
International Journal of Computer Mathematics
Vol. 82, No. 12, December 2005, 1481–1495

On the cubic sieve method for computing discrete logarithms
over prime fields†

ABHIJIT DAS† and C. E. VENI MADHAVAN*‡

†Department of Mathematics, Indian Institute of Technology, Kanpur 208 016, India
‡Department of Computer Science and Automation, Indian Institute of Science,

Bangalore 560 012, India

(Received 13 December 2002)

In this paper, we report efficient implementations of the linear sieve and the cubic sieve methods
for computing discrete logarithms over prime fields. We demonstrate through empirical performance
measures that for a special class of primes the cubic sieve method runs about two times faster than the
linear sieve method even in cases of small prime fields of the size about 150 bits. We also provide a
heuristic estimate of the number of solutions of the congruence X3 ≡ Y 2Z (mod p) that is of central
importance in the cubic sieve method.

Keywords: Cryptography; Cryptanalysis; Finite field; Discrete logarithm; Sieve method

C.R. Categories: F.2.2

1. Introduction

The security of many cryptographic protocols is based on the apparent intractability of the
discrete logarithm problem over prime fields. Since no conclusive complexity-theoretic results
concerning the real difficulty of this problem are available, practical performance measures of
the algorithms known for solving this problem appear to be of utmost interest in cryptography.

Computation of discrete logarithms over a finite field Fq is a difficult problem. No algorithms
are known that solve the problem in time polynomially bounded by the size of the field (i.e.,
lg q).‡ The index calculus method [1–5] is currently the best known algorithm for this purpose
and has a sub-exponential expected running time given by

L〈q, γ, c〉 = exp((c + o(1))(ln q)γ (ln ln q)1−γ)

for some positive constant c and for some real number γ , 0 < γ < 1. For practical applications,
one typically uses prime fields or fields of characteristic 2. In this paper, we focus on prime
fields only.

*Corresponding author. Email: cevm@csa.iisc.ernet.in
†A preliminary version of this paper appeared in ISAAC99 [6].
‡We denote log x = log10 x, ln x = loge x and lg x = log2 x.

International Journal of Computer Mathematics
ISSN 0020-7160 print/ISSN 1029-0265 online © 2005 Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/120716031000120827

1482 A. Das and C. E. Veni Madhavan

Let Fp be a prime field of cardinality p. For an element a ∈ Fp we denote by ā the repre-
sentative of a in the set {0, 1, . . . , p − 1}. Let g be a primitive element of Fp (i.e., a generator
of the cyclic multiplicative group F

∗
p). Given an element a ∈ F

∗
p, there exists a unique integer

0 ≤ x ≤ p − 2 such that a = gx in Fp. This integer x is called the discrete logarithm or index
of a in Fp with respect to g and is denoted by indg(a). The determination of x from the
knowledge of p, g and a is referred to as the discrete logarithm problem. In general, one need
not assume g to be a primitive element and is supposed to compute x from a and g, if such
an x exists (i.e., if a belongs to the cyclic subgroup of F

∗
p generated by g). In this paper, we

always assume for simplicity that g is a primitive element of Fp.
In what follows we denote by L(p, c) any quantity that satisfies

L(p, c) − L

〈
p,

1

2
, c

〉
= exp((c + o(1))

√
ln p ln ln p),

where c is a positive constant. When p is understood from the context, we write L[c] for
L(p, c). In particular, L[1] is denoted simply by L.

The basic index calculus method [4, section 6.6.2] for the computation of discrete logarithms
over prime fields and the adaptations of this method take time L[c] for c between 1.5 and 2 and
are not useful in practice for prime fields Fp with p > 2100. Coppersmith et al. [1] proposed
three variants of the index calculus method that run in time L[1] and are practical for p ≤ 2250.
A subsequent paper [2] by LaMacchia and Odlyzko reports implementation of two of these
three variants, namely the linear sieve method and the Gaussian integer method. They were
able to compute discrete logarithms in Fp with p of length about 200 bits.

The paper [1] also describes a cubic sieve method due to Reyneri for the computation of
discrete logarithms over prime fields. The cubic sieve method has a heuristic running time of
L[√2α] for some α, 1/3 ≤ α < 1/2, and is, therefore, asymptotically faster than the linear
sieve method (and the other L[1] methods described in ref. [1]). However, the authors of
ref. [1] conjectured that the theoretical asymptotics do not appear to take over for p in the
range of practical interest (a few hundred bits). A second problem associated with the cubic
sieve method is that it requires a solution of the Diophantine equation

X3 ≡ Y 2Z (mod p), X3 �= Y 2Z, X, Y, Z = O(pα) for some α,
1

3
≤ α <

1

2
.

It is not known how to find a solution of this Diophantine equation in the general case.
Forcertain special primes p a solution arises naturally, for example, when p is close to a
perfect cube.

Recently, a new variant of the index calculus method based on number field sieves (NFS)
has been proposed [7] and has a conjectured heuristic running time of

L

〈
p,

1

3
, c

〉
= exp((c + o(1))(ln p)1/3(ln ln p)2/3).

Weber et al. [8–10] have implemented and proved the practicality of this method. Currently the
NFS-based methods are known to be the fastest algorithms for solving the discrete logarithm
problem over prime fields.

In this paper we report efficient implementations of the linear sieve and the cubic sieve
methods. To the best of our knowledge ours is the first large-scale implementation of the
cubic sieve method. In our implementation we employ ideas similar to those used in the
quadratic sieve method for integer factorization [11–13]. Our experiments seem to reveal that
the equation collection phase of the cubic sieve method, whenever applicable, runs faster than
that in the linear sieve method. We also propose a heuristic modification of the cubic sieve

Cubic sieve method 1483

method, that allows us to build a larger database with only a nominal increase in the running
time.

We heuristically estimate that the number of solutions of the Diophantine equation men-
tioned above is of the order of p3α−1. We enumerate the number of solutions for some small
primes and show that our estimates tally with the actual numbers reasonably closely. These
estimates imply that in practice one expects a solution of the Diophantine equation for some α

slightly larger than 1/3. Thus the best running time L[√2/3] of the cubic sieve method seems
to be achievable in general.

