and O(mt2) times, respectively.

2.3 Randomization of Batch Verification

Bernstein et al. [2] propose two attacks on these batch-verification algorithms.
They also suggest that these attacks can be largely eliminated by randomizing
the batch-verification process (see [1,16]). For randomly chosen non-zero multi-
pliers ξ1, ξ2, . . . , ξt, the individual verification equations are now combined as

t∑

i=1

ξiRi =

(
t∑

i=1

ξiui

)
P +

(
t∑

i=1

ξivi

)
Q. (5)

442 S. Karati and A. Das

The right side can again be computed numerically. The x-coordinates of ξiRi

can be computed from x(Ri) [15,14], and are supplied as inputs to the batch-
verification algorithms. The randomization process is external to batch verifica-
tion. However, individual verification does not require randomization. Although
randomized batch verification is the cryptographically meaningful implementa-
tion of the algorithms, we also study batch verification without randomization in
order to compare the raw performances of various batch-verification algorithms.

It is worthwhile to note that Eqns(3) and (5) can be readily modified to the
case when the t signatures come from different signers having different public

keys Qi. For example, the sum
(∑t

i=1 ξivi

)
Q in Eqn(5) should be replaced by

∑t
i=1(ξiviQi). But then, the number of scalar multiplications increases from two

to t+1. Since randomization incurs additional overheads similar to several scalar
multiplications, randomized batch verification using the algorithms S2′ or SP is
expected to be slower than individual verification. Consequently, we do not study
the case of multiple signers in this paper.

3 A New Batch-Verification Algorithm (SP) for ECDSA

The new batch-verification algorithm we propose in this paper is based on
elliptic-curve summation polynomials introduced by Semaev [21] in the con-
text of improving the known bounds of the index-calculus method for solving
the elliptic-curve discrete-logarithm problem.

Let E be the elliptic curve defined over a prime field Fp by Eqn(1). Let
x1, x2, . . . , xt be t � 2 elements of Fp. The t-variable summation polynomial ft
is defined by the following recurrences:

f2(x1, x2) = x1 − x2, (6)

f3(x1, x2, x3) = (x1 − x2)
2x3

2 − 2((x1 + x2)(x1x2 + a) + 2b)x3 +

((x1x2 − a)2 − 4b(x1 + x2)), (7)

ft(x1, x2, . . . , xt) = ResX(ft−k(x1, . . . , xt−k−1, X), fk+2(xt−k, . . . , xt, X))

for t � 4 and for any k in the range 1 � k � t− 3. (8)

Here, ResX stands for the resultant of two polynomials with respect to the
variable X . Semaev proves that ft(x1, x2, . . . , xt) = 0 if and only if there exist
y1, y2, . . . , yt ∈ Fp with (xi, yi) satisfying Eqn(1) for all i = 1, 2, . . . , t such that

we have the following sum in the elliptic-curve group E(Fp):

(x1, y1) + (x2, y2) + · · ·+ (xt, yt) = O, (9)

where O is the point at infinity on E, and Fp is the algebraic closure of Fp.
For the batch verification of t ECDSA signatures (Mi, ri, si), we first compute

the numeric sum R on the right side of Eqn(5). In the non-randomized case of
Eqn(3), we have ξ1 = ξ2 = · · · = ξt = 1. Let R = (α, β), where α, β ∈ Fp. Let
ξi(ri, yi) = (r′i, y

′
i). Eqn(5) can be rewritten as

(r′1, y
′
1) + (r′2, y

′
2) + · · ·+ (r′t, y

′
t) + (α,−β) = O. (10)

Faster Batch Verification of Standard ECDSA Signatures 443

By Eqn(9), this is equivalent to the condition ft+1(r
′
1, r

′
2, . . . , r

′
t, α) = 0. Algo-

rithm 1 incorporates this idea to verify a batch of t ECDSA signatures.

Algorithm 1. ECDSA Batch-verification Algorithm SP for NIST Prime Curves

INPUT: Domain Parameters, ECDSA signatures (M1, r1, s1), (M2, r2, s2), . . . ,
(Mt, rt, st) and public keys Q1, Q2, . . . , Qt of the signers.

OUTPUT: Accept/Reject the batch of t signatures.

1. Optional sanity check: For each i = 1, 2, . . . , t, check whether r3i + ari + b is a
quadratic residue modulo p. If not, reject the i-th signature and remove it from
the batch. Let us assume that all the signatures in the batch pass the sanity
check. (Also see Section 4.5.)

2. Compute wi = s−1
i (mod n) for all i = 1, 2, . . . , t.

3. Compute ui = H(Mi)wi (mod n) for all i = 1, 2, . . . , t.
4. Compute vi = riwi (mod n) for all i = 1, 2, . . . , t.
5. Choose t random integers ξ1, ξ2, . . . , ξt ∈ {1, 2, . . . , n− 1}, where n is the order

of the base point of the elliptic curve. For the non-randomized version, we take
ξ1 = ξ2 = · · · = ξt = 1.

6. Compute R = (
∑t

i=1 ξiui)P + (
∑t

i=1 ξivi)Q = (α, β).
7. For the randomized version, compute r′i = x(ξi(ri, yi)) using Montgomery lad-

ders or seminumeric scalar multiplication of [14,15]. For the non-randomized
version, take r′i = ri.

8. Compute the value of the summation polynomial φ = ft+1(r
′
1, r

′
2, . . . , r

′
t, α).

