Batch Verification of ECDSA Signatures

Sabyasachi Karati
Abhijit Das
Dipanwita Roychowdhury
Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur, India
skarati, abhij,drc@se.iitkgp.ernet.in

Bhargav Bellur
Debojyoti Bhattacharya
Aravind lyer
General Motors Technical Centre India
India Science Lab, Bangalore, India
bhar gav_bel | ur @ahoo. com
Deboj yoti . bhattacharya@mail.com
aravi nd. i yer@m com

Abstract. In this paper, we study several algorithms for batch verification of
ECDSA signatures. The first of these algorithms is based upon theidawef
taking square roots in the underlying field. We also propose two new &oigef
algorithms which replace square-root computations by symbolic matiqmsa
Experiments carried out on NIST prime curves demonstrate a maxirpeedsp

of above six over individual verification if all the signatures in the batdbrizg

to the same signer, and a maximum speedup of about two if the signatuhes in
batch belong to different signers, both achieved by a fast varianioéecond
symbolic-manipulation algorithm. In terms of security, all the studied algoisth
are equivalent to standard ECDSA* batch verification. These algoriéengrac-
tical only for small & 8) batch sizes. To the best of our knowledge, this is the
first reported study on the batch verificationoofginal ECDSA signatures.

Keywords: Digital Signatures, Elliptic Curves, ECDSA, ECDSA*, Batch Verifi-
cation, Modular Square Root, Symbolic Computation, Linearization.

1 Introduction

Batch verificatioris used to verify multiple digital signatures in time lesarihotal in-
dividual verification time. The concept of batch verificatis introduced by Naccache
et al [7] in EuroCrypt'94. They propose an interactive batehification protocol for
DSA [8]. In this protocol, the signer generatesignatures through interaction with the
verifier, and then the verifier validates all thess#gnatures simultaneously.

Harn, in 1998, proposes an efficient scheme [4, 5] for thehbeacification of RSA
signatures [12], where multiple sighatures signed by timeesprivate key can be ver-
ified simultaneously. Harn’s scheme uses only one expaatéortii for batches of any
sizet. There are some weaknesses in this scheme. For exampléchf vexification

fails, we cannot identify the faulty signature(s) withouakmg individual verification.
Moreover, Harn’s scheme does not adapt to the case of sigisdtom multiple signers.

These protocols are not straightaway applicable to ECD§Aagures [2, 6]. Since
ECDSA requires smaller key and signature sizes than DSA &#l Ehere has been a
growing interest in ECDSA. ECDSA* [1], a modification of ECBSpermits an easy
adaptation of Naccache et al's batch-verification protdopDSA. Cheon and Yi [3]
study batch verification of ECDSA* signatures, and repogesjup factors of up t@
for same signer and for different signers. However, ECDSA* is not a standardj an
is thus unacceptable, particularly in applications whaterbperability is of concern.
More importantly, ECDSA* increases the signature size camag to ECDSA without
any increase in the security. Consequently, batch veiiicatf original ECDSA signa-
tures turns out to be a practically important open researchl@m. To the best of our
knowledge, no significant result in this area has ever begorted in the literature.

In this paper, we propose three algorithms to vedfiginal ECDSA signatures
in batches. Our algorithms apply to all cases of ECDSA signeat sharing the same
curve parameters, although we obtain good speedup figurea afh the signatures
in the batch come from the same signer. Our algorithms aezt@fé only for small
batch sizes (like < 8). The first algorithm we introduce (henceforth denoted agAl
rithm N) is based upon a naive approach of taking square mabe underlying field.
As the field size increases, square-root computations beaprite costly. We mod-
ify Algorithm N by replacing square-root calculations byrdyolic manipulations. We
propose two ECDSA batch-verification algorithms, calleda®dl S2, using symbolic
manipulations. Algorithm S1 is not very practical, but isalissed in this paper, for it
provides the theoretical and practical foundations foiveng at Algorithm S2. For a
wide range of field and batch sizes, Algorithm S2 convingirgltperforms the naive
Algorithm N. Both S1 and S2 are probabilistic algorithms e tMonte Carlo sense,
that is, they may occasionally fail to verify correct sigmats. We analytically establish
that for randomly generated signatures, the failure pritibals extremely low.

The rest of this paper is organized as follows. In Sectioneidentify the problems
associated with ECDSA batch verification. In this process,imroduce the ECDSA
signature scheme, and set up the notations which we usegthwatthe rest of the pa-
per. In Section 3, we introduce a naive batch-verificatigoathm N and its variant N
Section 4 elaborates our new algorithm S1 based upon symnimalhipulations. Sec-
tion 5 presents an analytic study of Algorithm S1. We furrdsiails about the running
time, the cases of failure, and the security of Algorithm Bie running time estimates
for Algorithm S1 indicate that this algorithm is expectedprform poorly unless the
batch sizef is very small. In Section 6, we improve upon this algorithmatdve at
Algorithm S2. Analytic results for Algorithm S2 are provilen Section 7. A heuristic
capable of significantly speeding up Algorithms S1 and S2asgnted in Section 8. In
Section 9, we list our experimental results, and comparg@éhntrmances of the three
algorithms N, S1 and S2. We also study the performances eé tfaster variants I\
SY and S2 of these algorithms. Although we have concentrated onlynupe curves
over prime fields, supplied in the NIST standard [9], our alpmns readily apply to
other curves with cofactar. As mentioned in [1], cofactor values larger thanan be

easily handled by appending only a few bits of extra infoiorato standard ECDSA
signatures. The concluding Section 10 highlights somedutesearch directions.

2 Notations

The elliptic-curve digital signature algorithm (ECDSA)iased upon some parameters
common to all entities participating in a network.

g = Order of the prime field,.

E = An elliptic curvey? = z3 + az + b defined over the prime fiel,.
P = Arandom non-zero base point ;{[F,).

n = The order ofP, typically a prime.

B

h = The cofactor
n

For the time being, we assume titat= 1, that is,E(IF,,) is a cyclic group, andP is a
generator ofE(IF,). This is indeed the case for certain elliptic curves statidad by
NIST. By Hasse’s theorem, we hae— ¢ —1| < 2,/q. If n > ¢, an element oZ,, has
a unique representation#,. On the other hand, # < ¢, an element oZ,, has at most
two representations i, . The density of elements &, having two representations in
Zq1s < 2/,/q which is close to zero for large values pf

In an ECDSA signaturéM, r, s), the values ands are known modula.. However,
r corresponds to an elliptic-curve point and should be knowdutog. If » corresponds
to a random point o, it uniquely identifies an element &, with probability close
to 1. In view of this, we will ignore the effect of issues assoethtvith the ambiguous
representation stated above, in the rest of this article.

