
GPU-Based Implementation of 128-Bit Secure

Eta Pairing over a Binary Field

Utsab Bose, Anup Kumar Bhattacharya, and Abhijit Das

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur, West Bengal, India
utsab.bose@yahoo.co.in, bhattacharya.anup@gmail.com,

abhij@cse.iitkgp.ernet.in

Abstract. Eta pairing on a supersingular elliptic curve over the binary
field F21223 used to offer 128-bit security, and has been studied extensively
for efficient implementations. In this paper, we report our GPU-
based implementations of this algorithm on an NVIDIA Tesla C2050
platform. We propose efficient parallel implementation strategies for
multiplication, square, square root and inverse in the underlying field.
Our implementations achieve the best performance when López-Dahab
multiplication with four-bit precomputations is used in conjunction with
one-level Karatsuba multiplication. We have been able to compute up to
566 eta pairings per second. To the best of our knowledge, ours is the
fastest GPU-based implementation of eta pairing. It is about twice as fast
as the only reported GPU implementation, and about five times as fast
as the fastest reported single-core SIMD implementation. We estimate
that the NVIDIA GTX 480 platform is capable of producing the fastest
known software implementation of eta pairing.

Keywords: Supersingular elliptic curve, eta pairing, binary field,
parallel implementation, GPU.

1 Introduction

Recently GPUs have emerged as a modern parallel computing platform for
general-purpose programming. Many cryptographic algorithms have been
implemented efficiently using GPU-based parallelization. Pairing (assumed sym-
metric) is a bilinear mapping of two elements in a group to an element in an-
other group. Elliptic curves are widely used to realize various forms of pairing,
like Weil pairing, Tate pairing, and eta pairing. Eta pairing, being one of the
most efficient pairing algorithms, has extensive applications in identity-based
and attribute-based encryption, multi-party communication, identity-based and
short signatures, and autonomous authentication [6]. Investigating the extent
of parallelizing eta pairing on GPU platforms is an important area of cur-
rent research. Although several implementations of eta pairing have already
been published in the literature [3,5,11], most of them are CPU-based, and

A. Youssef, A. Nitaj, A.E. Hassanien (Eds.): AFRICACRYPT 2013, LNCS 7918, pp. 26–42, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



GPU-Based Implementation of 128-Bit Secure Eta Pairing 27

aim at improving the performance of single eta-pairing computations. How-
ever, many applications (like authentication in vehicular ad hoc networks) requir
e computing large numbers of eta pairings in short intervals.

In this paper, we report efficient implementations of eta pairing on a supersin-
gular elliptic curve defined over a field of characteristic two. This is a standard
curve studied in the literature. At the time this work was done, this curve was
believed to provide 128-bit security in cryptographic applications. Recent de-
velopments [13] tend to indicate that this security guarantee may be somewhat
less.1 To the best of our knowledge, there are no previous GPU-based imple-
mentations for this curve. The only GPU-based implementation of eta pairing
reported earlier [15] is on a supersingular elliptic curve defined over a field of
characteristic three, which also used to provide 128-bit security (but no longer
now; see [19] and also [13]). Our implementation is about twice as efficient as
this only known GPU implementation. We attempt to parallelize each pair-
ing computation alongside multiple pairing computations, so as to exploit the
GPU hardware as effectively as possible. In other words, we use both intra- and
inter-pairing parallelization.

We start with parallel implementations of the binary-field arithmetic. We use
López-Dahab multiplication [16] with four-bit windows in tandem with one-level
Karatsuba multiplication [14] to obtain the best performance. We report the
variation in performance of multiplication with the number of threads. We also
report our GPU implementations of the square, square-root, inverse and reduc-
tion operations in the field. Finally, we use these parallel field-arithmetic routines
for implementing eta pairing. Our best eta-pairing implementation is capable of
producing up to 566 eta pairings per second on an NVIDIA TESLA C2050 plat-
form. This indicates an average time of 1.76 ms per eta-pairing computation,
which is comparable with the fastest known (1.51 ms) software implementation
[3] (which is a multi-core SIMD-based implementation). The fastest reported
single-core SIMD implementation [3] of eta pairing on this curve takes about
8 ms for each eta pairing. The only reported GPU-based implementation [15]
of eta pairing is capable of producing only 254 eta pairings per second. We es-
timate, based upon previously reported results, that our implementation when
ported to an NVIDIA GTX 480 platform is expected to give a 30% improvement
in throughput, thereby producing 736 eta pairings per second, that is, 1.36 ms
for computing one eta pairing.

It is worthwhile to note here that our work deals with only software implemen-
tations. Hardware implementations, significantly faster than ours, are available in
the literature. For example, some recent FPGA implementations are described
in [1,9]. The paper [1] also reports ASIC implementations. Both these papers
use the same curve as we study here. Other types of pairing functions (like Weil,
Tate, ate, and R-ate pairings) are also widely studied from implementation per-
spectives. The hardware and software implementations reported in [2,7,11] (to
name a recent few) use other types of pairing.

1 We are not changing the title of this paper for historical reasons, and also because
of that the analysis presented in [13] is currently only heuristic.



28 U. Bose, A.K. Bhattacharya, and A. Das

The rest of the paper is organized as follows. In Section 2, a short introduction
to GPUs and GPU programming is provided. Section 3 sketches the eta-pairing
algorithm which we implement. Our implementation strategies for the binary-
field arithmetic are detailed in Section 4. This is followed in Section 5 by remarks
about our implementation of eta pairing. In Section 6, our experimental results
are supplied and compared with other reported results. Section 7 concludes this
paper after highlighting some future scopes of work.

