
Randomized Batch Verification of Standard ECDSA
Signatures

Sabyasachi Karati, Abhijit Das, Dipanwita Roychoudhury
Department of Computer Science and Engineering

IIT Kharagpur, India
skarati,abhij,drc@cse.iitkgp.ernet.in

Abstract. In AfricaCrypt 2012, several algorithms are proposed for the batch
verification of ECDSA signatures. In this paper, we propose three randomization
methods for these batch-verification algorithms. Our first proposal is based
on Montgomery ladders, and the second on computing square-roots in the
underlying field. Both these techniques use numeric arithmetic only. Our third
proposal exploits symbolic computations leading to a seminumeric algorithm. We
theoretically and experimentally establish that for standard ECDSA signatures,
our seminumeric randomization algorithm in tandem with the batch-verification
algorithm S2′ gives the best speedup over individual verification. If each ECDSA
signature contains an extra bit to uniquely identify the correct y-coordinate of
the elliptic-curve point appearing in the signature, then the second numeric
randomization algorithm followed by the naive batch-verification algorithm N′

yields the best performance gains. We detail our study for NIST prime and
Koblitz curves.

Keywords: ECDSA, Elliptic curve, Koblitz curve, Montgomery ladder, Symbolic
computation, Batch verification, Randomization.

1 Introduction

An ECDSA signature on a message M is a triple (M,r,s), where r is the x-coordinate
of an elliptic-curve point R, and s is an integer that absorbs the hash of M. Both r and
s are reduced modulo the size n of the elliptic-curve group. During verification, two
scalars u,v are computed using modulo n arithmetic, and the point R is reconstructed as
R = uP+vQ, where P is the base point in the elliptic-curve group, and Q is the signer’s
public key. Verification succeeds if and only if x(R) = r.

Suppose that we want to verify a batch of t ECDSA signatures (Mi,ri,si). For the
i-th signature, the verification equation is Ri = uiP+viQi. The t signatures can be com-
bined as

t

∑
i=1

Ri =

(
t

∑
i=1

ui

)
P+

(
t

∑
i=1

viQi

)
. (1)

Since the y-coordinates of Ri are not available in the signatures, we cannot straightaway
compute the sum on the left side. In AfricaCrypt 2012, several batch-verification algo-
rithms are proposed to solve this problem [1]. The naive algorithms are based upon the

determination of the missing y-coordinate of each Ri using a square-root computation
(we have y2

i = r3
i +ari+b). The symbolic-manipulation algorithms treat the unknown y-

coordinates as symbols. Batch verification involves the eventual elimination of all these
y-coordinates from Eqn(1) using the elliptic-curve equation. The symbolic algorithm
S2′ turns out to be the fastest of the batch-verification algorithms proposed in [1].

In IndoCrypt 2012, Bernstein et al. [2] propose two attacks on these algorithms.
They suggest that these attacks can be largely eliminated by randomizing batch verifi-
cation (a concept introduced by Naccache et al. [3]). For random non-zero multipliers
ξ1,ξ2, . . . ,ξt , the verification equations are now combined as

t

∑
i=1

ξiRi =

(
t

∑
i=1

ξiui

)
P+

(
t

∑
i=1

ξiviQi

)
. (2)

Since the y-coordinates of Ri are not available, Eqn(2) is not directly applicable. In this
paper, we propose three efficient ways of randomizing the batch-verification algorithms
of [1]. We mostly concentrate on standard ECDSA signatures. If the ECDSA signature
contains an extra bit to identify the correct square-root y of r3 +ar+b [4], we call this
an ECDSA# signature. In another variant known as ECDSA* [4, 5], the entire point R
replaces r in the signature. Neither ECDSA# nor ECDSA* is accepted as a standard.
Since ECDSA* results in an unreasonable expansion in the signature size without any
increase in the security, we do not consider this variant in this paper. ECDSA#, however,
adds only one extra bit to a signature, and so we study the implications of having this
extra bit. Our three randomization techniques are based on the following ideas.

– Montgomery ladders: Given only the x-coordinate of an elliptic-curve point R, one
can uniquely obtain the x-coordinate of any non-zero multiple ξ R [6]. We first
compute x(ξiRi) for all signatures in the batch. Then we feed these x-coordinates
to the batch-verification algorithms.

– Numeric computation: We explicitly compute yi from each ri by taking a square-
root of r3

i + ari + b. In ECDSA#, we uniquely obtain Ri from the extra bit. In
ECDSA, we have two possibilities ±R. We start with any possibility and numeri-
cally compute ξ R or −ξ R using standard elliptic-curve doubling and addition for-
mulas.1

– Seminumeric computation (Joye’s method): We treat each yi as a symbol, and
compute ξiRi as a point in the form (hi,kiyi), where the field elements hi and ki
are computed from the knowledge of ri = x(Ri) alone. We precompute the quan-
tity r3

i + ari + b and follow a slightly modified version of the standard elliptic-
curve scalar-multiplication algorithm. Joye in [7] proves that in prime fields the
y-coordinate of ξiRi is of the form (hi(ri),ki(ri)yi) for functions hi,ki of ri alone.
Here, we complement that study by providing explicit computational determina-
tion of hi,ki, and exploit this procedure to obtain a randomization algorithm that
performs better than the above two methods for standard ECDSA signatures. We
also derive such explicit formulas for Koblitz curves.

1 A study of this method is inspired by a comment from an anonymous referee of an earlier
version of this paper.

2

Since the only batch-verification algorithms that deal with standard ECDSA signatures
are found in [1], randomizing these algorithms is of practical importance in real-time
cryptographic applications like the authentication of messages in vehicular ad hoc net-
works.

We experiment with the NIST prime family of elliptic curves [8]. Montgomery lad-
ders face a few problems. Each iteration in the scalar-multiplication loop involves one
addition and one doubling. More importantly, it is not known how to adapt Montgomery
ladders to windowed scalar multiplication.Montgomery’s paper [9] proposes some ways
of generating short Montgomery chains. As pointed out in [10, 11], the creations of the
addition chains in these improved variants are rather costly. The practical method of
[9] is effective only when the scalar multiplier remains constant, so the addition chain
can be precomputed. Since this is not the case with randomizers, we have implemented
only the binary ladder. The numeric and the seminumeric randomization algorithms can
be adapted to any windowed variant. We theoretically and experimentally establish that
the binary Montgomery ladder is slower than the best known windowed variants of the
numeric and the seminumeric algorithms. Montgomery arithmetic is efficient for prime
curves of the particular form By2 = x3+Ax2+x. However, the NIST prime curves have
large prime orders and cannot be converted to a curve in the Montgomery form which
contains the point (0,0) of order two. Point multiplication using Montgomery ladders is
more resistant to simple side-channel attacks (SCA) than the numeric and seminumeric
methods. In this paper, SCA resistance is not of concern, since verification of signatures
uses no private keys.