In the next two sections we briefly describe the linear sieve and the cubic sieve methods.
Performance of our implementation and comparison of the two methods for a randomly chosen
prime field are presented in sections 4 and 5. Our emphasis is not to set a record on the
computation of discrete logarithms, but to point out that our heuristic principles work in
practical situations. We, therefore, experimented with a small prime (of length 150 bits). Even
for this field we get a performance gain (of the cubic sieve method over the linear sieve
method) of nearly two. For larger prime fields this performance improvement is expected to
get accentuated. In section 6, we derive our analytic estimates of the number of solutions of
the congruence mentioned above. We conclude the paper in section 7.

2. The linear sieve method

The first stage for the computation of discrete logarithms over a prime field Fp using the
currently known subexponential methods involves calculation of discrete logarithms of ele-
ments of a given subset of Fp, called the factor base. To this end, a set of linear congruences
are solved modulo p − 1. Each such congruence is obtained by checking the factorization
of certain integers computed deterministically or randomly. For the linear sieve method, the
congruences are generated in the following way.

Let H = 	√p
 + 1 and J = H 2 − p. Then J ≤ 2
√

p. For small integers c1, c2 the right
side of the following congruence (henceforth denoted as T (c1, c2))

(H + c1)(H + c2) ≡ J + (c1 + c2)H + c1c2 (mod p) (1)

is of the order of
√

p. If the integer T (c1, c2) is smooth with respect to the first t primes
q1, q2, . . . , qt , that is, if we have a factorization like J + (c1 + c2)H + c1c2 = ∏t

i=1 q
αi

i ,
then we have a relation

indg(H + c1) + indg(H + c2) =
t∑

i=1

αi indg(qi). (2)

For the linear sieve method the factor base comprises primes less than L[1/2] (so that by the
prime number theorem t ≈ L[1/2]/ ln(L[1/2]) which is again L[1/2]) and integers H + c

for −M ≤ c ≤ M . The bound M on c is chosen such that 2M ≈ L[1/2 + ε] for some small
positive real ε. Once we check the factorization T (c1, c2) for all values of c1 and c2 in the
indicated range, we are expected to get L[1/2 + 3ε] relations like (2) involving the unknown
indexes of the factor base elements. If we further assume that the primitive element g is a
small prime which itself is in the factor base, then we get a ‘free’ relation indg(g) = 1. The
resulting system with asymptotically more equations than unknowns is expected to be of full
rank and is solved to compute the discrete logarithms of elements in the factor base.

In order to check the smoothness of the integers T (c1, c2) = J + (c1 + c2)H + c1c2 for c1,
c2 in the range −M, . . . , M sieving techniques are used. First one fixes a c1 and initializes to

1484 A. Das and C. E. Veni Madhavan

zero an array U indexed −M, . . . , M . One then computes for each prime power qh (q is a small
prime in the factor base and h is a small positive exponent) a solution for c2 of the congruence
(H + c1)c2 + (J + c1H) ≡ 0 (mod qh). If the gcd(H + c1, q) = 1, i.e., if H + c1 is not a
multiple of q, then the solution is given by d ≡ −(J + c1H)(H + c1)

−1 (mod qh). The inverse
in the last equation can be calculated by running the extended gcd algorithm on H + c1 and
qh. Then for each value of c2 (−M ≤ c2 ≤ M) that is congruent to d modulo qh the quantity
lg q is added† to the corresponding array locations Uc2 . On the other hand, if qh1‖(H + c1)

with h1 > 0, we compute h2 ≥ 0 such that qh2‖(J + c1H). If h1 > h2, then for each value
of c2 the expression T (c1, c2) is divisible by qh2 and by no higher powers of q. So we add
the quantity h2 ln q to Uc2 for all −M ≤ c2 ≤ M . Finally, if h1 ≤ h2, then we add h1 ln q to
Uc2 for all −M ≤ c2 ≤ M and for h > h1 solve the congruence as d ≡ −((J + c1H)/qh1)

((H + c1)/q
h1)−1 (mod qh−h1).

Once the above procedure is carried out for each small prime q in the factor base and for each
small exponent h,‡ we check for which values of c2, the entry of U at index c2 is sufficiently
close to the value lg(T (c1, c2)). These are precisely the values of c2 such that for the given c1

the integer T (c1, c2) factors smoothly over the small primes in the factor base.
In an actual implementation, one might choose to vary c1 in the sequence −M , −M + 1,

−M + 2, . . . , and, for each c1, consider only the values of c2 in the range c1 ≤ c2 ≤ M . The
criterion for ‘sufficient closeness’ of the array element Uc2 and lg(T (c1, c2)) goes like this. If
T (c1, c2) factors smoothly over the small primes in the factor base, then it should differ from
Uc2 by a small positive or negative value. On the other hand, if T (c1, c2) is not smooth, it
would have a factor at least as small as qt+1, and hence the difference between lg(T (c1, c2))

and Uc2 would not be too less than lg qt+1. In other words, this means that the values of the
difference lg(T (c1, c2)) − Uc2 for smooth values of T (c1, c2) are well-separatedfrom those
for non-smooth values and one might choose for the criterion a check whether the absolute
value of the above difference is less than 0.1 lg qt+1.

This completes the description of the equation collection phase of the first stage of the linear
sieve method. This is followed by the solution of the linear system modulo p − 1. The second
stage of the method involves computation of discrete logarithms of arbitrary elements of F

∗
p

using the database of logarithms of factor base elements. We do not deal with these steps in
this paper, but refer the reader to [1, 2, 14] for details.

3. The cubic sieve method

Let us assume that we know a solution (in integers) of the Diophantine equation, henceforth
denoted as the cubic sieve congruence (CSC).

X3 ≡ Y 2Z (mod p)

X3 �= Y 2Z
(3)

with X, Y, Z of the order of pα for some 1/3 ≤ α < 1/2. Then we have the congruence

(X + AY)(X + BY)(X + CY) ≡ Y 2[Z + (AB + AC + BC)X + (ABC)Y] (mod p) (4)

for all triples (A, B, C) with A + B + C = 0. If the bracketed expression on the right side of
the above congruence, henceforth denoted as R(A, B, C), is smooth with respect to the first

†More precisely, some approximate value of lg q, for example, the integer 	1000 lgq
.
‡The exponent h can be chosen in the sequence 1, 2, 3, . . . , until one finds an h for which none of the integers

between −M and M is congruent to d.

