
Batch Verification of ECDSA Signatures

Sabyasachi Karati
Abhijit Das

Dipanwita Roychowdhury
Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur, India
skarati,abhij,drc@cse.iitkgp.ernet.in

Bhargav Bellur
Debojyoti Bhattacharya

Aravind Iyer
General Motors Technical Centre India

India Science Lab, Bangalore, India
bhargav bellur@yahoo.com

Debojyoti.bhattacharya@gmail.com

aravind.iyer@gm.com

Abstract. In this paper, we study several algorithms for batch verification of
ECDSA signatures. The first of these algorithms is based upon the naiveidea of
taking square roots in the underlying field. We also propose two new and efficient
algorithms which replace square-root computations by symbolic manipulations.
Experiments carried out on NIST prime curves demonstrate a maximum speedup
of above six over individual verification if all the signatures in the batch belong
to the same signer, and a maximum speedup of about two if the signatures inthe
batch belong to different signers, both achieved by a fast variant of our second
symbolic-manipulation algorithm. In terms of security, all the studied algorithms
are equivalent to standard ECDSA* batch verification. These algorithmsare prac-
tical only for small (6 8) batch sizes. To the best of our knowledge, this is the
first reported study on the batch verification oforiginal ECDSA signatures.

Keywords: Digital Signatures, Elliptic Curves, ECDSA, ECDSA*, Batch Verifi-
cation, Modular Square Root, Symbolic Computation, Linearization.

1 Introduction

Batch verificationis used to verify multiple digital signatures in time less than total in-
dividual verification time. The concept of batch verification is introduced by Naccache
et al [7] in EuroCrypt’94. They propose an interactive batch-verification protocol for
DSA [8]. In this protocol, the signer generatest signatures through interaction with the
verifier, and then the verifier validates all theset signatures simultaneously.

Harn, in 1998, proposes an efficient scheme [4, 5] for the batch verification of RSA
signatures [12], where multiple signatures signed by the same private key can be ver-
ified simultaneously. Harn’s scheme uses only one exponentiation for batches of any
size t. There are some weaknesses in this scheme. For example, if batch verification

fails, we cannot identify the faulty signature(s) without making individual verification.
Moreover, Harn’s scheme does not adapt to the case of signatures from multiple signers.

These protocols are not straightaway applicable to ECDSA signatures [2, 6]. Since
ECDSA requires smaller key and signature sizes than DSA and RSA, there has been a
growing interest in ECDSA. ECDSA* [1], a modification of ECDSA, permits an easy
adaptation of Naccache et al’s batch-verification protocolfor DSA. Cheon and Yi [3]
study batch verification of ECDSA* signatures, and report speedup factors of up to7
for same signer and4 for different signers. However, ECDSA* is not a standard, and
is thus unacceptable, particularly in applications where interoperability is of concern.
More importantly, ECDSA* increases the signature size compared to ECDSA without
any increase in the security. Consequently, batch verification of original ECDSA signa-
tures turns out to be a practically important open research problem. To the best of our
knowledge, no significant result in this area has ever been reported in the literature.

In this paper, we propose three algorithms to verifyoriginal ECDSA signatures
in batches. Our algorithms apply to all cases of ECDSA signatures sharing the same
curve parameters, although we obtain good speedup figures when all the signatures
in the batch come from the same signer. Our algorithms are effective only for small
batch sizes (liket 6 8). The first algorithm we introduce (henceforth denoted as Algo-
rithm N) is based upon a naive approach of taking square rootsin the underlying field.
As the field size increases, square-root computations become quite costly. We mod-
ify Algorithm N by replacing square-root calculations by symbolic manipulations. We
propose two ECDSA batch-verification algorithms, called S1and S2, using symbolic
manipulations. Algorithm S1 is not very practical, but is discussed in this paper, for it
provides the theoretical and practical foundations for arriving at Algorithm S2. For a
wide range of field and batch sizes, Algorithm S2 convincingly outperforms the naive
Algorithm N. Both S1 and S2 are probabilistic algorithms in the Monte Carlo sense,
that is, they may occasionally fail to verify correct signatures. We analytically establish
that for randomly generated signatures, the failure probability is extremely low.

The rest of this paper is organized as follows. In Section 2, we identify the problems
associated with ECDSA batch verification. In this process, we introduce the ECDSA
signature scheme, and set up the notations which we use throughout the rest of the pa-
per. In Section 3, we introduce a naive batch-verification algorithm N and its variant N′.
Section 4 elaborates our new algorithm S1 based upon symbolic manipulations. Sec-
tion 5 presents an analytic study of Algorithm S1. We furnishdetails about the running
time, the cases of failure, and the security of Algorithm S1.The running time estimates
for Algorithm S1 indicate that this algorithm is expected toperform poorly unless the
batch sizet is very small. In Section 6, we improve upon this algorithm toarrive at
Algorithm S2. Analytic results for Algorithm S2 are provided in Section 7. A heuristic
capable of significantly speeding up Algorithms S1 and S2 is presented in Section 8. In
Section 9, we list our experimental results, and compare theperformances of the three
algorithms N, S1 and S2. We also study the performances of three faster variants N′,
S1′ and S2′ of these algorithms. Although we have concentrated only upon the curves
over prime fields, supplied in the NIST standard [9], our algorithms readily apply to
other curves with cofactor1. As mentioned in [1], cofactor values larger than1 can be

2

easily handled by appending only a few bits of extra information to standard ECDSA
signatures. The concluding Section 10 highlights some future research directions.

2 Notations

The elliptic-curve digital signature algorithm (ECDSA) isbased upon some parameters
common to all entities participating in a network.

q = Order of the prime fieldFq.

E = An elliptic curvey2 = x3 + ax+ b defined over the prime fieldFq.

P = A random non-zero base point inE(Fq).

n = The order ofP , typically a prime.

h = The cofactor
|E(Fq)|

n
.

For the time being, we assume thath = 1, that is,E(Fq) is a cyclic group, andP is a
generator ofE(Fq). This is indeed the case for certain elliptic curves standardized by
NIST. By Hasse’s theorem, we have|n−q−1| 6 2

√
q. If n > q, an element ofZn has

a unique representation inZq. On the other hand, ifn < q, an element ofZn has at most
two representations inZq. The density of elements ofZn having two representations in
Zq is6 2/

√
q which is close to zero for large values ofq.

In an ECDSA signature(M, r, s), the valuesr ands are known modulon. However,
r corresponds to an elliptic-curve point and should be known moduloq. If r corresponds
to a random point onE, it uniquely identifies an element ofFq with probability close
to 1. In view of this, we will ignore the effect of issues associated with the ambiguous
representation stated above, in the rest of this article.

Note that the ambiguities arising out ofh > 1 and/orq > n can be practically solved
by appending only a few extra bits to standard ECDSA signatures [1, 3]. Consequently,
our assumptions are neither too restrictive nor too impractical.

An ECDSA key pair consists of the public keyQ and the private keyd satisfying
Q = dP . The steps for generating the ECDSA signature(r, s) on a messageM follow.

1. k = A randomly chosen element in the range[1, n− 1] (the session key).
2. R = kP .
3. r = x(R) (thex-coordinate ofR) reduced modulon.
4. s = k−1(H(M) + dr)(mod n) (whereH is a cryptographic hash function like

SHA-1 [10]).