The rest of this paper is organized as follows. In Section 2, we provide a brief intro-
duction to the ECDSA batch-verification algorithms and the attacks against those. Sec-
tions 3 elaborates the three randomization methods introduced above. Section 4 makes
a theoretical and experimental comparison of the relative performances of the three
methods, and discusses the effects of randomization on the performance of the batch
verification of ECDSA and ECDSA# signatures. Section 5 deals with NIST Koblitz
curves. Section 6 concludes the paper.

2 Background and Notations

Let (Mi,ri,si), i = 1,2, . . . , t, be a batch of t ECDSA signatures that we want to verify
simultaneously. We work over the elliptic curve

y2 = x3 +ax+b. (3)

defined over a large prime field Fp. We assume that the group E(Fp) is of prime order
n with a generator P. For simplicity, we assume that all of the t signatures come from
the same signer, that is, Qi = Q for all i.

2.1 ECDSA Batch Verification

The right side of Eqn(1) can be computed numerically using two scalar multiplications
(or one double scalar multiplication). Let this point be (α,β). If Ri are reconstructed as

3

uiP+viQ, the effort is essentially the same as individual verification. The algorithms of
[1] solve this problem in many ways.

The naive method N computes yi by taking the square root of r3
i + ari + b. Since

there are two square roots (in general) for each ri, the ambiguity in the sign of yi can
be removed by trying all of the m = 2t combinations. If Eqn(1) holds for any of these
choices, the batch of signatures is accepted. In ECDSA#, the yi values can be uniquely
identified, and we can avoid trying all the m= 2t combinations. This variant of the naive
method is referred to as N′. If the underlying field is large, the square-root computations
may have huge overheads.

Algorithms S1 and S2 avoid this overhead by computing the left side of Eqn(1)
symbolically. Each yi is treated as a symbol satisfying y2

i = r3
i +ari +b. Symbolic ad-

dition gives (g(y1,y2, . . . ,yt),h(y1,y2, . . . ,yt)) = (α,β), where g and h are polynomials
in yi with each yi-degree 6 1.

Algorithm S1 makes a linearization by repeatedly squaring g(y1, y2, . . . ,yt) = α

(or multiplying by even-degree monomials). At this stage too, the equations y2
i = r3

i +
ari + b are used to keep the yi-degrees 6 1 in each generated equation. The linearized
system has 2t−1 − 1 = m

2 − 1 variables corresponding to the square-free monomials
in y1,y2, . . . ,yt of even degrees. The system is solved by Gaussian elimination. The
equation h(y1,y2, . . . ,yt) = β is then used to solve for each yi. Finally, it is verified
whether y2

i = r3
i +ari +b for all i.

Algorithm S2 uses a faster elimination trick. The equation g(y1, y2, . . . ,yt) = α is
written as γ(y2,y3, . . . ,yt)y1 + δ (y2,y3, . . . ,yt). Multiplying this by γy1− δ and using
y2

1 = r3
1 + ar1 + b gives an equation free from y1. The other variables y2,y3, . . . ,yt are

eliminated one by one in the same way. Eventually, the batch is accepted if we obtain
the zero polynomial after all yi are eliminated.

An improved variant of S1 and S2 significantly speeds up the symbolic-addition
phase. Let τ = dt/2e. Eqn(1) is rewritten as ∑

τ
i=1 Ri = (α,β)−∑

t
i=τ+1 Ri. The two

sides are individually computed symbolically. These variants of S1 and S2 are referred
to as S1′ and S2′.

2.2 Attacks on ECDSA Batch Verification

In the first attack of Bernstein et al. [2], the batch verifier handles t − 2 genuine sig-
natures along with the two forged signatures (r,s) and (r,−s) on the same message M.
Since the sum of the elliptic-curve points (r,s) and (r,−s) is O , the entire batch of t
signatures is verified as genuine.

In the second attack, the forger knows a valid key pair (d1,Q1), and can fool the ver-
ifier by a forged signature for any message M2 under any valid public key Q2 along with
a message M1 under the public key Q1. The forger selects a random k2, computes R2 =
k2P and r2 = x(R2). For another random s2, the signature on M2 under Q2 is presented
as (r2,s2). For the message M1, the signature (r1,s1) is computed as R1 = r2s−1

2 Q2,
r1 = x(R1), and s1 = (e1 + r1d1)(k2− e2s−1

2)−1, where e1 = H(m1), e2 = H(m2), and
H is a secure hash function. Now, R1 +R2 and (e1s−1

1 + e2s−1
2)P+ r1s−1

1 Q1 + r2s−1
2 Q2

have the same value as (k2P+r2s−1
2 Q2). These forged signatures are verified if they are

in the same batch.

4

Both these attacks become infeasible by the use of randomizers. If the verifier
chooses l-bit randomizers, the security of the batch-verification procedure increases by
2l . The randomizers need not be of full lengths (of lengths close to that of the prime or-
der p of the relevant elliptic-curve group). As discussed in [12], much smaller random-
izers typically suffice to make most attacks on batch-verification schemes infeasible. If
the underlying field is of size d bits, then the best known algorithms (the square-root
methods) to solve the ECDLP take O˜(2d/2) times. As a result, d/2-bit randomizers do
not degrade the security of the ECDSA scheme. Another possibility is to take l = 128
to get 128-bit security independent of the security guarantees of ECDSA.

3 Randomization of ECDSA Batch Verification

For randomizing ECDSA batch verification as per Eqn(2), the basic problem is to com-
pute the x-coordinate x(ξ R) from r = x(R) and an l-bit scalar ξ = 1ξl−2ξl−3 . . .ξ1ξ0.

3.1 Montgomery Ladders

Montgomery ladders are discussed in [13, 14, 6]. For the sake of completeness, we
present the relevant formulas for point addition and doubling. Suppose that x(P1) = h1,
x(P2) = h2 and x(P1−P2) = h4 are known to us. We can compute h3 = x(P1 +P2) and
h5 = x(2P1) by Eqns (4) and (5), respectively.

h3h4(h1−h2)
2 = (h1h2−a)2−4b(h1 +h2). (4)

4h5(h3
1 +ah1 +b) = (h2

1−a)2−8bh1. (5)

The above formulas [13] are adapted from Montgomery’s original derivation [6]. Fis-
cher et al. [15] propose a slightly improved addition formula given by

(h4 +h3)(h1−h2)
2 = 2(h1 +h2)(h1h2 +a)+4b.