9. Accept the batch of signatures if and only if φ = 0.

4 Analysis of Algorithm SP

4.1 Properties of Summation Polynomials

For t = 2 or 3, we straightaway use the formulas given in Eqn(6) or (7). For t � 4,
we make two recursive calls as given in Eqn(8). In order to optimize efficiency, the
number of variables in each recursive call should be about t/2. More precisely, we
always choose k = �t/2� (this is in the allowed range of values of k), so the first
recursive call computes f�t/2�+1 and the second recursive call computes f�t/2�+1.
The leaves of the recursion tree deal with the base cases of Eqns(6) and (7).

Theorem 1: Let t = 2h + 2 for some h � 0. Then, the recursion tree for
the computation of ft is a complete binary tree of height h, and all the leaves
correspond to the computation of f3 by Eqn(7).

Proof We proceed by induction on h. For h = 0, we compute f3 straightaway
from Eqn(7) without making any recursive call, that is, the recursion tree is of
height zero. For h � 1, suppose that the assertion holds for the computation of
f2h−1+1. The computation of ft proceeds as

ft(x1, x2, . . . , xt) = ResX(f t
2+1(x1, . . . , x t

2
, X), f t

2+1(x t
2+1, . . . , xt, X)).

444 S. Karati and A. Das

Here, t is even, so �t/2� = �t/2� = t/2. Moreover, t/2 = 2h−1 + 1, so by the
induction hypothesis, the sub-trees for the two recursive calls are complete binary
trees with each leaf computing f3. •

In general, let h be the height of the recursion tree for the computation of
ft. By Theorem 1, we have 2h−1 + 2 < t � 2h + 2, that is, log2(t − 2) � h <
1 + log2(t− 2), that is, the height of the recursion tree is Θ(log t).

Theorem 2: Let t = 2h + 2 with h � 1. If we compute ft recursively as

ft(x1, x2, . . . , xt) = ResX

(

f t
2
+1

(
x1, . . . , x t

2
, X

)
, f t

2
+1

(
x t

2
+1, . . . , xt, X

))

, (11)

then we take the resultant of two polynomials in X of degrees equal to 2(
t−2
2).

Proof. We first supply a direct proof based upon induction on h. For the base
case h = 1, we have four elements x1, x2, x3, x4. We compute f4(x1, x2, x3, x4) =
ResX(f3(x1, x2, X), f3(x3, x4, X)). By Eqn(7), the X-degree of each of the two

arguments of ResX is 2 = 2(
4−2
2).

Now, let h � 2 and t′ = t
2 +1 = 2h−1 +2. We have ft′(x1, x2, . . . , xt′−1, X) =

ResY

(
f t′

2 +1

(
x1, . . . , x t′

2
, Y

)
, f t′

2 +1

(
x t′

2 +1, . . . , xt′−1, X, Y
))

. We inductively

assume that this computation of ft′ involves the resultant calculation of two

polynomials of Y -degree δ = 2

(
t′−2

2

)
each. But each summation polynomial is

symmetric about its arguments. Therefore, the X-degree of the second argument

is again δ = 2

(
t′−2

2

)
. Let us write

f t′
2 +1

(
x1, . . . , x t′

2
, Y

)
= aδY

δ + aδ−1Y
δ−1 + · · ·+ a0, (12)

f t′
2 +1

(
x t′

2 +1, . . . , xt′−1, X, Y
)
= bδY

δ + bδ−1Y
δ−1 + · · ·+ b0. (13)

Here, the coefficients ai do not involve X , whereas the coefficients bi are polyno-
mials in X . Since the X-degree of the second polynomial is δ, and the polyno-
mial is symmetric about X and Y , we conclude that the X-degree of bδ is δ. The
X-degrees of the other coefficients bi are � δ.

The (2δ)× (2δ) Sylvester matrix of the polynomials in Eqns(12) and (13) is

S =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

aδ aδ−1 · · · a0 0 · · · 0
0 aδ aδ−1 · · · a0 · · · 0
...

...
...

...
...

...
...

0 · · · 0 aδ aδ−1 · · · a0
bδ bδ−1 · · · b0 0 · · · 0
0 bδ bδ−1 · · · b0 · · · 0
...

...
...

...
...

...
...

0 · · · 0 bδ bδ−1 · · · b0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Faster Batch Verification of Standard ECDSA Signatures 445

The X-degree of detS is the X-degree of bδδ, that is, δ2 = 2t
′−2 = 2(

t−2
2).

Similarly, the X-degree of f t
2+1

(
x t

2+1, . . . , xt, X
)
is again 2(

t−2
2). •

Alternative proof In [21], Semaev proves that the summation polynomial fk,
k � 3, is of the form

fk(x1, x2, . . . , xk) = f2
k−1(x1, x2, . . . , xk−1)x

2k−2

k + · · · . (14)

Now, we put k = t
2 + 1 and xk = X , and rewrite Eqn(14) as

f t
2+1

(
x1, . . . , x t

2
, X

)
= f2

t
2

(
x1, x2, . . . , x t

2

)
X2(

t−2
2)

+ · · · ,

that is, f t
2+1

(
x1, . . . , x t

2
, X

)
is a polynomial of degree 2(

t−2
2) in X . Likewise,

f t
2+1

(
x t

2+1, . . . , xn, X
)
too is a polynomial of degree 2(

t−2
2) in X . •

Theorem 2 can be generalized to any value of t (that is, values not only of
the form 2h+2). However, the resulting formulas involve many floor and ceiling
expressions. For the sake of simplicity, we restrict only to the special case which
already portrays the performance of SP as a function of t.