2 NVIDIA Graphics Processing Units

In order to program in GPU, it is important to know the architectural details
and how tasks are divided among threads at software level. Here, we briefly
describe the Fermi architecture of CUDA and the programming model. Some
comments on the GPU memory model are also in order.

2.1 GPU Architecture

The next-generation CUDA architecture, code-named Fermi [10], is an advanced
and yet commonly available GPU computing architecture. With over three bil-
lion transistors and featuring up to 512 CUDA cores, it is one of the fastest
GPU platforms provided by CUDA. Our implementations are made on one such
Fermi-based GPU called TESLA C2050.

In TESLA C2050, there are 14 streaming multiprocessors (SMs) with a total
of 448 CUDA cores. Each SM contains 32 CUDA cores along with 4 special
function units and 16 load/store units. The detailed specification can be found
in [17]. The 32 CUDA cores are arranged in two columns of 16 cores each. A
program is actually executed in groups of 32 threads called warps, and a Fermi
multiprocessor allocates a group of 16 cores (half warp) to execute one instruction
from each of the two warps in two clock cycles. This allocation is done by two
warp schedulers which can schedule instructions for each half warp in parallel.
Each SM has a high-speed shared memory to be used by all threads in it.

2.2 GPU Programing Model

In order to get a good performance by parallel execution in GPUs, it is important
to know how the threads can be organized at software level, and how these
threads map to the hardware. A CUDA program is written for each thread. There
is a programmer- or compiler-level organization of threads which directly project
on to the hardware organization of threads. At user level, threads are grouped
into blocks, and each block consists of several threads. A thread block (also called
a work group) is a set of concurrently executing threads that can cooperate
among themselves through barrier synchronization and shared memory. All the
threads of a block must reside in the same SM. As the number of threads in a
SM is limited because of limited number of registers and shared memory, there is
a bound on the maximum number of threads that a single work group can have.



GPU-Based Implementation of 128-Bit Secure Eta Pairing 29

But we can have as many work groups as we want. In Fermi, the maximum work-
group size is 1024. However, the threads within a work group can be arranged
in one, two or three dimensions, and the work groups themselves can again be
organized into one of the three dimensions. Each thread within a work group
has a local ID, and each work group has a block ID. The block ID and the local
ID together define the unique global ID of a thread.

In Fermi, there can be 48 active warps (1536 threads) and a maximum of
eight active work groups per SM, that can run concurrently. So it is preferred to
have a work group size of 192 in order to perfectly utilize all the active threads,
provided that there is scope for hiding memory latency. The number of resident
work groups in a SM is also bounded by the amount of shared memory consumed
by each work group and by the number of registers consumed by each thread
within each group.

2.3 GPU Memory Architecture

Each GPU is supplied with 3GB of device memory (also known as the global
memory), which can be accessed by all the threads from all the multiprocessors
of the GPU. One of the major disadvantages of this memory is its low band-
width. When a thread in a warp (a group of 32 threads) issues a device memory
operation, that instruction may eat up even hundreds of clock cycles. This per-
formance bottleneck can be overcome to some extent by memory coalescing,
where multiple memory requests from several threads in a warp are coalesced
into a single request, making all the threads request from the same memory seg-
ment. There is a small software-managed data cache (also known as the shared
memory) associated with each multiprocessor. This memory is shared by all the
threads executing on a multiprocessor. This low-latency high-bandwidth index-
able memory running essentially at the register speed is configurable between
16KB and 48KB in Fermi architectures. In TESLA C2050, we have 48KB shared
memory. We additionally have 16KB of hardware cache meant for high-latency
global memory data. The hardware cache is managed by the hardware. Software
programs do not have any control over the data residing in the hardware cache.

3 Eta Pairing in a Field of Characteristic Two

Here, we present the algorithm for eta (ηT ) pairing [4] over the supersingular
curve y2+y = x3+x (embedding degree four) defined over the binary field F21223

represented as an extension of F2 by the irreducible polynomial x1223+x255+1.
As the embedding degree of the supersingular curve is four, we need to work in
the field F(21223)4 . This field is represented as a tower of two quadratic extensions
over F21223 , where the basis for the extension is given by (1, u, v, uv) with g(u) =
u2 + u + 1 being the irreducible polynomial for the first extension, and with
h(v) = v2 + v+ u defining the second extension. The distortion map is given by
φ(x, y) = (x+ u2, y + xu+ v).

All the binary-field operations (addition, multiplication, square, square-root,
reduction and inverse) are of basic importance in the eta-pairing algorithm, and



30 U. Bose, A.K. Bhattacharya, and A. Das

are discussed in detail in Section 4. Now, we show the eta-pairing algorithm
which takes two points P and Q on the supersingular curve y2 + y = x3 + x as
input with P having a prime order r, and which computes an element of μr as
output, where μr is the group (contained in F ∗

(21223)4) of the r-th roots of unity.