Note that the ambiguities arising out/of> 1 and/orq > n can be practically solved
by appending only a few extra bits to standard ECDSA sigeat[f, 3]. Consequently,
our assumptions are neither too restrictive nor too impralt

An ECDSA key pair consists of the public k&Y and the private key satisfying
@ = dP. The steps for generating the ECDSA signatute) on a messag#/ follow.

. k = Arandomly chosen element in the rarigen — 1] (the session key).

R =EkP.

. r = z(R) (thex-coordinate ofR) reduced modula.

. s =k Y(H(M) + dr)(mod n) (where H is a cryptographic hash function like
SHA-1 [10]).

AWM PR

The following steps verify the ECDSA signatupe s) on a messag#/.

1. w = 57! (modn).

2. v = H(M)w (mod n).

3. v = rw (mod n).

4. R = uP+vQ € E(F,). (1)
5. Accept the signature if and onlyidf R) = r (mod n).

3 Naive Batch Verification Algorithms N and N’ for ECDSA

Throughout the rest of this paper, we plan to simultaneousslify ¢t ECDSA signatures

(r1,51), (r2, 82), ..., (¢, 5¢) On messagedl,, M, ..., M. By m, we will denote2?.
Fort signed messagéd/;,r;, s;),i = 1,2,...,t, we have
t t t
SR, — (z) Py . @
=1 =1 =1
If all the signatures belong to the same signer, we lave= Qs = --- = Q; = @

(say), and the last equation simplifies to:

S (S0 () .

=1

The basic idea is to compute the two sides of Eqn (2) or Egnaf®), check for the
equality. Use of these equations reduces the number ofrsoaléiplications from2t
to [2,t + 1], where2 corresponds to the case where all the signatures belongrne sa
signer, andt + 1 corresponds to the case where thsigners are distinct from one
another. However, only the-coordinates of?; are known from the signatures. In gen-
eral, there are twg-coordinates corresponding to a givertoordinate, but computing
thesey-coordinates requires taking square roots moguétime-consuming operation.
Moreover, there is nothing immediately available in thenaigres to remove the ambi-
guity in these two values af. Finally, computing allR; using Eqn (1) misses the basic
idea of batch verification, since after this expensive cadien, there is only an in-
significant amount of effort left to complete individual iferations of thet signatures.

ECDSA* [1], a modification of ECDSA where the entire poitis included in the
signature instead of, adapts readily to the above batch-verification idea. Nwaless,
a naive algorithm (to be denoted as Algorithm N) for the batetification of original
ECDSA signatures can be conceived of. For egolie compute the square roajs
of 72 + ar; + b moduloq. There are (usually}’ choices of the square roots for
all i = 1,2,...,t. If any of these combinations of square roots satisfies Ejn\@
accept the batch of signatures. This is definitely an obweaysof solving the ECDSA
batch-verification problem, but we have not found any previmention of this algo-
rithm in the literature. Modular square-root computatiams out to be a costly op-
eration. Moreover, we need to check (at most)= 2! possible conditions for batch
verification—a step that is also quite costly unlegssmall.

Using a single extra bit of information in an ECDSA signatupee can unam-
biguously identify thecorrectsquare root of? + ar; + b, and thereby avoid th@(2?)
overhead associated with Algorithm N. This updated (andiefit) version of the naive
algorithm will henceforth be denoted by Algorithni.NDespite this updating, there is
apparently nothing present in ECDSA signatures, that ges/ia support for quickly
computingthe correct square root. The basic aim of this paper is toldpagorithms
to reduce the overhead associated with square-root catmsaln effect, we are con-
verting ECDSA signatures to ECDSA* signatures. In that setiss paper is not com-
peting with but complementary to the earlier works [1, 3] dBESA*.

4 A New Batch-verification Algorithm for ECDSA (Algorithm S1)

In this section, we present a new algorithm to convert Eqoi(Bqgn (3) to a form which
eliminates the problems associated with the lack of knogdeaf they-coordinates of
R;. We compute the right side of Egn (2) or Eqn (3) as efficientlypassible. The left
side is not computed explicitly, but symbolically in the mokvn valuesy,, y2, . .., y:
(the y-coordinates ofR, Rs, ..., R;). By solving a system of linear equations over
[F,, we obtain enough information to verify thesignatures simultaneously. This new
algorithm, called Algorithm S1, turns out to be faster thdgokithm N for small batch
sizes (typically fort < 4) and for large underlying fields.

t
4.1 Symbolic Computation ofR = » R;
=1

Let R; = (zi,y;). Thez-coordinates:; = z(R;) are available from the signatures,
namely,x; = r; or x; = r; + n. The second case pertains to the conditioa ¢ and
has a very low probability. So we plan to ignore this case,takdz; = z(R;) = r;.
It is indeed easy to detect when the redugezbordinater; has two representatives in
F,, and if so, we repeat Algorithm S1 for both these values.

Although they-coordinatey; = y(R;) is unknown to us, we know the values of

y? = r¥+ar; + b (mod g) @

foralli=1,2,...,t, sinceR; = (r;,y;) iS apoint on the curvé.
Applying the elliptic-curve point-addition formula repedly gives the following
representation of the poitit = >>'_, R;:

R— (gw(yhy%'--»yt)’gy(ylay27--~7yt)>7 (5)
hr(yla Y2,... 7yt) hy(y17y27 oo 7yt)
whereg, gy, hs, hy are polynomials iff;[y1, y2, . . ., y¢]. In view of Eqn (4), we may

assume that these polynomials hgyelegrees< 1 foralli = 1,2, ..., t. Thisimplies
that the denominatadr,. (y) is of the formu(ys, ys, - . ., ye)y1 +v(y2, ys, - - -, yt). Mul-
tiplying bothg, andh, by u(yz, ys, - - ., y¢)y1 —v(y2,ys, - - - ,y¢) and using Eqn (4), we

can eliminatey; from the denominator. Repeating this successivelyyfows, . . ., y:
allows us to represent the poiRtas a pair of polynomial expressions:
R:(Rz(y17y27"'7yt)7Ry(ylay27"~7yt)) (6)

with the polynomialsk, and R, linear individually with respect to al;. It is useful
to clear the denominator after every symbolic additiongadtof only once after the
entire suUmMR = Eﬁzl R; is computed symbolically. It is easy to establish tiigt
is a polynomial with each non-zero term having even totarelegwhereas?, is a
polynomial with each non-zero term having odd total degBse(Appendix A).

From the right side of Eqn (2) or Eqgn (3), we compute the@ndy-coordinates of
R asR = (a, B) for somea, 8 € FF,,. This gives us two initial multivariate equations:

Re(y1, 92, -+, 4t) = a, (7)
Ry(ylay27"'ayt):B‘ (8)

4.2 Solving the Multivariate Equations

We treat Eqns (7) and (8) as linear equations in the squagerfronomialsy;, y;y;,
¥iy;Yx, and so onR, contains non-zero terms involving only the even-degreeanon
mials, that iSyiy;, ¥iy;yry, and so on. There are ex.acny: 2t 1 = 3 —1such
monomials, wheren = 2¢. We name these monomials &s z», . . ., z,,, and take out
the constant term fronk,, to rewrite Eqn (7) as

p1,121 + pr2ze + -+ P12y = 1. 9)

If we square both sides of this equation, and use Eqgn (4) toirgdite all squares of
variables, we obtain another linear equation:

p2,1%21 + p2222 + -+ P2, u2y = Qo. (10)
By repeated squaring, we generate a totak dihear equations in, 2o, . .., z,. We
then solve the resulting system and obtain the values,ab, . . ., z,.