4.2 A Strategy to Handle the Variables in the Recursion Tree

Let ri denote the known x-coordinates, andXj the variables used in the recursion
of Eqn(8). For achieving good performance, we reduce the number of variables in
each node of the recursion tree. Each child of the root has one variable. Now, let
some node compute the summation polynomial of ri, ri+1, . . . , ri+k−1, Xj (the
case of one variable). Its two child nodes compute the summation polynomials of
ri, ri+1, . . . , ri+�k/2�−1, Xj′ and ri+�k/2�, . . . , ri+k−1, Xj , Xj′ . On the other hand,
if a node computes the summation polynomial of ri, ri+1, . . . , ri+k−1, Xj , Xj′

(the case of two variables), then its two child nodes compute the summation
polynomials of ri, ri+1, . . . , ri+�k/2�−1, Xj, Xj′′ and ri, ri+1, . . . , ri+k−1, Xj′ , Xj′′ .
This is allowed since summation polynomials are symmetric about its arguments.
It is thus ensured that the number of variables in each node never exceeds two.
At each node of the leftmost paths in the two subtrees of the root, the number of
variables is� 1. At every other node in the tree, the number of variables is exactly
two. Figure 1 shows the recursive construction of f10(r1, r2, . . . , r10). Only the
nodes on the paths from the root to the leaves (r1, r2, X4) and (r6, r7, X6) have
numbers of variables � 1.

4.3 Running Time of SP

Let C(t) denote the running time of Algorithm SP in the number of field op-
erations on a batch of size t. In view of Eqn(10), we need to compute ft+1. If
t = 2, we use the base case which return in constant time. For t � 3, we use the

446 S. Karati and A. Das

Fig. 1. Recursion tree for computing the summation polynomial of ten variables

recursive strategy of Eqn(11). Recursion stops in all cases at the base case of the
computation of f3. By Theorem 2, we need to take the resultant of two polyno-

mials of degree 2(
t−1
2) each. The time complexity of resultant computation for

two k-degree polynomials by the subresultant PRS algorithm [6,9] is O(k2).
The running time of SP is dominated by the times for the computation of the

resultants. The degrees of the polynomials, of which the resultant is computed,
is a function of the level λ in the tree. In addition, the resultant-computation
time depends on how many variables are involved at that node, call it ν. We can

have ν = 0, 1, 2 only. Let C
(λ)
ν denote the time for resultant computation for a

given λ and ν. The case of C
(λ)
0 occurs at level λ = 0 only. The case of C

(λ)
1

occurs on the leftmost paths of the two subtrees of the root. At all other nodes,

the resultant-computation cost is C
(λ)
2 .

For simplicity, we assume that the recursion tree is a complete binary tree of

height h, that is, t+ 1 = 2h + 2. We have C
(0)
0 = O(22

h

), C
(λ)
1 = O(22

h−λ−1×3),

and C
(λ)
2 = O(22

h−λ+1

). At level zero, we have the cost C0, whereas at any other

level λ we have exactly two cases of C
(λ)
1 and 2λ − 2 cases of C

(λ)
2 . Moreover,

C
(λ)
1 < C

(λ)
2 for each fixed λ. Therefore, the total cost C(t) of computing ft+1

is of the order of

C
(0)
0 +

h−1∑

λ=1

(
2C

(λ)
1 + (2λ − 2)C

(λ)
2

)
< C

(0)
0 +

h−1∑

λ=1

2λC
(λ)
2

= O

(
22

h

+

h−1∑

λ=1

2λ+2h−λ+1

)
.

The inequality λ + 2h−λ+1 > (λ + 1) + 2h−(λ+1)+1 holds if and only if we have
2h−λ > 1. For all λ in the range 1 � λ � h − 1, we have 2h−λ > 1. Therefore,
C(t) is of the order of

22
h

+

h−1∑

λ=1

[
2λ+2h−λ+1

]
= 22

h

+
[
21+2h + 22+2h−1

+ · · ·+ 2(h−1)+22
]

Faster Batch Verification of Standard ECDSA Signatures 447

< 22
h

+
1+2h∑

i=0

2i < 22
h

+ 22+2h = 22
h

+ 22+2h = 5× 22
h

.

Substituting 2h by t− 1, we see that C(t) = O(m), where m = 2t.
The above analysis implies that the computation of the resultants at the top

two levels determines the order of C(t). For a general t of the form 2h−1 + 2 <
t+ 1 � 2h + 2, we let τ =

⌈
t+1
2

⌉
, and conclude that C(t) is of the order of

2� t+1
2 �+� t+1

2 �−2 + 2×
(
2(� τ+1

2 �+� τ+1
2 �−2)

)2

= 2t−1 + 22(τ+1)−3 � 2t−1 + 2t =
3

2
× 2t = O(m).

4.4 Security of SP

In this section, we prove the equivalence between the security of Algorithm SP
and the security of the standard ECDSA* batch-verification algorithm. Suppose
that the x-coordinates r1, r2, . . . , rt in ECDSA signatures are available to an
adversary and that the batch is accepted by Algorithm SP. By Eqn(10), there
exist exactly two solutions (y1, y2, . . . , yt) and (−y1,−y2, . . . ,−yt) for the y-
coordinates satisfying y2i = r3i + ari + b for i = 1, 2, . . . , t such that (r1, y1) +
(r2, y2) + · · · + (rt, yt) = (α, β), and (r1,−y1) + (r2,−y2) + · · · + (rt,−yt) =
(α,−β). These are the only cases in which ft+1(r1, r2, . . . , rt, α) = 0. Both these
solutions are consistent with φ = 0 (Step 9 of Algorithm SP). One of these
solutions corresponds to the ECDSA* signatures based upon the disclosed values
r1, r2, . . . , rt. For ECDSA*, the y-coordinates are known, and we have only one
possibility (r1, y1)+(r2, y2)+ · · ·+(rt, yt) = (α, β). Given ri alone, the adversary
can obtain the y-coordinates yi up to sign by making t square-root computations
which demand only moderate computing resources. The sign ambiguity can be
removed by trying all of the 2t sign combinations (as in Algorithm N). For small
values of t (as we deal with), this too is a tolerable overhead to the adversary. To
sum up, if the adversary can forge ECDSA signatures that pass Algorithm SP,
(s)he can produce in feasible time ECDSA* signatures too that pass the standard
ECDSA* batch-verification algorithm. The converse is obvious.

