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Distributed Che
kpointing of VMs in Xen FrameworkSankalp Agarwal, 03CS3023April 30, 2008Abstra
tA 
omputing system 
onsists of a multitude of hardware and software 
omponents that are boundto fail eventually. In many systems, su
h 
omponent failures 
an lead to unanti
ipated, potentiallydisruptive failure behavior and to servi
e unavailability. In distributed system as the size of systemgrows, so does the probability that some 
omponent may fail. Re
overing from su
h failures isnotoriously di�
ult and is important in the design and development of reliable systems, appli
ations& proto
ols. Che
kpointing and rollba
k re
overy is a widely used s
heme for dealing with failuresat the appli
ation level. Extension of these distributed 
he
kpointing proto
ols from appli
ationlevel to the virtual operating systems in XEN framework is not implemented so far. The aim of thiswork is to provide users/appli
ations with a 
he
kpointing library along with few implemented basi

he
kpointing algorithm, syn
hronous & asyn
hronous, whi
h would enable them to 
he
kpoint agroup of VMs that are 
ommuni
ating among themselves.1 Introdu
tionA system 
onsists of a set of hardware and software 
omponents. Failure of a system o

urs when thesystem doesn't perform its servi
es in the manner spe
i�ed. An erroneous state of the system is a statewhi
h 
ould lead to a system failure by a sequen
e of valid state transitions. A fault is an anomalousphysi
al 
ondition whi
h may be 
aused due to design errors, manufa
turing problems et
. An error isthat part of the system state whi
h di�ers from its intended value[19, 16, 12℄.A system failure o

urs when the pro
essor fails to exe
ute. It is 
aused by hardware problems orsoftware errors. In 
ase of system failure, the pro
essor is stopped and restarted in 
orre
t state. Whenthe nature of the errors and damage 
aused by faults 
an be a

urately and 
ompletely assessed thenit is possible to remove the errors and enabling the system to move forward. This te
hnique is 
alledforward error re
overy. On the other hand, if it is not possible to foresee the errors or remove the errorsin the system's state, then the system's state 
an be restored to a previous error-free system state. Thiste
hnique is known as ba
kward error re
overy[19℄.Ba
kward error re
overy 
an be a
hieved by 2 methodologies, operation-based and state-based[12℄.In operation based approa
h, we store the state of the system in su�
ient detail so that a previousstate 
an be restored by reversing all the 
hanges made to the state. In state based approa
h, 
ompletestate is saved when a re
overy point is established and re
overing a system involves reinstating its savedstate and resuming the exe
ution from that state[19, 6℄. The pro
ess of saving state is referred to as
he
kpointing or taking a 
he
kpoint. The pro
ess of restoring a pro
ess to a previous state is 
alled asrolling ba
k of the pro
ess.Distributed Systems have be
ome popular be
ause of several advantages they have over 
entralizedones. They provide enhan
ed performan
e and in
reased availability. One way of realizing enhan
edperforman
e is through 
on
urrent exe
ution of many pro
esses, whi
h 
ooperate in performing a task.An important requirement of distributed systems is the ability to tolerate failures. The probability thatsome 
omponent in a distributed system will fail in
reases with the in
rease in the size of the system.Che
kpointing in distributed systems is mu
h more 
ompli
ated. Ea
h pro
essor saves its state at thelo
al stable storage. These re
overy points are 
alled lo
al 
he
kpoints. All the lo
al 
he
kpoints, onefrom ea
h site, 
olle
tively form a global 
he
kpoint. A global 
he
kpoint is 
alled a 
onsistent set of
he
kpoints, if every message re
orded as re
eived in a lo
al 
he
kpoint is also re
orded as sent in anotherlo
al 
he
kpoint that 
onstitute the same global 
he
kpoint.There are 2 approa
hes towards distributed 
he
kpointing, syn
hronous 
he
kpointing and asyn-
hronous 
he
kpointing[22, 20, 13, 11, 9, 6℄. The syn
hronous 
he
kpointing is to ensure that all pro-
esses keep lo
al 
he
kpoint in stable storage and 
oordinate their lo
al 
he
kpoint a
tion su
h that1