Algorithm 1. Eta-pairing algorithm for a field of characteristic two

Input: P = (x1, y1), Q = (x2, y2) ∈ E(F21223 )[r]
Output: ηT (P,Q) ∈ μr

1 begin
2 T ← x1 + 1
3 f ← T · (x1 + x2 + 1) + y1 + y2 + (T + x2)u+ v
4 for i =1 to 612 do
5 T ← x1

6 x1 ← √x1, y1 ← √y1
7 g ← T · (x1 + x2) + y1 + y2 + x1 + 1 + (T + x2)u+ v
8 f ← f · g
9 x2 ← x2

2, y2 ← y2
2

10 end

11 return f (q2−1)(q−2
√

q+1), where q = 21223

12 end

In Algorithm 1, f ← f · g is a multiplication in F(21223)4 requiring eight
multiplications in F21223 . This number can be reduced to six with some added
cost of linear operations, as explained in [11]. Thus, the entire for loop (called the
Miller loop) executes 1224 square-roots, 1224 squares, and 4284 multiplications.
Multiplication being the most frequently used operation, its efficiency has a
direct consequence on the efficiency of Algorithm 1.

4 Arithmetic of the Binary Field

An element of F21223 is represented by 1223 bits packed in an array of twenty
64-bit words. All binary-field operations discussed below operate on these arrays.

4.1 Addition

Addition in F21223 is word-level bit-wise XOR of the operands, and can be han-
dled by 20 threads in parallel. In binary fields, subtraction is same as addition.

4.2 Multiplication

The multiplication operation is associated with some precomputation, where
the results of multiplying the multiplicand with all four-bit patterns are stored
in a two-dimensional array, called the precomputation matrix P . The quadratic



GPU-Based Implementation of 128-Bit Secure Eta Pairing 31

multiplication loop involves processing four bits together from the multiplier. See
[16] for the details. After the multiplication, the 40-word intermediate product
is reduced back to an element of F21223 using the irreducible polynomial x1223 +
x255+1. To sum up, the multiplication consists of three stages: precomputation,
computation of the 40-word intermediate product, and polynomial reduction.
These three stages are individually carried out in parallel, as explained below.

Precomputation. The precomputation matrix P has 320 entries (words). We
can use 320 threads, where each thread computes one P (i, j). It is also possible
to involve only 160 or 80 threads with each thread computing two or four matrix
entries. The exact number of threads to be used in this precomputation stage is
adjusted to tally with the number of threads used in the second stage (generation
of the intermediate product).

Let us use 320 threads in this stage. Each thread uses its thread ID to deter-
mine which entry in P it should compute. Let Θi,j denote the thread responsible
for computing P (i, j). Let us also denote the i-th word of the multiplicand A
by Ai = (a64i+63a64i+62 . . . a64i+1a64i), where each ak is a bit, and the most
significant bit in the word Ai is written first. Likewise, wj is represented by the
bit pattern (b3b2b1b0). The thread Θi,j performs the following computations:

Initialize P (i, j) to (000 . . . 0).
If b0 = 1, XOR P (i, j) with (a64i+63a64i+62 . . . a64i+1a64i).
If b1 = 1, XOR P (i, j) with (a64i+62a64i+61 . . . a64ia64i−1).
If b2 = 1, XOR P (i, j) with (a64i+61a64i+60 . . . a64i−1a64i−2).
If b3 = 1, XOR P (i, j) with (a64i+60a64i+59 . . . a64i−2a64i−3).

In addition to the word Ai, the thread Θi,j needs to read the three most signif-
icant bits a64i−1a64i−2a64i−3 from Ai−1. This is likely to incur conflicts during
memory access from L1 cache, since the thread Θi−1,j also accesses the word
Ai−1. In order to avoid this, three most significant bits of the words of A are
precomputed in an array M of size 20. As a result, Θi,j reads only from Ai and
Mi, whereas Θi−1,j reads from the different locations Ai−1 and Mi−1. Since M
depends only on A (not on wj), only 20 threads can prepare the array M , and
the resulting overhead is negligible compared to the performance degradation
that was associated with cache conflicts.

Intermediate Product Computation. This stage proceeds like school-book
multiplication. Instead of doing the multiplication bit by bit, we do it by chunks
of four bits. Each word of the multiplier B contains sixteen such four-bit chunks.
Figure 1 shows the distribution of the work among several threads. The threads
use a temporary matrix R for storing their individual contributions. The use of
R is necessitated by that the different threads can write in mutually exclusive
cells of R. In practice, R is implemented as a one-dimensional array. However,
Figure 1 shows it as a two-dimensional array for conceptual clarity. After all the
entries in R are computed by all the threads, the 40-word intermediate product
is obtained by adding the elements of R column-wise.



32 U. Bose, A.K. Bhattacharya, and A. Das

A B

R
e
su

lt
M

a
tr
ix

(R
)

A0A1A2A3A4A5A6A7A8A9A10A11A12A13A14A15A16A17A18A19

B0B1B2B3

B4B5B6B7

B8B9B10B11

B12B13B14B15

B16B17B18B19

0 - 34 - 78 - 1112 - 1516 - 1920 - 23

24 - 2728 - 3132 - 3536 - 3940 - 4344 - 47

48 - 5152 - 5556 - 5960 - 6364 - 6768 - 71

72 - 7576 - 7980 - 8384 - 8788 - 9192 - 95

96 - 99100-103104-107108-111112-115116-119

0 - 34 - 78 - 1112 - 1516 - 1920 - 2324 - 2728 - 3132 - 3536 - 39 Result

Fig. 1. Result Matrix Computation with 120 Threads

In Figure 1, we show how the result matrix R is computed by 120 threads.
Here, R is of size 200 words, and is maintained as a 40× 5 matrix. The figure,
however, does not show these individual words (for lack of space). Instead, each
box of R represents a group of four consecutive words. The range of four consec-
utive integers written within a box of R represents the IDs of the four threads
that compute the four words in that box. In order to prevent synchronization
overheads arising out of the race condition, different threads compute pair-wise
different cells in R.