The Montgomery ladder described in Algorithm 1 never uses nor computes the y-
coordinate of any point in its repeated double-and-add point-multiplication loop. The
loop maintains the invariance T − S = R. Since x(T), x(S) and x(T − S) = x(R) are
known, we can compute x(T +S), x(2S) and x(2T).

Algorithm 1 Montgomery Ladder for Computing x(ξ R) from ξ and x(R)
Initialize x(S) := x(R) and x(T) := x(2R).
For (i = l−2, l−3, . . . ,1,0) {

If (ξi = 0), assign x(T) := x(T +S) and x(S) := x(2S);
else assign x(S) := x(T +S) and x(T) := x(2T);

}
Return x(S).

In many cases, using projective coordinates can speed up the Montgomery-ladder
loop. Both the x- and the z-coordinates can be computed from the knowledge of x(R)

5

alone (we assume z(R) = 1). Some explicit formulas can be found at [16, 17]. Fischer et
al. [15] propose an optimization of the Montgomery loop. Irrespective of the bit value
ξi, the loop computes the x- and z-coordinates of two points P+Q and 2P, where P
is one of the points S,T , and Q is the other point. These operations can be combined
together yielding a reduced count of field operations. The problem with Algorithm 1 is
that no effective windowed adaptation of it is known (see [10, 11]).

3.2 Numeric Computation

We first compute a square-root y of r3 + ar+ b. The point R is either (r,y) or (r,−y).
An ECDSA# signature has enough information to identify which of these two points is
the correct R. An ECDSA signature cannot resolve this ambiguity. However, that is not
a serious problem, since both ξ R and −ξ R have the same x-coordinate. Therefore, we
start with any of the two points ±R, and compute its ξ -th multiple using any standard
elliptic-curve scalar-multiplication algorithm. The y-coordinate of this multiple is also
computed as a byproduct.

A square root of r3 + ar+ b modulo the prime p can be computed by well-known
algorithms (like Tonelli-Shanks algorithm). If p≡ 3 (mod 4), then (r3 +ar+b)(p+1)/4

(mod p) is such a square root. Each square-root finding algorithm essentially requires
the cost of an exponentiation in the field Fp.

The numeric method has an important bearing on the naive batch-verification meth-
ods N and N′ of [1]. These two algorithms start by computing the square roots of r3

i +
ari+b. If these algorithms are randomized by the numeric method, the y-coordinates of
ξiRi are already available (up to sign in ECDSA, and uniquely in ECDSA#), and need
not be computed again from the x-coordinates of ξiRi. This lets the naive algorithms
save significant time. The symbolic batch-verification methods (like S2′) do not use
and therefore do not benefit from an explicit knowledge of the y-coordinates.

The numeric method in the context of ECDSA# has another advantage. Since the
points Ri are now known uniquely, we can use multiple scalar multiplication. For exam-
ple, computing ξ1R1 +ξ2R2 in a single double-and-add loop needs only l doubling and
at most l addition operations, where l is the length of the randomizers. On the contrary,
computing ξ1R1 and ξ2R2 separately by even the best windowed method requires 2l
doubling operations and some more additions. Thus, the naive batch-verification algo-
rithm N′ derives an additional boost in its performance from multiple scalar multiplica-
tion.

3.3 Seminumeric Computation (Joye’s Method)

We treat the y-coordinate of R = (r,y) as a symbol satisfying y2 = r3 +ar+b.

Theorem 1: Any non-zero multiple uR of R can be expressed as (h,ky), where h and
k are field elements fully determined by (u and) the x-coordinate r of R.

6

Proof R itself can be so expressed with h = r and k = 1. Next, suppose that P1 =
(h1,k1y) and P2 = (h2,k2y) are two distinct non-zero multiples of R with P3 = P1+P2 6=
O . The addition formula gives P3 = (h3,k3y), where

h3 =

(
k1− k2

h1−h2

)2

(r3 +ar+b)−h1−h2, and k3 =

(
k1− k2

h1−h2

)
(h1−h3)− k1.

Let P4 = 2P1. We have P4 = (h4,k4y), where

h4 =

(
3h2

1 +a
2k1

)2(1
r3 +ar+b

)
−2h1, and k4 =

(
3h2

1 +a
2k1

)(
h1−h4

r3 +ar+b

)
− k1.

Finally, the opposite of (h,ky) is (h,(−k)y). This completes the inductive proof. •

We represent the multiple (h,ky) of R by the pair (h,k) of field elements. The symbol
y need not be explicitly maintained. R itself is represented by the pair (r,1). Upon (r,1)
as input, we precompute the quantity r3 + ar+ b and its inverse, and run the standard
repeated double-and-add loop of Algorithm 2 with these revised addition and doubling
formulas. At the end of the loop, the two computed field elements h,k yield the desired
multiple ξ R = (h,ky). In short, we do not need to carry out any symbolic computation
at all for obtaining ξ R.

Algorithm 2 Seminumeric Computation of ξ R = (h,ky) from ξ and R = (r,y)
Precompute the field elements r3 +ar+b and (r3 +ar+b)−1.
Initialize S := (r,1).
For (i = l−2, l−3, . . . ,1,0) {

Assign S := 2S (use seminumeric doubling formula).
If (ξi = 1), assign S := S+R (use seminumeric addition formula).

}
Return S.

The modified addition formula involves only one extra field multiplication (by the
precomputed quantity r3 +ar+b) compared to the standard elliptic-curve addition for-
mula. Point doubling requires two extra field multiplications (each by the precomputed
inverse (r3 +ar+b)−1). In Jacobian projective coordinates, we can rearrange the dou-
bling formula to absorb those two extra field multiplications. The standard double-and-
add algorithm can be adapted to any windowed variant. Some variants require precom-
puting multiples uR of R for some small values of u. These multiples are precomputed
as pairs of field elements.

The knowledge of the entire points R1,R2 allows us to compute ξ1R1 + ξ2R2 us-
ing a single double-and-add loop, yielding noticeable speedup over two point multi-
plications. If the y-coordinates of R1 and R2 are treated as symbols y1,y2, then too
ξ1R1 +ξ2R2 can be computed seminumerically. Any non-zero point of the form uR1 +
vR2 can be expressed as (h+ jy1y2,ky1 + ly2) for field elements h, j,k, l uniquely de-
termined by the x-coordinates r1,r2 (and u,v) alone. Addition and doubling of such

7

points can be rephrased numerically in terms of these field elements. For example,
let P1 = (h1 + j1y1y2,k1y1 + l1y2) and P2 = (h2 + j2y1y2,k2y1 + l2y2) be two (distinct)
points of the form uR1 + vR2. In order to compute their sum, we first compute the
slope λ = (k1−k2)y1+(l1−l2)y2

(h1−h2)+(j1− j2)y1y2
. Using the symbolic-manipulation techniques of [1], we

free the denominator of y1,y2 (multiply by (h1 − h2)− (j1 − j2)y1y2 and substitute
y2

i = r3
i +ari+b for i = 1,2). We simplify the numerator too to express λ as αy1+βy2.