If the system is not of full rank, we make use of Eqn (8) as fetioEach non-zero
terminR, has odd degree. However, the equatR§1: 3% (along with the substitution

given by Eqn (4)) leads to a linear equation in the even-gegrenomials:y, 2o, . . . , 2,
only. Repeated squaring of this equation continues to gémer second sequence of
linear equations in1, 22, . . ., 2.

We expect to obtaip linearly independent equations from these two sequences.

4.3 A Strategy for Faster Equation Generation

There are indeed other ways of generating new linear equsaiticy , 22, . . . , 2. Let

p1z1+ p2z2 + o+ puzy =7y (11)
be an equation already generated, andf (et zo, . . ., z,) be anylF,-linear combina-
tion of the monomialg, 29, . . ., z,. Simplification of the equation

(plzl +10222 + +puzu)f(zl7z2a"'azu) = ,Yf<zla227' "7’2#)

using Eqgn (4) again yields a linear equatiorein zs, . . ., 2,. In particular, the choice
f(z1,22,...,2,) = z; with a small degree of; typically leads to a faster generation of
a new equation than squaring Eqn (11). Our experimentsatalibat we can generate a
full-rank system by monomial multiplications and a few sdgoperations. Moreover,
only Eqn (7) suffices to generate a uniquely solvable lizegrsystem.

4.4 Retrieving the Unknowny-coordinates

The final step in Algorithm S1 involves the determinationhs §-coordinateg; of the
points R;. Multiplying both sides of Eqn (8) by; gives an equation of the form

By1 = €0 + €121 + €220 + - - + €2,

Substitution of the values of; available from the previous stage gives (provided
that s = 0). Subsequently, the valugsfor i = 2,3, ..., ¢ can be obtained by dividing

the known value of, y; by y, provided thaty, # 0. Even ify; = 0, we can multiply
Eqgn (8) byy to solve fory,. If yo # 0, we are allowed to computg = (yay;)/y= for

1 = 3. If yo = 0 too, we computeys by directly using Egn (8), and so on. The only
condition that is necessary to solve for gllvalues uniquely i$ # 0, whereg is the
y-coordinate of the point on the right side of Eqn (2) (or Eq)).(3

We finally check whether Eqn (4) is valid for @l 1,2, ..., t. If so, all the signa-
tures are verified simultaneously. If one or more of thesatgus fail(s) to hold, batch
verification fails.

In short, Algorithm S1 uniquely reconstructs the poiRtswith z(R;) = r;. The
computations do not involve taking modular square root®'jn\We also avoid com-
puting the pointsR;, = u; P + v;Q; needed in individual verification. The final check
(y? = 73 + ar; + b) guarantees that the reconstructed points really lie orctinee.

In the next section, we prove that the reconstruction pmsesceeds with very high
probability. Moreover, for small batch sizes, the recamgion process is efficient.

5 Analysis of Algorithm S1

5.1 Running Time

The count of monomials handled during the equation-geiograind equation-solving
stages it = 271 -1 = % — 1 which grows exponentially with. Determination
of the Egns (7) and (8) needs— 1 symbolic additions involving rational functions
with at most©(m) non-zero terms. Each symbolic addition is followed by at tmos
uses of Eqn (4). Therefore, the symbolic derivationfofequiresO(mt?) operations
in IF,,. The subsequent generation of he 1 linearized system requires(m?t) field
operations. Finally, Gaussian elimination on arx p system demand®(m?) field
operations. Retrieving individug; values calls folO (mt?) (usuallyO(mt)) field op-
erations. The running time of Algorithm S1 is dominated by linear system-solving
stage. Evidently, Algorithm S1 becomes impractical exceyy for small values of.

It is worthwhile to investigate the running time of the naikigorithm N. First,
this algorithm needs to computemodular square roots in the fielf,. Each such
square-root computation (for example, by the Tonelli-$saagorithm [13]) involves
an exponentiation if,. Subsequently, one needs to check at mest 2¢ = 2(u +
1) conditions, with each check involving the computation & Bum oft points on
the curve. Therefore, the total running time of Algorithm NO((o + m)t), where
o is the time for computing one square rootliij. Thus, Algorithm S1 outperforms
Algorithm N only in situations where is rather large compared ta. This happens
typically when the batch sizeis small and the field sizgis large.

5.2 Unique Solvability of the Linearized System

In Algorithm S1, we solve a linearized x 1 system to obtain the values of the even-
degree monomialsy, zo, . . ., z, in the unknowny-coordinatesys, y2, ..., y:. Let us
call the coefficient matrixd/. In order that the linearized system is uniquely solvable,
we requiredet M # 0. We now investigate how often this condition is satisfied] an
also how we can force this condition to hold in most cases.

For a moment, let us treat thecoordinates, o, ..., r; as symbols. But then the
failure conditiondet M = 0 can be rephrased in terms of a multivariate polynomial
equation inrq,rs, ..., 7. Let us denote this equation &Xr,rs,...,7) = 0. If D
is identically zero, then any values of, o, . . ., 7; constitute a root ofD. We explain
shortly how this situation can be avoided.

Assume thatD is not identically zero. Leb be the maximum degree of each in-

dividual r; in D. One can derive thaf < (22+3Mlext1+2 4 3) (22”1—1 — 1) ~

22" +2t+3log, t]+1 (See Appendix B). If we restrict our attention to the valtes 6,
we haves < 2°4, The maximum number of roots @ is bounded belowdsq*—! (See
Appendix C). The total number aftuples(ry,ra, ...,) overF, is ¢*. Therefore, a
randomly chosen tupléry, 7, ..., 7;) is a root of D with probability < té¢*~!/q! =
té/q. If we use the inequalities < 6, § < 2°* andq > 2'%°, we conclude that this
probability is less thag =193, Therefore, ifD is not the zero polynomial, we can solve
for z1, 22, . .., 2, uniquely with very high probability.