Cubic sieve method 1485

t primes q1, q2, . . . , qt , that is, if we have a factorization R(A, B, C) = ∏t
i=1 q

βi

i , then we
have a relation like

indg(X + AY) + indg(X + BY) + indg(X + CY) ≡ indg(Y
2) +

t∑
i=1

βi indg(qi)(mod p − 1).

(5)
If A, B, C are small integers, then R(A, B, C) is of the order of pα , since each of X, Y and
Z is of the same order. This means that we are now checking integers smaller than O(p1/2)

for smoothness over first t primes. As a result, we are expected to get relations like (5) more
easily than relations like (2) as in the linear sieve method.

This observation leads to the formulation of the cubic sieve method as follows. The factor
base comprises primes less than L[√α/2] (so that t ≈ L[√α/2]/ ln(L[√α/2]) which is again
L[√α/2]), the integer Y 2 and the integers X + AY for 0 ≤ |A| ≤ M , where M is of the order
of L[√α/2]. The integer R(A, B, C) is, therefore, of the order of pαL[√3α/2] and hence the
probability that it is smooth over the first t primes selected as above, is about L[−√

α/2]. As
we check the smoothness for L[√2α] triples (A, B, C) (with A + B + C = 0), we expect to
obtain L[√α/2] relations like (5).

In order to check for the smoothness of R(A, B, C) = Z + (AB + AC + BC)X +
(ABC)Y over the first t primes sieving techniques are employed. We maintain an array U

indexed −M, . . . , M as in the linear sieve method. At the beginning of each sieving step we
fix C, initialize the array U to zero and let B vary. The relation A + B + C = 0 allows us to
eliminate A from R(A, B, C) as R(A, B, C) = −B(B + C)(X + CY) + (Z − C2X). For a
fixed C we try to solve the congruence

−B(B + C)(X + CY) + (Z − C2X) ≡ 0(mod qh), (6)

where q is a small prime in the factor base and h is a small positive exponent. This is a quadratic
congruence in B. If X + CY is invertible modulo qh (i.e., modulo q), then the solution for B
is given by

B ≡ −C

2
+

√
(X + CY)−1(Z − C2X) + C2

4
(mod qh), (7)

where the square root is modulo qh. If the expression inside the radical is a quadratic residue
modulo qh, then for each solution d of B in (7) the quantity lg q is added to those indexes of U

which are congruent to d modulo qh. On the other hand, if the expression under the radical is a
quadratic non-residue modulo qh, we have no solutions for B in (6). Finally, if X + CY is non-
invertible modulo q, we compute h1 > 0 and h2 ≥ 0 such that qh1‖(X + CY) and qh2‖(Z −
C2X). If h1 > h2, then R(A, B, C) is divisible by qh2 and by no higher powers of q for each
value of B (and for the fixed C). We add h2 lg q to Ui for each −M ≤ i ≤ M . On the other
hand, if h1 ≤ h2, we add h1 lg q to Ui for each −M ≤ i ≤ M and try to solve the congruence
−B(B + C)((X + CY)/qh1) + ((Z − C2X)/qh1) ≡ 0(mod qh−h1) for h > h1. Since (X +
CY)/qh1 is invertible modulo qh−h1 , this congruence can be solved similar to (7).

Once the above procedure is carried out for each small prime q in the factor base and for
each small exponent h, we check for which values of B, the entry of U at index B is sufficiently
close to the value lg(R(A, B, C)). These are precisely the values of B for which R(A, B, C)

issmooth over the first t primes for the given C. The criterion of ‘sufficient closeness’ of UB

and lg(R(A, B, C)) is the same as described in connection with the linear sieve method.
In order to avoid duplication of effort we should examine the smoothness of R(A, B, C) for

−M ≤ A ≤ B ≤ C ≤ M . It can be easily shown that under this condition C varies from 0 to
M and for a fixed C the integer B varies in the range −C/2 ≤ B ≤ min(C, M − C). Though

1486 A. Das and C. E. Veni Madhavan

we do not use the value of A directly in the sieving procedure described above, it is useful§

to note that A varies from max(−2C, −M) to −C/2 for a fixed C. In particular, A is always
negative.

After sufficient number of relations are available, the resulting system is solved modulo
p − 1 and the discrete logarithms of the factor base elements are stored for computation of
individual discrete logarithms. We refer the reader to [1, 2, 14] for details on the solution of
sparse linear systems and on the computation of individual discrete logarithms with the cubic
sieve method.

Attractive as it looks, the cubic sieve method has several drawbacks which impair its usability
in practical situations.

1. It is currently not known how to solve the congruence (3) for a general p. And even when
it is solvable, how large can α be? For practical purposes α should be as close to 1/3
as possible. No non-trivial results are known to the authors, that can classify primes p

according to the smallest possible values of α they are associated with.
2. Because of the quadratic and cubic expressions (in A, B and C) as coefficients of X and Y

in R(A, B, C) the integers R(A, B, C) tend to be as large as p1/2, even when α is equal to
1/3. If we compare this scenario with that for T (c1, c2) (see equation (1)), we see that the
coefficient of H is a linear function of c1 and c2 and as such, the integers T (c1, c2) are larger
than p1/2 by a small multiplicative factor. This shows that though the integers R(A, B, C)

are asymptotically smaller than the integers T (c1, c2), the formers are, in practice, only
nominally smaller than the latter ones, even when α assumes the most favourable value
(namely, 1/3). In other words, when one wants to use the cubic sieve method, one should
use values of t (i.e., the number of small primes in the factor base) much larger than the
values prescribed by the asymptotic formula for t.

3. The second stage of the cubic sieve method, i.e., the stage that involves computation of
individual logarithms, is asymptotically as slow as the equation collection stage. For the
linear sieve method, on the other hand, individual logarithms can be computed much faster
than the equation collection phase.