The first row of R corresponds to the multiplication of A by the least sig-
nificant four words of B (that is, B0, B1, B2, B3). This partial product occupies
24 words which are computed by the threads with IDs 0–23, and stored in the
columns 0–23 (column numbering begins from right). The second row of R is
meant for storing the product of A with the next more significant four words
of B (that is, B4, B5, B6, B7). This 24-word partial product is computed by a
new set of 24 threads (with IDs 24–47), and stored in the second row of R with
a shift of four words (one box). Likewise, the third, fourth and fifth rows of R
are computed by 72 other threads. Notice that each row of R contains sixteen
unused words, and need to be initialized to zero. After the computation of R,
40 threads add elements of R column-wise to obtain the intermediate product
of A and B. Algorithm 2 elaborates this intermediate product generation stage.
The incorporation of the precomputation table P is explicitly mentioned there.
We use the symbols ⊕ (XOR), AND, OR, LEFTSHIFT and RIGHTSHIFT to
stand for standard bit-wise operations.

In Algorithm 2, the values of c− 4r− ID and c− 4r− ID− 1 at Lines 12 and
13 may become negative. In order to avoid the conditional check for negative
values (which degrades performance due to warp divergence [8]), we maintain
the precomputation matrix P as a 28 × 16 matrix instead of a 20 × 16 matrix.
The first four and the last four columns of each row are initialized with zero
entries. The actual values are stored in the middle 20 columns in each row.

1 By a barrier, we mean that any thread must start executing instructions following
MEM FENCE, only after all the currently running threads in a work group have
completed execution up to the barrier. This ensures synchronization among the
running threads.



GPU-Based Implementation of 128-Bit Secure Eta Pairing 33

Algorithm 2. Code for the i-th thread during intermediate product com-
putation

Input: A,B ∈ F21223 with precomputations on A stored in P
Output: The intermediate product C = A×B (a 40-word polynomial)

1 begin
2 r ← i/24
3 c← i mod 24
4 r ← r + 4c
5 t1 ← 0, t2 ← 0
6 r ← r + 4
7 for ID = 0 to 4 do
8 w2 ← B4r+ID

9 for j = 0 to 16 do
10 bit← RIGHTSHIFT(w2, 4j) AND 0x0F

11 w1 ← P (bit, c− 4r − ID)
12 w0 ← P (bit, c− 4r − ID − 1)
13 t1 ← LEFTSHIFT(w1, 4j) ⊕ RIGHTSHIFT(w0, 64− 4j)
14 t2 ← t2 ⊕ t1
15 end

16 end
17 r ← r − 4
18 Rr,c ← t2
19 barrier(MEM FENCE)2

20 if i < 40 then
21 Resulti ← R0,i ⊕R1,i ⊕R2,i ⊕R3,i ⊕R4,i

22 end
23 barrier(MEM FENCE)

24 end

In the above implementation, each thread handles four words of the multiplier
B. This can, however, be improved. If each thread handles only three consecutive
words of B, we need �20/3� = 7 rows in R and 20 + 3 = 23 used columns in
each row. This calls for 7× 23 = 161 threads. Since the 40-th word of the result
is necessarily zero (the product of two polynomials of degrees < 1223 is at most
2444 ≤ 2496 = 39×64), we can ignore the 161-st thread, that is, we can manage
with 160 threads only.

Each thread can similarly be allowed to handle 1, 2, 5, 7, 10, or 20 words of
B. The number of threads required in these cases are respectively 420, 220, 100,
60, 80 and 40. Increasing the number of threads to a high value may increase
the extent of parallelism, but at the same time it will restrict the number of
work groups that can be simultaneously active for concurrent execution in each
multiprocessor. On the other hand, decreasing the number of threads to a small
value increases the extent of serial execution within each thread. Thus, we need to
reach a tradeoff between the number of threads and the amount of computation
by each thread. Among all the above choices, we obtained the best performance
with 160 threads, each handling three words of B.



34 U. Bose, A.K. Bhattacharya, and A. Das

One-level Karatsuba Multiplication. Using Karatsuba multiplication in
conjunction with López-Dahab multiplication can speed up eta-pairing com-
putations further, because Karatsuba multiplication reduces the number of F2

multiplications at the cost of some linear operations. If we split each element A
of F21223 in two parts Ahi and Alo of ten words each, López-Dahab multiplication
of A and B requires four multiplications of ten-word operands (AhiBhi, AloBlo,
AloBhi, and AhiBlo), as shown below (where n = 640):

(Ahix
n +Alo)(Bhix

n +Blo) = AhiBhix
2n + (AhiBlo +AloBhi)x

n +AloBlo.

Karatsuba multiplication computes only the three products AhiBhi, AloBlo, and
(Ahi +Alo)(Bhi +Blo), and obtains

AhiBlo +AloBhi = (Ahi +Alo)(Bhi +Blo) +AhiBhi +AloBlo

using two addition operations. Each of the three ten-word multiplications is
done by López-Dahab strategy. Each thread handles two words of the multi-
plier, and the temporary result matrix R contains five rows and twenty columns.
Twelve threads write in each row, so the total number of threads needed for
each ten-word multiplication is 60. All the three ten-word multiplications can
run concurrently, thereby using a total of 180 threads.