Therefore, λ 2 and x(P1 + P2) = λ 2 − x(P1)− x(P2) are of the form γ + δy1y2. This
process of symbolic computation of x(P1 +P2) can be replaced by explicit numeric for-
mulas in h1,k1, j1, l1,h2,k2, j2, l2. The y-coordinate of P1+P2 and point doubling can be
analogously handled. The resulting numeric formulas turn out to be clumsy, and are not
expected to benefit the computation of ξ1R1 + ξ2R2 in a single double-and-add loop.
For the weighted sum of three or more points, this idea of seminumeric computation
can be extended at least in theory, but chances of getting practical benefits are rather
slim.

4 Comparison Among the Randomization Algorithms

In this section, we count the field operations in the randomization algorithms. For each
of these algorithms, we take the best variant (windowed, if applicable, and with a suit-
able choice of the coordinate systems) known to us. We then experimentally validate
our theoretical observations.

4.1 Comparison of Montgomery Ladders and Seminumeric Method

For the purpose of theoretical comparison, we use standard projective coordinates in the
Montgomery-ladder method, and Jacobian projective coordinates in the NAF variant
of the seminumeric method. The Montgomery-ladder method in standard projective
coordinates produced the best results almost always, whereas the NAF variant of the
seminumeric method in Jacobian projective coordinates gave us the best results for
curves over large fields. Comparisons among other variants can be analogously carried
out.

Let us analyze the Montgomery-ladder implementation first. Let P1 = (h1,k1, l1),
P2 = (h2,k2, l2), and P1−P2 = (r,−y,1) ∈ E(Fp) be given in projective coordinates.
We do not use the y-coordinates k1,k2,y. We only compute the x- and z-coordinates of
P1 +P2 and 2P1 using the following formulas [15]:

x(P1 +P2) = 2(h1l2 +h2l1)(h1h2 +al1l2)+4bl2
1 l2

2 − r(h1l2−h2l1)2,

z(P1 +P2) = (h1l2−h2l1)2,

x(2P1) = (h2
1−al2

1)
2−8bh1l3

1 , and z(2P1) = 4h1l1(h2
1 +al2

1)+4bl4
1 .

If we precompute the field element −4b, point addition and point doubling require
MMont = 14M + 5S+ 9A+ 5(2∗) field operations (see Table 1 for the notations, and
[15] for the derivation of this count). For an l-bit randomizer, the Montgomery-ladder
scalar-multiplication does l MMont operations.

8

Table 1. Descriptions of the Symbols

Symbol Description
M Finite field Multiplication
S Finite field Square
I Finite field Inverse
A Finite field Addition or subtraction
(u∗) Finite field multiplication by the constant element u
MMont Montgomery-ladder merged addition-doubling in projective coordinates
ASemi Seminumeric point addition in the mentioned coordinates
DSemi Seminumeric point doubling in the mentioned coordinates

Next, we analyze the seminumeric method. Any non-zero multiple of (r,y,1) ∈
E(Fp) is of the form (βx,βyy,βz) with βx,βy,βz ∈ Fp. Let P1 = (h1,k1y, l1) and P2 =
(h2,k2y, l2) be two such multiples, where P1 6= ±P2, and y satisfies the equation y2 =
r3 +ar+b with r known. We modify the point-addition and doubling formulas of Sec-
tion 3.3 as given in [18]. These formulas assume that a=−3. In particular, the x-, y- and
z-coordinates of P3 = P1 +P2 = (h3,k3y, l3) and P4 = 2P2 = (h4,k4y, l4) are computed
as:

H = h2l2
1 −h1l2

2 , R = k2l3
1 − k1l3

2 , R′ = R2y2, h3 = R′−H3−2h1l2
2H2,

k3 = R(k1l2
2 −h3)− k1l3

2 , and l3 = Hl1l2.

H1 = 3(h1− l2
1)(h1 + l2

1), H2 = H2
1/y2, R′′ = 4h1k2

1, h4 = H2−2R′′,

k4 = H1(R′′−h4)/y2−8k4
1, and l4 = 2k1l1.

We need to perform ASemi = 13M + 4S + 6A + 1(2∗) and DSemi = 6M + 3S + 5A +
1(3∗) + 4(2∗) + 1(1

2∗) field operations for point addition and doubling, respectively
(with 1

2 , y2 and y−2 precomputed). Each point addition requires only one extra field
multiplication than the best implementations mentioned in [16]. Point doubling has the
same multiplication count as these best implementations. If we use the w-NAF repre-
sentation of l-bit randomizers, then there are on an average l

w+1 non-zero digits. For
each of these non-zero digits, ASemi operations are required. Point doubling (DSemi) is
done for each of the l bits. Furthermore, for precomputing 2w−2 multiples of (r,y,1),
we need 2w−2−1 point additions and one point doubling. Opposites of these multiples
take almost zero computation cost.

The seminumeric algorithm is faster than Montgomery-ladder algorithm if:(
2w−2−1+

l
w+1

)
ASemi +(l +1)DSemi 6 l MMont (6)

Following the convention of [17], we ignore the times required to multiply a field ele-
ment by a constant (such as 2, 3 or 1/2) and to add two field elements, since these op-
erations take negligible times compared to field multiplication and squaring. Moreover,
as suggested in [16], we take the squaring and multiplication times the same (that is,
1S= 1M). With these simplifications, Eqn(6) can be rewritten as 17

(
2w−2−1+ l

w+1

)
+

9

9(l+1)6 19l. Rearrangement of this equation gives
(
10− 17

w+1

)
l > 9+17(2w−2−1).

Putting w = 4 in the equation, we get l > 9.09. This theoretically establishes that for
l > 10, the seminumeric algorithm is faster than the Montgomery ladder.

It is important to highlight that the worst-case overhead (ASemi+ DSemi) of an iter-
ation of the seminumeric loop is more than the overhead MMont of each iteration of the
Montgomery-ladder loop. However, the windowed variants of the seminumeric itera-
tion are much more efficient than this worst case, on an average. Montgomery ladders,
on the other hand, are unable to take this advantage.