What remains is to propose a way to avoid the condifibe- 0. We start with any
t randomly chosen ECDSA signatures witlvaluesr, ro, . . ., . We then choose any
sequence of squaring and multiplication yin order to arrive at a linear system in
21,22, .., 2, If the corresponding coefficient matriX is not invertible, we discard
the chosen sequence of squaring and multiplication. Thieéauselet M = 0 implies
that eitherD is the zero polynomial or the chosen, ro, ..., r; constitute a root of a
non-zeroD. The second case is extremely unlikely. With high probghilve, there-
fore, conclude that the chosen sequence of squaring andphualtion givesD = 0
identically. We change the sequence, and repeat the aboseg until we come across

the situation where, 5, ..., r, do not constitute a root of the non-zero polynomial
equationD(ry,r9,...,r:) = 0. This implies thatD is not identically zero, and ran-
domly chosenry,ro, ..., satisfy D(ry,rq,...,7) = 0 with very low probability.

We keep this sequence for all future invocations of our bataffication algorithm.

Table 1 lists some sequences of squaring and multiplicatiat work for NIST
prime curves. Hereq stands for a squaring step, whereas a monomial {like) stands
for multiplication by that monomial. In all these cases, vee only Eqn (7), whereas
Eqgn (8) is used only for the unique determination of indiaby; values. These se-
quences depend upomlone, but not on the NIST curves. For other curves, this ateth
is expected to work equally well. Indeed, we may consiiér;, r, ..., r;) as a poly-
nomial inZ[ry,rs, ..., r. If Disnotidentically zero, then itis identically zero modulo
only a finite number of primes (the common prime divisors ef tbefficients oD).

Table 1. Sequences to generate linearized systems for NIST prime curves

Sequence in the linearization phase
No squaring or multiplication needed
Y1Y2,Yy1ys
Y1Y2, Y1Y3, Y1Ya, Y2Y3, Yaya, Y1ya
Y1Y2,Y1Y3, Y1Y4, Y1Ys, Y2Y3, Y2Y4, Yays, Y1Y2, Y1Y3, Y1Y4, Y1Ys, Y1Yy2, Y2Y4, Yy2y3
Y1Y2, Y1Y3, Y1Ya, Y1Ys, Y1Ye, Y2Y3, Y2Ya, Y2Ys, Y1Y2, Y3Y4, Y3Ys, Y1Ys, Y1Ye, Y1Y2Y3Ye, Y1Ys,
Y1Ya, Y1Y3, Y1Y2Y3Ye, Y1Y2, Y1Y3, Y1Y4, Y1Ys, Y2Ys, Yy2Y3, S7 Y2Ye, YalYe, YalYe, YsYe, Y1Ys

D U1 D W N+

5.3 Security Analysis

In Algorithm S1, we reconstruct the poinks with z-coordinates:(R;) = r; by forc-
ing the conditionR = >'_ R, = >.'_| R, = R’, whereR) = u;P + v;Q;. Sup-
pose that an adversary too can force the condiftos= R’. The adversary must also

reveal thez-coordinates-y, o, ..., 7, as parts of ECDSA signatures. Given these
coordinates and the conditiaR = R/, there exists (with high probability) a unique
solution for the correspondingcoordinatesy, s, ..., y: of Ri, R, ..., R;. This so-

lution can be computed by the adversary, for example, uslggrAihm S1 (or by taking
modular square roots i, as in Algorithm N). So long asis restricted to small con-
stant values (like < 6), the adversary requires only moderate computing resetioce
determiningyy, yo, . . ., y¢ uniquely. This implies that although the adversary needs to
reveal only ther-coordinates;, (s)he essentiallknowsthe full points R;. But these
points Ry, R», ..., R; satisfy the standard batch-verification condition for E@DS
That is, if the adversary can fool Algorithm S1, (s)he can the standard ECDSA*
batch-verification algorithm too. It follows that AlgorithS1 is no less secure than the
standard batch-verification algorithm for ECDSA*. Conwdysif an adversary can fool
any ECDSA* batch-verification algorithm, (s)he can alwageslfany ECDSA batch-
verification algorithm, since ECDSA signatures are onhtgpaf ECDSA* signatures.
To sum up, Algorithm S1 is as secure as standard ECDSA* batdfication [7].

An analysis of the security of Algorithm N is also worth indlog here. Suppose
that an adversary can pass one of the= 2¢ checks in Algorithm N along with dis-
closingry, 72, . .., r. The correct choiceg; of the square roots of’ + ar; + b (that is,
those choices corresponding to the successful check)itdast case of fulfillment of
the ECDSA* batch-verification criterion. Consequentlygéiithm N too is as secure
as standard ECDSA* batch verification.

5.4 Cases of Failure for Algorithm S1

Our Monte Carlo batch-verification Algorithm S1 may fail fafew reasons. We now
argue that these cases of failure are probabilistically vere.

1. Takingz; = r; blindly is a possible cause of failure for Algorithm S1. Asclissed
earlier, this situation has a very low probability. Furtiere, it is easy to identify
when this situation occurs. In case of ambiguity in the valokr;, we can repeat
Algorithm S1 for all possible candidate tuples,, zs, . . ., z;). If the pointsR; are
randomly chosen il (IF;), most of these:; values are unambiguously available to
us, and there should not be many repeated runs (if any) ofrigo S1. Repeated
runs, if necessary, may be avoided, because doing so goestatiee expected
benefits achievable by batch verification.

2. Although we are able to identify good sequences of sqgaxivd multiplication in
order to force the determinant polynomi@lry,rs,...,r;) to be not identically
zero, roots of this polynomial may appear in some cases of &C8ignatures. We
have seenthatif,, ro, ..., r; are randomly chosen, the probability of this situation
is no more tharz =193 (for t < 6).

3. Eqn (5) is derived using the point-addition formula on¢beve E, which is differ-
ent from the doubling formula. So long as we work symbolicalling the unknown
quantitiesyy, yo, - - - , ¢, it is impossible to predict when the two points being added
turn out to be equal. IRy, R», ..., R, are randomly chosen frofi(IF,), the prob-
ability of this occurrence is extremely low.

4. Algorithm S1 fails if R’ is the point at infinity or lies on the-axis (8 = 0). In
that case, one should resort to individual verification. ramdomly chosen session
keys, this case occurs with a very small probability (nedyly).

6 A More Efficient Batch-verification Algorithm (Algorithm S2)

The linearization stage in Algorithm S1 (requiring(m?t) field operations) and the
subsequent Gaussian-elimination stag¢r6®) field operations) are rather costly,
being an exponential function of the batch siz®©ur second symbolic-manipulation
algorithm S2 avoids these two stages altogether.

Algorithm S1 uniquely solves for the monomials, z», . . . , 2, using the equation
R, = « only. At this point, there are only two possible solutions fioe y; values:
(y1,y2,-..,yt) and(—y1, —y2, ..., —y¢). Thissignambiguity is eliminated by using
the other equatio?, = 5. As mentioned in connection with the security analysis of
Algorithm N, the exact determination of these signs is ngtdmant. In other words,
we would be happy even if we can determine egcborrectly up to multiplication by
+1. This, in turn, implies that if we have any multivariate etioa (linear iny;) of the
form uy; + v = 0 (wherew,v are polynomials inyy, ..., %1, Yit1,---,¥ye), we do
not mind multiplying this equation byy; — v so thatdy; satisfyu?y? — v? = 0. But
y? = r3 + ar; + b, SO we havei? (r} + ar; + b) — v? = 0, an equation in whicly; is
eliminated This observation leads to Algorithm S2.

