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Abstract. This paper presents an efficient architecture for computing
cryptographic ηT pairing for providing 128-bit security. A cryptoproces-
sor is proposed for Miller’s Algorithm with a new 1223-bit Karatsuba
multiplier that exploits parallelism. To the best of our knowledge this
is the first hardware implementation of 128-bit secure ηT pairing on su-
persingular elliptic curves over characteristic two fields. The design has
been implemented on Xilinx FPGAs. The place-and-route results show
that the proposed design takes only 190µs to complete an 128-bit secure
ηT pairing on a Virtex-6 FPGA. The proposed cryptoprocessor achieves
eight times speedup compared to the best known existing design. It also
outperforms the previous designs with respect to area× time product.

Key words: Pairing, Supersingular curves, characteristic two fields,
FPGA, Karatsuba multiplier.

1 Introduction

Since 2000, pairing is used in cryptography for developing security schemes for
various applications. It is well suited for identity based cryptography [8] which
has gained lot of importance in recent times. As a natural consequence, im-
plementations of pairings are also extremely important. The implementations
should be cost effective, both in terms of time and space requirement. In practice,
pairing could be implemented either as a software library executed on general
purpose processors or as a dedicated cryptoprocessor. However, the later one
is favored due to huge mathematical operations required for pairing computa-
tion [5]. This paper broadly addresses design techniques of a pairing cryptopro-
cessor for high security level.

Pairing for cryptographic applications are computed on elliptic or hyperel-
liptic curves defined over suitably large finite fields and having small embedding
degree [19, 13]. The security of a pairing depends on the underlying algebraic
curves and respective field types. For example, 128-bit symmetric security could
be achieved by computing ηT pairing [3, 18] on a supersingular elliptic curve
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defined over F21223 and having embedding degree k = 4. As per NIST recom-
mendation, 128-bit symmetric security is essential beyond 2030 [2]. Therefore,
it is of importance to explore the efficient implementation techniques of 128-bit
secure pairings on different platforms.

Hardware implementation of 128-bit secure pairings was introduced in 2009,
individually by Kammler et al. [21] and Fan et al. [12]. Both of them described
hardware implementation techniques for computing 128-bit secure pairings over
Barreto-Naehrig curves (BN curves) [4]. These CMOS based designs take 15.8ms
and 2.9ms for computing an optimal-ate pairing, respectively. Thereafter, de-
signs in [10, 14, 1, 9] are appeared in literature, which computes 128-bit secure
pairings in 2.3ms, 16.4ms, 3.5ms, and 1.07ms respectively. However, to the
best of our knowledge there is no hardware implementation results available in
the literature which computes 128-bit secure pairings below one ms time limit.
High-speed software implementations reported in [6, 7] compute 128-bit secure
pairings in 0.832ms and 1.87ms. The work proposed by Beuchat et al. [5] de-
scribes design architectures for ηT pairings on supersingular elliptic curves over
characteristic two and three fields for a maximum of 105-bit and 109-bit security,
respectively. However, to the best of the authors’ knowledge no hardware archi-
tectures are available for computing ηT pairing on 128-bit secure supersingular
elliptic curves over binary fields.

Contribution. This paper explores the hardware design techniques for ηT pair-
ing on 128-bit secure supersingular elliptic curves over characteristic two fields. It
first designs cost-effective and time-efficient hybrid architectures for Karatsuba
multiplication over F21223 field, on which the respective supersingular elliptic
curve is defined. The major contributions of the paper are highlighted here.

• The paper explores area-time tradeoff designs of hybrid Karatsuba multiplier
over F21223 field.

• It further explores high speed architectures for computing ηT pairing on
supersingular elliptic curves based on the proposed hybrid multiplier.

• It provides the first hardware implementation result of an 128-bit secure
pairing on elliptic curves over characteristic two fields.

• The proposed design is the first one which computes an 128-bit secure pairing
in less than one ms.

The proposed design of hybrid multiplier and parallelism techniques result in
the high speed cryptoprocessor which achieves significant improvement on the
performance of 128-bit secure ηT pairing on supersingular elliptic curves over
small characteristic fields.