4.5 Necessity of the Sanity Check

The security proof in the last section assumes that all yi reside in Fp itself, that
is, the points (ri, yi) lie on the curve E defined over Fp. The sanity check made
in Step 1 of Algorithm 1 ensures this.

The sanity check may be unnecessary in many situations. Suppose that an
adversary chooses an ri for which r3i + ari+ b is a quadratic non-residue modulo
p. The square roots of all quadratic non-residues in Fp lie in Fp2 , that is, we
now get two y-coordinates in Fp2 (but outside Fp). The corresponding points
(ri,±yi) lie in E(Fp2). The right sides of Eqns(3) and (5) always lie in the
group E(Fp) generated by the base point P . The batch-verification condition

448 S. Karati and A. Das

demands the sum of R1, R2, . . . , Rt to lie in E(Fp) in order to pass the test
ft+1(r1, r2, . . . , rt, α) = 0 (see Eqn(9)). If one or more of the points Ri are defined
over Fp2 (but not over Fp), then what is the probability of

∑t
i=1 Ri ∈ E(Fp)?

A satisfactory answer to this question can be given if the group structure of
E(Fp2) is known to us. E(Fp) is already a cyclic subgroup of E(Fp2) of large
prime order n. If E(Fp2) is cyclic too, randomly chosen points Ri ∈ E(Fp2) have
a probability of about 1/p to have their sum in E(Fp). Even when E(Fp2) is
of rank two with no small-order subgroups (like Zn ⊕ Zn), there may be little
problem. The use of randomizers makes the probability of

∑t
i=1 Ri ∈ E(Fp)

negligible even when the x-coordinates ri are carefully crafted by the adversary.
Only when E(Fp2) contains subgroups of small orders, the adversary may win
with non-negligible probability. Randomizers do not seem to help much in this
case. Section 8 deals with the cases of some of the NIST curves.

In Algorithm 1, the sanity check involves the computation of t Legendre sym-

bols
(

r3i+ari+b
p

)
. This is anyway not a huge overhead compared to the com-

putation of ft+1 (unless t is very small). Consequently, there is little harm in
conducting the sanity check even when the probability of

∑t
i=1 Ri ∈ E(Fp) for

points Ri defined over Fp2 is overwhelmingly small.
A sanity check like this may be needed for the previously published algorithms

S2 and S2′ too. This issue is only mentioned but not discussed in detail in [13].

4.6 Cases of Failure of SP

The symbolic-manipulation algorithms of [13] have a few cases of failure. Al-
gorithm SP is robust against most of these failures. First, computations which
treat yi as symbols cannot distinguish between the cases of point addition and
point doubling. On the contrary, summation polynomials work equally well for
both of these operations. Second, Algorithms S1, S2, S1′ and S2′ fail when
the point R = (α, β) computed from the right side of Eqn(3) or (5) is the
point O at infinity. Algorithm SP continues to work. Eqn(10) is now rewrit-
ten as (r′1, y

′
1) + (r′2, y

′
2) + · · · + (r′t, y

′
t) = O. That is, instead of computing

ft+1(r
′
1, r

′
2, . . . , r

′
t, α), we now compute ft(r

′
1, r

′
2, . . . , r

′
t).

5 Adaptation of Algorithm SP to Koblitz Curves

Let E be a Koblitz curve defined over a binary field F2d by the equation

E : y2 + xy = x3 + ax2 + 1, where a ∈ {0, 1}. (15)

Let n be the order of the group we work in, and ĥ = |E(F2d)|/n the cofac-

tor. For Koblitz curves, ĥ = 2 or 4. Because ĥ is small, appending a few extra
bit(s) to ECDSA signatures, we can uniquely retrieve the x-coordinates from the

Faster Batch Verification of Standard ECDSA Signatures 449

published value of r in a signature. We therefore assume that the x-coordinates
are known to us. We denote these x-coordinates by ri itself. We can apply our
batch-verification Algorithm SP mutatis mutandis to Koblitz curves.

5.1 Summation Polynomials for Koblitz Curves

Here, we supply only the first three base cases of summation polynomials f2,
f3, and f4. The recurrence relation for Koblitz-curve summation polynomials ft
with t � 5 is identical to the case of prime curves.

f2(x1, x2) = x1 + x2,
f3(x1, x2, x3) = (x1x2 + x1x3 + x2x3)

2 + x1x2x3 + 1,
f4(x1, x2, x3, x4) = (x1+x2+x3+x4)

4 + (x1x2x3+x1x2x4+x1x3x4+x2x3x4)
4+

x1x2x3x4(x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 + x1 + x2 + x3 + x4)
2+

(x1x2x3x4)
2(x1 + x2 + x3 + x4)

2 + (x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4)
2.

Eqn(9) holds for Koblitz curve too, that is, there exist y1, y2, . . . , yt ∈ F2d with
each (xi, yi) satisfying Eqn (15) if and only if ft(x1, x2, . . . , xt) = 0.