Two levels of Karatsuba multiplication require only nine five-word multipli-
cations instead of 16. Although this seems to yield more speedup, this is not
the case in practice. First, the number of linear operations (additions and shifts
that cannot be done concurrently) increases. Second, precomputation overheads
associated with López-Dahab multiplication also increases. Using only one level
of Karatsuba multiplication turns out to be the optimal strategy.

Reduction. The defining polynomial x1223 + x255 + 1 is used to reduce the
terms of degrees ≥ 1223 in the intermediate product. More precisely, for n ≥ 0,
the non-zero term x1223+n is replaced by x255+n + xn. This is carried out in
parallel by 20 threads, where the i-th thread reduces the (20 + i)-th word. All
the threads first handle the adjustments of x255+n concurrently. Reduction of
the entire (20 + i)-th word affects both the (5 + i)-th and the (4 + i)-th words.
In order to avoid race condition, all the threads first handle the (5+ i)-th words
concurrently. Subsequently, after a synchronization, the (4 + i)-th words are
handled concurrently again. The adjustments of xn in a word level are carried
out similarly. Note that for large values of n, we may have 255+ n ≥ 1223. This
calls for some more synchronization of the threads.

4.3 Square

We precompute the squares of all 8-bit patterns, and store them in an array
Q of 256 words [12]. The parallel implementation of squaring in F21223 is done
by a total of 40 threads. Each thread handles a half word (that is, 32 bits) of
the operand A, consults the precomputation table Q four times, and stores the



GPU-Based Implementation of 128-Bit Secure Eta Pairing 35

partial result in an array R. More precisely, the threads 2i and 2i+ 1 read the
word Ai. The 2i-th thread reads the least significant 32 bits of Ai, and writes
the corresponding square value in R2i, whereas the (2i+1)-st thread writes the
square of the most significant 32 bits of Ai in R2i+1. The threads write in pair-
wise distinct words of R, so they can run concurrently without synchronization.

Algorithm 3. Code for the i-th thread during squaring

Input: An element of A ∈ F21223 and the precomputed table Q
Output: The intermediate 40-word square R = A2

1 begin
2 T ← Ai/2

3 if i is odd then
4 T ← RIGHTSHIFT(T, 32)
5 end
6 RT ← 0
7 for j = 0 to 3 do
8 byte← T AND 0xFF

9 T ← RIGHTSHIFT(T, 8)
10 RT ← RT ⊕ RIGHTSHIFT(Q[byte], 16j)

11 end
12 Resulti ← RT
13 barrier(MEM FENCE)

14 end

4.4 Square-Root

Write an element A of F21223 as A = Aeven(x) + xAodd(x), where

Aeven(x) = a1222x
1222 + a1220x

1220 + · · ·+ a2x
2 + a0,

Aodd(x) = a1221x
1220 + a1219x

1218 + · · ·+ a3x
2 + a1.

Then,

√
A = Aeven(

√
x ) +

√
xAodd(

√
x )

= (a1222x
611 + a1220x

610 + · · ·+ a2x+ a0) +√
x(a1221x

610 + a1219x
609 + · · ·+ a3x+ a1).

Moreover, since x1223 + x255 + 1 = 0, we have
√
x = x612 + x128.

We use 40 threads for this computation. Twenty threads Θeven,i compute
Aeven(

√
x ), and the remaining twenty threads Θodd,i compute Aodd(

√
x ). For

j = 0, 1, 2, . . . , 9, the thread Θeven,2j reads only the even bits of A2j , that is,
(a128j+62 . . . a128j+2a128j), and stores them in the least significant 32 bits of an
array Teven[0][j]. On the other hand, for j = 0, 1, 2, . . . , 9, the thread Θeven,2j+1



36 U. Bose, A.K. Bhattacharya, and A. Das

reads only the even bits of A2j+1, that is, (a128j+126 . . . a128j+66a128j+64) and
stores them in the most significant 32 bits of Teven[1][j]. Likewise, for j =
0, 1, 2, . . . , 9, Θodd,2j writes (a128j+63 . . . a128j+3a128j+1) in the least significant
32 bits of Todd[0][j], and Θodd,2j+1 writes (a128j+127 . . . a128j+67a128j+65) in the
most significant 32 bits of Todd[1][j]. After all these threads finish, ten threads add
Teven column-wise, and ten other threads add Todd column-wise. The column-
wise sum Todd is shifted by 612 and 128 bits, and the shifted arrays are added
to the column-wise sum of Teven. The details are shown as Algorithm 4, where
we have used flattened representations of various two-dimensional arrays.