Organization of the paper. Section 2 of the paper proposes design techniques
of Karatsuba multipliers for F21223 field. Section 3 describes the proposed pairing
cryptoprocessor. Results and comparisons are provided in Section 4. Finally, the
paper is concluded in Section 5.
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2 The F21223-Multiplier

Multiplication is the key operation of a pairing computation. The 128-bit secure
ηT pairing could be computed on a supersingular elliptic curve defined over
1223-bit characteristic-two fields. Therefore, the multiplication in F21223 field is
an essential operation in this context. Karatsuba multiplication [22] is one of the
most efficient and popular techniques for fields like Fqm . This technique is based
on divide-and-conquer algorithm, where a full m-bit multiplication is divided
recursively into several m/k-bit multiplications with small k ∈ {2, 3}. It then
accumulates the results of smaller multiplications for the generating final result.
Karatsuba technique for k = 2 computes product a · b of two elements a, b ∈ Fqm

by the following way:

a · b = (a1x
⌈m/2⌉ + a0)(b1x

⌈m/2⌉ + b0)

= a1b1x
m + [(a1 + a0)(b1 + b0)− a1b1 − a0b0]x

⌈m/2⌉ + a0b0. (1)

Hence, an m-bit multiplication can be performed by three m/2-bit multipli-
cations along with four m-bit and two m/2-bit addition/subtraction opera-
tions. Generalization of Karatsuba multiplication is provided in [29]. We re-
fer to the reader [27, 17] for getting idea about implementation techniques of
Karatsuba multiplication. Efficient implementation of Karatsuba multiplication
is challenging−mainly for larger field sizes like m = 1223. It is more challenging
on resource-constrained environments like an FPGA platform where the num-
ber of logic cells are limited. We may follow several ways for making trade-off
between the multiplication latency and hardware resources for developing a mul-
tiplier for F21223 field. Fig. 1 shows the decomposition of a 1223-bit operand for
Karatsuba multiplication with k = 2. The operand is decomposed recursively up
to their 19-bit or 20-bit levels as it gives the most optimum design [27].

1223

611 612

305 306 306 306

152 153 153 153 153 153 153 153

19-bit and 20-bit general Karatsuba multiplication

Simple Karatsuba 
multiplication

Fig. 1. The decomposition of an 1223-bit operand for Karatsuba multiplication.

Fully Parallel Multiplier for F21223 . A fully parallel Karatsuba multiplier
can be designed for F21223 field by following the decomposition as shown in Fig. 1.
After implementing it by Verilog (HDL) we synthesize the design by ISE tool
for a Virtex-4 FPGA. The synthesis tool estimates 324342 LUTs for an 1223-bit
fully parallel Karatsuba multiplier, which makes it infeasible to implement on a
single Virtex-4 FPGA device.
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Serial Use of 612-bit Parallel Multiplier. As an alternative to area-time
tradeoff we take a fully parallel 612-bit Karatsuba multiplier on which three
multiplications are performed in serial for computing multiplication in F21223 .
After synthesizing by ISE synthesis tool, it demands 95324 LUTs. Thus, it could
be useful to implement a high throughput F21223 multiplier on a high-end single
FPGA device. However, a pairing cryptoprocessor demands more circuits along
with multipliers, which may not be put together on a single FPGA device.

2.1 Serial Use of 306-bit Parallel Multiplier

It is shown that the fully parallel multiplier as well as serial use of 612-bit parallel
multiplier for F21223 are infeasible to implement a respective ηT pairing crypto-
processor. Here we propose a serial use of 306-bit parallel Karatsuba multiplier
for F21223 field. The current multiplier is based on a 306-bit fully parallel Karat-
suba multiplier on which top two levels of Fig. 1 are performed in serial. The
proposed architecture for computing 1223-bit multiplication based on this serial-
parallel hybridization is shown in Fig. 2. The architecture follows the exact steps
and nomenclatures of variables that are described in Algorithm 2, Appendix A.

The proposed architecture works as follows. During the initialization stage
(Algorithm 2, step 1 to step 7) it breaks the operands a, and b into four parts
by following two repeated Karatsuba decompositions. The smaller operands are
generated by following way:

a · b = (a1x
612 + a0)(b1x

612 + b0)

= a1b1x
1222 + [(a1 + a0)(b1 + b0)− a1b1 − a0b0]x

612 + a0b0.

The 1223-bit multiplication is performed by three 612-bit multiplications1, a0 ·b0,
a1 · b1, and (a1 + a0) · (b1 + b0), which are further decomposed by following way.

a0 · b0 = (a01x
306 + a00)(b01x

306 + b00)

= a01b01x
612 + [(a01 + a00)(b01 + b00)− a01b01 − a00b00]x

306 + a00b00

= a01b01x
612 + [g0h0 − a01b01 − a00b00]x

306 + a00b00, (2)

where, g0 = a01 + a00 and h0 = b01 + b00. Similarly, the second 612-bit multipli-
cation is performed by following equation.

a1 · b1 = (a11x
306 + a10)(b11x

306 + b10)

= a11b11x
611 + [(a11 + a10)(b11 + b10)− a11b11 − a10b10]x

306 + a10b10

= a11b11x
611 + [g1h1 − a11b11 − a10b10]x

306 + a10b10, (3)

where, g1 = a11 + a10 and h1 = b11 + b10. The third 612-bit multiplication is
performed as:

1 More accurately, two 612-bit multiplications and one 611-bit multiplication. For
simplicity we say three 612-bit multiplications.
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Fig. 2. The architecture of F21222 multiplier unit.

g2 = a10 + a00; g3 = a11 + a01

h2 = b10 + b00; h3 = b11 + b01

(a1 + a0) · (b1 + b0) = (g3x
306 + g2)(h3x

306 + h2)

= g3h3x
612 + [(g3 + g2)(h3 + h2)− g3h3 − g2h2]x

306 + g2h2

= g3h3x
612 + [g4h4 − g3h3 − g2h2]x

306 + g2h2, (4)

where, g4 = g3 + g2 and h4 = h3 + h2. Therefore, one 1223-bit multiplication is
performed by nine 306-bit multiplications. In our proposed architecture (Fig. 2),
the operands of these nine multiplications are stored into nine 306-bit parallel
shift registers. These registers are automatically reloaded by synchronous shift
operations so that the two correct operands of 306-bit parallel multiplier are
available into a00 and b00 registers, respectively, at every clock. The 306-bit par-
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allel Karatsuba multiplier takes only one clock cycle to compute one respective
multiplication. The strategy of shift register is adopted for avoiding two com-
plex 9-to-1 multiplexers to the multiplier input ports. The first three 309-bit
multiplication results (Algorithm 2, step 8 to step 13) are combined to generate
the intermediate result of first 612-bit multiplication a0 · b0. The final result of
a0 · b0 as defined in Eq. 2 (Algorithm 2, step 14) is computed by means of two
306-bit 4-input parallel adders (4-input XORs in this case) and it is stored into
the registers di, 0 ≤ i ≤ 3. Similarly, the result of the second 612-bit multipli-
cation as defined in Eq. 3 (Algorithm 2, step 15 to step 21) is stored into the
registers ei, 0 ≤ i ≤ 3, and for the third one, Eq. 4, (Algorithm 2, step 22 to
step 28) is stored into the registers fi, 0 ≤ i ≤ 3. Finally, in steps 29 to 31, the
algorithm combines the final result of 1223-bit multiplication and stores into the
registers ri, 0 ≤ i ≤ 7. The proposed architecture (Fig. 2) takes 10 clock cycles
for completing one multiplication in the respective base field F21223 .

Implementation Results on FPGA Platforms. The synthesis tool esti-
mates 34325 LUTs on a Virtex-4 FPGA for implementing the proposed serial
use of 306-bit parallel multiplier for F21223 . In this paper, we are looking for a
pairing cryptoprocessor on a medium-range FPGA device. The place-and-route
results as summarized in Table 1 ensure that this multiplier is suitable for de-
signing our target cryptoprocessor.

Table 1. Cost and time of 1223-bit multipliers on FPGA platforms.

Multiplier FPGA
LUTs

Frequency Serial Multiplication
(A · T )§

type family [MHz] use latency [ns]

Serial use of Virtex-2 34 547 125 10 80.0 2.76
306-bit parallel Virtex-4 34 325 168 10 60.0 2.06
multiplier Virtex-6 30 148 250 10 40.0 1.21

§ : (A · T ) represents product of area in LUTs and time in milliseconds.

However, designer may opt for serial use of 153-bit parallel multiplier with
low resources. But, it requires 27 serial use, which slows down the multiplica-
tion. On a Virtex-4 FPGA one such multiplier takes 16231 LUTs and achieves
maximum 185 MHz clock frequency. Therefore, this multiplier with lower re-
source requires 151ns for completing one 1223-bit multiplication which is 2.5
times slower than serial use of 306-bit parallel multiplier. The respective A · T
value (2.46) of this design is 1.2 times higher than the same for the design with
306-bit parallel multiplier. Thus, serial use of 306-bit parallel multiplier provides
the most optimized design with respect to the feasibility of implementation as
well as area× time product.

3 The ηT Pairing Cryptoprocessor over F21223

In this section, we present a high-speed cryptoprocessor for computing the ηT
pairing over a large characteristic-two field F21223 . The proposed architecture is
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depicted in Fig. 3. The pairing computation consists of two major operations
− the non-reduced pairing (Miller’s algorithm) and the final exponentiation.
Beuchat et al. in [5] proposed two separate coprocessors on which these two
tasks are pipelined. Two separate coprocessors in pipeline helps to reduce the
computation time. But, at the same time it needs larger area. In case of a large
field like F21223 it is important to take care of the overall area requirement for
pairing computation as most of its applications demand area-constrained de-
vices. It is observed that almost 50% datapath of both the above coprocessors
are consumed by the base-field multipliers. This paper attempts to optimize the
area of an ηT pairing cryptoprocessor. We propose here a common datapath for
computing both the Miller’s algorithm and the final exponentiation. Adequate
parallelism is also applied in the datapath to achieve a high-speed cryptoproces-
sor. The supersingular elliptic curves, the representation of the fields, and the
ηT pairing algorithm that are used in this paper are described in Appendix B.