The following steps verify the ECDSA signature(r, s) on a messageM .

1. w = s−1 (mod n).
2. u = H(M)w (mod n).
3. v = rw (mod n).
4. R = uP + vQ ∈ E(Fq). (1)
5. Accept the signature if and only ifx(R) = r (mod n).

3

3 Naive Batch Verification Algorithms N and N′ for ECDSA

Throughout the rest of this paper, we plan to simultaneouslyverify t ECDSA signatures
(r1, s1), (r2, s2), . . . , (rt, st) on messagesM1,M2, . . . ,Mt. By m, we will denote2t.

For t signed messages(Mi, ri, si), i = 1, 2, . . . , t, we have

t
∑

i=1

Ri =

(

t
∑

i=1

ui

)

P +

t
∑

i=1

viQi. (2)

If all the signatures belong to the same signer, we haveQ1 = Q2 = · · · = Qt = Q
(say), and the last equation simplifies to:

t
∑

i=1

Ri =

(

t
∑

i=1

ui

)

P +

(

t
∑

i=1

vi

)

Q. (3)

The basic idea is to compute the two sides of Eqn (2) or Eqn (3),and check for the
equality. Use of these equations reduces the number of scalar multiplications from2t
to [2, t + 1], where2 corresponds to the case where all the signatures belong to same
signer, andt + 1 corresponds to the case where thet signers are distinct from one
another. However, only thex-coordinates ofRi are known from the signatures. In gen-
eral, there are twoy-coordinates corresponding to a givenx-coordinate, but computing
thesey-coordinates requires taking square roots moduloq, a time-consuming operation.
Moreover, there is nothing immediately available in the signatures to remove the ambi-
guity in these two values ofy. Finally, computing allRi using Eqn (1) misses the basic
idea of batch verification, since after this expensive computation, there is only an in-
significant amount of effort left to complete individual verifications of thet signatures.

ECDSA* [1], a modification of ECDSA where the entire pointR is included in the
signature instead ofr, adapts readily to the above batch-verification idea. Nonetheless,
a naive algorithm (to be denoted as Algorithm N) for the batchverification of original
ECDSA signatures can be conceived of. For eachi, we compute the square rootsyi
of r3i + ari + b modulo q. There are (usually)2t choices of the square rootsyi for
all i = 1, 2, . . . , t. If any of these combinations of square roots satisfies Eqn (2), we
accept the batch of signatures. This is definitely an obviousway of solving the ECDSA
batch-verification problem, but we have not found any previous mention of this algo-
rithm in the literature. Modular square-root computation turns out to be a costly op-
eration. Moreover, we need to check (at most)m = 2t possible conditions for batch
verification—a step that is also quite costly unlesst is small.

Using a single extra bit of information in an ECDSA signature, one can unam-
biguously identify thecorrectsquare root ofr3i + ari + b, and thereby avoid theΘ(2t)
overhead associated with Algorithm N. This updated (and efficient) version of the naive
algorithm will henceforth be denoted by Algorithm N′. Despite this updating, there is
apparently nothing present in ECDSA signatures, that provides a support for quickly
computingthe correct square root. The basic aim of this paper is to develop algorithms
to reduce the overhead associated with square-root calculations. In effect, we are con-
verting ECDSA signatures to ECDSA* signatures. In that sense, this paper is not com-
peting with but complementary to the earlier works [1, 3] on ECDSA*.

4

4 A New Batch-verification Algorithm for ECDSA (Algorithm S1)

In this section, we present a new algorithm to convert Eqn (2)or Eqn (3) to a form which
eliminates the problems associated with the lack of knowledge of they-coordinates of
Ri. We compute the right side of Eqn (2) or Eqn (3) as efficiently as possible. The left
side is not computed explicitly, but symbolically in the unknown valuesy1, y2, . . . , yt
(the y-coordinates ofR1, R2, . . . , Rt). By solving a system of linear equations over
Fq, we obtain enough information to verify thet signatures simultaneously. This new
algorithm, called Algorithm S1, turns out to be faster than Algorithm N for small batch
sizes (typically fort 6 4) and for large underlying fields.

4.1 Symbolic Computation ofR =

t
∑

i=1

Ri

Let Ri = (xi, yi). Thex-coordinatesxi = x(Ri) are available from the signatures,
namely,xi = ri or xi = ri + n. The second case pertains to the conditionn < q and
has a very low probability. So we plan to ignore this case, andtakexi = x(Ri) = ri.
It is indeed easy to detect when the reducedx-coordinateri has two representatives in
Fq, and if so, we repeat Algorithm S1 for both these values.

Although they-coordinateyi = y(Ri) is unknown to us, we know the values of

y2i = r3i + ari + b (mod q) (4)

for all i = 1, 2, . . . , t, sinceRi = (ri, yi) is a point on the curveE.
Applying the elliptic-curve point-addition formula repeatedly gives the following

representation of the pointR =
∑t

i=1 Ri:

R =

(

gx(y1, y2, . . . , yt)

hx(y1, y2, . . . , yt)
,
gy(y1, y2, . . . , yt)

hy(y1, y2, . . . , yt)

)

, (5)

wheregx, gy, hx, hy are polynomials inFq[y1, y2, . . . , yt]. In view of Eqn (4), we may
assume that these polynomials haveyi-degrees6 1 for all i = 1, 2, . . . , t. This implies
that the denominatorhx(y) is of the formu(y2, y3, . . . , yt)y1 + v(y2, y3, . . . , yt). Mul-
tiplying bothgx andhx byu(y2, y3, . . . , yt)y1−v(y2, y3, . . . , yt) and using Eqn (4), we
can eliminatey1 from the denominator. Repeating this successively fory2, y3, . . . , yt
allows us to represent the pointR as a pair of polynomial expressions:

R = (Rx(y1, y2, . . . , yt), Ry(y1, y2, . . . , yt)) (6)

with the polynomialsRx andRy linear individually with respect to allyi. It is useful
to clear the denominator after every symbolic addition instead of only once after the
entire sumR =

∑t
i=1 Ri is computed symbolically. It is easy to establish thatRx

is a polynomial with each non-zero term having even total degree, whereasRy is a
polynomial with each non-zero term having odd total degree (See Appendix A).

From the right side of Eqn (2) or Eqn (3), we compute thex- andy-coordinates of
R asR = (α, β) for someα, β ∈ Fq. This gives us two initial multivariate equations:

Rx(y1, y2, . . . , yt) = α, (7)

Ry(y1, y2, . . . , yt) = β. (8)

5

4.2 Solving the Multivariate Equations

We treat Eqns (7) and (8) as linear equations in the square-free monomialsyi, yiyj ,
yiyjyk, and so on.Rx contains non-zero terms involving only the even-degree mono-
mials, that is,yiyj , yiyjykyl, and so on. There are exactlyµ = 2t−1 − 1 = m

2 − 1 such
monomials, wherem = 2t. We name these monomials asz1, z2, . . . , zµ, and take out
the constant term fromRx to rewrite Eqn (7) as

ρ1,1z1 + ρ1,2z2 + · · ·+ ρ1,µzµ = α1. (9)

If we square both sides of this equation, and use Eqn (4) to eliminate all squares of
variables, we obtain another linear equation:

ρ2,1z1 + ρ2,2z2 + · · ·+ ρ2,µzµ = α2. (10)

By repeated squaring, we generate a total ofµ linear equations inz1, z2, . . . , zµ. We
then solve the resulting system and obtain the values ofz1, z2, . . . , zµ.