For prime curves, we always reduce the recursion to the computation of f3,
since the explicit formula for f4 is rather clumsy. For Koblitz curves, we use both
the cases f3 and f4 as those that terminate recursion. This helps us to reduce
the height of the recursion tree for most of the batch sizes.

Notice that all batch-verification algorithms for Koblitz curves can be readily
adapted to other ordinary (non-supersingular) curves over binary fields. We deal
with the NIST family of Koblitz curves as an illustrative sample.

5.2 Adaptation of the Sanity Check

The sanity check (the equivalent of Step 1 in Algorithm 1) is quite easy in the
context of NIST Koblitz curves. In order that the point Ri = (ri, yi) is defined
over F2d , we now need the equation y2i +riyi+(r3i +ar2i +1) = 0 to be solvable (for

yi) in F2d . This is equivalent to the condition that the trace of
r3i+ar2i+1

r2i
over F2 is

zero. Let the field F2d = F2[X]/〈F (X)〉 be defined by the irreducible polynomial
F (X) = Xd + ad−1X

d−1 + · · ·+ a1X + a0, where ai ∈ F2. Let θ ∈ F2d be a root

of F (X). Any element c ∈ F2d can be represented as c =
∑d−1

k=0 ckθ
k. We can

compute the trace of c as Tr(c) = c0 +
∑d−1

k=1 kckad−k (see [8] for a discussion).
For NIST Koblitz curves, the defining polynomial F (X) has very few non-zero
coefficients, so the computation of Tr(c) is essentially a constant-time effort given
any c ∈ F2d .

Even when the solutions for yi lie in F2d , there is no guarantee that the point
Ri = (ri, yi) belongs to the subgroup of E(F2d) generated by the base point

P , since Koblitz curves have cofactors ĥ > 1. At present, we do not know any
efficient solution of this problem. If E(F2d) is cyclic, then Ri is in the subgroup
generated by P if and only if nRi = O. However, computing the scalar multipli-
cation nRi for each i lets us forfeit the speedup obtained by batch verification.

450 S. Karati and A. Das

Table 1. Times (in ms) for finding yi from ri

Square-root method in prime fields P-256 0.28
P-521 0.76

Factorization method in binary fields K-283 8.31
K-571 30.83

Table 2. Times (in ms) of scalar multiplication for prime curves

Scalar-multiplication algorithm P-256 P-521
l = 128 l = 256 l = 128 l = 256 l = 521

Numeric scalar multiplication 2.04 3.92 2.69 5.48 10.60
Seminumeric scalar multiplication 2.04 4.12 2.81 5.92 11.44
Multiple scalar multiplication ξ1R1 + ξ2R2 2.93 5.67 4.37 7.89 16.30

l is the bit length of the randomizers

Table 3. Times (in ms) of scalar multiplication for Koblitz curves

Scalar-multiplication algorithm K-283 K-571
l = 128 l = 283 l = 128 l = 256 l = 571

Numeric scalar multiplication 200.00 216.00 517.00 964.00 1076.00
Seminumeric scalar multiplication 267.10 288.93 718.88 1378.06 1532.89
Multiple scalar multiplication ξ1R1 + ξ2R2 443.46 973.75 1170.09 2344.40 5215.14

l is the bit length of the randomizers

6 Experimental Results

All experiments are carried out in a 2.33 GHz Xeon server running Ubuntu Linux
Server Version 2012 LTS. The algorithms are implemented using the GP/PARI
calculator [20] (version 2.5.0 compiled by the GNU C compiler 4.6.2). We have
used the symbolic-computation facilities of the calculator in our programs. All
other functions (like scalar multiplication and square-root computation) are writ-
ten as subroutines in which function-call overheads are minimized as much as
possible. We have used the best formulas supplied in [5,8]. We only used the built-
in field arithmetic provided by the calculator. Since all algorithms are evaluated
in terms of number of field operations, this gives a fare comparison of experimen-
tal data with the theoretical estimates. The GP/PARI library is much slower
for binary fields than for prime fields. However, this speed difference matters
only slightly in the experimental speedup figures which are ratios. As argued in
Section 2.3, we consider only the case of the same signer.

The average times of finding the roots yi from ri are listed in Table 1. The
average times of randomization achieved by the seminumeric algorithm [14] and
numeric scalar multiplication are listed in Tables 2 and 3 for prime curves and
Koblitz curves. Here, l denotes the length of the randomizers. We consider only
two cryptographically meaningful values of l: 128 (giving 128-bit security irre-
spective of the difficulty of the ECDLP) and half-length (same security as offered

Faster Batch Verification of Standard ECDSA Signatures 451

by the square-root methods for the ECDLP). Tables 4 and 5 list the overheads
associated with different ECDSA batch-verification algorithms for several batch
sizes with all the signatures coming from the same signer. Finally, the speedup
figures (over individual verification) are listed in Tables 6 and 7 for prime curves
and Koblitz curves.