global 
he
kpoint is guaranteed to be 
onsistent. When a failure o

urs, pro
esses roll ba
k and restartfrom their most re
ent 
he
kpoints. While 
rash re
overy is easy and simple in this 
ase, additionalmessages are generated for ea
h 
he
kpoint, and syn
hronization delays are introdu
ed during normaloperations. If there are no failures, then above approa
h pla
es an unne
essary burden on the system inform of additional messages and message delays. Similarly, when a pro
essor rolls ba
k and restarts aftera failure, a number of additional pro
esses are for
ed to roll ba
k with it. The pro
esses indeed roll ba
kto a 
onsistent state, but not ne
essary to maximum 
onsistent state. In the asyn
hronous approa
h,ea
h pro
essor takes lo
al 
he
kpoints independently and a 
onsistent global state is 
onstru
ted usingthese 
he
kpoints during re
overy. To help in 
rash re
overy and minimize the amount of 
omputationdone during a rollba
k, all in
oming messages are logged (stored on a stable storage) at ea
h pro
essor. 2approa
hes are available for message logging namely, pessimisti
 message logging and optimisti
 messagelogging.Virtualization is widely used te
hnique in whi
h a software layer multiplexes lower-level resour
esamong higher level software programs and systems. Examples of virtualization systems in
lude a vastbody of work in the area of operating systems[15, 18, 17, 14, 8, 4℄, high-level language virtual ma
hinessu
h as those for Java and .Net, and more re
ently, virtual ma
hine monitors (VMMs). VMM virtualizesentire software sta
ks in
luding the operating system and appli
ation, via a software layer betweenhardware and the OS of the ma
hine. VMMs o�er a wide range of bene�ts in
luding appli
ation and fullsystem isolation, OS based migration, distributed load balan
ing, OS-level 
he
kpointing and re
overy,non-native appli
ation exe
ution and support for multiple or 
ustomized operating systems. This useof virtualization 
an improve reliability, �exibility and re
overy time after OS 
rashes. From now on,whenever we refer to virtualization, it refers to OS virtualization using VMMs and Virtual Ma
hine willrefer to instan
es of virtualized OS.Virtual Ma
hines give higher performan
e by 
ooperating together to 
omplete tasks. They maybe running multiple distributed appli
ations. Failure of one Virtual Ma
hine 
auses failure of all thepro
esses that were running inside the VM. Re
overing from su
h failures require 
oordination between
he
kpointing pro
esses running on various virtual ma
hines.In our work, we aim to give a distributed 
he
kpointing library in Xen, using whi
h user 
an implementhis/her own proto
ol for distributed 
he
kpoint of VMs in Xen framework. Library would be pa
kagedwith syn
hronous and asyn
hronous algorithms for dire
t usage.The rest of the report is as follows: Se
tion 2 gives brief introdu
tion to virtual ma
hines, Xen VMMand 
he
kpoint implementation in Xen. Se
tion 3 explains the problem statement, our approa
h andsolution to it. The report is 
on
luded in Se
tion 4.2 Ba
kgroundThis se
tion provides a ba
kground by looking into some of the 
entral 
on
epts of virtualization and
he
kpointing. First the 
on
ept of VMs is presented des
ribing di�erent approa
hes and types of VMs.This is followed by des
ription of Xen virtual ma
hine monitor from an ar
hite
tural point of view.Finally the last se
tion is about 
he
kpointing of VM implemented in Xen.2.1 Virtual Ma
hinesAn abstra
tion of a 
ommon 
omputer de�ned as the three layers: hardware, operating system and higherlevel software. Ea
h of these layers may be emulated having other layers or even 
omputer ar
hite
turesas platforms. The 
on
ept of su
h emulation is 
alled a VM. A VM is an emulation of lower layers ofa 
omputer abstra
tion on behalf of higher layers to a 
ertain extent, the higher layer me
hanisms aregiven the illusion that they are running on a 
ertain lower layer me
hanism, yet they are a
tually runningon a virtual instan
e of this me
hanism.As a VM 
an be implemented on any layer in this abstra
tion while providing another virtual layer,many 
ombinations exist in possible VM solutions; however, the most 
ommon are software based andprovide higher level runtime environments or virtualization of hardware or operating systems. Higherlevel runtime environments provide an abstra
tion on whi
h programs 
ompiled for the parti
ular VMmay run. A virtualization of operating system servi
es may be performed between the layers of theoperating system and the higher level software, giving the higher level software the ne
essary exe
utionenvironment to perform its tasks. Virtualization of hardware usually is performed running as an appli-
ation above the operating system; thereby a virtual instan
e of arbitrary hardware ar
hite
ture lies ontop of the a
tual hardware, on whi
h an operating system may run.2