Like Algorithm S1, we first symbolically comput® = Ele R;, and arrive at
Eqns (7) and (8). Then, we consider only the multivariatea¢iqn R, — oo = 0 linear
individually in eachy;. We first eliminatey,, and with substitutions given by Eqn (4)
fori =2,3,...,t, we arrive at a multivariate equationig, ys, . . . , y;, again linear in
each of these variables. We elimingtefrom this equation, and arrive at a multivariate
equation inys, y4, - . ., y:. We repeat this process until all variables ys, ..., y; are
eliminated. If the polynomial after all these eliminatioesluces to zero, the original
equationR, = « is consistent with respectif = r3 +ar; +bforalli =1,2,... ¢

We may likewise eliminatey;,ys,. ..,y from R, — 8 = 0 too, but this is not
necessary, because it suffices to kngwiniquely up to multiplication byt1.

Some comments on efficient implementations of the elimimasitage are now in
order. First, we are not using Egn (8) at all in Algorithm S2inSequently, it is not
necessary to compute the polynomig). However, in the symbolic-computation stage,
we need to compute all intermediajecoordinates, since they are needed in the final
value of R,. The computation of only the lagtcoordinateR, may be avoided. Still,
this saves quite some amount of effofi((nt) field operations, to be precise). This
saving does not affect the theoretical complexity of thedthm in the big-Oh notation,
but its practical effects are noticeable.

The second issue is that the polynomiandv in each elimination step have some
nice properties. Throughout this step—= uy; + v andv are polynomials with each

10

non-zero term having even degree, where&sa polynomial with each non-zero term
having odd degree. In particular, when the first 2 y-coordinates are eliminated, we
have¢ = uy—1y: + v with u,v € F,. Elimination ofy;_; eliminatesy, too, so an
explicit elimination ofy, is not necessary.

The y-coordinatesyy, 4o, . . ., y; are not explicitly reconstructed in Algorithm S2.
However, if necessary, we can compute two sets of solutigns,, . ..,y and —yq,
—ya,...,—1y by using the values ap = uy; + vfori =¢—1,t —2,...,2,1. The

sign ambiguity can be removed by usiily = 3. Algorithm S2 does not include this
reconstruction phase, since this is cryptographicallynjartant. However, we use this
result in the security proof for S2.

It is also important to note that the determination of indial y; values is cryp-
tographically unimportant for Algorithm S1 too, sinég, = « already identifies ex-
actly two solutions for the reconstructed points. If thetps are omitted, the batch-
acceptance criterion would matef against appropriate productsnj‘H— ar;+bforall
1=1,2,...,u. Infact, it suffices to consider only the monomia)of degree2. How-
ever, the unique determination gf values takes only an insignificant fraction of time
in Algorithm S1, so it does not practically matter to make aich between whether we
carry out these steps or not.

7 Analysis of Algorithm S2

7.1 Running Time

The symbolic computation ofR., R,) involves O(mt?) field operations (as in Al-
gorithm S1). Subsequently, we start with the polynomgia= R, — o with at most
p+1 = 7 + 1 non-zero terms. Elimination af; requires computing the square$
andv?, carrying out the polynomial arithmetic?(r? + ar; + b) — v2, andt — i sub-
stitutions ofy? by r? + ar; + b. Therefore, the reduction af too requiresO(mt?)
field operations. This is significantly better than thém?) operations needed by Al-
gorithm S1. Moreover, Algorithm S2 outperforms Algorithmftd a wide range of
andg, since the conditioric + m)t > mt? is more often satisfied than the condition
(o +m)t > m3.

7.2 Security Analysis

We establish the equivalence between the security of AlgoriS2 and the security
of standard ECDSA* batch verification, as we have done foretidier algorithms (N
and S1). Suppose that an adversary revealstbeordinates, s, ...,r, in ECDSA
signatures which pass the batch-verification procedurdgdthm S2. We mentioned
above that there are exactly two solutions, y2, ..., y:) and (—y1, —y2, ..., —yt)
consistent withR, — o = 0 andy? = r} + ar; + bfori = 1,2,...,t. One of
these solutions corresponds to the ECDSA* signatures hgsmuthe disclosed values
r1,T2,..., 7. Itis that solution that would pag3, = . To sum up, the adversary can
forge the standard ECDSA* batch-verification algorithm.ristaver, this forging pro-
cedure which essentially involves the unique reconswaaf the pointsR; = (r;, y;)

is practical for any adversary with only a moderate amouroofiputing resources, so
long ast is restricted only to small values (the only cases where weagply S2).

11

8 Efficient Variants of S1 and S2

In Algorithm S1, we generate a system of linearized equatiory — 1 = 2t=1 1
monomials. Solving the resulting equation turns out to kedbstliest step of Algo-
rithm S1, demanding (m?) field operations. In Algorithm S2, the symbolic computa-
tion of R = (R, R,) turns out to be the most time-consuming step. This step fealls
©(mt?) field operations. The elimination phase too calls@gimt?) operations.

In this section, we explain a strategy to reduce the numbenadomials in Al-
gorithms S1 and S2. So far, we have been symbolically comgutie pointR =
Zﬁzl R;, and equating the symbolic sum B = («, 8). This results in polynomial
expressions witl(2¢~1) (that is,©(m)) non-zero terms.

Now, letT = [t/2]. We symbolically compute the two sums:

. t
RO — ZRi and R® = R — Z R;. 12)

1=1 =741

The polynomial expressions involved R and R(?) contain only©(27), that is,
©(y/m) non-zero terms. So computing these two symbolic sums n@éeis-?), that
is, ©(y/mt?) field operations which is significantly smaller than dént?) operations
associated with the symbolic computation of the complemaaglf=1 R;. The condition
R = R'is equivalent to the conditioR") = R(®). Using this new condition helps us
in speeding up the subsequent steps too.