Table 4. Overheads (in ms) of different batch-verification algorithms for prime curves

Batch size N N′ S2′ SP
(t) P-256 P-521 P-256 P-521 P-256 P-521 P-256 P-521

2 0.091 0.126 0.022 0.031 – – 0.038 0.080
3 0.289 0.401 0.034 0.050 0.081 0.158 0.121 0.153
4 0.788 1.097 0.048 0.067 0.183 0.315 0.144 0.267
5 1.813 2.585 0.063 0.086 0.391 0.596 0.211 0.377
6 4.316 6.229 0.075 0.106 0.701 1.062 0.446 0.789
7 10.104 14.667 0.080 0.112 1.493 2.213 0.663 1.167
8 23.191 33.265 0.098 0.130 3.574 5.398 1.464 2.698
9 – – – – – – 2.385 4.240
10 – – – – – – 8.234 15.598

Table 5. Overheads (in ms) of different batch-verification algorithms for Koblitz curves

Batch size N N′ S2′ SP
(t) K-283 K-571 K-283 K-571 K-283 K-571 K-283 K-571

2 19.75 53.16 4.96 13.86 3.96 10.57 1.640 4.545
3 73.60 200.21 9.42 25.87 12.00 32.71 4.378 12.710
4 212.18 581.49 13.80 37.65 33.84 91.12 48.927 179.337
5 556.25 1544.59 18.16 49.03 131.00 354.30 62.790 220.271
6 1372.07 3791.10 22.34 60.61 303.08 825.00 141.345 458.448
7 3356.48 9161.95 27.00 72.89 1000.61 2749.37 585.654 1784.127
8 – – – – – – 734.916 2277.102
9 – – – – – – 1409.530 4340.618
10 – – – – – – 3258.385 9602.883

In Algorithm N′, there is a possibility of using multiple scalar multiplication.
The times for computing the sum ξ1R1 + ξ2R2 using a single double-and-add
loop are also listed in the Tables 2 and 3. For prime curves, the multiple scalar-
multiplication times are significantly less than that of two separate scalar mul-
tiplications by the most efficient windowed NAF variant. However, for Koblitz
curves, the sum of times to compute two numeric scalar multiplications by the
τ -NAF method [22] is much smaller than the time of a double scalar multiplica-
tion. While calculating the speedup figures, we have considered the best available
options. Algorithm N′ is suited to ECDSA#. We first obtain each yi uniquely
by a square-root computation. Randomization in this case uses numeric scalar
multiplication (or double scalar multiplication whichever is better).

452 S. Karati and A. Das

Table 6. Speedup obtained by batch-verification algorithms for prime curves

Batch-verification Randomization t P-256 P-521
algorithm algorithm None∗ l = 128 None∗ l = 128 l = 256

3 2.50 1.32 2.58 1.81 1.38
4 2.99 1.44 3.19 2.09 1.54

N Numeric 5 3.19 1.49 3.59 2.26 1.63
6 2.92 1.42 3.61 2.26 1.63
7 2.24 1.24 3.14 2.07 1.53
8 1.46 0.96 2.34 1.69 1.31

3 2.60 1.48 2.63 1.90 1.53
4 3.32 1.79 3.36 2.32 1.85

N′ Numeric 5 3.98 1.89 4.04 2.58 1.97
6 4.59 2.10 4.67 2.87 2.19
7 5.15 2.14 5.25 3.04 2.24
8 5.68 2.31 5.80 3.27 2.41

3 2.96 1.36 2.97 1.96 1.43
4 3.87 1.53 3.92 2.34 1.62

S2′ Seminumeric 5 4.68 1.64 4.82 2.63 1.75
6 5.34 1.72 5.63 2.86 1.85
7 5.54 1.74 6.16 2.99 1.90
8 4.91 1.67 6.01 2.95 1.89

3 2.94 1.36 2.97 1.97 1.43
4 3.90 1.54 3.94 2.34 1.62
5 4.82 1.66 4.89 2.65 1.76
6 5.56 1.74 5.72 2.88 1.86

SP Seminumeric 7 6.27 1.80 6.53 3.07 1.94
8 6.36 1.81 6.86 3.14 1.97
9 6.34 1.81 7.14 3.20 1.99
10 4.08 1.56 5.11 2.72 1.79

∗ Without randomization

The experimental results clearly indicate that SP is the most efficient batch-
verification algorithm for standard ECDSA signatures. Even for ECDSA# signa-
tures, Algorithm SP often outperforms the naive method N′. The optimal batch
size for Algorithm S2′ is t = 7 (for prime curves) and t = 5 or 6 (for Koblitz
curves). With Algorithm SP, the optimal batch sizes are t = 9 (for prime curves)
and t = 6 (for Koblitz curves). For both these families, the maximum speedup
is noticeably higher in Algorithm SP than what is achieved by Algorithm S2′.

The implications associated with the sanity check (Step 1 of Algorithm 1)
are now discussed. For prime curves, the sanity check incurs negligible overhead.
Without this check, the maximum achievable speedup figures for t = 9 are
6.55, 1.95, 7.25, 3.22 and 2.00. The corresponding row in Table 6 shows slightly
smaller speedup values 6.34, 1.81, 7.14, 3.20 and 1.99 caused by the check. Similar
observations hold for Algorithm S2′ too. For Koblitz curves, the sanity check is
very efficient and does not produce noticeable performance degradation.