The ηT pairing computation in characteristic-two field is described in [16].
We rewrite it, specifically for F21223 , in Algorithm 1 with parenthesized indices in
superscript in order to emphasize the intrinsic dependency as well as parallelism
of the pairing computation. Two interdependent operations in the Miller’s algo-
rithm, namely, the computation of the G(i) (step 7 to step 10) and the sparse

multiplication2 F (i−1) · G(i) over F(21223)4 along with the computation of x
(i)
2 ,

y
(i)
2 for next iteration (step 11 and step 12) are performed in serial, whereas we
apply the parallelism within each of these two operations.

3.1 Computation of Miller’s Loop

The proposed cryptoprocessor as shown in Fig. 3 first computes the non-reduced
pairing based on Algorithm 1. It breaks this computation in three sub-parts as
described here. We use the same nomenclature of Algorithm 1 for representing
the intermediate results in the architecture.

Initialization. The registers x
(i)
1 , y

(i)
1 , x

(i−1)
2 , y

(i−1)
2 , and s(i) are initialized

according to step 1 and step 2 of Algorithm 1 [Fig. 3]. During the initialization
of s(i), the operation x1+1 is performed simply by inverting the least significant

bit of x1 as x1 ∈ F2[x]. The variables t
(i)
0 and t

(i)
1 are initialized by two sets of

2-input XORs,3 which perform s(0)+x
(0)
2 and y

(0)
1 +y

(0)
2 , respectively. These two

operations are performed on the fly. As defined in step 4, the initialization of

register f
(i−1)
0 is done by means of the output of a multiplication followed by a 2-

input addition. Similarly, the initialization of f
(i−1)
1 requires a 2-input addition,

whereas the same for f
(i−1)
2 and f

(i−1)
3 are trivial. In total, the initialization part

of Miller’s algorithm takes only 12 clock cycles in our proposed cryptoprocessor.

2 An operand in F(21223)4 is sparse when some of its coefficients are trivial (i.e., either
zero or one)

3 The addition in F2[x] is performed by simple bit-wise XOR. Therefore, addition and
XOR are used with same meaning in this paper.
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Fig. 3. The ηT pairing cryptoprocessor over F21223 .

Computation of G(i). We represent G(i) ∈ F(21223)4 in {1, u, v, uv} basis.

However, throughout Miller’s loop G(i) contains sparse value which is repre-

sented as g
(i)
0 + g

(i)
1 u + 1. The computation of g

(i)
0 (Algorithm 1, step 9) is

performed by means of one multiplication in F21223 followed by one 2-input ad-

dition. The operands of above multiplication s(i) and t
(i)
0 are generated on the

fly after computing two square-root operations (in step 7) in parallel. Current
cryptoprocessor computes the square-root operations inexpensively by means
of simple shift and XOR operations. Let, a =

∑

aix
i ∈ F21223 , then

√
a =

∑

a2jx
j + (x612 + x128)

∑

a2j+1x
j , which is computed in one clock. Therefore,

in the proposed cryptoprocessor (Fig. 3) the control signal c2 is activated only
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Algorithm 1 : Computing the ηT pairing on E/F21223 . Intermediate variables
in uppercase belong to F(21223)4 , whereas those in lowercase to F21223 .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Input: P (x1, y1) and Q(x2, y2) ∈ E(F21223)[r].
Output: ηT (P,Q).
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1. x

(0)
1 ← x1 ; y

(0)
1 ← y1 ; x

(0)
2 ← x2 ; y

(0)
2 ← y2 ;

2. s(0) ← x1 + 1 ;
3. t

(0)
0 ← s(0) + x

(0)
2 ; t

(0)
1 ← y

(0)
1 + y

(0)
2 ;

4. f
(0)
0 ← s(0) · t

(0)
0 + t

(0)
1 ; f

(0)
1 ← s(0) + x

(0)
2 ; f

(0)
2 ← 1 ; f

(0)
3 ← 0 ;

5. F (0) ← f
(0)
0 + f

(0)
1 u+ f

(0)
2 v + f

(0)
3 uv ;

6. for i from 1 to 612 do

7. s(i) ← x
(i−1)
1 , x

(i)
1 ←

√

x
(i−1)
1 ; y

(i)
1 ←

√

y
(i−1)
1 ;