If the system is not of full rank, we make use of Eqn (8) as follows. Each non-zero
term inRy has odd degree. However, the equationR2

y = β2 (along with the substitution
given by Eqn (4)) leads to a linear equation in the even-degree monomialsz1, z2, . . . , zµ
only. Repeated squaring of this equation continues to generate a second sequence of
linear equations inz1, z2, . . . , zµ.

We expect to obtainµ linearly independent equations from these two sequences.

4.3 A Strategy for Faster Equation Generation

There are indeed other ways of generating new linear equations inz1, z2, . . . , zµ. Let

ρ1z1 + ρ2z2 + · · ·+ ρµzµ = γ (11)

be an equation already generated, and letf(z1, z2, . . . , zµ) be anyFq-linear combina-
tion of the monomialsz1, z2, . . . , zµ. Simplification of the equation

(ρ1z1 + ρ2z2 + · · ·+ ρµzµ)f(z1, z2, . . . , zµ) = γf(z1, z2, . . . , zµ)

using Eqn (4) again yields a linear equation inz1, z2, . . . , zµ. In particular, the choice
f(z1, z2, . . . , zµ) = zi with a small degree ofzi typically leads to a faster generation of
a new equation than squaring Eqn (11). Our experiments indicate that we can generate a
full-rank system by monomial multiplications and a few squaring operations. Moreover,
only Eqn (7) suffices to generate a uniquely solvable linearized system.

4.4 Retrieving the Unknowny-coordinates

The final step in Algorithm S1 involves the determination of they-coordinatesyi of the
pointsRi. Multiplying both sides of Eqn (8) byy1 gives an equation of the form

βy1 = ǫ0 + ǫ1z1 + ǫ2z2 + · · ·+ ǫµzµ.

Substitution of the values ofzi available from the previous stage givesy1 (provided
thatβ 6= 0). Subsequently, the valuesyi for i = 2, 3, . . . , t can be obtained by dividing

6

the known value ofy1yj by y1 provided thaty1 6= 0. Even ify1 = 0, we can multiply
Eqn (8) byy2 to solve fory2. If y2 6= 0, we are allowed to computeyi = (y2yi)/y2 for
i > 3. If y2 = 0 too, we computey3 by directly using Eqn (8), and so on. The only
condition that is necessary to solve for allyi values uniquely isβ 6= 0, whereβ is the
y-coordinate of the point on the right side of Eqn (2) (or Eqn (3)).

We finally check whether Eqn (4) is valid for alli = 1, 2, . . . , t. If so, all the signa-
tures are verified simultaneously. If one or more of these equations fail(s) to hold, batch
verification fails.

In short, Algorithm S1 uniquely reconstructs the pointsRi with x(Ri) = ri. The
computations do not involve taking modular square roots inFq. We also avoid com-
puting the pointsR′

i = uiP + viQi needed in individual verification. The final check
(y2i = r3i + ari + b) guarantees that the reconstructed points really lie on thecurve.
In the next section, we prove that the reconstruction process succeeds with very high
probability. Moreover, for small batch sizes, the reconstruction process is efficient.

5 Analysis of Algorithm S1

5.1 Running Time

The count of monomials handled during the equation-generation and equation-solving
stages isµ = 2t−1 − 1 = m

2 − 1 which grows exponentially witht. Determination
of the Eqns (7) and (8) needst − 1 symbolic additions involving rational functions
with at mostΘ(m) non-zero terms. Each symbolic addition is followed by at most t
uses of Eqn (4). Therefore, the symbolic derivation ofR requiresO(mt2) operations
in Fq. The subsequent generation of theµ× µ linearized system requiresO(m2t) field
operations. Finally, Gaussian elimination on anµ × µ system demandsΘ(m3) field
operations. Retrieving individualyi values calls forO(mt2) (usuallyO(mt)) field op-
erations. The running time of Algorithm S1 is dominated by the linear system-solving
stage. Evidently, Algorithm S1 becomes impractical exceptonly for small values oft.

It is worthwhile to investigate the running time of the naiveAlgorithm N. First,
this algorithm needs to computet modular square roots in the fieldFq. Each such
square-root computation (for example, by the Tonelli-Shanks algorithm [13]) involves
an exponentiation inFq. Subsequently, one needs to check at mostm = 2t = 2(µ +
1) conditions, with each check involving the computation of the sum oft points on
the curve. Therefore, the total running time of Algorithm N is O((σ + m)t), where
σ is the time for computing one square root inFq. Thus, Algorithm S1 outperforms
Algorithm N only in situations whereσ is rather large compared tom. This happens
typically when the batch sizet is small and the field sizeq is large.

5.2 Unique Solvability of the Linearized System

In Algorithm S1, we solve a linearizedµ × µ system to obtain the values of the even-
degree monomialsz1, z2, . . . , zµ in the unknowny-coordinatesy1, y2, . . . , yt. Let us
call the coefficient matrixM . In order that the linearized system is uniquely solvable,
we requiredetM 6= 0. We now investigate how often this condition is satisfied, and
also how we can force this condition to hold in most cases.

7

For a moment, let us treat thex-coordinatesr1, r2, . . . , rt as symbols. But then the
failure conditiondetM = 0 can be rephrased in terms of a multivariate polynomial
equation inr1, r2, . . . , rt. Let us denote this equation asD(r1, r2, . . . , rt) = 0. If D
is identically zero, then any values ofr1, r2, . . . , rt constitute a root ofD. We explain
shortly how this situation can be avoided.

Assume thatD is not identically zero. Letδ be the maximum degree of each in-

dividual ri in D. One can derive thatδ 6
(

22t+3⌈log
2
t⌉+2 + 3

)

(

22
t−1−1 − 1

)

≈
22

t−1+2t+3⌈log
2
t⌉+1 (See Appendix B). If we restrict our attention to the valuest 6 6,

we haveδ 6 254. The maximum number of roots ofD is bounded belowtδqt−1 (See
Appendix C). The total number oft-tuples(r1, r2, . . . , rt) overFq is qt. Therefore, a
randomly chosen tuple(r1, r2, . . . , rt) is a root ofD with probability6 tδqt−1/qt =
tδ/q. If we use the inequalitiest 6 6, δ 6 254 andq > 2160, we conclude that this
probability is less than2−103. Therefore, ifD is not the zero polynomial, we can solve
for z1, z2, . . . , zµ uniquely with very high probability.

What remains is to propose a way to avoid the conditionD = 0. We start with any
t randomly chosen ECDSA signatures withr-valuesr1, r2, . . . , rt. We then choose any
sequence of squaring and multiplication byzi in order to arrive at a linear system in
z1, z2, . . . , zµ. If the corresponding coefficient matrixM is not invertible, we discard
the chosen sequence of squaring and multiplication. This isbecausedetM = 0 implies
that eitherD is the zero polynomial or the chosenr1, r2, . . . , rt constitute a root of a
non-zeroD. The second case is extremely unlikely. With high probability, we, there-
fore, conclude that the chosen sequence of squaring and multiplication givesD = 0
identically. We change the sequence, and repeat the above process until we come across
the situation wherer1, r2, . . . , rt do not constitute a root of the non-zero polynomial
equationD(r1, r2, . . . , rt) = 0. This implies thatD is not identically zero, and ran-
domly chosenr1, r2, . . . , rt satisfyD(r1, r2, . . . , rt) = 0 with very low probability.
We keep this sequence for all future invocations of our batch-verification algorithm.