8.1 Algorithm S

The symbolic computation a® in Algorithm S1 can be replaced by the two symbolic
computations given by Eqgn (12). In that case, we replacenitialiequationsik, = «
andR, = j3 by the two equations(R(")) = 2(R®) andy(RM) = y(R®?). Itis easy
to argue that:(R™)) is a polynomial iny,, 2, . . . , y» with each non-zero term having
even degree, wheregéR(")) is a polynomial iny,, 2, . . . , y» with each non-zero term
having odd degree. That is, the number of non-zero termseisetiwo expressions is
2771 = @ However, the presence & = («, §) on the right side of the expression
for R (Eqn 12) lets both:(R(®)) andy(R?) contain all (square-free) monomials in
Yri1sYrs2, - - -y (DOth even and odd degrees). There are exattyl —1 < /m—1
monomials in these two expressions. In the linearized sydlmt we subsequently
generate, we consider, as variables, only the even-degsaemials inyy, ys, - .., y-
and all monomials i 41, Yyri2,- -, Y¢-

We start with the equation(R(")) = z(R(?). Subsequently, we keep on squaring
the equation:(R") = z(R®) (and substituting values aff wherever necessary).
This sequence does not increase the number of monomiale Im#arized equations.
More precisely, for any > 0, the equation:(R™")?" = z(R®)?' contains only the
©(y/m) monomials with which we start. If we fail to obtain a lineaiksystem of full
rank, we start squaring the other initial equatigiR")) = y(R®). For anyj > 1,
the equationy(R™M)?" = y(R(?)? again contains only the monomials with which
we start. In all the cases studied, we have been able to obthiii-rank linearized

12

system by squaring the two initial equations. Since the ramoblinearized variables is
O(y/m), the linearization step of Algorithm S1 now reduce®Xont) field operations.
Finally, we solve a system wit® (/m) variables using?(m?/?) field operations.

To sum up, using the trick introduced in this section de@edlse number of field
operations fron®(m?) to ©(m?3/2). Let us plan to call this efficient variant of S1 as
SY. Fundamentally, Siis not a different algorithm from S1. In particular, the sefyu
of ST is the same as the security of S1 (in fact, little better, bsedewer linearized
equations are involved). However, the reduction in the immtime is very significant,
both theoretically and practically.

8.2 Algorithm S2/
Instead of starting witlp = R, — «, Algorithm S2 starts with the initial expression
¢ = z(RW) — z(R@). (13)

We then repeatedly eliminatg, v-, . . ., y;. Although the initial expression af con-
tains much less number of monomials than in the original Atgm S2, elimination
of y, itself introduces many new monomialsdn that is, soory becomes almostill.
Consequently, the elimination phase continues to né2ket?) field operations as be-
fore, that is, the theoretical running time of $2the same as that of S2. Still, the effects
of our heuristic are clearly noticeable in practical imp&ntations.

As described in Section 6, thecoordinateg/(R(")) andy(R?)) need not be com-
puted. It is, however, necessary to symbolically compute;thoordinates of all inter-
mediate sums.

9 Experimental Results

Our batch-verification algorithms are implemented usiregg@P/PARI calculator [11]
(version 2.3.5). Our choice of this implementation platids dictated by the symbolic-
computation facilities and an easy user interface provigethe calculator. All exper-
iments are carried out in a 2.33 MHz Xeon server running Migadrinux Version
2010.1. The GNU C compiler 4.4.3 is used for compiling the 2| calculator.

In Table 2, we list the average times for carrying out singkda multiplications in
the NIST prime curves. This table also lists the times foglgsquare-root calculations
in the underlying fields. Table 3 lists the overheads astetiaith the three algorithms
N, S1 and S2, and their variant$,I$1 and S2. These overhead figures do not include
the scalar-multiplication times. The algorithms S1, 8id S2 become impractical for
batch sizeg > 6, so these algorithms are not implemented:fer 7 andt = 8.

Table 2. Timings (ms) for NIST prime curves

P-192 P-224 P-256 P-384 P-521
Time for Scalar Multiplication (inE(IF,))[1.82 2.50 3.14 7.33 14.38
Time for Square-root (if",)| 0.06 0.35 0.09 0.26 0.6[7

13

Table 3.Overheads (ms) for different batch-verification algorithms

Naive (N)

Naive (N)

t

t

Curve

2 3 4 5 6

7

2

3

4 5 6

Vi

P-1920.18 0.39 0.76 1.57 3.40
P-2240.81 1.34 2.04 3.29 5.63
P-2560.24 0.49 0.97 1.95 4.18
P-3840.66 1.15 1.95 3.51 6.76
P-5211.66 2.70 4.21 6.73 11.63 21.00 43136

7.71 17
10.60 21
9.27 20
13.80 29

oas
601
839
053

0.19
1.06
0.29
0.81
2.05

0.26 0.33 0.39
142 1.78 2.14
0.38 0.48 0.58
1.08 1.35 1.62
2.74 342 411

0.46
2.49
0.68
1.90
4.80

N ONO®

Symbolic (

)

Symbolic (S1)

t

t

Curve 2 3 4

5

6

3

4 5 6

P-1920.14 0.57 2.01
P-2240.15 0.60 2.10
P-2560.16 0.61 2.17
P-3840.18 0.74 2.71
P-5210.22 0.90 3.45

8.66

9.50 45.¢
9.78 46.
12.56 62.
16.80 88.

40.50.07

50.07
BD.08
MO8
AN12

0.20
0.20
0.21
0.30
0.40

0.70 1.60 4.40
0.80 1.80 4.70
0.82 1.90 4.90
0.90 2.20 6.10
1.30 2.90 8.00

Symbolic (S2)

Symbolic (S2)

t

t

Curveg 2 3 4 5

6

2

3

4

5 6 7

8

P-1920.07 0.30 0.76 2.39
P-2240.07 0.32 0.84 2.53
P-2560.08 0.32 0.80 2.51
P-3840.09 0.37 0.91 2.85
P-5210.11 0.44 1.07 3.45

6.6
7.1

8.1
10.

9.07 0.11
0.07 0.12
7.08.08 0.12
9.09 0.14
211 0.18

0.32
0.33
0.33
0.38
0.42

0.61 1.14 2.36
0.64 1.21 251
0.64 1.22 2.52
0.72 1.41 2.95
0.95 1.76 3.72

5/46
5/91
5/88
7|12
9|26

52
85
78
17
49

Table 4 records the speedup values achieved by the sixtlgrN, N, S1, S1, S2
and S2. Here, the speedup is computed with respect to individudfication, and in-
corporates both scalar-multiplication times and batdtification overheads. The maxi-
mum achievable speedup valued(the case of same signer, a2 (¢ + 1) in the case
of different signers) are also listed in Table 4, to indichtev our batch-verification
algorithms compare with the ideal cases. The maximum speebliained by our fully
ECDSA-compliant algorithms is 6.20 in the case of same sjgme 1.70 in the case
of different signers, both achieved by Algorithm’$@r the curve P-521 and fdr= 7.