In what follows we report an efficient implementation of the cubic sieve method for the case
α = 1/3, that runs faster than the linear sieve method for the same prime. Our experimentation
tends to reveal that the cubic sieve method, when applicable, outperforms the linear sieve
method, even when the cardinality of the ground field is around 150 bits long.

4. An efficient implementation of the linear sieve method

Before we delve into the details of the comparison of the linear and cubic sieve methods, we
describe an efficient implementation of the linear sieve method. The tricks that help us speed
up the equation collection phase of the linear sieve method are very similar to those employed
in the quadratic sieve method for integer factorization. See refs. [11–13] for details.

We first recall that at the beginning of each sieving step we find a solution for c2 modulo
qhin the congruence T (c1, c2) ≡ 0 (mod qh) for every small prime q in the factor baseandfor
a set of small exponents h. The costliest operation that need to be carried out for each such
solution is the computation of a modular inverse (namely, that of H + c1 modulo qh). As
described in ref. [2] and as is evident from our experiments too, calculations of these inverses
take more than half of the CPU time needed for the entire equation collection stage. Any trick
that reduces the number of computations of the inverses speeds up the algorithm.

§For a reason that will be clear in section 5.

Cubic sieve method 1487

One way to achieve this is to solve the congruence every time only for h = 1 and ignore
all higher powers of q. That is, for every q (and c1) we check which of the integers T (c1, c2)

are divisible by q and then add lg q to the corresponding indexes of the array U. If some
T (c1, c2) is divisible by a higher power of q, this strategy fails to add lg q the required
number of times. As a result, this T (c1, c2), even if smooth, may fail to pass the ‘closeness
criterion’ described in section 2. This is, however, not a serious problem, because we may
increase the cut-off from a value smaller than lg qt to a value ζ lg qt for some ζ ≥ 1. This
means that some non-smooth T (c1, c2) will pass through the selection criterion in addition
to some smooth ones that could not, otherwise, be detected. This is reasonable, because the
non-smooth ones can be later filtered out from the smooth ones and one might use even trial
divisions to do so. Forprimes p of less than 200 bits values of ζ ≤ 2.5 work quite well in
practice [11, 13].

The reason why this strategy performs satisfactorily is as follows. If q is small, for example
q = 2, we should add only 1 to Uc2 for every power of 2 dividing T (c1, c2). On the other
hand, if q is much larger, say q = 1,299,709 (the 105th prime), then lg q ≈ 20.31 is large.
But T (c1, c2) would not be, in general, divisible by a high power of this q. The approximate
calculation of logarithm of the smooth part of T (c1, c2), therefore, leads to a situation where
the probability that a smooth T (c1, c2) is actually detected as smooth is quite high. A few
relations would be still missed out even with the modified ‘closeness criterion’, but that is
more than compensated by the speed-up gained by the method.

The above strategy helps us in a way other than by reducing the number of modular inverses.
For values of p of practical interest the small primes in the factor base are usually single-
precision ones. As a result the computation of d (see section 2) can be carried out using
single-precision operations only.

We now compare the performance of the modified strategy with that of the original strat-
egy for a value of p of length 150 bits. This prime is chosen as a random one satisfying
the conditions (i) (p − 1)/2 is also a prime and (ii) p is close to a perfect cube. This sec-
ond condition is necessary, because for these primes the cubic sieve method is known to
be applicable, so that we can compare the performance of the two sieve methods for these
primes. Our experiments are based on the CCRYPTO Library, a commercial cryptography
toolkit developed by the authors, and are carried out on a 1 GHz Pentium-III machine run-
ning Linux version 2.4.18-3 and having 128 Mb RAM. The GNU C Compiler version 2.96 is
used.¶

In table 1, we compare the performance of the ‘exact’ version of the algorithm (where
all relations are made available by choosing values of h ≥ 1) with that of the ‘approximate’
version of the algorithm (in which exponents h > 1 are neglected). The CPU times listed in
the table include the times for filtering out the ‘spurious’ relations obtained in the approximate
version.‖ It is evident from the table that the performance gain obtained using the heuristic
variant is between 1.5 and 2 for values of ζ between 1.0 and 1.5. These values of ζ clearly
suffice for fields of this size. Larger values of ζ (say, 2 or more) imply a very liberal selection
criterion which increases the number of subsequent trial divisions considerably, so that we
lose the benefits of approximate sieving.

¶The timings reported in ref. [6] are based on the Galois Field Library (GFL) [15] developed by the authors and were
obtained on a 200 MHz Pentium processor running Linux version 2034 and having the GNU C compiler version 2.7.
For this paper we opted for changing the core mathematical library, because CCRYPTO is more stable and efficient
than GFL. One can readily observe that the relative performances of the two sieve methods are almost identical under
both the libraries.

‖The timings reported in ref. [6] do not include the filtering overhead and hence are less realistic.

1488 A. Das and C. E. Veni Madhavan

Table 1. Performance of the linear sieve method.

No. of No. of CPU time
Method ζ relations (ρ̄) variables (ν̄) ρ̄/ν̄ (seconds)

Exact 0.1 108,637 67,001 1.6214 15,297

Approximate 1.0 108,213 67,001 1.6151 7605
1.5 108,624 67,001 1.6212 10,455
2.0 108,636 67,001 1.6214 18,456
2.5 108,637 67,001 1.6214 45,064

Note: p = 1,320,245,474,656,309,183,513,988,729,373,583,242,842,871,683; t = 7000;
M = 30,000.

5. An efficient implementation of the cubic sieve method

For the cubic sieve method we employ strategies similar to those described in the last section.
That is, we solve the congruence R(A, B, C) ≡ 0 (mod q) for each small prime q in the factor
base and ignore higher powers of q that might divide R(A, B, C). As before we set the cut-
off at ζ lg qt for some ζ ≥ 1. We are not going to elaborate the details of this strategy and
the expected benefits once again in this section. We concentrate on an additional heuristic
modification of the equation collection phase instead.