8. t
(i)
0 ← x

(i)
1 + x

(i−1)
2 ; t

(i)
1 ← y

(i)
1 + y

(i−1)
2 + x

(i)
1 + 1 ;

9. g
(i)
0 ← s(i) · t

(i)
0 + t

(i)
1 ; g

(i)
1 ← s(i) + x

(i−1)
2 ;

10. G(i) ← g
(i)
0 + g

(i)
1 u+ v ;

11. F (i) ← F (i−1) ·G(i) ;
12. x

(i)
2 ← (x

(i−1)
2 )2 ; y

(i)
2 ← (y

(i−1)
2 )2 ;

13. end for
14. return (F (612))(2

2446−1)(21223−2612+1).
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

in that respective clock cycle during the execution of each iteration of Miller’s

algorithm. After computing x
(i)
1 and y

(i)
1 at the next clock the cryptoprocessor

starts the multiplication s(i) · t(i)0 . The multiplication in F21223 takes 10 clock

cycles and immediately at the next clock the cryptoprocessor updates g
(i)
0 and

g
(i)
1 registers. Therefore, in total the computation of G(i) takes 12 clock cycles
by the proposed cryptoprocessor.

Sparse Multiplication over F(21223)4 . The operation F (i−1) · G(i) in Algo-

rithm 1, step 11 is identified as sparse multiplication in F(21223)4 as G(i) consists
only two non-trivial coefficients. The computation of this sparse multiplication
is much easier than a full multiplication in the above extension field. The com-
putation procedure on our proposed cryptoprocessor is described in Table 2.

Table 2. Computation of F (i−1) ·G(i).

m1 : r0 ← f
(i−1)
0 · g

(i)
0 ; m4 : r0 ← f

(i−1)
2 · g

(i)
2 ;

m2 : r1 ← f
(i−1)
1 · g

(i)
1 ; m5 : r1 ← f

(i−1)
3 · g

(i)
3 ;

x
(1)
4 : f

(i)
0 ← (r0 + r1) + f

(i−1)
4 ; x

(3)
4 : f

(i)
2 ← (r0 + r1) + (f

(i−1)
1 + f

(i−1)
3 ) ;

m3 : r1 ← (f
(i−1)
0 + f

(i−1)
1 ) · (g

(i)
0 + g

(i)
1 ) ; m6 : r1 ← (f

(i−1)
2 + f

(i−1)
3 ) · (g

(i)
0 + g

(i)
1 ) ;

x
(2)
4 : f

(i)
1 ← (r0 + r1) + (f

(i−1)
3 + f

(i−1)
4 ) ; x

(4)
4 : f

(i)
1 ← (r0 + r1) + (f

(i−1)
2 + f

(i−1)
4 ) ;

In the proposed cryptoprocessor multiplications mi, 1 ≤ i ≤ 6, are performed
in serial on a single F21223 multiplier core. The registers r0 and r1 (in Fig. 3) are
alternatively used to hold the multiplication outputs. After completing m1 and
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m2 we start m3 at the next clock when in parallel the value of f
(i)
0 is computed

by two sets of 2-input XORs as defined by x
(1)
4 in Table 2. Similarly, we perform

m4 and x
(2)
4 in parallel and also do m6 and x

(3)
4 . Finally, after m6 we execute x

(4)
4

for computing f
(i)
3 at the next clock cycle. Therefore, the computation of sparse

multiplication F (i−1) ·G(i) takes 61 clock cycles in the proposed cryptoprocessor.

Computation of x
(i)
2 and y

(i)
2 . Squaring over F2[x] is free. Let a =

∑

aix
i ∈

F21223 then a2 =
∑

aix
2i. However, the reduction after squaring requires some

XOR operations, which are performed in parallel in only one clock cycle. The

computation of x
(i)
2 and y

(i)
2 are independent of the last step of sparse multipli-

cation (step x
(4)
4 of Table 2). Therefore, they are computed in parallel with x

(4)
4

which does not take any additional time.

Computation Cost of Miller’s Algorithm. One iteration of Miller’s algo-
rithm is performed by following three parts. The computation of G(i) which takes
12 clock cycles, the computation of F (i−1) ·G(i) which takes 61 clock cycles, and

the computation of x
(i)
2 , y

(i)
2 which is free. Thus, in total, each iteration of Al-

gorithm 1 takes 73 clock cycles, which incurs 44688 clock cycles for computing
whole Miller’s algorithm including initialization.

3.2 Computation of Final Exponentiation

The output F (612) ∈ F(21223)4 of the Miller’s algorithm is raised to the power
(22446 − 1)(21223 − 2612 + 1). The 21223-th powering an element G = g0 + g1u+
g2v + g3uv in F(21223)4 is easily computed by following equation.