4.2 Comparison of Numeric and Seminumeric Methods

The numeric and seminumeric methods use essentially the same formulas of scalar mul-
tiplication. A seminumeric point addition uses one extra field multiplication by the pre-
computed quantity r3 +ar+b. Seminumeric point doubling requires exactly the same
number of field multiplications as needed by numeric point doubling. The numeric al-
gorithm, on the other hand, has the extra overhead of a square-root computation. As
mentioned in Section 3.2, this overhead is essentially that of an exponentiation in Fp.
We use an efficient windowed modular exponentiation algorithm. The effect of this
overhead on the computation of ξ R depends on the bit length of ξ . If ξ is a full-length
scalar (that is, of bit length near that of p), then the extra overhead is slightly less than
that associated with the extra multiplication in the seminumeric loop. The cryptograph-
ically most meaningful length of ξ is about half of that of p. In this case, the square-
root computation overhead per bit of the randomizer ξ is doubled, and we expect the
seminumeric to be faster than the numeric method.

More precisely, let d be the bit length of q. Each square-root computation by the
w-NAF method needs (1S+(2w−2− 1)M)+ (dS+ d

w+1 M) field operations. If we put
1S = 1M, this is the same as 2w−2 + d

(
1+ 1

w+1

)
multiplications. The w-NAF scalar-

multiplication time with an explicitly known y-coordinate and an l-bit scalar is about
the same as that of 16

(
2w−2−1+ l

w+1

)
+9(l +1) field multiplications [16]. Thus, the

total overhead of the numeric method is that of

2w−2 +d
(

1+
1

w+1

)
+16

(
2w−2−1+

l
w+1

)
+9(l +1)

multiplications for each point. On the other hand, the seminumeric method with an l-
bit scalar needs an equivalent of 17

(
2w−2−1+ l

w+1

)
+ 9(l + 1) field multiplications

for each point, yielding a saving of
(
d + d−l

w+1 +1
)

field multiplications. For l = d
2 and

w = 4,
(11

10

)
d +1 multiplications are saved.

4.3 Experimental Comparison

The algorithms are implemented in a 2.33 GHz Xeon server running Ubuntu Linux
Server Version 2012 LTS. The algorithms are implemented using the GP/PARI calcu-
lator [19] (version 2.5.0 compiled by the GNU C compiler 4.6.2). We have used the
symbolic-computation facilities of the calculator in our programs. All other functions
(like scalar multiplication and square-root computation) are written as subroutines with

10

minimal function-call overheads. Since the algorithms are evaluated in terms of number
of field operations, this gives a fair comparison of experimental data with the theoreti-
cal estimates. We have implemented windowed, w-NAF and frac-w-NAF methods. We
have used affine and projective (standard or Jacobian) coordinates.

The average times of randomization achieved by the Montgomery-ladder and the
seminumeric algorithms are listed in Tables 2 and 3 for two NIST prime curves. Here,
w is the window size, and l is the bit length of the scalar multiplier (randomizer in
the batch-verification application). As mentioned in Section 2.2, we have chosen l to
be 128, d/2 and d (where d = |p|). The seminumeric algorithm is found to be faster
than the Montgomery-ladder algorithm, particularly for large randomizers. For NIST
prime curves, the experimental speedup is about 25–30%, which is consistent with the
theoretical estimates.

Table 2. Times of Numeric and Seminumeric Scalar Multiplication

Numeric Scalar Multiplication Semiumeric Scalar Multiplication
Length of (Jacobian Projective Coordinates) (Jacobian Projective Coordinates)

Curve randomizer Time w-Algorithm Time w-Algorithm
(in bits) (in ms) (in ms)

P-256 128 2.04 5-NAF-numeric 2.04 4-NAF-seminumeric
256 3.92 4-NAF-numeric 4.12 4-NAF-seminumeric
128 2.69 4-NAF-numeric 2.81 4-NAF-seminumeric

P-521 256 5.48 4-NAF-numeric 5.92 4-NAF-seminumeric
521 10.60 5-NAF-numeric 11.44 5-NAF-seminumeric

Table 3. Times of Montgomery-Ladder and Multiple-Scalar Multiplication

Montgomery Ladder ∗ Multiple Scalar Multiplication
Length of (Standard Projective Coordinates) (Jacobian Projective Coordinates)

Curve randomizer Time Time
(in bits) (in ms) (in ms)

P-256 128 2.72 2.93
256 5.29 5.67
128 3.76 4.37

P-521 256 7.45 7.89
521 15.09 16.30
∗No effective windowed variant of Montgommer ladders is known

Table 4. Times for the computation of square roots

Curve Time Algorithm w
(in ms)

P-256 0.28 w-numeric 5
P-521 0.76 w-numeric 5

11

Tables 2 and 4 list the overheads associated with the numeric randomization method.
In order to compare the performances of the numeric method and the seminumeric
method, we add the best possible numeric scalar multiplication time to the best possi-
ble square-root computation time. For full-length randomizers, the best total overheads
of the numeric algorithm are 3.92+0.28 = 4.20 and 10.60+0.76 = 11.36 for the two
curves P-256 and P-521. In this case, the best overheads incurred by the seminumeric
method are very close: 4.12 and 11.44. For half-length randomizers, the best total over-
heads of the numeric method are 2.04+ 0.28 = 2.32 and 5.48+ 0.76 = 6.24 for the
two curves. The same overheads for the seminumeric method are slightly better: 2.04
and 5.92. This is the expected pattern as evident from our theoretical estimates. Both
the numeric and the seminumeric methods run significantly faster than Montgomery
ladders.

In ECDSA#, there is a possibility of using multiple scalar multiplication. Table 3
lists the times for computing the sum ξ1R1 +ξ2R2 using a single double-and-add loop.
These times are much less than two separate scalar-multiplication times even by the
best windowed method.

In an individual verification, one can compute uiP+viQ by a double scalar multipli-
cation. Since P is a fixed base, we can use fixed-base scalar multiplication to compute
uiP. However, Q is not considered to be fixed across different batches (it is assumed to
be the same in each batch). So the benefits of double fixed-base scalar multiplication
is not clear during individual verification, particularly if the number of signatures with
fixed Q is small.