We recall from section 3 that we check the smoothness of R(A, B, C) for −M ≤ A ≤
B ≤ C ≤ M . With this condition C varies from 0 to M. For each value of C we have to execute
the entire sieving operation once. For each such sieving operation (that is, for a fixed C) the
sieving interval for B is (i.e., the admissible values of B are) −C/2 ≤ B≤ min (C, M − C).
Correspondingly A = −(B + C) varies from max(−2C, −M) to −C/2. Itis easy to see that
in this case total number of triples (A, B, C) for which the smoothness of R(A, B, C) is
examined is τ = ∑M

C=0(1 + 	C/2
 + min(C, M − C)) ≈ M2/2. The number of unknowns,
that is, the size of the factor base, on the other hand, is ν ≈ 2M + t .

If we remove the restriction A ≥ −M and allow A to be as negative as −λM for some
1 < λ ≤ 2, then we profit in the following way. As before we allow C to vary from 0 to
M keeping the number of sieving operations fixed. Since A can now assume values smaller
than −M , the sieving interval increases to −C/2 ≤ B ≤ min(C, λM − C). As a result the
total number of triples (A, B, C) becomes τλ = ∑M

C=0(1 + 	C/2
 + min(C, λM − C)) ≈
(M2/4)(4λ − λ2 − 1), whereas the size of the factor base increases to νλ ≈ (λ + 1)M + t .
(Note that with this notation the value λ = 1 corresponds to the original algorithm and τ = τ1

and ν = ν1.) The ratio τλ/νλ is approximately proportional to the number of smooth integers
R(A, B, C) generated by the algorithm divided by the number of unknowns. Therefore, λ

should be set at a value for which this ratio is maximum. If one treats t and M as constants,
then the maximum is attained at λ∗ = −U + √

U 2 + 4U + 1, where U = (M + t)/M = 1 +
(t/M). As we increase U from 1 to ∞ (or, equivalently the ratio t/Mfrom 0 to ∞), the value of
λ∗ increases monotonically from

√
6 − 1 ≈ 1.4495 to 2. In table 2 we summarize the variation

of τλ/νλ for some values of U. These values of U correspond from left to right to t � M ,
t ≈ M/2, t ≈ M and t ≈ 2M respectively. The corresponding values of λ∗ are respectively
1.4495, 1.5414, 1.6056 and 1.6904. It is clear from the table that for practical ranges of values
of U the choice λ = 1.5 gives performance quite close to the optimal.

We note that this scheme keeps M and the range of variation of C constant and hence does
not increase the number of sieving steps and, in particular, the number of modular inverses
and square roots. It is, therefore, advisable to apply the trick (with, say, λ = 1.5) instead of
increasing M.

Cubic sieve method 1489

Table 2. Variation of τλ/νλ with λ.

τλ/νλ (approx.)

λ U = 1 U = 1.5 U = 2 U = 3

1 0.2500M 0.2000M 0.1667M 0.1250M
1.5 0.2750M 0.2292M 0.1964M 0.1527M
2 0.2500M 0.2143M 0.1875M 0.1500M
λ∗ 0.2753M 0.2293M 0.1972M 0.1548M

Now we report the performance of the cubic sieve method for various values of the
parameters ζ and λ. We continue to work in the prime field Fp with

p = 1,320,245,474,656,309,183,513,988,729,373,583,242,842,871,683

as in the last section. For this prime we have

X = 	 3
√

p
 + 1 = 1,097,029,305,312,372, Y = 1, Z = 31,165

as a solution of (3), which corresponds to α = 1/3.
To start with we fix λ = 1.5 and examine the variation of the performance of the equation

collection stage with ζ . We did not implement the ‘exact version of this method in which
one tries to solve (6) for exponents h > 1 of q. Table 3 lists the experimental details for the
‘approximate method.As in table 1 the CPU times include the times for filtering out thespurious
relations available by the more generous closeness criterion for the approximate method. For
the cubic sieve method values of ζ around 1.0 works quite well for our prime p.

In table 4 we fix ζ at 1.5 and list the variation of the performance of the cubic sieve method
for some values of λ. It is clear from the table that among the cases observed the largest value
of the ratio ρ̄/ν̄ is obtained at λ = 1.5. (The theoretical maximum is attained at λ ≈ 1.6.) We
also note that changing the value of λ incurs variation in the running time by at most 11%. Thus
our heuristic allows us to build a larger database at very little extra cost. On the other hand, if
one fixes λ = 1.0 as in the original method and increases M in order to obtain a database of
size same as that for the modified method with λ = 1.5, the running time typically increases
by 20% or more. As an example, taking M = 12,500, t = 10,000, ζ = 1.5 and λ = 1 gave us
61,079 relations in 35,001 variables in a total time of 6271 seconds. This amounts to about 22%
increase in the running time over the parameter settings M = 10,000, t = 10,000, ζ = 1.5
and λ = 1.5.

5.1 Performance comparison with linear sieve

The speed-up obtained by the cubic sieve method over the linear sieve method is about 2 for
the field of size around 150 bits. For larger fields this speed-up is expected to be more. It is,

Table 3. Performance of the cubic sieve method of various values of ζ .

ζ No. of relations (ρ̄) No. of variables (ν̄) ρ̄/ν̄ CPU time (seconds)

1.0 54,805 35,001 1.5658 3626
1.5 54,865 35,001 1.5675 5148
2.0 54,868 35,001 1.5676 8742

Note: p = 1,320,245,474,656,309,183,513,988,729,373,583,242,842,871,683; t = 10,000; M = 10,000;
λ = 1.5.

1490 A. Das and C. E. Veni Madhavan

Table 4. Performance of the cubic sieve method of various values of λ.

λ No. of relations (ρ̄) No. of variables (ν̄) ρ̄/ν̄ CPU time (seconds)

1.0 43,434 30,001 1.4478 4808
1.5 54,865 35,001 1.5675 5148
1.6 56,147 36,001 1.5596 5270
2.0 58,234 40,001 1.4558 5340

Note: p = 1,320,245, 474,656,309,183,513,988,729,373,583,242,842,871,683; t = 10,000; M = 10,000; ζ = 1.5.

therefore, evident that the cubic sieve method, at least for the case α = 1/3, runs faster than
the linear sieve counterpart for the practical range of sizes of prime fields.

6. Number of solutions of the cubic sieve congruence

Now we derive some estimates on the number of solutions of the CSC. For the sake of
convenience we quote the following well-known result [16, chapter 3].