G21223 = (g0 + g1 + g2) + (g1 + g2 + g3)u+ (g2 + g3)v + g3uv, (5)

which is computed by three additions (one 2-input and two 3-input additions).

Thus, two clock cycles are taken for computing (F (612))2
2446

by the current cryp-
toprocessor. Further we perform one inversion followed by one multiplication in
F(21223)4 for computing (F (612))2

2446−1.

The Inversion in F(21223)4 . Let G = g0 + g1u + g2v + g3uv and H = G−1 =
h0 + h1u+ h2v+ h3uv then (g0 + g1u+ g2v+ g3uv)(h0 + h1u+ h2v+ h3uv) = 1.
This could follow the matrix representation :









g0 g1 g3 g2 + g3
g1 g0 + g1 g2 + g3 g2
g2 g3 g0 + g2 g1 + g3
g3 g2 + g3 g1 + g3 g0 + g1 + g2 + g3

















h0

h1

h2

h3









=









1
0
0
0









From which the value of h1, h2, h3, and h4 could be solved by (I + 36M + 8S +
57A), where I,M, S,A stand for inversion, multiplication, squaring, and addition
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in the base field F21223 . Operation I is performed by Itoh-Tsujii algorithm [20],
which requires (14M+1222S). Thus the cost for computing inversion in F(21223)4

is (50M + 1230S + 57A). Thereafter, a multiplication in F(21223)4 is performed

by (16M + 22A) operations. Thus, in total, the computation of (F (612))2
2446−1

requires (66M + 1230S + 82A) operations.

The Exponentiation by (21223
−2612+1). The second part of the exponent

(21223 − 2612 + 1) is raised to the power of (F (612))2
2446−1 by means of (32M +

612S + 53A). This is possible as the inverse of (F (612))2
2446−1 in F(21223)4 is

performed by computing ((F (612))2
2446−1)2

2446

, which is easy as shown in Eq. 5.
Thus, major operations in the second part are two multiplications in F(21223)4 .

Computation Costs of Final Exponentiation and ηT Pairing. The final
exponentiation is performed by means of (98M + 1842S + 135A) operations.
In our proposed cryptoprocessor (Fig. 3) the multiplier unit is shared by both
Miller’s algorithm and the final exponentiation. The control signal c17 selects
operands from one of these two operations. The squaring and additions of final
exponentiation are performed separately from the Miller’s algorithm. Some of
squaring and additions are performed in parallel. The proposed cryptoprocessor
computes final exponentiation in 2922 clock cycles, which is much less than
the cycle count for computing Miller’s algorithm. Total clock cycle count for
computing an 128-bit secure ηT pairing is 47610 on our proposed architecture.

4 Results

The whole design has been done in Verilog (HDL). All results have been ob-
tained from the place-and-route report of Xilinx ISE Design Suit. Table 3 shows
the implementation results. The critical path of the design is formed in between
the input and the output of the hybrid 306-bit Karatsuba multiplier (in Fig. 2).
We produce the results for fair comparison, observing the performance of the
proposed cryptoprocessor on different FPGA platforms. The Virtex-6 is the lat-
est FPGA family of Xilinx, on which the proposed design runs at a maximum
frequency of 250MHz. In total, it uses 15167 logic slices including whole data
path (for Miller’s algorithm and for final exponentiation), the controller logic,
and registers on the Virtex-6 FPGA, where it finishes computation of one 128-bit
secure ηT pairing in 190µs.

Table 3. Implementation results of the ηT pairing cryptoprocessor.

Platform Slice LUT
Frequency Clock Security Times

[MHz] Cycles [bit] [µs]

Virtex-2 36534 69367 125
47610 128

381
Virtex-4 35458 69367 168 286

Virtex-6‡ 15167 54681 250 190

‡ : One Virtex-6 slice consists of four LUTs and eight flip-flops.
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4.1 Comparison with Existing Designs

Two aspects of the proposed design are considered when it is compared with
the existing designs. First, we compare it with the existing ηT pairing processors
over characteristic-two fields as summarized in Table 4. We consider only the
design results with maximum security level provided by the respective authors.

Table 4. Hardware designs for the ηT pairing.