From Table 4, it is evident that one should use Algorithm i2xtra information
(a bit identifying the correct square root of ea¢h+ ar; + b) is not available. In this
case, the optimal batch sizetis- 7 (ort = 6 if the underlying field is small). If, on the
other hand, disambiguating extra bits are appended to EC&)@#atures, one should
use S2for t < 4 for (curves over) small fields and for< 6 (or ¢t < 7) for large fields.
If the batch size increases beyond these bounds, it is pigéeto use Algorithm N

10 Conclusion

In this paper, we have proposed six algorithms for the bageification of ECDSA sig-
natures. To the best of our knowledge, these are the firshhatification algorithms

14

Table 4. Speedup obtained by different batch-verification algorithms

Same signer Different signers
Curvet{ldeal N N S1 SI S2 SZ2fideal N N S1 S1I S2 S2
P-1922/2.00 191 1.94 193 196 196 1/9633 1.29 1.30 1.30 1.32 1.32 1)32
3/3.00 2.71 2.86 2.59 2.84 2.77 2/9150 142 1.46 1.39 1.46 1.44 1)48
4/4.00 3.31 3.75 2.58 3.35 3.31 3)A360 1.48 156 1.31 1.49 1.48 1/55
5/5.00 3.49 4.62 1.48 3.47 3.02 4/2867 1.46 1.62 0.93 1.45 1.37 1|58
6/6.00 3.10 5.46 0.49 2.72 2.12 49771 1.35 1.67 0.41 1.27 1.13 1)57
7/7.00 2.24 6.28 - - - 42375 1.14 170 - - - 151
8/8.00 1.41 7.07 - - - 3.20.78 0.87 1.73 - - - 133
P-2242|2.00 1.72 1.75 1.94 1.97 197 1/9733 1.20 1.22 1.31 1.32 1.32 1|32
3/3.00 2.37 2.48 2.68 2.88 2.82 2/9350 1.32 1.36 1.42 1.47 1.45 1)48
4/4.00 2.84 3.12 2.82 3.45 3.42 3]2560 1.38 1.44 1.37 150 1.50 1/56
5/5.00 3.02 3.70 1.72 3.68 3.32 4/4367 1.37 1.49 1.02 1.49 1.43 160
6/6.00 2.82 423 0.59 3.09 248 4/8371 1.30 1.53 0.48 1.35 1.22 1)60
7/7.00 224 470 - - - 4.66.75 1.14 156 - - - 155
8/8.00 1.51 513 - - - 3.61.78 091 158 - - - 141
P-2562/2.00 1.93 1.94 195 197 197 1/97/33 1.30 1.31 1.31 1.32 1.32 1)32
3/3.00 2.78 2.88 2.73 2.90 2.85 2/9450 1.44 1.47 143 1.48 1.46 1/49
4/4.00 3.46 3.78 2.97 3.54 355 3/4060 1.51 156 141 152 152 1|57
5/5.00 3.82 4.67 1.96 3.84 3.57 4/3467 151 1.63 1.10 1.51 1.47 1)61
6/6.00 3.60 552 0.72 3.37 2.82 5/0271 144 1.67 055 1.40 1.30 1)62
7/7.00 2.83 6.36 - - - 50075 128 1.71 - - - 159
8/8.00 1.85 7.18 - - - 41378 102 1.73 - - - 147
P-3842/2.00 191 1.93 1.98 199 199 1/9933 1.29 1.30 1.32 1.33 1.33 1|33
3/3.00 2.78 2.85 2.86 2.94 293 2/9750 144 1.46 1.46 1.48 1.48 149
4/4.00 3.53 3.74 3.38 3.77 3.77 3/9060 1.52 156 149 156 1.56 1/58
5/5.00 4.03 459 2.69 435 4.19 4/2767 154 1.62 1.30 1.59 1.57 164
6/6.00 4.11 542 1.15 4.24 3.86 54771 151 166 0.78 1.53 1.48 1/67
7/7.00 3.61 6.23 - - - 58375 142 170 - - - 167
8/8.00 2.63 7.01 - - - 53878 122 172 - - - 1.60
P-5212|2.00 1.89 1.91 1.98 1.99 199 1/9933 1.28 1.29 1.33 1.33 1.33 1|33
3/3.00 2.74 2.80 291 296 295 2/9850 143 145 1.48 1.49 1.49 1)50
4/4.00 3.49 3.66 3.57 3.83 3.86 3|9460 1.51 1.54 1.53 1.57 1.58 1|59
5/5.00 4.05 4.48 3.16 4.54 4.46 4/8467 155 1.60 1.40 1.61 1.60 1)65
6/6.00 4.27 5.26 1.47 4.69 4.45 5/@5/1 154 165 091 159 1.56 1/68
7/7.00 4.05 6.02 - - - 6.20.75 148 1.68 - - - 1.70
8/8.00 3.20 6.74 - - - 6.0%.78 133 1.71 - - - 166

15

ever proposed for ECDSA. In particular, development of athms based upon sym-
bolic manipulations appears to be a novel approach in therkisf batch-verification
algorithms. There are several ways to extend our study, bmbich are listed below.

— Section 8 describes a way to reduce the running time of thebslcraddition

phase of Algorithm S2 frond(mt?) to O(y/mt?). An analogous speedup for the
elimination phase would be very useful.

— Our best symbolic-computation algorithm runsOmt?) time. Removal of a fac-

tor of ¢ (that is, designing am(mt)-time algorithm) would be useful to achieve
higher speedup values.

— Itis of interest to study our algorithms in conjunction witte earlier works [1, 3]

on ECDSA*.

— Our batch verification algorithms can be easily ported teeptturves (like the

Koblitz and Pseudorandom families recommended by NISTvig®p quadratic
equations in binary fields is somewhat more involved than uterdsquare-root
computations in prime fields, so our symbolic-manipulatadgorithms are ex-
pected to be rather effective for binary fields.

References

1.

2.

3.

10.

11.

12.

13.

A. Antipa, D. Brown, R. Gallant, R. Lambert, R. Struik, and S. Vanstdhccelerated veri-
fication of ECDSA signatures’, SAC 2005, LNCS \ol. 3897, 307-31R &

ANSI, ‘Public Key Cryptography for the Financial Services Indysirhe Elliptic Curve
Digital Signature Algorithm (ECDSA)’, ANSI X9.62, approved Janu@ri999.

J. H. Cheon and J. H. Yi, ‘Fast batch verification of multiple signatuR6C 2007, LNCS
\ol. 4450, 442-457, 2007.

. L. Harn, ‘Batch verifying multiple RSA digital signatures’, Electronicstters, Vol. 34,

No. 12, 1219-1220, 1998.

. M.-S. Hwang, I.-C. Lin, K.-F. Hwang, ‘Cryptanalysis of the Batdtrifying Multiple RSA

Digital Signatures’, Informatica, Vol. 11, No. 1, 15-19, 2000.

. D. Johnson and A. Menezes, ‘The Elliptic Curve Digital Signature Allgor (ECDSA)’,

International Journal on Information Security, Vol. 1, 36—63, 2001.

. D. Naccache, D. M'Raihi, D. Rapheali and S. Vaudenay, ‘CanA.Be improved: Com-

plexity trade-offs with the digital signature standard’, EuroCrypt'94ad\Vol. 950, 77-85,
1994.

. NIST, ‘Digital Signature Standard (DSS)’http://csrc.nist.gov/publications/drafts/

fips_186-3/Draft-FIPS-186-3%20_March2006.pdf, 2006.