Euler summation formula: If f : R → R has a continuous derivative f ′ in the closed
interval [a, b], 0 < a < b, then

∑
a<n≤b

f (n) =
∫ b

a

f (t) dt +
∫ b

a

(t − 	t
)f ′(t) dt + f (b)(b
 − b) − f (a)(a
 − a).

The following estimates are easy consequences of the Euler summation formula:

∑
1≤n≤x

1

n
= ln x + γ + O

(
1

x

)
. (8)

∑
1≤n≤x

1

ns
= x1−s

1 − s
+ ζ(s) + O(x−s) if s > 0, s �= 1. (9)

∑
1≤n≤x

ns = xs+1

s + 1
+ O(xs) if s ≥ 0. (10)

Here γ is the Euler constant defined by γ = limn→∞(1/1 + 1/2 + · · · + 1/n − ln n) =
0.57721566 . . . and ζ(s) is the Riemann zeta function defined for all real s > 0, s �= 1, as

ζ(s) =

∞∑
n=1

1

ns
if s > 1,

lim
x→∞

(∞∑
n=1

1

n2
− x1−s

1 − s

)
if 0 < s < 1.

We define for n ∈ N the integer d(n) to be the total number of (positive integral) divisors of
n. By the Euler summation formula it follows that for a real x ≥ 1 we have

∑
n≤x

d(n) = x ln x + (2γ − 1)x + O(
√

x). (11)

Cubic sieve method 1491

Let us now introduce a few notations related to the set of solutions of the CSC.

S = {(X, Y, Z) | X3 ≡ Y 2Z (mod p), 1 ≤ X, Y, Z < p}.
S= = {(X, Y, Z) ∈ S | X3 = Y 2Z}
S�= = {(X, Y, Z) ∈ S | X3 �= Y 2Z}.
Sα = {(X, Y, Z) ∈ S �= | 1 ≤ X, Y, Z ≤ pα}.

For the cubic sieve method we are not interested in solutions of the CSC in S=. However, it
is easy to estimate the cardinality of S=. This, in turn, gives the cardinality of S �=. The sets Sα

for 1/3 ≤ α < 1/2 are extremely important for the cubic sieve method. The smallest possible
value of α for which Sα is non-empty, determines the best running time of the cubic sieve
method.

6.1 Cardinality of S

For each value of X, Y ∈ F
∗
p, we have a unique solution for Z ∈ F

∗
p satisfying the CSC.

Therefore,

#S = (p − 1)2 =
(p2). (12)

6.2 Cardinality of S=

Choose 1 ≤ X < p and a solution (X, Y, Z) ∈ S=. Let the prime factorization of X be X =
p

β1
1 p

β2
2 · · · pβr

r , where pi are distinct primes and βi > 0. Therefore, Y 2Z = X3 = p
3β1
1 p

3β2
2 · · ·

p
3βr
r . Since Y 2|X3, for each i = 1, . . . , r the exponent h such that ph

i dividesY must be one of
0, 1, 2, . . . , 	3βi/2
. Some choices of these exponents may lead to Y > p. We neglect this
for the time being and see that for the given X the total number of choices for Y (and hence
for Z) is ≤ ∏r

i=1(1 + 	3βi/2
) ≤ ∏r
i=1(1 + 3βi/2) ≤ (3/2)r

∏r
i=1(1 + βi) = (3/2)rd(X) ≤

plg(3/2)d(X) ≤ p0.585d(X). If we sum this quantity over all X, 1 ≤ X < p, and use (11), we
get

#S= ≤ p0.585
∑

1≤X<p

d(X) = p0.585((p − 1) ln(p − 1) + (2γ − 1)(p − 1) + O(
√

p))

= O(p1.585 ln p). (13)

Next we derive a lower bound for S=. First we note that each X = Y = Z ∈ F
∗
p is in S= and

hence #S= ≥ p − 1. We can determine a bound slightly better than this. To do so we first fix Y .
Then Y 2 ≤ X3 < Y 2p, since 1 ≤ Z < p. Let the values of X that satisfy Y 2 ≤ X3 < Y 2p be
X1, X2, . . . , Xs where s = (Y 2p)1/3 − (Y 2)1/3 + O(1) and Xi = X1 + i − 1. Since Y < p,
it is clear that each Xi above is less than p. We consider only those values of Xi for which
Y 2|X3

i . We see that if Y |Xi , then Y 2|X3
i . Hence for a fixed Y the total number of solutions

(X, Y, Z) ∈ S= is greater than or equal to ((Y 2p)1/3 − (Y 2)1/3 + O(1))/Y . If we sum this
over all Y , we get applying the formulas (8) and (9)

#S= ≥
∑

1≤Y<p

(Y 2p)1/3 − (Y 2)1/3 + O(1)

Y
= (p1/3 − 1)

∑
1≤Y<p

1

Y 1/3
+ O(ln p)

= (p1/3 − 1)

[
(p − 1)1−1/3

1 − 1/3
+ ζ(1/3) + O(p−1/3)

]
+ O(ln p) = 3

2
p + O(p2/3),

(14)

where ζ(1/3) = −0.97336024 In particular, #S= = �(p).

1492 A. Das and C. E. Veni Madhavan

6.3 Cardinality of S#

Since S is the disjoint union of S= and S � �=, equations (12)–(14) give

(p − 1)2 − p1.585 ln(p − 1) + O(p) ≤ #S# ≤ (p − 1)2 − 3

2
p + O(p2/3). (15)

In particular, #S# =
(p2).

6.4 Heuristic estimate of #Sα

In this section, we count the number of solutions of the CSC with X, Y, Z ≤ pα, X3 �= Y 2Z.

Since the cubic sieve method demands 1/3 ≤ α < 1/2, we consider α only in this range,
though our argument is valid for any 0 ≤ α ≤ 1.

We first fix Y and write X3 = Y 2Z + kp for some k ∈ Z\{0}. We then see that X3 ≡ kp

(mod Y 2). This implies that k must be chosen such that kp is a cubic residue modulo Y 2. We
are interested only in the cubic residues 13, 23, . . . , 	 pα
3 modulo Y 2.