Faster Batch Verification of Standard ECDSA Signatures 453

Table 7. Speedup obtained by batch-verification algorithms for Koblitz curves

Batch-verification Randomization t K-283 K-571
algorithm algorithm None∗ l = 128 None∗ l = 128 l = 256

2 1.84 0.99 1.90 1.30 1.03
3 2.44 1.15 2.64 1.62 1.21

N Numeric 4 2.55 1.17 3.01 1.75 1.28
5 2.10 1.06 2.79 1.67 1.24
6 1.40 0.85 2.11 1.40 1.08
7 0.79 0.58 1.31 0.99 0.82

2 1.90 1.01 1.93 1.32 1.04
3 2.78 1.22 2.84 1.69 1.25

N′ Numeric 4 3.61 1.35 3.72 1.96 1.40
5 4.39 1.45 4.57 2.18 1.50
6 5.14 1.52 5.39 2.35 1.58
7 5.85 1.58 6.17 2.49 1.64

2 1.99 1.18 1.99 1.49 1.17
3 2.94 1.46 2.97 1.98 1.45

S2′ Seminumeric 4 3.78 1.64 3.88 2.35 1.64
5 4.08 1.69 4.48 2.55 1.74
6 3.94 1.67 4.73 2.63 1.78
7 2.56 1.36 3.69 2.27 1.61

2 1.99 1.18 2.00 1.49 1.17
3 2.98 1.47 2.99 1.99 1.46
4 3.69 1.62 3.78 2.31 1.62
5 4.51 1.76 4.66 2.61 1.77

SP Seminumeric 6 4.82 1.81 5.22 2.78 1.84
7 3.48 1.58 4.42 2.53 1.78
8 3.52 1.59 4.59 2.59 1.76
9 2.62 1.37 3.73 2.29 1.61
10 1.51 0.99 2.42 1.72 1.31

∗ Without randomization

7 Summation Polynomial for Edwards Curves

Edwards curves are introduced by Edwards in [10]. Bernstein and Lange apply
these curves to cryptographic usage [4]. Edwards curves offer faster addition
and doubling formulas than elliptic curves. Moreover, the unified addition and
doubling formulas make Edwards-curve cryptosystems resistant to simple side-
channel attacks. An Edwards curve over a prime field is defined by the equation:

x2 + y2 = c2(1 + dx2y2), where cd(1− dc4) �= 0.

The sum of two points P1 = (x1, y1) and P2 = (x2, y2) on this curve is given as

454 S. Karati and A. Das

(x3, y3) =

(
x1y2 + x2y1

c(1 + dx1x2y1y2)
,

y1y2 − x1x2

c(1− dx1x2y1y2)

)
.

This formula holds even when P1 = ±P2.
EdDSA is the Edwards-curve equivalent of ECDSA [3]. Like ECDSA, only the

y-coordinate of an Edwards-curve point is sent in an EdDSA signature. An extra
bit to identify the correct x-coordinate is included in the signature. As a result,
all the batch-verification algorithms studied in connection with ECDSA apply
equally well to EdDSA signatures. Here, we mention the adaptation necessary
to make Algorithm SP work for EdDSA batch verification. The original proposal
of EdDSA refers to a batch-verification method akin to Algorithm N′.

The two base cases f2 and f3 of Edwards-curve summation polynomials are
given by

f2(y1, y2) = y1 − y2,

f3(y1, y2, y3) = c2(B − d2Ay21y
2
2)y

2
3 − 2y1y2(B − dA)y3 + (By21y

2
2 −A),

where A = (c2 − y21)(c
2 − y22) and B = (1− c2dy21)(1− c2dy22).

The recurrence relation for Edwards-curve summation polynomials ft for t � 4
is the same as for prime/Koblitz curves. The sanity check for Edwards curves
follows the same procedure as for elliptic curves.

8 The Group Structures in Quadratic Extensions

Here, we investigate the groups E(Fp2) and E(F22d) for the NIST prime and
Koblitz curves [19] for which we have reported our experimental results. Since
the sizes of the groups over the base fields are known, it is easy to compute
the orders of the groups over quadratic extensions using a well-known result by
Weil [8]. These sizes give an initial (sometimes complete) understanding of the
structures of the groups over the extension fields.

The curve P-256 is defined over Fp for a 256-bit prime p. The order of E(Fp)
is a prime n, so E(Fp) is cyclic. The size of E(Fp2) is |E(Fp2)| = 3 × 5 × 13 ×
179× n× n′, where n′ �= n is a 241-bit prime. Since |E(Fp2)| is square-free, the
group E(Fp2) is cyclic. However, it contains subgroups of small orders.

The curve P-521 is defined over Fp for a 521-bit prime p. The order of E(Fp) is
a prime n, so E(Fp) is cyclic. The size of E(Fp2) is |E(Fp2)| = 5×7×69697531×
635884237× n × n′, where n′ �= n is a 461-bit prime. Again E(Fp2) is cyclic,
since its order is square-free. This group too has subgroups of small orders.

The Koblitz curve K-283 is defined over F2d , d = 283, and has an order 4n for
a prime n. If the group E(F2d) is not cyclic, we must have E(F2d) ∼= Z2n ⊕ Z2.
But then, by the structure theorem of elliptic-curve groups of rank two, we have
2|(2d − 1), which is impossible. So E(F2283) is cyclic. In the quadratic extension
F22d , the group has order |E(F22d)| = 23 × 5 × 250057× 43611431× n× n′ for

Faster Batch Verification of Standard ECDSA Signatures 455

a 238-bit prime n′ (different from n). As argued above, E(F22d) is easily seen to
be cyclic. However, it contains subgroups of small orders.

The Koblitz curve K-571 is defined over F2d , d = 571, and has order 4n for
a prime n. We have the order |E(F22d)| = 23 × 83520557720108799306580699×
596201686362718542354710701×n×n′ for a 395-bit prime n′ �= n. Both E(F2d)
and E(F22d) are cyclic. Again, E(F22d) contains subgroups of small orders.

Since each of these groups in the quadratic extension has small-order sub-
groups, the sanity check is apparently preferred for all these curves. However, if
the points of small orders on a curve over the quadratic extension do not have
x-coordinates in the base field, then we can eliminate the sanity check.