Table 5. Speedup obtained by randomized batch-verification algorithms

Batch-verification Randomization t P-256 P-521
algorithm algorithm None∗ l = 128 None∗ l = 128 l = 256

3 2.55 1.33 2.60 1.82 1.39
4 3.15 1.48 3.25 2.12 1.55

N Numeric 5 3.50 1.55 3.72 2.30 1.65
6 3.46 1.54 3.85 2.36 1.68
7 2.93 1.43 3.53 2.23 1.61
8 2.10 1.20 2.75 1.89 1.43
3 2.61 1.48 2.63 1.91 1.53
4 3.34 1.79 3.37 2.32 1.86

N′ Numeric 5 4.01 1.89 4.05 2.58 1.97
6 4.63 2.11 4.69 2.88 2.20
7 5.20 2.15 5.28 3.05 2.25
8 5.73 2.31 5.83 3.27 2.42
3 2.98 1.37 2.99 1.97 1.43
4 3.91 1.54 3.95 2.35 1.62

S2′ Seminumeric 5 4.73 1.65 4.87 2.65 1.76
6 5.41 1.72 5.70 2.87 1.86
7 5.61 1.74 6.24 3.01 1.91
8 4.96 1.68 6.08 2.97 1.90

∗Without randomization

12

4.4 Effects of Randomization on Batch-Verification Algorithms

Table 5 illustrates the performance degradation caused by randomization. The speedup
figures are computed over individual verification and pertain to the situation where all
the signatures come from the same signer. In the table, t is the batch size and l is the bit
length of the randomizer. We have taken two cryptographically meaningful values of l
(half-length and 128). For original ECDSA signatures, the seminumeric randomization
method gives the best performance. For ECDSA#, the extra square-root identifying
bits give the points Ri uniquely, so the numeric randomization method is the preferred
choice. In each case, the best possible windowed variant is used to compute the speedup.
Whenever possible, the best windowed variants are replaced by the faster multiple scalar
multiplication method. Table 5 also lists the speedup figures without randomization.
Although the increased security provided by randomization incurs reasonable overhead,
we still have sizable speedup over individual verification.

5 Adaptation of Randomization Methods to Ordinary Binary
Curves

As an illustrative example, we take the family of Koblitz curves recommended by
NIST [8]. These curves are defined over binary fields F2d by the equation

y2 + xy = x3 +ax2 +1, with a = 0 or 1. (7)

5.1 Montgomery-Ladder Formulas

We now represent elliptic-curve points in the standard projective coordinates. Let P1 =
(h1,k1, l1) and P2 = (h2,k2, l2) be two non-zero multiples of R. Suppose that P1 6=±P2
and P1−P2 = (h4,k4, l4). We assume that only the x- and z-coordinates of these points
are available. We can compute these coordinates of P1 +P2 = (h3,k3, l3) using the fol-
lowing formulas:

l3 = (h1k2)
2 +(h2k1)

2, x3 = l3h4 +(h1k2)(h2k1).

Compute point doubling 2P1 = (h5,k5, l5) as:

h5 = (h2
1 + l2

1)
2, l5 = h2

1l2
1 .

We can easily modify Algorithm 1 to the case of projective coordinates.

5.2 Numeric-Computation Formulas

Now, the relevant problem is the computation of the two values of y from the equation
y2 + ry+ (r3 + ar2 + 1) = 0. We first replace y by ry to convert the equation to the
form y2 + y+α = 0, where α = r3+ar2+1

r2 . The converted equation is solvable if and
only if the absolute trace Tr(α) is zero. In that case, if d is odd, a solution for y is
α21

+α23
+α25

+ · · ·+α2d−2
, and the other solution is 1 plus the first solution. These

solutions can be efficiently obtained using a half-trace calculation [18].

13

5.3 Seminumeric-Computation (Joye-Method) Formulas

Let R = (r,y) with y treated as a symbol satisfying the Koblitz-curve equation y2+ ry =
r3 +ar2 +1.

Theorem 2: Any non-zero multiple of R can be expressed as
(

h,k+
(y

r

)
h
)

.

Proof First, notice that P itself can be so expressed with h= r and k= 0. Next, suppose
that P1 = (h1,k1+

(y
r

)
h1) and P2 = (h2,k2+

(y
r

)
h2) are two distinct non-zero multiples

of R with P3 = P1 +P2 6= O . The point-addition formula on Koblitz curves implies that
P3 = (h3,k3 +

(y
r

)
h3), where

h3 =

(
k1 + k2

h1 +h2

)2

+

(
k1 + k2

h1 +h2

)
+h1 +h2 +a+

(
r3 +ar2 +b

r2

)
=

h1(h2
2 + k2)+h2(h2

1 + k1)

h2
1 +h2

2
,

k3 =

(
k1 + k2

h1 +h2

)
(h1 +h3)+h3 + k1.

The double P4 of P1, if non-zero, can be expressed as (h4,k4 +
(y

r

)
h4), where:

h4 = h2
1 +

b
h2

1
, k4 = h2

1 +

(
h1 +

k1

h1
+1
)

h3.

The opposite of (h,k+
(y

r

)
h) is (h,(k+h)+

(y
r

)
h). •

For Koblitz curves, the τ-NAF point-multiplication algorithm is computationally
very efficient. This motivates using the following theorem.

Theorem 3: The second-power Frobenius endomorphism on a point of the form(
h,k+

(y
r

)
h
)

gives a point in the same form.

Proof Let P1 = (h1,k1 +
(y

r

)
h1). Then, P5 = (h2

1,(k1 +
(y

r

)
h1)

2) can be expressed as
(h5,k5 +

(y
r

)
h5), where:

h5 = h2
1, k5 = k2

1 +

(
r3 +ar2 +b

r2

)
h2

1. •

It follows that for all relevant points of the form (h,k+
(y

r

)
h), it suffices to store the

values of h and k alone. The second term
(y

r

)
h in the y-coordinate carries no extra infor-

mation, and does not hamper the arithmetic operations on the points. Indeed, the point
negation, doubling, and the second addition formulas are now exactly the same as the
numeric formulas for Koblitz curves, without any extra operation. If a+ r3+ar2+b

r2 = r3+b
r2

is precomputed, the first formula for computing h3 does not lead to an increased opera-
tion count. Application of the second-power Frobenius endomorphism (computation of
k5), however, now involves a multiplication of h5 with the precomputed field element
r3+ar2+b

r2 , followed by an addition of this product to k2
1. After the h and k values of ξ R

are computed by any addition-chain method, one obtains the point ξ R =
(
h,k+

(h
r

)
y
)
.

14

5.4 Comparison of Montgomery Ladders and Seminumeric Method

For Koblitz curves, we use standard projective coordinates in the Montgomery-ladder
method, and affine coordinates in the τ-NAF windowed variant of the seminumeric
method. These gave us the best respective running times. In fact, affine coordinates
outperformed López-Dahab (LD) coordinates [14] in our implementations.