. NIST, ‘Recommended elliptic curves for federal government ', use

http://csrc.nist.gov/groups/ST/toolkit/ documents/dss/NISTReCur.pdf, July 1999.
NIST, ‘Secure Hash Standard (SH)ttp://csrc.nist.gov/publications/drafts/fips_180-
3/draft_fips-180-3_June-08-2007.pdf, 2007.

PARI Group, ‘PARI/GP Development Headquartenstip:/pari.math.u-bordeaux.fr/,
2003-2008.

R. L. Rivest, A. Shamir and L. Adleman, ‘A method for obtaining digiignatures and
pubic-key cryptosystem’, Communications of the ACM, Vol. 2, 12013 8.

D. Shanks. ‘Five number theoretic algorithms’, ProceedingseoSécond Manitoba Con-
ference on Numerical Mathematics, 51-70, 1973.

16

Appendix

A Properties of R, and R,

Theorem 1. R, contains only even-degree monomials, aRg contains only odd-
degree monomials in the variablgs, -, . . . , 4.

Proof. We proceed by induction on the batch stze: 1. If t = 1 (case of individual

verification), we have?, = r andR,, = y1, for which the theorem evidently holds.
So assume that> 2. We computeR = 3!_ | R; asR’' + R"with R’ = >"7_| R;

andR” = 3! R; for somerintherangel <7 <t - 1. LetR' = (R}, R;) and

i=7+1
R" = (R}, R})). The inductive assumption is that all non-zero term&pfand i2’; are
of even degrees (ipy, ...,y andy,41,...,y:, respectively), and all non-zero terms

of R, and R} are of odd degrees.

We first symbolically compute = (R — R,)/(R; — R;,) as a rational function.
Clearing the variableg; from the denominator multiplies both the numerator and the
denominator of\ by polynomials of non-zero terms having even degrees. Eugogti-
tution ofy? by the field element? +ar; + b reduces thg;-degree of certain terms 2y
so the parity of the degrees in these terms is not alteredll¥;in becomes a polynomial
with each non-zero term having odd degree. But tien= \? — R’ — R/ is a poly-
nomial with each non-zero term having even degree, whekgas \(R), — R,) — R,
is a polynomial with each non-zero term having odd degreghEusubstitutions 5
by r? + ar; + b to simplify R, and R, preserve these degree properties.

9

B Derivation of

For computing the number of roots,, rs, . . ., ;) of det M = 0, we treatr,ra, ...,
as symbols, and need to calculate an upper bound on the degfezach individual
r;. Without loss of generality, we compute an upper bound ondégrees of r; in
det M = 0. To this effect, we first look at the expressions for and R, which are el-
ements off'y (r1, 72, ..., 7¢) Y1, Y2, . . ., y¢]. We can writeR, = g, /h andR, = g, /h,
whereg,, g, are polynomials i, [r1,re, ..., 7, Y1, Y2, - - -, y:], and the common de-
nominatorh is a polynomial inF,[rq,rs, ... ,7]. Letn, denote the maximum of the
ri-degrees iy, g, andh. We first recursively derive an upper bound fr

We computeR = R'+ R” with R’ = (R/,, R;) = >.I_, R;andR" = (R],R})) =
ZE:TH R;, wherer = [¢/2]. Ther,-degree ofR’ is n,, whereas the;-degree ofR”
is 0. The initial -degree ofA = (R — R)/(R; — R;) is at mosty,. Clearingy:
from the denominator of changes the;-degree t®7, + 3. Subsequent eliminations
of yo, ...,y finally reduces\ with a y-free denominator. The maximum-degree of
this expression fol is 2¢=1(2n, + 3). Therefore \?> hasr;-degree< 2¢(2n, + 3).
Subsequent computations Bf, = *> — R/, — R/ andR, = A\(R), — R,) — R, yield

m < (2 + 27N (20 +3) + 20 < (28 + 27 (20, + 3) + 20,

with 7 = [t/2]. Solving this recurrence gives the upper boypa 22t+3M1082 t1+2,

17

Now, we follow a sequence of squaring and monomial multgilan to convert
R, = o to a set of linear equations. A, is ther,-degree of the-th equation, we have

Al = T,
Ay <24, +3 for ¢ > 2.

The recurrence relation pertains to the case of squaring.€asily checks that\; <
(n: + 3)2¢t for all i > 1. Finally, ther,-degree of the equatiaiet M = 0 is

S A +Ag4- 44, < +3)(2"—1) < (22t+3(1og2t1+2 +3)(22H,1 _ 1)_

Notice that this is potentially a very loose upper bound fotn general, we avoid
squaring. Multiplication by a monomial can increaseithelegree by if the monomial
containsy, . If the monomial does not contain, ther;-degree does not increase at all.
Nevertheless, this loose upper bound is good enough in gs2pt context.

C Number of Roots ofdet M = 0

Let us write the equatiodet M = 0 asD(rq,ro,...,r:) = 0, where ther;-degree of
the multivariate polynomiaD is < ¢ for eachi. We assume thab is not identically
zero. We plan to show that the maximum numBt) of roots of D is < tdgt~1. To

that effect, we first writeD as a polynomial inr;:

D(ry,79,...,1¢) = Ds(r1,72, ... ,rt,l)r? + Ds_1(r1,72, ... ,rt,l)rffl 44
Di(ri,re, ..., me—1)re + Do(r1,72,. .., 7e—1).

If D is notidentically zero, at least or®; is not identically zero. I{ry, ra, ..., 1)
is a common root of each;, appending any value of gives a root ofD. The max-
imum number of common roots dby, D1, ..., Ds is B{~1Y. On the other hand, if
(r1,79,...,7:—1) IS Not a common root of alD;, there are at mostvalues ofr, satis-
fying D(r1,72,...,7) = 0. We, therefore, have

B®W < B Vg4 (¢t = BUDYs = (¢ — 6) B 454t (14)
Moreover, we have

B <. (15)

By induction ont, one can show thag®) < tdq*~!. This bound is rather tight, particu-
larly for 0 < ¢ (as it happens in our cases of interest). A polynorhiaatisfying equal-
ities in (14) and (15) can be constructedla81, 7, ..., 1) = A(r1)A(rs) - - - A(ry),
whereA is a square-free univariate polynomial of degée¢hat splits oveif,. By the
principle of inclusion and exclusion (or by explicitly saig the recurrence (14)), we
obtain the total number of roots of thi3 as

6tqt—1 _ (;)62qt—1 + <;) 63qt—3 — (_l)t—l(st

:qt—(q—(S)t — 5(qt_1—|—(q—é)qt_2—|—(q—(5)2qt_3+--~—|—(q—5)t_1).

If § < g, this count is very close ttig*~L. It remains questionable whether our equa-
tion det M = 0 actually encounters this worst-case situation, but thessdmt matter,
at least in a probabilistic sense.

18