Designs Curve
Security

FPGA Area
Frequency Times

[bit] [Slices] [MHz] [µs]

Shu et al. [28] E/F2557 96 xc4vlx200-10 37931 66 675.5
Beuchat et al. [5] E/F2691 105 xc4vlx200-11 78874 130 18.8
This work E/F21223 128 xc4vlx200-11 35458 168 286.0
This work E/F21223 128 xc6vlx130t-3 15167 250 190.0

To the best of the authors’ knowledge no hardware implementation is available
for computing 128-bit secure ηT pairing on supersingular elliptic curves over
characteristic-two fields. The existing designs in this respect are for a maximum
of 105-bit secure design over F2691 field, which is proposed by Beuchat et al. in [5].
The design proposed in [5] computes 105-bit secure ηT pairing and achieves a
very good speed of 18.8µs. However, compared to the respective design in [5] our
design with higher security level demands much lesser, less than half, number
of slices on the same FPGA family. As a result, the proposed design could be
implemented on a medium-range Virtex-4 device, whereas the existing one’s
demand a high-range device in the same FPGA family. This makes our design
more useful in resource-constrained identity-aware devices.

The second aspect of the design is considered on the fact of 128-bit secure
pairing computation irrespective of underlying curve and field types. Table 5
summarizes the comparative studies of related designs. The proposed design is
the first one which computes an 128-bit secure pairing in less than one millisecond
(190µs on a Virtex-6 FPGA) on a dedicated hardware.

Table 5. Hardware designs for 128-bit secure pairings.

Designs Curve FPGA Area
Freq. Times

A · T†
[MHz] [µs]

Duquesne et al. [9]§ E/Fp256 Stratix III 4233 A‡ 165 1070 -
Fan et al. [11] E/Fp256 xc6vlx240-3 4014 Slices, 42 DSP 210 1170 -
Kammler et al. [21] E/Fp256 130nm CMOS 97000 Gates 338 15800 -
Fan et al. [12] E/Fp256 130nm CMOS 183000 Gates 204 2900 -
Ghosh et al. [14] E/Fp256 xc4vlx200-12 52000 Slices 50 16400 852.8
Estibals [10] E/F35·97 xc4vlx200-11 4755 Slices 192 2227 10.6
Aranha et al. [1] Co/F2367 xc4vlx25-11 4518 Slices 220 3518 15.9
This work E/F21223 xc4vlx200-11 35458 Slices 168 286 10.1
This work E/F21223 xc6vlx130t-3 15167 Slices 250 190 2.9

† A · T represents product of area in slices and time in seconds.
§ It provides 126-bit security instead of 128-bit.
‡ It has 8 Rowers, each consisting of two 36x36 DSP blocks and one 9x9 multiplier.
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All the existing designs except [1] are based on elliptic curves. The design
of [1] computes optimal-eta pairing on 128-bit secure supersingular Genus-2 bi-
nary hyperelliptic curves. The compact design proposed in [10] computes ηT
pairing on supersingular elliptic curves over F3m′ fields. Due to its low area the
design of [10] is useful to resource constrained applications. It is analyzed in Sec-
tion 5.2, [5] that the number of base-field multiplications required for computing
an ηT pairing with high security level over F2m and F3m′ are almost same. This
is also true for other fields with 128-bit security. For example, the optimal-ate

pairing on E/Fp256
reported in [9, 11, 12, 14, 21] requires 15093 multiplications

in the base field [16]. On the other hand, the ηT pairing on E/F21223 requires
4566 multiplications in the base field, which is only 1/3 of optimal-ate pairing.
Furthermore, the base field size of F21223 is 1223 bits which is 4.8 times longer
than the size of Fp256. Thus, the operation complexities for computing both the
pairings are almost same. To sum up, the proposed design achieves a significant
performance improvement for computing 128-bit secure pairings on hardware
platforms. With respect to the A · T product too, the proposed design gives
the best results compared to all existing designs. The software implementation
results of 128-bit secure pairings computed over different elliptic curves are en-
listed in Table 6. The most efficient software for computing 128-bit pairings on
supersingular elliptic curves over F21223 is proposed in [7]. It takes 3.08ms on
eight parallel cores of a core i7 2.8GHz processor.

Table 6. Software for 128-bit secure pairings.

Reference Platform Pairing Curve
Frequency Times

[MHz] [ms]

Beuchat et al. [7] core i7 2.8GHz modified Tate E/F3509 2800 1.87
E/F21223 2800 3.08

Naehrig et al. [26] core2 Q6600 optimal-ate E/Fp256 2394 1.86

Beuchat et al. [6] core i7 2.8GHz optimal-ate E/Fp256 2800 0.83

Hankerson et al. [16] 64-bit core2 optimal-ate E/Fp256 2400 6.25
ηT E/F21223 2400 16.25
ηT E/F3509 2400 13.75

Grabher et al. [15] 64-bit core2 ate E/Fp256 2400 6.01

5 Conclusion

In this paper we have proposed an area and time optimized hybrid Karatsuba
multiplier for F21223 . Sufficient parallelism has been employed in the architecture
for which we have achieved a high-speed ηT pairing cryptoprocessor. A common
datapath for both non-reduced pairing and final exponentiation has been shared
which reduces the overall logic cells in its FPGA implementation. The proposed
design achieves a significant improvement with respect to two aspects of the
design. It computes ηT pairing in characteristic-two field with higher security
(128:105) in half area. On the other hand, it achieves eight times speedup and
also provides the best area×time product among existing designs for computing
128-bit secure pairings.
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Appendix A

We describe 1223-bit multiplication based on the serial use of 306-bit parallel

multiplier in Algorithm 2. The variable names of the algorithm are similar to the
registers and intermediate results computed by the proposed 1223-bit multiplier
as shown in Fig. 2.