Algorithm 4. Code for the i-th thread for square-root computation

Input: An element A ∈ F21223

Output: R =
√
A

1 begin
2 d← i/20, bit← i/20
3 ID← i mod 20
4 word← Ai

5 for j = 0 to 31 do
6 W ← RIGHTSHIFT(word, bit) AND 1
7 T ← T ⊕ LEFTSHIFT(W,bit/2)
8 bit← bit+ 2

9 end
10 if i is odd then
11 T ← LEFTSHIFT(T, 32)
12 end
13 R20d+10×(ID AND 1)+id/2 ← T
14 EvenOdd20d+ID ← R20d+i ⊕R20d+10+i

15 odd1i ← ShiftBy612Bits(EvenOdd20+i) // multiply by x612

16 odd2i ← ShiftBy128Bits(EvenOdd20+i) // multiply by x128

17 if i < 20 then
18 Ri ← odd1i ⊕ odd2i ⊕ EvenOddi
19 end

20 end

4.5 Inverse

Inverse is used only once during final exponentiation [18]. This is computed in
parallel by the extended Euclidean gcd algorithm for polynomials [12]. In addi-
tion to finding the gcd γ of two polynomials A and B, it also finds polynomials
g and h satisfying the Bézout relation gA+hB = γ. In the inverse computation,
B = f(x) = x1223 + x255 + 1 is irreducible, and A 	= 0 is of degree < 1223, so
γ = 1. Thus, the polynomial g computed by the algorithm is the inverse of A
(modulo f). It is not necessary to compute the other polynomial h.



GPU-Based Implementation of 128-Bit Secure Eta Pairing 37

Algorithm 5. Code for the i-th thread for computing inverse

Input: A non-zero binary polynomial A, and the irreducible polynomial
f(x) = x1223 + x255 + 1, each occupying 20 words

Output: A−1 mod f
1 begin
2 Ui ← fi, Vi ← Ai, g1i ← 0, g2i ← 0
3 SVi ← 0, SVi+20 ← 0, SGi ← 0, SGi+20 ← 0
4 if i = 0 then
5 g2i ← 1
6 end
7 while TRUE do
8 DEGi ← WordDegree(Ui) // highest position of a 1-bit in Ui

9 DEGi+20 ← WordDegree(Vi) // highest position of a 1-bit in Vi

10 barrier(MEM FENCE)
11 if i = 0 then
12 shared terminate← 0
13 degU ← GetDegree(DEG, 20) // Find deg(U) from DEG[0–19]
14 degV ← GetDegree(DEG, 40) // Find deg(U) from DEG[20–39]
15 shared diff← degU − degV

16 end
17 barrier(MEM FENCE)
18 d← diff
19 if d ≤ 1 then
20 Ui ↔ Vi, g1i ↔ g2i , d← −d
21 end
22 barrier(MEM FENCE)
23 k ← d/64, w← d mod 64
24 SVi+k ← Vi, SGi+k ← g2i
25 vw← GetRightMostBits(Vi−1, w)
26 gw← GetRightMostBits(g2i−1 , w)
27 SVi+k ← LEFTSHIFT(SVi+k, w)⊕ vw
28 SGi+k ← LEFTSHIFT(SGi+k, w)⊕ gw
29 barrier(MEM FENCE)
30 Ui ← Ui ⊕ SVi, g1i ← g1i ⊕ SGi

31 if i �= 0 and Ui �= 0 then
32 terminate← 1
33 end
34 barrier(MEM FENCE)
35 if (terminate = 0 and U0 = 1) then
36 Terminate the loop
37 end

38 end

39 end



38 U. Bose, A.K. Bhattacharya, and A. Das

Two polynomials U and V are initialized to f and A. Moreover, g1 is initialized
to 0, and g2 to 1. In each iteration, 20 threads compute the word degrees deg(Ui)
and deg(Vi). Then, one thread computes d = deg(U)− deg(V ). If d is negative,
the 20 threads swap U and V , and also g1 and g2. Finally, the threads subtract
(add) xdV from U and also xdg2 from g1. This is repeated until U reduces to 1.
The detailed code is supplied as Algorithm 5.

In our implementation, this algorithm is further parallelized by using 40
threads (Algorithm 5 uses only 20 threads, for simplicity). The degree calcu-
lations of U and V can proceed in parallel. The swapping of (U, V ) and (g1, g2)
can also be parallelized. Finally, the two shifts xdV and xdg2 can proceed con-
currently, and so also can the two additions U + xdV and g1 + xdg2.

5 Parallel Implementations of Eta Pairing

Suppose that we want to compute n eta pairings in parallel. In our implementa-
tion, only two kernels are launched for this task. The first kernel runs the Miller
loop for all these n eta-pairing computations. The output of the Miller loop is
fed to the second kernel which computes the final exponentiation. Each kernel
launches n work groups, each with 180 threads. Threads are launched as warps,
so even if we use only 180 threads, the GPU actually launches six warps (that
is, 192 threads) per work group.

At the end of each iteration of the Miller loop, the threads of each work group
are synchronized. Out of the 180 threads in a work group, 80 threads are used to
compute the two squares x2

2 and y22 in parallel, and also the two square-roots
√
x1

and
√
y1 in parallel. For these operations, only 44.45% of the threads are utilized.

For most part of the six multiplications in an iteration, all the threads are utilized
(we have used Karatsuba and López-Dahab multiplications together). The linear
operations (assignments and additions) in each iteration are usually done in
parallel using 20 threads. In some cases, multiple linear operations can proceed
in parallel, thereby utilizing more threads. Clearly, the square, square-root, and
linear operations are unable to exploit available hardware resources (threads)
effectively. Nevertheless, since multiplication is the most critical field operation
in the eta-pairing algorithm, our implementation seems to exploit parallelism to
the best extent possible.