Table 1 lists some sequences of squaring and multiplication, that work for NIST
prime curves. Here,S stands for a squaring step, whereas a monomial (likey2y4) stands
for multiplication by that monomial. In all these cases, we use only Eqn (7), whereas
Eqn (8) is used only for the unique determination of individual yi values. These se-
quences depend upont alone, but not on the NIST curves. For other curves, this method
is expected to work equally well. Indeed, we may considerD(r1, r2, . . . , rt) as a poly-
nomial inZ[r1, r2, . . . , rt]. If D is not identically zero, then it is identically zero modulo
only a finite number of primes (the common prime divisors of the coefficients ofD).

Table 1.Sequences to generate linearized systems for NIST prime curves

t Sequence in the linearization phase
2 No squaring or multiplication needed
3 y1y2, y1y3
4 y1y2, y1y3, y1y4, y2y3, y3y4, y1y4
5 y1y2, y1y3, y1y4, y1y5, y2y3, y2y4, y4y5, y1y2, y1y3, y1y4, y1y5, y1y2, y2y4, y2y3
6 y1y2, y1y3, y1y4, y1y5, y1y6, y2y3, y2y4, y2y5, y1y2, y3y4, y3y5, y1y5, y1y6, y1y2y3y6, y1y5,

y1y4, y1y3, y1y2y3y6, y1y2, y1y3, y1y4, y1y5, y2y5, y2y3, S, y2y6, y4y6, y3y6, y5y6, y1y5

8

5.3 Security Analysis

In Algorithm S1, we reconstruct the pointsRi with x-coordinatesx(Ri) = ri by forc-
ing the conditionR =

∑t
i=1 Ri =

∑t
i=1 R

′
i = R′, whereR′

i = uiP + viQi. Sup-
pose that an adversary too can force the conditionR = R′. The adversary must also
reveal thex-coordinatesr1, r2, . . . , rt as parts of ECDSA signatures. Given thesex-
coordinates and the conditionR = R′, there exists (with high probability) a unique
solution for the correspondingy-coordinatesy1, y2, . . . , yt of R1, R2, . . . , Rt. This so-
lution can be computed by the adversary, for example, using Algorithm S1 (or by taking
modular square roots inFq as in Algorithm N). So long ast is restricted to small con-
stant values (liket 6 6), the adversary requires only moderate computing resources for
determiningy1, y2, . . . , yt uniquely. This implies that although the adversary needs to
reveal only thex-coordinatesri, (s)he essentiallyknowsthe full pointsRi. But these
pointsR1, R2, . . . , Rt satisfy the standard batch-verification condition for ECDSA*.
That is, if the adversary can fool Algorithm S1, (s)he can fool the standard ECDSA*
batch-verification algorithm too. It follows that Algorithm S1 is no less secure than the
standard batch-verification algorithm for ECDSA*. Conversely, if an adversary can fool
any ECDSA* batch-verification algorithm, (s)he can always fool any ECDSA batch-
verification algorithm, since ECDSA signatures are only parts of ECDSA* signatures.
To sum up, Algorithm S1 is as secure as standard ECDSA* batch verification [7].

An analysis of the security of Algorithm N is also worth including here. Suppose
that an adversary can pass one of them = 2t checks in Algorithm N along with dis-
closingr1, r2, . . . , rt. The correct choicesyi of the square roots ofr3i + ari+ b (that is,
those choices corresponding to the successful check) constitute a case of fulfillment of
the ECDSA* batch-verification criterion. Consequently, Algorithm N too is as secure
as standard ECDSA* batch verification.

5.4 Cases of Failure for Algorithm S1

Our Monte Carlo batch-verification Algorithm S1 may fail fora few reasons. We now
argue that these cases of failure are probabilistically very rare.

1. Takingxi = ri blindly is a possible cause of failure for Algorithm S1. As discussed
earlier, this situation has a very low probability. Furthermore, it is easy to identify
when this situation occurs. In case of ambiguity in the values ofxi, we can repeat
Algorithm S1 for all possible candidate tuples(x1, x2, . . . , xt). If the pointsRi are
randomly chosen inE(Fq), most of thesexi values are unambiguously available to
us, and there should not be many repeated runs (if any) of Algorithm S1. Repeated
runs, if necessary, may be avoided, because doing so goes against the expected
benefits achievable by batch verification.

2. Although we are able to identify good sequences of squaring and multiplication in
order to force the determinant polynomialD(r1, r2, . . . , rt) to be not identically
zero, roots of this polynomial may appear in some cases of ECDSA signatures. We
have seen that ifr1, r2, . . . , rt are randomly chosen, the probability of this situation
is no more than2−103 (for t 6 6).

9

3. Eqn (5) is derived using the point-addition formula on thecurveE, which is differ-
ent from the doubling formula. So long as we work symbolically using the unknown
quantitiesy1, y2, . . . , yt, it is impossible to predict when the two points being added
turn out to be equal. IfR1, R2, . . . , Rt are randomly chosen fromE(Fq), the prob-
ability of this occurrence is extremely low.

4. Algorithm S1 fails ifR′ is the point at infinity or lies on thex-axis (β = 0). In
that case, one should resort to individual verification. Forrandomly chosen session
keys, this case occurs with a very small probability (nearly4/q).

6 A More Efficient Batch-verification Algorithm (Algorithm S2)

The linearization stage in Algorithm S1 (requiringO(m2t) field operations) and the
subsequent Gaussian-elimination stage (O(m3) field operations) are rather costly,m
being an exponential function of the batch sizet. Our second symbolic-manipulation
algorithm S2 avoids these two stages altogether.

Algorithm S1 uniquely solves for the monomialsz1, z2, . . . , zµ using the equation
Rx = α only. At this point, there are only two possible solutions for the yi values:
(y1, y2, . . . , yt) and(−y1,−y2, . . . ,−yt). This sign ambiguity is eliminated by using
the other equationRy = β. As mentioned in connection with the security analysis of
Algorithm N, the exact determination of these signs is not important. In other words,
we would be happy even if we can determine eachyi correctly up to multiplication by
±1. This, in turn, implies that if we have any multivariate equation (linear inyi) of the
form uyi + v = 0 (whereu, v are polynomials iny1, . . . , yi−1, yi+1, . . . , yt), we do
not mind multiplying this equation byuyi − v so that±yi satisfyu2y2i − v2 = 0. But
y2i = r3i + ari + b, so we haveu2

i (r
3
i + ari + b) − v2i = 0, an equation in whichyi is

eliminated. This observation leads to Algorithm S2.
Like Algorithm S1, we first symbolically computeR =

∑t
i=1 Ri, and arrive at

Eqns (7) and (8). Then, we consider only the multivariate equationRx − α = 0 linear
individually in eachyi. We first eliminatey1, and with substitutions given by Eqn (4)
for i = 2, 3, . . . , t, we arrive at a multivariate equation iny2, y3, . . . , yt, again linear in
each of these variables. We eliminatey2 from this equation, and arrive at a multivariate
equation iny3, y4, . . . , yt. We repeat this process until all variablesy1, y2, . . . , yt are
eliminated. If the polynomial after all these eliminationsreduces to zero, the original
equationRx = α is consistent with respect toy2i = r3i + ari + b for all i = 1, 2, . . . , t.