Appendix B

The ηT Pairing on Supersingular Elliptic Curves over F21223 . This paper
considers the ηT pairing computed over characteristic two field F21223 , which is
represented as F2[x]/(x

1223 + x255 + 1) in the polynomial basis with irreducible
polynomial (x1223+x255+1). The supersingular elliptic curve E over above field
is defined as:

E/F21223 : Y 2 + Y = X3 +X, (6)

which has embedding degree k = 4. It forms a large subgroup with prime order
r = (21223+2612+1)/5. The ηT pairing on E/F21223 attains 128-bit security level
because Pollard’s rho method for computing discrete logarithms in above order-r
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Algorithm 2 : The 1223-bit multiplication based on Karatsuba technique†.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Input: a =

∑1222
i=0 aix

i and b =
∑1222

i=0 bix
i.

Output: a · b.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1. a00 ←

∑305
i=0 aix

i ; a01 ←
∑611

i=306 aix
i ;

2. a10 ←
∑917

i=612 aix
i ; a11 ←

∑1222
i=918 aix

i ;
3. b00 ←

∑305
i=0 bix

i ; b01 ←
∑611

i=306 bix
i ;

4. b10 ←
∑917

i=612 bix
i ; b11 ←

∑1222
i=918 bix

i ;
5. g0 ← a00 + a01 ; g1 ← a10 + a11 ; g2 ← a00 + a10 ; g3 ← a01 + a11 ;
6. h0 ← b00 + b01 ; h1 ← b10 + b11 ; h2 ← b00 + b10 ; h3 ← b01 + b11 ;
7. g4 ← g2 + g3 ; h4 ← h2 + h3 ;
8. k ← a00 · b00 ;
9. d1 ← kL ; d0 ← kR ;
10. k ← a01 · b01 ;
11. d3 ← kL ; d2 ← kR ;
12. k ← g0 · h0 ;
13. t1 ← kL ; t0 ← kR ;
14. d1 ← d1 + d0 + d2 + t0 ; d2 ← d2 + d1 + d3 + t1 ;
15. k ← a10 · b10 ;
16. e1 ← kL ; e0 ← kR ;
17. k ← a11 · b11 ;
18. e3 ← kL ; e2 ← kR ;
19. k ← g1 · h1 ;
20. t1 ← kL ; t0 ← kR ;
21. e1 ← e1 + e0 + e2 + t0 ; e2 ← e2 + e1 + e3 + t1 ;
22. k ← g2 · h2 ;
23. f1 ← kL ; f0 ← kR ;
24. k ← g3 · h3 ;
25. f3 ← kL ; f2 ← kR ;
26. k ← g4 · h4 ;
27. t1 ← kL ; t0 ← kR ;
28. f1 ← f1 + f0 + f2 + t0 ; f2 ← f2 + f1 + f3 + t1 ;
29. r0 ← d0 ; r1 ← d1 ; r2 ← d2 + d0 + e0 + f0 ;
30. r3 ← d3 + d1 + e1 + f1 ; r4 ← e0 + d2 + e2 + f2 ;
31. r5 ← e1 + d3 + e3 + f3 ; r6 ← e2 ; r7 ← e3 ;
32. return (r7 · x

2142 + r6 · x
1836 + r5 · x

1530 + r4 · x
1224 + r3 · x

918+
r2 · x

612 + r1 · x
306 + r0).

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
† In the algorithm, kR represents the least significant m bits of (2m− 1)-bit
result k, and kL represents the most significant m− 1 bits of k.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

subgroup has running time at least 2128, as do the index-calculus algorithms for
computing discrete logarithms in the extension field F(21223)4 . We refer the reader
to [3, 18, 24] for more details about the computation techniques of ηT pairing and
its respective security. We represent the extension field F(21223)4 using tower field
extensions F(21223)2 = F21223 [u]/(u

2+u+1) and F(21223)4 = F(21223)2 [v]/(v
2+v+u),

where a basis for F(21223)4 over F21223 is [1, u, v, uv].