To analyze the Montgomery-ladder implementation, we take P1 = (x1,y1,z1), P2 =
(x2,y2,z2), and P1−P2 = (r,r+ y,1) ∈ E(F2d) in standard projective coordinates. We
only compute the x- and z-coordinates of P1 +P2 and 2P1 according to the formulas
given in [14, 17]:

z(P1 +P2) = (x1z2)
2 +(x2z1)

2, x(P1 +P2) = z(P1 +P2)× r+ x1x2z1z2,

x(2P1) = x4
1 +bz4

1, and z(2P1) = x2
1z2

1

Following the implementation of [18], we need 5M+5S+2A to compute MMont .
Now, we analyze the seminumeric algorithm in affine coordinates. All non-zero

multiples of (r,y) ∈ E(F2d) are of the form (βx,βy +
βx
r y) with βx,βy ∈ F2d . Let P1 =

(x1,y1 +
x1
r y) and P2 = (x2,y2 +

x2
r y) be two such multiples with P1 6= ±P2, and y sat-

isfies the equation y2 + ry = r3 + ar2 + b with r known. The following formulas are
derived assuming that b = 1 and that B = (r3 + ar2 + b)/r2 is precomputed. The x-
and y-coordinates of P3 = P1 +P2 = (x3,y3 +

x3
r y) and P4 = τ(P1) = (x4,y4 +

x4
r y) are

computed as follows:

λ =
y1 + y2

x1 + x2
, x3 = λ

2 +λ + x1 + x2 +B, yx = λ (x1 + x3)+ x3 + y1,

x5 = x2
1, and y5 = y2

1 +Bx5.

ASemi = 2M + 1S+ 1I + 6A and τSemi = 1M + 2S field operations are needed for each
point addition and application of τ , respectively (with B precomputed). Here, point
addition does not need any extra multiplication in affine or LD coordinates compared
to the formulas given in [20], but the application of τ needs one extra multiplication
(in LD coordinates, two extra multiplications are needed). If the addition chain for the
scalar multiplier is computed by the τ-NAF representation with w-bit windows [17, 18,
21], then the density of non-zero digits is on an average 1

w+1 . For each of these non-
zero digits, ASemi is required, and τSemi is required for each non-zero digit in the addition
chain. In case of τ-NAF, we use special τ-chains in the precomputation stage [18, 21],
where 3-, 4- and 5-bit windows need Π3 = 1τSemi + 1ASemi, Π4 = 3τSemi + 3ASemi and
Π5 = 6τSemi +7ASemi curve operations, respectively.

For Koblitz-curve scalar multiplication, we have to pay a special attention to the
length of the addition chains. Let c be the co-factor of the Koblitz curve given by
Eqn (7). Then, we have #E(F2d) = cn. Let µ = (−1)1−a, and α = (α1 + τα2) ∈ Z[τ].
The norm of α is given by N(α) = α1

2 +µα1α2 +2α2
2. The length of the τ-NAF rep-

resentation of α is approximately log2(N(α)). After the partial modular reduction [21],
the length of the addition chain reduces to a maximum of d + a. This reduction takes
place only if N(α) > 4

7 n. Therefore, we make our analysis on the basis of whether
N(α)> 4

7 n or not.

15

– Case 1: N(α)< 4
7 n

Let α = (α1 + τα2) with α2 = 0 be the scalar multiplier, and l = log2 α the bit
length of the multiplier. The length of the addition chain obtained by the τ-NAF
representation is approximately 2l. In contrast, the binary (and NAF) representa-
tions produce addition chains of approximate length l. The Montgomery-ladder
scalar multiplication needs CMont = l MMont = l(5M + 5S) field operations (ignor-
ing additions and subtractions). For w-bit windowed τ-NAF, the required operation
count in the seminumeric method is CτNAF = Πw +2l

(
τSemi +

1
w+1 ASemi

)
= Πw +

2l
(
(1M+2S)+ 2M+1S+1I

w+1

)
. Our experimental environment shows the relations be-

tween M, S and I as 1S = 0.88M and 1I = 4.75M. Using these relations and putting
w = 5, we simplify the above operation counts as CMont = (9.40M)l, CτNAF =
(6.79M)l + (69.97M). Therefore, the seminumeric method is faster than Mont-
gomery ladders for l > 30.

– Case 2: N(α)> 4
7 n

In this case, the length of the τ-NAF addition chain remains nearly d+a (irrespec-
tive of the length l of the scalar multiplier), whereas the length of the binary addi-
tion chain used by Montgomery ladders increases with l. As l increases, the running
time of the seminumeric algorithm remains nearly constant, and the running time of
the Montgomery ladder increases linearly with l. Similar operation counts as done
in Case 1 now shows that the seminumeric algorithm is faster than Montgomery
ladders for l > 0.36d +7.44. On the other hand, the condition N(α)> 4

7 n requires
l > 0.5d approximately. Therefore, the inequality l > 0.36d +7.44 is always satis-
fied. We have CτNAF

CMont
≈ 0.36 d

l . For l = d/2, the seminumeric algorithms takes about
72% of the running time of Montgomery ladders, and for l = d, about 36%.

5.5 Experimental Comparison

We have used the same experimental setup as described in Section 4.3. The average
times of randomization achieved by the seminumeric and the Montgomery-ladder algo-
rithms are listed in Tables 6 and 7 for two NIST Koblitz curves. Here, w is the window
size, and l is the bit length of the scalar multiplier (randomizer in the batch-verification
application). We have chosen l to be 128, d/2 and d. The seminumeric algorithm is
found to be faster than the Montgomery-ladder algorithm, particularly for large ran-
domizers.

Tables 6 and 8 list the overheads associated with the numeric randomization method.
In order to compare the performances of the numeric method and the seminumeric
method, we add the best possible numeric scalar multiplication time to the best possible
time of root finding using a half-trace computation. Both the numeric and the seminu-
meric methods run much faster than Montgomery ladders. The seminumeric algorithm
is found to be faster than the Montgomery-ladder algorithm, particularly for large ran-
domizers. For Koblitz curves, the speedup is about 10%, 15% and 60% for 128-bit,
half-length and full-length randomizers. This pattern is consistent with the theoretical
estimates given above.

In ECDSA#, there is a possibility of using multiple scalar multiplication. Table 7
lists the times for computing ξ1R1 + ξ2R2 using a single double-and-add loop. This

16

Table 6. Times of Numeric and Seminumeric Scalar Multiplication

Numeric Scalar Multiplication Semiumeric Scalar Multiplication
Length of (Affine Coordinates) (Affine Coordinates)

Curve randomizer Time w-Algorithm Time w-Algorithm
(in bits) (in ms) (in ms)

K-283 128 196.00 5-τNAF-numeric 265.04 5-τNAF-Seminumeric
283 216.00 5-τNAF-numeric 286.64 5-τNAF-Seminumeric
128 516.00 4-τNAF-numeric 718.25 5-τNAF-Seminumeric

K-571 256 968.00 5-τNAF-numeric 1375.88 5-τNAF-Seminumeric
571 1072.00 5-τNAF-numeric 1530.30 5-τNAF-Seminumeric

Table 7. Times of Montgomery-ladder and Multiple-Scalar Multiplication

Montgomery Ladder ∗ Multiple-Scalar Multiplication
Length of (Standard Projective Coordinates) (Affine Coordinates)