We may likewise eliminatey1, y2, . . . , yt from Ry − β = 0 too, but this is not
necessary, because it suffices to knowyi uniquely up to multiplication by±1.

Some comments on efficient implementations of the elimination stage are now in
order. First, we are not using Eqn (8) at all in Algorithm S2. Consequently, it is not
necessary to compute the polynomialRy. However, in the symbolic-computation stage,
we need to compute all intermediatey-coordinates, since they are needed in the final
value ofRx. The computation of only the lasty-coordinateRy may be avoided. Still,
this saves quite some amount of effort (O(mt) field operations, to be precise). This
saving does not affect the theoretical complexity of the algorithm in the big-Oh notation,
but its practical effects are noticeable.

The second issue is that the polynomialsu andv in each elimination step have some
nice properties. Throughout this step,φ = uyi + v andv are polynomials with each

10

non-zero term having even degree, whereasu is a polynomial with each non-zero term
having odd degree. In particular, when the firstt − 2 y-coordinates are eliminated, we
haveφ = uyt−1yt + v with u, v ∈ Fq. Elimination ofyt−1 eliminatesyt too, so an
explicit elimination ofyt is not necessary.

The y-coordinatesy1, y2, . . . , yt are not explicitly reconstructed in Algorithm S2.
However, if necessary, we can compute two sets of solutionsy1, y2, . . . , yt and−y1,
−y2, . . . ,−yt by using the values ofφ = uyi + v for i = t − 1, t − 2, . . . , 2, 1. The
sign ambiguity can be removed by usingRy = β. Algorithm S2 does not include this
reconstruction phase, since this is cryptographically unimportant. However, we use this
result in the security proof for S2.

It is also important to note that the determination of individual yi values is cryp-
tographically unimportant for Algorithm S1 too, sinceRx = α already identifies ex-
actly two solutions for the reconstructed points. If these steps are omitted, the batch-
acceptance criterion would matchz2i against appropriate products ofr3j +arj+b for all
i = 1, 2, . . . , µ. In fact, it suffices to consider only the monomialszi of degree2. How-
ever, the unique determination ofyi values takes only an insignificant fraction of time
in Algorithm S1, so it does not practically matter to make a choice between whether we
carry out these steps or not.

7 Analysis of Algorithm S2

7.1 Running Time

The symbolic computation of(Rx, Ry) involvesO(mt2) field operations (as in Al-
gorithm S1). Subsequently, we start with the polynomialφ = Rx − α with at most
µ + 1 = m

2 + 1 non-zero terms. Elimination ofyi requires computing the squaresu2

andv2, carrying out the polynomial arithmeticu2(r3i + ari + b) − v2, andt − i sub-
stitutions ofy2j by r3j + arj + b. Therefore, the reduction ofφ too requiresO(mt2)

field operations. This is significantly better than theO(m3) operations needed by Al-
gorithm S1. Moreover, Algorithm S2 outperforms Algorithm Nfor a wide range oft
andq, since the condition(σ +m)t ≫ mt2 is more often satisfied than the condition
(σ +m)t ≫ m3.

7.2 Security Analysis

We establish the equivalence between the security of Algorithm S2 and the security
of standard ECDSA* batch verification, as we have done for theearlier algorithms (N
and S1). Suppose that an adversary reveals thex-coordinatesr1, r2, . . . , rt in ECDSA
signatures which pass the batch-verification procedure of Algorithm S2. We mentioned
above that there are exactly two solutions(y1, y2, . . . , yt) and (−y1,−y2, . . . ,−yt)
consistent withRx − α = 0 and y2i = r3i + ari + b for i = 1, 2, . . . , t. One of
these solutions corresponds to the ECDSA* signatures basedupon the disclosed values
r1, r2, . . . , rt. It is that solution that would passRy = β. To sum up, the adversary can
forge the standard ECDSA* batch-verification algorithm. Moreover, this forging pro-
cedure which essentially involves the unique reconstruction of the pointsRi = (ri, yi)
is practical for any adversary with only a moderate amount ofcomputing resources, so
long ast is restricted only to small values (the only cases where we can apply S2).

11

8 Efficient Variants of S1 and S2

In Algorithm S1, we generate a system of linearized equations in m
2 − 1 = 2t−1 − 1

monomials. Solving the resulting equation turns out to be the costliest step of Algo-
rithm S1, demandingΘ(m3) field operations. In Algorithm S2, the symbolic computa-
tion of R = (Rx, Ry) turns out to be the most time-consuming step. This step callsfor
Θ(mt2) field operations. The elimination phase too calls forΘ(mt2) operations.

In this section, we explain a strategy to reduce the number ofmonomials in Al-
gorithms S1 and S2. So far, we have been symbolically computing the pointR =
∑t

i=1 Ri, and equating the symbolic sum toR′ = (α, β). This results in polynomial
expressions withΘ(2t−1) (that is,Θ(m)) non-zero terms.

Now, letτ = ⌈t/2⌉. We symbolically compute the two sums:

R(1) =
τ
∑

i=1

Ri and R(2) = R′ −
t
∑

i=τ+1

Ri. (12)

The polynomial expressions involved inR(1) andR(2) contain onlyΘ(2τ), that is,
Θ(

√
m) non-zero terms. So computing these two symbolic sums needsΘ(2τ τ2), that

is,Θ(
√
mt2) field operations which is significantly smaller than theΘ(mt2) operations

associated with the symbolic computation of the complete sum
∑t

i=1 Ri. The condition
R = R′ is equivalent to the conditionR(1) = R(2). Using this new condition helps us
in speeding up the subsequent steps too.

8.1 Algorithm S1′

The symbolic computation ofR in Algorithm S1 can be replaced by the two symbolic
computations given by Eqn (12). In that case, we replace the initial equationsRx = α
andRy = β by the two equationsx(R(1)) = x(R(2)) andy(R(1)) = y(R(2)). It is easy
to argue thatx(R(1)) is a polynomial iny1, y2, . . . , yτ with each non-zero term having
even degree, whereasy(R(1)) is a polynomial iny1, y2, . . . , yτ with each non-zero term
having odd degree. That is, the number of non-zero terms in these two expressions is
2τ−1 =

√
m
2 . However, the presence ofR′ = (α, β) on the right side of the expression

for R(2) (Eqn 12) lets bothx(R(2)) andy(R(2)) contain all (square-free) monomials in
yτ+1, yτ+2, . . . , yt (both even and odd degrees). There are exactly2⌊t/2⌋−1 6

√
m−1

monomials in these two expressions. In the linearized system that we subsequently
generate, we consider, as variables, only the even-degree monomials iny1, y2, . . . , yτ
and all monomials inyτ+1, yτ+2, . . . , yt.