CLAIM 1 Irrespective of whether the 	 pα
 cubic residues 13, 23, . . . , 	 pα
3 are distinct
modulo Y 2 or not, for any n distinct random values of kp, we expect n	 pα
/Y 2 distinct
solutions for (X, Y, Z) with X ≤ pα .

Proof This is because if X3
1 ≡ X3

2 ≡ kp (mod Y 2) for some k with X1 �= X2, then we
get two solutions (X1, Y1, Z1) and (X2, Y2, Z2). In particular, if the good cubic residues
13, 23, . . . , 	 pα
3 assumes m distinct values modulo Y 2, then from the n given values of
kp, we expect nm/Y 2 values of k to correspond to the set of these cubic residues. Each such
residue, on the other hand, is associated, on an average, with 	 pα
/m solutions with X ≤ pα .
Hence the expected number of solutions (X, Y, Z) corresponding to the given n random
values of kp is (nm/Y 2)(pα
/m) = n	 pα
/Y 2. �

Now we allow k to vary in the range

1

p
− pα−1Y 2 ≤ k ≤ p3α−1 − Y 2

p
. (16)

This corresponds to a total of p3α−1 − Y 2/p + pα−1Y 2 + O(1) values of k �= 0. Since kp =
X3 − Y 2Z and 1 ≤ X, Z ≤ pα , for the fixed value of Y chosen above we have 1 − pαY 2 ≤
kp ≤ p3α − Y 2 which implies (16). Note, however, that the converse is not true, that is, all
values of k prescribed by (16) do not lead to values of 1 ≤ X, Z ≤ pα . We will force 1 ≤
X ≤ pα and consider only those solutions for which 1 ≤ Z ≤ pα .

Now we make the following heuristic assumption:

ASSUMPTION 1 As k varies in the range given by (16), the integers kp behave as random
integers modulo Y 2.

This is a reasonable assumption since the gcd(Y 2, p) = 1. This assumption together with
Claim 1 guarantees an expected number of approximately(

p3α−1 + O(1) +
(

pα−1 − 1

p

)
Y 2

)
pα

Y 2
(17)

solutions (X, Y, Z) with the given Y. All these solutions correspond to 1 ≤ X ≤ pα , but not
necessarily to 1 ≤ Z ≤ pα as told before. The inequalities (16) together with X3 = Y 2Z + kp

Cubic sieve method 1493

show that the range of variation of Z is

1 − p3α − X3

Y 2
≤ Z ≤ pα + X3 − 1

Y 2
. (18)

At this point we make the second heuristic assumption:

ASSUMPTION 2 All these values of Z are equally likely to occur.

For any 1 ≤ X ≤ pα the inequalities (18) prescribe pα − 1 + (p3α − 1)/Y 2 + O(1) non-
zero values for Z including the values 1 ≤ Z ≤ pα . Therefore, byAssumption 2, the probability
that Z lies in the range 1 ≤ Z ≤ 	 pα
 is

≈ pα

pα − 1 + (p3α − 1)/Y 2
= pαY 2

(pα − 1)Y 2 + p3α − 1
>

Y 2

Y 2 + p2α
≥ Y 2

2p2α
. (19)

This probability multiplied by (17) gives the expected number of solutions in Sα with the given
fixed Y to be greater than or equal to (1/2pα)(p3α−1 + O(1) + (pα−1 − 1/p)Y 2). We finally
vary Y with 1 ≤ Y ≤ pα and use (10) to obtain:

Expected cardinality of Sα ≥ 1

2pα

(
p3α−1pα + O(pα)

+
(

pα−1 − 1

p

) (
(pα)3

3
+ O((pα)2)

))

= 2

3
p3α−1 + O(max(1, p2α−1)) = �(p3α−1). (20)

For sufficiently large p the term (2/3)p3α−1 dominates and one might expect to get a solution
if (2/3)p3α−1 � 1, say, for example, if (2/3)p3α−1 ≥ 1000, i.e., if

α ≥ 1

3
+ ln(1500)

3 ln p
.

For example, if p ≈ 2500, then α = 0.34037 is expected to make Sα non-empty.
We have noted that Assumption 1 is reasonable and gives a good picture of the average

situation. Assumption 2, on the other hand, is difficult to justify mathematically. We assumed
an average scenario to get an estimate of #Sα . As we pointed out earlier, our aim is not to prove
the non-emptiness or otherwise of Sα , but to compute an approximate value of its cardinality
with the hope that this behaviour is general enough to portray the average situation. We shortly
show that up to a constant factor our estimates are quite close to the experimental values we
obtained from a set of small scale experiments. These experimental results together with our
theoretical estimate tempt us to make the following conjecture:

CONJECTURE 6.1 The expected cardinality of Sα is asymptotically equal to χ p3α−1 for all
0 ≤ α ≤ 1 and for some constant χ ≈ 1. (Note that (15) demands χ = 1.)

Few primes of special forms might not obey the conjectured estimates. But we do not see
any such special form – both experimentally and theoretically. The bulk of the derivation of
(20) is based on the cubic residues module Y 2 for integers Y = 1, 2, 3, The prime p does
not seem to play an important role in connection with Assumption 1. The second assumption,
however, can be influenced by the choice of p and may lead to situations we failed to visualize.

1494 A. Das and C. E. Veni Madhavan

6.5 Experimental evidence

We experimented with randomly generated primes of size around 30 bits. We actually enu-
merated all the solutions of the CSC for various values of α in the range 0.33 ≤ α ≤ 0.50.
We tabulate these experimental values together with the theoretical estimates obtained as
#Sα = 	(2/3)p3α−1
. We also list the conjectured values given by #Sα = 	χ p3α−1
 with
χ = 1.

Table 5 gives the data for a random 30-bit prime p = 1,034,302,223. Though we have
experimented with many primes of this size, we give the values of #Sα only for a typical
value. This is because we get exactly similar pattern of variation of #Sα with α for all of our
test primes. Thus a single representative is sufficient to reflect the scenario.