9 Conclusion

In this paper, we propose a new and efficient batch-verification algorithm for
original ECDSA signatures. Our algorithm outperforms all previously known
batch-verification algorithms for ECDSA. We theoretically and experimentally
establish this superiority for the NIST prime and Koblitz families of elliptic
curves. We also mention how the methods can be adapted to EdDSA signa-
tures. Theoretical and experimental performance comparisons of different batch-
verification algorithms for EdDSA signatures remains an open (albeit fairly
straightforward) problem. The elliptic-curve group structures over quadratic ex-
tensions of the base fields need to be determined for all NIST curves, at the
minimum to gauge the necessity of running the sanity check.

References

1. Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponen-
tiation and digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 236–250. Springer, Heidelberg (1998)

2. Bernstein, D.J., Doumen, J., Lange, T., Oosterwijk, J.-J.: Faster batch forgery iden-
tification. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668,
pp. 454–473. Springer, Heidelberg (2012)

3. Ghosh, S., Roychowdhury, D., Das, A.: High speed cryptoprocessor for ηT pairing
on 128-bit secure supersingular elliptic curves over characteristic two fields. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 442–458. Springer,
Heidelberg (2011)

4. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer,
Heidelberg (2007)

5. Bernstein, D.J., Lange, T.: Explicit-formulas database (2007),
http://www.hyperelliptic.org/EFD/

6. Brown, W.S.: The subresultant PRS algorithm. ACM Transactions on Mathemat-
ical Software 4(3), 237–249 (1978)

7. Cheon, J.H., Yi, J.H.: Fast batch verification of multiple signatures. In: Okamoto,
T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 442–457. Springer, Heidelberg
(2007)

http://www.hyperelliptic.org/EFD/

456 S. Karati and A. Das

8. Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren,
F.: Handbook of elliptic and hyperelliptic curve cryptography. CRC Press (2006)

9. Collins, G.E.: Subresultants and reduced polynomial remainder sequences. Journal
of ACM 14(1), 128–142 (1967)

10. Edwards, H.M.: A normal form for elliptic curves. Bulletin of American Mathe-
matical Society 44(3), 393–422 (2007)

11. Harn, L.: Batch verifying multiple RSA digital signatures. Electronics Let-
ters 34(12), 1219–1220 (1998)

12. Johnson, D., Menezes, A.J., Vanstone, S.A.: The Elliptic Curve Digital Signature
Algorithm (ECDSA). International Journal of Information Security 1(1), 36–63
(2001)

13. Karati, S., Das, A., Roychowdhury, D., Bellur, B., Bhattacharya, D., Iyer, A.:
Batch verification of ECDSA signatures. In: Mitrokotsa, A., Vaudenay, S. (eds.)
AFRICACRYPT 2012. LNCS, vol. 7374, pp. 1–18. Springer, Heidelberg (2012)

14. Karati, S., Das, A., Roychowdhury, D.: Using randomizers for batch ver-
ification of ECDSA signatures, IACR Cryptology ePrint Archive (2012),
http://eprint.iacr.org/2012/582

15. Montgomery, P.L.: Speeding up Pollard and elliptic curve methods of factorization.
Mathematics of Computation 48(177), 243–264 (1987)

16. Naccache, D., M’Räıhi, D., Vaudenay, S., Raphaeli, D.: Can D.S.A. Be improved?
In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 77–85. Springer,
Heidelberg (1995)

17. NIST: Digital Signature Standard (DSS),
http://csrc.nist.gov/publications/drafts/fips_186-3/Draft-FIPS-186-3

18. NIST: Secure Hash Standard, SHS (2007),
http://csrc.nist.gov/publications/drafts/fips 180-3/

draft fips-180-3 June-08-2007.pdf

19. NIST: Recommended elliptic curves for federal government use (1999),
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf

20. PARI Group: PARI/GP Home (2003-2013), http://pari.math.u-bordeaux.fr/
21. Semaev, I.: Summation polynomials and the discrete logarithm problem on elliptic

curves (2004), http://eprint.iacr.org/2004/031
22. Solinas, J.A.: Improved algorithms for arithmetic on anomalous binary curves,

Combinatorics and Optimization Research Report CORR 99-46, University of Wa-
terloo (1999),
http://www.cacr.math.uwaterloo.ca/techreports/1999/corr99-46.ps

http://eprint.iacr.org/2012/582
http://csrc.nist.gov/publications/drafts/fips_186-3/Draft-FIPS-186-3
http://csrc.nist.gov/publications/drafts/fips_180-3/draft_fips-180-3_June-08-2007.pdf
http://csrc.nist.gov/publications/drafts/fips_180-3/draft_fips-180-3_June-08-2007.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://pari.math.u-bordeaux.fr/
http://eprint.iacr.org/2004/031
http://www.cacr.math.uwaterloo.ca/techreports/1999/corr99-46.ps

	Faster Batch Verification of Standard ECDSA Signatures Using Summation Polynomials
	Introduction
	Notations and Background
	ECDSA over NIST Prime Fields
	Batch Verification of ECDSA Signatures
	Randomization of Batch Verification

	A New Batch-Verification Algorithm (SP) for ECDSA
	Analysis of Algorithm SP
	Properties of Summation Polynomials
	A Strategy to Handle the Variables in the Recursion Tree
	Running Time of SP
	Security of SP
	Necessity of the Sanity Check
	Cases of Failure of SP

	Adaptation of Algorithm SP to Koblitz Curves
	Summation Polynomials for Koblitz Curves
	Adaptation of the Sanity Check

	Experimental Results
	Summation Polynomial for Edwards Curves
	The Group Structures in Quadratic Extensions
	Conclusion