We start with the equationx(R(1)) = x(R(2)). Subsequently, we keep on squaring
the equationx(R(1)) = x(R(2)) (and substituting values ofy2i wherever necessary).
This sequence does not increase the number of monomials in the linearized equations.
More precisely, for anyj > 0, the equationx(R(1))2

j

= x(R(2))2
j

contains only the
Θ(

√
m) monomials with which we start. If we fail to obtain a linearized system of full

rank, we start squaring the other initial equationy(R(1)) = y(R(2)). For anyj > 1,
the equationy(R(1))2

j

= y(R(2))2
j

again contains only the monomials with which
we start. In all the cases studied, we have been able to obtaina full-rank linearized

12

system by squaring the two initial equations. Since the number of linearized variables is
Θ(

√
m), the linearization step of Algorithm S1 now reduces toO(mt) field operations.

Finally, we solve a system withΘ(
√
m) variables usingΘ(m3/2) field operations.

To sum up, using the trick introduced in this section decreases the number of field
operations fromΘ(m3) to Θ(m3/2). Let us plan to call this efficient variant of S1 as
S1′. Fundamentally, S1′ is not a different algorithm from S1. In particular, the security
of S1′ is the same as the security of S1 (in fact, little better, because fewer linearized
equations are involved). However, the reduction in the running time is very significant,
both theoretically and practically.

8.2 Algorithm S2′

Instead of starting withφ = Rx − α, Algorithm S2′ starts with the initial expression

φ = x(R(1))− x(R(2)). (13)

We then repeatedly eliminatey1, y2, . . . , yt. Although the initial expression ofφ con-
tains much less number of monomials than in the original Algorithm S2, elimination
of y1 itself introduces many new monomials inφ, that is, soonφ becomes almostfull.
Consequently, the elimination phase continues to makeΘ(mt2) field operations as be-
fore, that is, the theoretical running time of S2′ is the same as that of S2. Still, the effects
of our heuristic are clearly noticeable in practical implementations.

As described in Section 6, they-coordinatesy(R(1)) andy(R(2)) need not be com-
puted. It is, however, necessary to symbolically compute the y-coordinates of all inter-
mediate sums.

9 Experimental Results

Our batch-verification algorithms are implemented using the GP/PARI calculator [11]
(version 2.3.5). Our choice of this implementation platform is dictated by the symbolic-
computation facilities and an easy user interface providedby the calculator. All exper-
iments are carried out in a 2.33 MHz Xeon server running Mandriva Linux Version
2010.1. The GNU C compiler 4.4.3 is used for compiling the GP/PARI calculator.

In Table 2, we list the average times for carrying out single scalar multiplications in
the NIST prime curves. This table also lists the times for single square-root calculations
in the underlying fields. Table 3 lists the overheads associated with the three algorithms
N, S1 and S2, and their variants N′, S1′ and S2′. These overhead figures do not include
the scalar-multiplication times. The algorithms S1, S1′ and S2 become impractical for
batch sizest > 6, so these algorithms are not implemented fort = 7 andt = 8.

Table 2.Timings (ms) for NIST prime curves

P-192 P-224 P-256 P-384 P-521
Time for Scalar Multiplication (inE(Fq)) 1.82 2.50 3.14 7.33 14.38

Time for Square-root (inFq) 0.06 0.35 0.09 0.26 0.67

13

Table 3.Overheads (ms) for different batch-verification algorithms

Naive (N) Naive (N′)
t t

Curve 2 3 4 5 6 7 8 2 3 4 5 6 7 8
P-1920.18 0.39 0.76 1.57 3.40 7.71 17.000.13 0.19 0.26 0.33 0.39 0.46 0.52
P-2240.81 1.34 2.04 3.29 5.63 10.60 21.500.71 1.06 1.42 1.78 2.14 2.49 2.85
P-2560.24 0.49 0.97 1.95 4.18 9.27 20.850.19 0.29 0.38 0.48 0.58 0.68 0.78
P-3840.66 1.15 1.95 3.51 6.76 13.80 29.900.53 0.81 1.08 1.35 1.62 1.90 2.17
P-5211.66 2.70 4.21 6.73 11.63 21.00 43.101.36 2.05 2.74 3.42 4.11 4.80 5.49

Symbolic (S1) Symbolic (S1′)
t t

Curve 2 3 4 5 6 2 3 4 5 6
P-1920.14 0.57 2.01 8.66 40.500.07 0.20 0.70 1.60 4.40
P-2240.15 0.60 2.10 9.50 45.600.07 0.20 0.80 1.80 4.70
P-2560.16 0.61 2.17 9.78 46.300.08 0.21 0.82 1.90 4.90
P-3840.18 0.74 2.71 12.56 62.100.08 0.30 0.90 2.20 6.10
P-5210.22 0.90 3.45 16.80 88.400.12 0.40 1.30 2.90 8.00

Symbolic (S2) Symbolic (S2′)
t t

Curve 2 3 4 5 6 2 3 4 5 6 7 8
P-1920.07 0.30 0.76 2.39 6.650.07 0.11 0.32 0.61 1.14 2.36 5.46
P-2240.07 0.32 0.84 2.53 7.110.07 0.12 0.33 0.64 1.21 2.51 5.91
P-2560.08 0.32 0.80 2.51 7.080.08 0.12 0.33 0.64 1.22 2.52 5.88
P-3840.09 0.37 0.91 2.85 8.150.09 0.14 0.38 0.72 1.41 2.95 7.12
P-5210.11 0.44 1.07 3.45 10.020.11 0.18 0.42 0.95 1.76 3.72 9.26

Table 4 records the speedup values achieved by the six algorithms N, N′, S1, S1′, S2
and S2′. Here, the speedup is computed with respect to individual verification, and in-
corporates both scalar-multiplication times and batch-verification overheads. The maxi-
mum achievable speedup values (t in the case of same signer, and2t/(t+1) in the case
of different signers) are also listed in Table 4, to indicatehow our batch-verification
algorithms compare with the ideal cases. The maximum speedup obtained by our fully
ECDSA-compliant algorithms is 6.20 in the case of same signer, and 1.70 in the case
of different signers, both achieved by Algorithm S2′ for the curve P-521 and fort = 7.

From Table 4, it is evident that one should use Algorithm S2′ if extra information
(a bit identifying the correct square root of eachr3i + ari + b) is not available. In this
case, the optimal batch size ist = 7 (or t = 6 if the underlying field is small). If, on the
other hand, disambiguating extra bits are appended to ECDSAsignatures, one should
use S2′ for t 6 4 for (curves over) small fields and fort 6 6 (or t 6 7) for large fields.
If the batch size increases beyond these bounds, it is preferable to use Algorithm N′.