The table clearly shows that apart from constant factors the experimental, estimated and
conjectured values exhibit the same pattern of variation of #Sα with α. For α close to 0.33
the relation between these values is little erratic. As α increases, say α ≥ 0.40, the ratio of
the estimated value to the experimental value and the ratio of the conjectured value to the
experimental value tend to approach constant values. In particular, the conjectured values are
quite close to the experimental values. It remains unsettled if this pattern continues to hold for
general primes of larger sizes, say for primes of size ≤1000 bits. Since at present no algorithms
are known to solve the CSC in time polynomial in lg p, we cannot experiment with higher
values of p. In addition, even if such an algorithm exists, one should spend O(p2α) time for
enumerating all the solutions in Sα . This makes it infeasible to continue the experimental study
with primes of practical interest. These small-scale experiments give us some confidence about
the theoretical estimates derived in this section.

In spite of all these theoretical and experimental exercises the question of existence or
otherwise of a solution of the CSC for some 1/3 ≤ α < 1/2 continues to remain unanswered.
It is believed that a solution exists [1, 17]. Our analysis only strengthens the belief in favor of
a solution and to that effect is stronger than the argument presented in ref. [17].

Table 5. #Sα for p = 1,034,302,223 (A 30-bit prime).

Values of #Sα

α (a) (b) (c) (b)/(a) (c)/(a)

0.33 0 0 0 – –
0.34 1 1 1 1.00 1.00
0.35 1 1 2 1.00 2.00
0.36 2 3 5 1.50 2.50
0.37 5 6 9 1.20 1.80
0.38 9 12 18 1.33 2.00
0.39 23 22 34 0.96 1.48
0.40 53 42 63 0.79 1.19
0.41 98 78 118 0.80 1.20
0.42 185 147 220 0.79 1.19
0.43 368 274 411 0.74 1.17
0.44 695 511 766 0.74 1.10
0.45 1363 952 1429 0.70 1.05
0.46 2475 1776 2664 0.72 1.08
0.47 4646 3310 4965 0.71 1.07
0.48 8815 6170 9256 0.70 1.05
0.49 16,615 11,502 17,253 0.69 1.04
0.50 31,451 21,440 32,160 0.68 1.02

Note: (a) experimental, (b) estimated, (c) conjectured.

Cubic sieve method 1495

7. Conclusion

In this paper we have described various practical aspects of efficient implementation of the
linear and the cubic sieve methods for the computation of discrete logarithms over prime finite
fields. We have also compared the performances of these two methods and established the
superiority of the latter method over the former for the cases when p is close to a perfect
cube. It, however, remains unsettled whether the cubic sieve method performs equally well
for a general prime p. We have provided some heuristic estimates on the number of solutions
of a cubic congruence which is at the heart of the cubic sieve method. These estimates tend
to corroborate the fact that for random primes the performance of the cubic sieve method
is expected not to deteriorate much (compared to the case for special primes we studied).
However, designing an algorithm for computing a solution of this cubic congruence continues
to remain an open problem and stands in the way of the general acceptance of the cubic sieve
method. Last but not the least, we need performance comparison of the cubic sieve method
with the number field sieve method.

References
[1] Coppersmith, D., Odlyzko, A.M. and Schroeppel, R., 1986, Discrete logarithms in GF(p). Algorithmica, 1,

1–15.
[2] LaMacchia, B.A. and Odlyzko, A.M., 1991, Computation of discrete logarithms in prime fields. Designs, Codes,

and Cryptography, 1, 46–62.
[3] McCurley, K.S., 1990, The discrete logarithm problem. Cryptology and computational number theory.

Proceeding of Symposia in Applied Mathematics, 42, 49–74.
[4] Menezes, A.J. (Ed.), 1993, Applications of Finite Fields (Dordnecht: Kluwer Academic Publishers).
[5] Odlyzko, A.M., 1985, Discrete logarithms and their cryptographic significance. Advances in Cryptology:

Proceedings of Eurocrypt84, LNCS No. 209, pp. 224–314.
[6] Das, A. and Veni Madhavan, C.E., 1999, Performance comparison of linear sieve and cubic sieve algorithms for

discrete logarithms over prime fields. Proceedings of ISAAC99, LNCS No. 1741, pp. 295–306.
[7] Gordon, D.M., 1993, Discrete logarithms in GF(p) using the number field sieve. SIAM Journal of Discrete

Mathematics, 6, 124–138.
[8] Schirokauer, O., Weber, D. and Denny, T., 1996, Discrete logarithms, the effectiveness of the index calculus

method. Proceedings of ANTS II, LNCS no. 1122, pp. 337–361.
[9] Weber, D., 1996, Computing discrete logarithms with the general number field sieve. Procceedings of ANTS II,

LNCS no. 1122, pp. 99–114.
[10] Weber, D. and Denny, T., 1998, The solution of McCurleys discrete log challenge. Procceedings of Crypto98,

LNCS no. 1462, pp. 458–471.
[11] Bressoud, D.M., 1989, Factorization and Primary Testing, Undergraduate Text in Mathematics (Berlin: Springer-

Verlag).
[12] Gerver, J., 1983, Factoring large numbers with a quadratic sieve. Mathematics of Computation, 41, 287–294.
[13] Silverman, R.D., 1987, The multiple polynomial quadratic sieve. Mathematics of Computation, 48, 329–339.
[14] LaMacchia, B.A. and Odlyzko, A.M., 1991, Solving large sparse linear systems over finite fields. Advances in

Cryptology – CRYPTO90, LNCS #537, pp. 109–133.
[15] Das, A. and Veni Madhavan, C.E., 1998, Galois field library. Reference manual. Technical Report No IISc-CSA-

98-05, Department of Computer Science and Automation, Indian Institute of Science.
[16] Apostol, T.M., 1976, Introduction to Analytic Number Theory, Undergraduate Text in Mathematics (Berlin:

Springer-Verlag).
[17] Lenstra, A.K. and Lenstra, H.W., 1990, Algorithms in number theory. In: J. van Leeuwen, (Ed.) Handbook of

Theoretical Computer Science, pp. 675–715.
[18] Cohen, H., 1993, A Course in Computational Algebraic Number Theory, Graduate Text in Mathematics No.

138, (Berlin: Springer-Verlag).