Each multiprocessor can have up to eight active work groups capable of run-
ning concurrently. Moreover, there are 14 multiprocessors in our GPU platform.
Therefore, a total of 112 work groups can be simultaneously active. As a result,
at most 112 eta-pairing computations can run truly in parallel, at least in theory.
Our implementations corroborate this expected behavior.

6 Experimental Results

Our implementations are done both in CUDA and in OpenCL. Here, we re-
port our OpenCL results only, since OpenCL gives us slightly better results,
potentially because of the following reasons.



GPU-Based Implementation of 128-Bit Secure Eta Pairing 39

– Kernel initialization time is less in OpenCL than in CUDA. This may account
for better performance of OpenCL over CUDA for small data sets. For large
data sets, both OpenCL and CUDA are found to perform equally well.

– OpenCL can be ported to many other devices (like Intel and AMD graphics
cards) with minimal effort.

– CUDA’s synchronization features are not as flexible as those of OpenCL.
In OpenCL, any queued operation (like memory transfer and kernel execu-
tion) can be forced to wait on any other set of queued operations. CUDA’s
instruction streams at the time of implementation are comparatively more
restrictive. In other words, the in-line synchronization features of OpenCL
have been useful in our implementation.

We have used the CudaEvent() API call for measuring time in CUDA, and the
clGetEventProfilingInfo()API call in OpenCL. Table 1 shows the number of
field multiplications (in millions/sec) performed for different numbers of threads.
In the table, ω represents the number of words in the multiplier, that each thread
handles. This determines the number of threads to be used, as explained in
Section 4.2. Only the entry with 180 threads (ω = 3) uses Karatsuba multipli-
cation in tandem with López-Dahab multiplication.

Table 1. Number of F21223 multiplications with different thread-block sizes

Number of multiplications
ω Number of threads (millions/sec)

20 40 1.3
10 60 1.7
7 80 1.9
5 100 2.3
4 120 2.8
3 160 3.3
2 180 ∗ 3.5
2 220 3.1
1 420 2.3

∗ With Karatsuba multiplication

Table 1 shows that the performance gradually improves with the increase in
the number of threads, reaches the best for 180 threads, and then decreases be-
yond this point. This is because there can be at most 48 concurrent warps in a
multiprocessor, and the number of work groups that can reside in each multipro-
cessor is 8. Since each warp has 32 threads, a work-group size of (48/8)×32 = 192
allows concurrent execution of all resident threads, thereby minimizing memory
latency. With more than 192 threads, the extent of concurrency is restricted,
and the performance degrades.

Table 2 shows the numbers of all field operations computed per second, along
with the number of threads participating in each operation. The multiplication
and square operations include reduction (by the polynomial x1223 + x255 + 1).



40 U. Bose, A.K. Bhattacharya, and A. Das

Table 2. Performance of binary-field arithmetic

Number of operations
Field operation Number of threads (millions/sec)

Addition 20 100.09
Reduction 20 62.5
Square ∗ 40 15.8
Square root 40 6.4
Multiplication ∗ 180 3.5
Inverse 40 0.022

∗ Including reduction

Table 3 presents a comparative study of the performances of some eta-pairing
implementations. Currently, the fastest software implementation of 128-bit se-
cure eta pairing over fields of small characteristics is the eight-core CPU imple-
mentation of Aranha et al. [3]. Our implementation on Tesla C2050 is slightly
slower than this. Our codes are readily portable to the GTX 480 platform, but
unavailability of such a machine prevents us from carrying out the actual ex-
periment. We, however, estimate that our implementation ported to a GTX 480
platform can be the fastest software implementation of 128-bit secure eta pairing.

Table 3. Comparison with other software implementations of ηT pairing

Clock freq Time per eta
Implementation Field Platform # cores (GHz) pairing (ms)

Hankerson et al. [11] F21223 CPU, Intel Core2 1 2.4 16.25
F3509 CPU, Intel Core2 1 2.4 13.75
Fp256 CPU, Intel Core2 1 2.4 6.25

Beuchat et al. [5] F3509 CPU, Intel Core2 1 2.0 11.51
F3509 CPU, Intel Core2 2 2.0 6.57
F3509 CPU, Intel Core2 4 2.0 4.54
F3509 CPU, Intel Core2 8 2.0 4.46

Aranha et al. [3] F21223 CPU, Intel Core2 1 2.0 8.70
F21223 CPU, Intel Core2 2 2.0 4.67
F21223 CPU, Intel Core2 4 2.0 2.54
F21223 CPU, Intel Core2 8 2.0 1.51

Katoh et al. [15] F3509 GPU, Tesla C2050 448 1.1 3.93
F3509 GPU, GTX 480 480 1.4 3.01

This Work F21223 GPU, Tesla C2050 448 1.1 1.76
This Work F21223 GPU, GTX 480 480 1.4 1.36 ∗

∗ Estimated running time

7 Conclusion

In this paper, we report our GPU-based implementations of eta pairing on a
supersingular curve over the binary field F21223 . Cryptographic protocols based



GPU-Based Implementation of 128-Bit Secure Eta Pairing 41

on this curve offer 128-bit security, so efficient implementation of this pairing
is an important issue to cryptographers. Throughout the paper, we report our
optimization strategies for maximizing efficiency on a popular GPU architecture.
Our implementations can be directly ported to similar GPU architectures, and
have the potential of producing the fastest possible implementation of 128-bit
secure eta pairing. Our implementations are most suited to applications where
a large number of eta pairings need to be computed.

We end this paper after highlighting some possible extensions of our work.