10 Conclusion

In this paper, we have proposed six algorithms for the batch verification of ECDSA sig-
natures. To the best of our knowledge, these are the first batch-verification algorithms

14

Table 4.Speedup obtained by different batch-verification algorithms

Same signer Different signers
Curve t Ideal N N′ S1 S1′ S2 S2′ Ideal N N′ S1 S1′ S2 S2′

P-1922 2.00 1.91 1.94 1.93 1.96 1.96 1.961.33 1.29 1.30 1.30 1.32 1.32 1.32
3 3.00 2.71 2.86 2.59 2.84 2.77 2.911.50 1.42 1.46 1.39 1.46 1.44 1.48
4 4.00 3.31 3.75 2.58 3.35 3.31 3.681.60 1.48 1.56 1.31 1.49 1.48 1.55
5 5.00 3.49 4.62 1.48 3.47 3.02 4.281.67 1.46 1.62 0.93 1.45 1.37 1.58
6 6.00 3.10 5.46 0.49 2.72 2.12 4.571.71 1.35 1.67 0.41 1.27 1.13 1.57
7 7.00 2.24 6.28 – – – 4.251.75 1.14 1.70 – – – 1.51
8 8.00 1.41 7.07 – – – 3.201.78 0.87 1.73 – – – 1.33

P-2242 2.00 1.72 1.75 1.94 1.97 1.97 1.971.33 1.20 1.22 1.31 1.32 1.32 1.32
3 3.00 2.37 2.48 2.68 2.88 2.82 2.931.50 1.32 1.36 1.42 1.47 1.45 1.48
4 4.00 2.84 3.12 2.82 3.45 3.42 3.751.60 1.38 1.44 1.37 1.50 1.50 1.56
5 5.00 3.02 3.70 1.72 3.68 3.32 4.431.67 1.37 1.49 1.02 1.49 1.43 1.60
6 6.00 2.82 4.23 0.59 3.09 2.48 4.831.71 1.30 1.53 0.48 1.35 1.22 1.60
7 7.00 2.24 4.70 – – – 4.661.75 1.14 1.56 – – – 1.55
8 8.00 1.51 5.13 – – – 3.671.78 0.91 1.58 – – – 1.41

P-2562 2.00 1.93 1.94 1.95 1.97 1.97 1.971.33 1.30 1.31 1.31 1.32 1.32 1.32
3 3.00 2.78 2.88 2.73 2.90 2.85 2.941.50 1.44 1.47 1.43 1.48 1.46 1.49
4 4.00 3.46 3.78 2.97 3.54 3.55 3.801.60 1.51 1.56 1.41 1.52 1.52 1.57
5 5.00 3.82 4.67 1.96 3.84 3.57 4.541.67 1.51 1.63 1.10 1.51 1.47 1.61
6 6.00 3.60 5.52 0.72 3.37 2.82 5.021.71 1.44 1.67 0.55 1.40 1.30 1.62
7 7.00 2.83 6.36 – – – 5.001.75 1.28 1.71 – – – 1.59
8 8.00 1.85 7.18 – – – 4.131.78 1.02 1.73 – – – 1.47

P-3842 2.00 1.91 1.93 1.98 1.99 1.99 1.991.33 1.29 1.30 1.32 1.33 1.33 1.33
3 3.00 2.78 2.85 2.86 2.94 2.93 2.971.50 1.44 1.46 1.46 1.48 1.48 1.49
4 4.00 3.53 3.74 3.38 3.77 3.77 3.901.60 1.52 1.56 1.49 1.56 1.56 1.58
5 5.00 4.03 4.59 2.69 4.35 4.19 4.771.67 1.54 1.62 1.30 1.59 1.57 1.64
6 6.00 4.11 5.42 1.15 4.24 3.86 5.471.71 1.51 1.66 0.78 1.53 1.48 1.67
7 7.00 3.61 6.23 – – – 5.831.75 1.42 1.70 – – – 1.67
8 8.00 2.63 7.01 – – – 5.381.78 1.22 1.72 – – – 1.60

P-5212 2.00 1.89 1.91 1.98 1.99 1.99 1.991.33 1.28 1.29 1.33 1.33 1.33 1.33
3 3.00 2.74 2.80 2.91 2.96 2.95 2.981.50 1.43 1.45 1.48 1.49 1.49 1.50
4 4.00 3.49 3.66 3.57 3.83 3.86 3.941.60 1.51 1.54 1.53 1.57 1.58 1.59
5 5.00 4.05 4.48 3.16 4.54 4.46 4.841.67 1.55 1.60 1.40 1.61 1.60 1.65
6 6.00 4.27 5.26 1.47 4.69 4.45 5.651.71 1.54 1.65 0.91 1.59 1.56 1.68
7 7.00 4.05 6.02 – – – 6.201.75 1.48 1.68 – – – 1.70
8 8.00 3.20 6.74 – – – 6.051.78 1.33 1.71 – – – 1.66

15

ever proposed for ECDSA. In particular, development of algorithms based upon sym-
bolic manipulations appears to be a novel approach in the history of batch-verification
algorithms. There are several ways to extend our study, someof which are listed below.

– Section 8 describes a way to reduce the running time of the symbolic-addition
phase of Algorithm S2 fromO(mt2) to O(

√
mt2). An analogous speedup for the

elimination phase would be very useful.
– Our best symbolic-computation algorithm runs inO(mt2) time. Removal of a fac-

tor of t (that is, designing anO(mt)-time algorithm) would be useful to achieve
higher speedup values.

– It is of interest to study our algorithms in conjunction withthe earlier works [1, 3]
on ECDSA*.

– Our batch verification algorithms can be easily ported to other curves (like the
Koblitz and Pseudorandom families recommended by NIST). Solving quadratic
equations in binary fields is somewhat more involved than modular square-root
computations in prime fields, so our symbolic-manipulationalgorithms are ex-
pected to be rather effective for binary fields.

References

1. A. Antipa, D. Brown, R. Gallant, R. Lambert, R. Struik, and S. Vanstone, ‘Accelerated veri-
fication of ECDSA signatures’, SAC 2005, LNCS Vol. 3897, 307–318, 2006.

2. ANSI, ‘Public Key Cryptography for the Financial Services Industry: The Elliptic Curve
Digital Signature Algorithm (ECDSA)’, ANSI X9.62, approved January7, 1999.

3. J. H. Cheon and J. H. Yi, ‘Fast batch verification of multiple signatures’, PKC 2007, LNCS
Vol. 4450, 442–457, 2007.

4. L. Harn, ‘Batch verifying multiple RSA digital signatures’, Electronics Letters, Vol. 34,
No. 12, 1219–1220, 1998.

5. M.-S. Hwang, I.-C. Lin, K.-F. Hwang, ‘Cryptanalysis of the BatchVerifying Multiple RSA
Digital Signatures’, Informatica, Vol. 11, No. 1, 15–19, 2000.

6. D. Johnson and A. Menezes, ‘The Elliptic Curve Digital Signature Algorithm (ECDSA)’,
International Journal on Information Security, Vol. 1, 36–63, 2001.

7. D. Naccache, D. M’Raihi, D. Rapheali and S. Vaudenay, ‘Can D.S.A. be improved: Com-
plexity trade-offs with the digital signature standard’, EuroCrypt’94, LNCS Vol. 950, 77–85,
1994.

8. NIST, ‘Digital Signature Standard (DSS)’,http://csrc.nist.gov/publications/drafts/
fips 186-3/Draft-FIPS-186-3%20 March2006.pdf, 2006.

9. NIST, ‘Recommended elliptic curves for federal government use’,
http://csrc.nist.gov/groups/ST/toolkit/ documents/dss/NISTReCur.pdf, July 1999.

10. NIST, ‘Secure Hash Standard (SHS)’,http://csrc.nist.gov/publications/drafts/fips 180-
3/draft fips-180-3 June-08-2007.pdf, 2007.

11. PARI Group, ‘PARI/GP Development Headquarters’,http://pari.math.u-bordeaux.fr/,
2003–2008.

12. R. L. Rivest, A. Shamir and L. Adleman, ‘A method for obtaining digital signatures and
pubic-key cryptosystem’, Communications of the ACM, Vol. 2, 120–126, 1978.