Curve randomizer Time Time
(in bits) (in ms) (in ms)

K-283 128 292.70 417.00
283 651.62 908.62
128 824.02 1115.32

K-571 256 1659.40 2233.56
571 3714.01 4968.33

∗No effective windowed variant of Montgommer ladders is known

Table 8. Times for Root Finding by Half-Trace Computation

Curve Time Algorithm
(in ms)

K-283 8.31 Quarter memory∗

K-571 30.84 Quarter memory∗
∗See [18]

method is much slower than two separate invocations of the best windowed τ-NAF
method. In the windowed τ-NAF method, scalar-multiplication times for half-length
and full-length scalars are nearly the same (see Section 5.4). Moreover, the τ operation
is much more efficient than point doubling. Nevertheless, the randomization overhead
being substantial, we do not obtain much speedup from randomized ECDSA batch ver-
ification on Koblitz curves (see Table 9). For individual verification, we do not consider
fixed-base double exponentiation for the computation of uiP+viQ, since Q is not treated
as a fixed base across multiple batches.

6 Conclusion

In this paper, three methods are studied for randomized batch verification of ECDSA
signatures. We theoretically and experimentally establish the superiority of the numeric

17

Table 9. Speedup for NIST Koblitz Curves

Batch-Verification Randomization Batch K-283 k-571
Algorithm Algorithm Size(t) None∗ l = 128 None∗ l = 128 l = 256

2 1.85 1.00 1.90 1.30 1.02
3 2.44 1.16 2.64 1.61 1.20

N Numeric 4 2.55 1.18 3.01 1.75 1.28
5 2.09 1.07 2.80 1.67 1.24
6 1.39 0.85 2.10 1.40 1.08
7 0.79 0.58 1.31 0.99 0.82
2 1.90 1.02 1.93 1.32 1.03
3 2.78 1.23 2.84 1.69 1.24

N′ Numeric 4 3.61 1.37 3.72 1.96 1.39
5 4.39 1.47 4.57 2.18 1.49
6 5.14 1.54 5.38 2.35 1.57
7 5.85 1.60 6.17 2.48 1.63
2 1.97 0.89 1.98 1.19 0.87
3 2.89 1.04 2.94 1.48 1.02

S2′ Seminumeric 4 3.66 1.13 3.80 1.67 1.11
5 3.78 1.14 4.25 1.75 1.14
6 3.48 1.11 4.28 1.76 1.14
7 2.09 0.93 3.05 1.51 1.03

∗Speedup without randomization

and seminumeric methods over Montgomery ladders. This study is particularly relevant
in the context of standard ECDSA signatures.

References

1. Karati, S., Das, A., Chowdhury, D.R., Bellur, B., Bhattacharya, D., Iyer, A.: Batch verifica-
tion of ECDSA signatures. In Mitrokotsa, A., Vaudenay, S., eds.: AFRICACRYPT. Volume
7374 of Lecture Notes in Computer Science., Springer (2012) 1–18

2. Bernstein, D.J., Doumen, J., Lange, T., Oosterwijk, J.J.: Faster batch forgery identification.
In Galbraith, S.D., Nandi, M., eds.: INDOCRYPT. Volume 7668 of Lecture Notes in Com-
puter Science., Springer (2012) 454–473

3. Naccache, D., M’Raı̈hi, D., Vaudenay, S., Raphaeli, D.: Can D.S.A. be improved? complex-
ity trade-offs with the digital signature standard. In Santis, A.D., ed.: EUROCRYPT. Volume
950 of Lecture Notes in Computer Science., Springer (1994) 77–85

4. Antipa, A., Brown, D.R.L., Gallant, R.P., Lambert, R.J., Struik, R., Vanstone, S.A.: Acceler-
ated verification of ECDSA signatures. In: Selected Areas in Cryptography. (2005) 307–318

5. Cheon, J.H., Yi, J.H.: Fast batch verification of multiple signatures. In Okamoto, T., Wang,
X., eds.: Public Key Cryptography. Volume 4450 of Lecture Notes in Computer Science.,
Springer (2007) 442–457

6. Montgomery, P.L.: Speeding up Pollard and elliptic curve methods of factorization. In:
Mathematics of Computation. Volume 48(177). (1987) 243–264

7. Joye, M.: Security analysis of RSA-type cryptosystems. Phd thesis, UCL Crypto Group,
Belgium (1997)

18

8. NIST: Recommended elliptic curves for federal government use (1999) Available at http:
//csrc.nist.gov/encryption.

9. Montgomery, P.L.: Evaluating recurrences of form Xm+n = f (Xm,Xn,Xm−n) via Lucas
chains. Microsoft research article (1992) 582

10. Stam, M.: On Montgomery-like representations for elliptic curves over GF(2k). In: Proceed-
ings of the 6th International Workshop on Theory and Practice in Public Key Cryptography:
Public Key Cryptography. PKC ’03, London, UK, Springer-Verlag (2003) 240–253

11. Stam, M.: Speeding up subgroup cryptosystems. PhD thesis, Technische Universiteit Eind-
hoven (2003)

12. Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponentiation and
digital signatures. In Nyberg, K., ed.: EUROCRYPT. Volume 1403 of Lecture Notes in
Computer Science., Springer (1998) 236–250

13. Brier, E., Joye, M., Win, T.E.D.: Weierstraß elliptic curves and side-channel attacks. In:
Public Key Cryptography – PKC 2002, volume 2274 of LNCS, Springer-Verlag (2002) 335–
345

14. López, J., Dahab, R.: Fast multiplication on elliptic curves over GF(2m) without precompu-
tation (1999)

15. Fischer, W., Giraud, C., Knudsen, E.W., Seifert, J.P.: Parallel scalar multiplication on general
elliptic curves over Fp hedged against non-differential side-channel attacks. IACR Cryptol-
ogy ePrint Archive 2002/007 (2002)

16. Bernstein, D.J., Lange, T.: Explicit-Formulas Database (2007) http://www.
hyperelliptic.org/EFD/index.html.

17. Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren, F.: Hand-
book of Elliptic and Hyperelliptic Curve Cryptography, Second Edition. 2nd edn. Chapman
& Hall/CRC (2012)

18. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer-
Verlag New York, Inc., Secaucus, NJ, USA (2003)

19. Group, P.: PARI/GP home (2008) Available at http://pari.math.u-bordeaux.
fr/.

20. Lange, T.: A note on López-Dahab coordinates. IACR Cryptology ePrint Archive 2004/323
(2004)

21. Solinas, J.A.: Improved algorithms for arithmetic on anomalous binary curves. Technical
report, Originally presented in Advances in Cryptography, Crypto ’97 (1997)

19