– Our implementations can be applied mutatis mutandis to compute eta pair-
ing on another popular supersingular curve defined over the field F3509 .

– Other types of pairing (like Weil and Tate) and other types of curves (like
ordinary) may also be studied for GPU-based implementations.

– Large prime fields involve working with large integers. Since integer arith-
metic demands frequent carry manipulation, an efficient GPU-based imple-
mentation of prime-field arithmetic is a very challenging exercise, differing
substantially in complexity from implementations of polynomial-based arith-
metic of extension fields like F21223 and F3509 .

Acknowledgement. The authors wish to gratefully acknowledge many useful
improvements suggested by the anonymous referees.

References

1. Adikari, J., Hasan, M.A., Negre, C.: Towards faster and greener cryptoproces-
sor for eta pairing on supersingular elliptic curve over IF21223 . In: Knudsen, L.R.,
Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 166–183. Springer, Heidelberg (2013)

2. Aranha, D.F., Beuchat, J.-L., Detrey, J., Estibals, N.: Optimal eta pairing
on supersingular genus-2 binary hyperelliptic curves. In: Dunkelman, O. (ed.)
CT-RSA 2012. LNCS, vol. 7178, pp. 98–115. Springer, Heidelberg (2012)

3. Aranha, D.F., López, J., Hankerson, D.: High-speed parallel software implemen-
tation of the ηT pairing. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985,
pp. 89–105. Springer, Heidelberg (2010)

4. Barreto, P.S.L.M., Galbraith, S., hÉigeartaigh, C.O., Scott, M.: Efficient pairing
computation on supersingular Abelian varieties. Designs, Codes and Cryptography,
239–271 (2004)

5. Beuchat, J.-L., López-Trejo, E., Mart́ınez-Ramos, L., Mitsunari, S., Rodŕıguez-
Henŕıquez, F.: Multi-core implementation of the tate pairing over supersingular
elliptic curves. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS,
vol. 5888, pp. 413–432. Springer, Heidelberg (2009)

6. Blake, I., Seroussi, G., Smart, N.: Elliptic curves in cryptography. London Mathe-
matical Society, vol. 265. Cambridge University Press (1999)

7. Fan, J., Vercauteren, F., Verbauwhede, I.: Efficient hardware implementation of
IFp-arithmetic for pairing-friendly curves. IEEE Transactions on Computers 61(5),
676–685 (2012)

8. Fung, W.W.L., Sham, I., Yuan, G., Aamodt, T.M.: Dynamic warp formation and
scheduling for efficient GPU control flow. Micro 40, 407–420 (2007)



42 U. Bose, A.K. Bhattacharya, and A. Das

9. Ghosh, S., Roychowdhury, D., Das, A.: High speed cryptoprocessor for ηT pairing
on 128-bit secure supersingular elliptic curves over characteristic two fields. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 442–458. Springer,
Heidelberg (2011)

10. Glaskowsky, P.: NVIDIA’s Fermi: The first complete GPU computing architecture.
White paper, NVIDIA Corporation (2009)

11. Hankerson, D., Menezes, A., Scott, M.: Software implementation of pairings. In:
Cryptology and Information Security Series, vol. 2, pp. 188–206. IOS Press (2009)

12. Hankerson, D., Menezes, A., Vanstone, S.: Guide to elliptic curve cryptography.
Springer (2004)

13. Joux, A.: A new index calculus algorithm with complexity L(1/4 + o(1)) in
very small characteristic. Cryptology ePrint Archive, Report 2013/095 (2013),
http://eprint.iacr.org/2013/095

14. Karatsuba, A., Ofman, Y.: Multiplication of many-digital numbers by automatic
computers. Doklady Akad. Nauk. SSSR 145, 293–294 (1962)

15. Katoh, Y., Huang, Y.-J., Cheng, C.-M., Takagi, T.: Efficient implementation of
the ηT pairing on GPU. Cryptology ePrint Archive, Report 2011/540 (2011),
http://eprint.iacr.org/2011/540

16. López, J., Dahab, R.: High-speed software multiplication in f2m. In: Roy, B.,
Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 203–212. Springer,
Heidelberg (2000)

17. NVIDIA Corporation, CUDA: Compute unified device architecture programming
guide. Technical Report, NVIDIA (2007)

18. Scott, M., Benger, N., Charlemagne, M., Dominguez Perez, L.J., Kachisa, E.J.:
On the final exponentiation for calculating pairings on ordinary elliptic curves. In:
Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 78–88. Springer,
Heidelberg (2009)

19. Shinohara, N., Shimoyama, T., Hayashi, T., Takagi, T.: Key length estimation of
pairing-based cryptosystems using ηT pairing. Cryptology ePrint Archive, Report
2012/042 (2012), http://eprint.iacr.org/2012/042

 http://eprint.iacr.org/2013/095
http://eprint.iacr.org/2011/540
http://eprint.iacr.org/2012/042

	GPU-Based Implementation of 128-Bit Secure Eta Pairing over a Binary Field
	Introduction
	NVIDIA Graphics Processing Units
	GPU Architecture
	GPU Programing Model
	GPU Memory Architecture

	Eta Pairing in a Field of Characteristic Two
	Arithmetic of the Binary Field
	Addition
	Multiplication
	Square
	Square-Root
	Inverse

	Parallel Implementations of Eta Pairing
	Experimental Results
	Conclusion