13. D. Shanks. ‘Five number theoretic algorithms’, Proceedings of the Second Manitoba Con-
ference on Numerical Mathematics, 51–70, 1973.

16

Appendix

A Properties ofRx andRy

Theorem 1. Rx contains only even-degree monomials, andRy contains only odd-
degree monomials in the variablesy1, y2, . . . , yt.

Proof. We proceed by induction on the batch sizet > 1. If t = 1 (case of individual
verification), we haveRx = r1 andRy = y1, for which the theorem evidently holds.

So assume thatt > 2. We computeR =
∑t

i=1 Ri asR′ +R′′ with R′ =
∑τ

i=1 Ri

andR′′ =
∑t

i=τ+1 Ri for someτ in the range1 6 τ 6 t− 1. LetR′ = (R′
x, R

′
y) and

R′′ = (R′′
x, R

′′
y). The inductive assumption is that all non-zero terms ofR′

x andR′′
x are

of even degrees (iny1, . . . , yτ andyτ+1, . . . , yt, respectively), and all non-zero terms
of R′

y andR′′
y are of odd degrees.

We first symbolically computeλ = (R′′
y − R′

y)/(R
′′
x − R′

x) as a rational function.
Clearing the variablesyi from the denominator multiplies both the numerator and the
denominator ofλ by polynomials of non-zero terms having even degrees. Everysubsti-
tution ofy2i by the field elementr3i +ari+b reduces theyi-degree of certain terms by2,
so the parity of the degrees in these terms is not altered. Finally,λ becomes a polynomial
with each non-zero term having odd degree. But then,Rx = λ2 − R′

x − R′′
x is a poly-

nomial with each non-zero term having even degree, whereasRy = λ(R′
x −Rx)−R′

y

is a polynomial with each non-zero term having odd degree. Further substitutions ofy2i
by r3i + ari + b to simplifyRx andRy preserve these degree properties.

B Derivation of δ

For computing the number of roots(r1, r2, . . . , rt) of detM = 0, we treatr1, r2, . . . , rt
as symbols, and need to calculate an upper bound on the degreeδ of each individual
ri. Without loss of generality, we compute an upper bound on thedegreeδ of r1 in
detM = 0. To this effect, we first look at the expressions forRx andRy which are el-
ements ofFq(r1, r2, . . . , rt)[y1, y2, . . . , yt]. We can writeRx = gx/h andRy = gy/h,
wheregx, gy are polynomials inFq[r1, r2, . . . , rt, y1, y2, . . . , yt], and the common de-
nominatorh is a polynomial inFq[r1, r2, . . . , rt]. Let ηt denote the maximum of the
r1-degrees ingx, gy andh. We first recursively derive an upper bound forηt.

We computeR = R′+R′′ with R′ = (R′
x, R

′
y) =

∑τ
i=1 Ri andR′′ = (R′′

x, R
′′
y) =

∑t
i=τ+1 Ri, whereτ = ⌈t/2⌉. Ther1-degree ofR′ is ητ , whereas ther1-degree ofR′′

is 0. The initial r1-degree ofλ = (R′′
y − R′

y)/(R
′′
x − R′

x) is at mostητ . Clearingy1
from the denominator ofλ changes ther1-degree to2ητ + 3. Subsequent eliminations
of y2, . . . , yt finally reducesλ with a y-free denominator. The maximumr1-degree of
this expression forλ is 2t−1(2ητ + 3). Therefore,λ2 hasr1-degree6 2t(2ητ + 3).
Subsequent computations ofRx = λ2 −R′

x −R′′
x andRy = λ(R′

x −Rx)−R′
y yield

ηt 6 (2t + 2t−1)(2ητ + 3) + 2ητ 6 (2t + 2t−1)(2ητ + 3) + 2ητ

with τ = ⌈t/2⌉. Solving this recurrence gives the upper boundηt 6 22t+3⌈log
2
t⌉+2.

17

Now, we follow a sequence of squaring and monomial multiplication to convert
Rx = α to a set of linear equations. If∆i is ther1-degree of thei-th equation, we have

∆1 = ηt,

∆i 6 2∆i−1 + 3 for i > 2.

The recurrence relation pertains to the case of squaring. One easily checks that∆i 6

(ηt + 3)2i−1 for all i > 1. Finally, ther1-degree of the equationdetM = 0 is

δ 6 ∆1 +∆2 + · · ·+∆µ 6 (ηt + 3)(2µ − 1) 6
(

22t+3⌈log
2
t⌉+2 + 3

)(

22
t−1−1 − 1

)

.

Notice that this is potentially a very loose upper bound forδ. In general, we avoid
squaring. Multiplication by a monomial can increase ther1-degree by3 if the monomial
containsy1. If the monomial does not containy1, ther1-degree does not increase at all.
Nevertheless, this loose upper bound is good enough in the present context.

C Number of Roots ofdetM = 0

Let us write the equationdetM = 0 asD(r1, r2, . . . , rt) = 0, where theri-degree of
the multivariate polynomialD is 6 δ for eachi. We assume thatD is not identically
zero. We plan to show that the maximum numberB(t) of roots ofD is 6 tδqt−1. To
that effect, we first writeD as a polynomial inrt:

D(r1, r2, . . . , rt) = Dδ(r1, r2, . . . , rt−1)r
δ
t +Dδ−1(r1, r2, . . . , rt−1)r

δ−1
t + · · ·+

D1(r1, r2, . . . , rt−1)rt +D0(r1, r2, . . . , rt−1).

If D is not identically zero, at least oneDi is not identically zero. If(r1, r2, . . . , rt−1)
is a common root of eachDi, appending any value ofrt gives a root ofD. The max-
imum number of common roots ofD0, D1, . . . , Dδ is B(t−1). On the other hand, if
(r1, r2, . . . , rt−1) is not a common root of allDi, there are at mostδ values ofrt satis-
fying D(r1, r2, . . . , rt) = 0. We, therefore, have

B(t) 6 B(t−1)q + (qt−1 −B(t−1))δ = (q − δ)B(t−1) + δqt−1. (14)

Moreover, we have

B(1) 6 δ. (15)

By induction ont, one can show thatB(t) 6 tδqt−1. This bound is rather tight, particu-
larly for δ ≪ q (as it happens in our cases of interest). A polynomialD satisfying equal-
ities in (14) and (15) can be constructed asD(r1, r2, . . . , rt) = ∆(r1)∆(r2) · · ·∆(rt),
where∆ is a square-free univariate polynomial of degreeδ, that splits overFq. By the
principle of inclusion and exclusion (or by explicitly solving the recurrence (14)), we
obtain the total number of roots of thisD as

δtqt−1 −
(

t

2

)

δ2qt−1 +

(

t

3

)

δ3qt−3 − · · ·+ (−1)t−1δt

= qt − (q − δ)t = δ(qt−1 + (q − δ)qt−2 + (q − δ)2qt−3 + · · ·+ (q − δ)t−1).

If δ ≪ q, this count is very close totδqt−1. It remains questionable whether our equa-
tion detM = 0 actually encounters this worst-case situation, but this does not matter,
at least in a probabilistic sense.

18