Hardware level VMs have many appli
ations. Some allow virtualization of ar
hite
tures so thatprograms designed for a parti
ular ar
hite
ture may be exe
uted in a VM on a di�erent ar
hite
ture;some allow ar
hite
tures to be developed virtually, so that these may be tested and evaluated, andsoftware may be developed for them, before realization. Moreover, most hardware level VMs that areimplemented in software, allow several virtual instan
es of ar
hite
ture to run on a single ar
hite
ture,providing a platform for running multiple operating systems on a single 
omputer.The exe
ution of a virtual ma
hine (VM) implies that one or more virtual systems are running
on
urrently on top of the same hardware, ea
h having its own view of available resour
es. The levelin the software hierar
hy where the virtualization o

urs in�uen
es the transparen
y and performan
eoverhead. The system-level virtualization in
orporates a management fa
ility 
alled a Hypervisor, whi
hoversees VMs on a host ma
hine. The VMs run on the hostThere are di�erent approa
hes to providing a virtual ar
hite
ture.2.1.1 Full VirtualizationVirtual ma
hines emulate some real or �
tional hardware, whi
h in turn requires real resour
es fromthe host (the ma
hine running the VMs). This approa
h, used by most system emulators, allows theemulator to run an arbitrary guest operating system without modi�
ations be
ause guest OS is notaware that it is not running on real hardware. The main issue with this approa
h is that some CPUinstru
tions require additional privileges and may not be exe
uted in user spa
e thus requiring a virtualma
hines monitor (VMM) to analyze exe
uted 
ode and make it safe on-the-�y. Hardware emulationapproa
h is used by VMware produ
ts, QEMU, Parallels and Mi
rosoft Virtual Server.2.1.2 ParavirtualizationThis te
hnique also requires a VMM, but most of its work is performed in the guest OS 
ode, whi
hin turn is modi�ed to support this VMM and avoid unne
essary use of privileged instru
tions. Theparavirtualization te
hnique also enables running di�erent OSes on a single server, but requires themto be ported, i.e. they should "know" they are running under the hypervisor. The paravirtualizationapproa
h is used by produ
ts su
h as Xen and UML.2.1.3 Virtualization on the OS levelMost appli
ations running on a server 
an easily share a ma
hine with others, if they 
ould be isolatedand se
ured. Further, in most situations, di�erent operating systems are not required on the sameserver, merely multiple instan
es of a single operating system. OS-level virtualization systems have beendesigned to provide the required isolation and se
urity to run multiple appli
ations or 
opies of the sameOS (but di�erent distributions of the OS) on the same server. OpenVZ, Virtuozzo, Solaris Zones &FreeBSD Jails are examples of OS-level virtualization.2.2 The XEN Virtual Ma
hine MonitorA few 
ommer
ial VMMs exist today, su
h as VMware and VirtualPC. They provide a true x86 VMplatform with performan
e losses that are small enough to make them feasible in some appli
ations, yetlarge enough to make them infeasible for high performan
e purposes.Xen is a novel VMM whi
h allows multiple 
ommodity operating systems to share 
onventionalhardware in a safe way with minimal performan
e and fun
tionality loss. The Xen VMM was originallyintended to be an integral part of a UK resear
h proje
t, Xenoserver. The Xenoserver proje
t aims toprovide a wide-area distributed 
omputing platform on whi
h members of the publi
 
an submit 
odefor exe
ution. Later Xen emerged as a separate entity.The overall system stru
ture is illustrated in Figure 1. Note that a domain is 
reated at boot timewhi
h is permitted to use the 
ontrol interfa
e. This initial domain, termed Domain0, is responsible forhosting the apli
ation level management software. The 
ontrol interfa
e provides the ability to 
reateand terimnate other domains and to 
ontrol their asso
iated s
heduling parameters, physi
al memoryallo
ations and the a

esss they are given to the ma
hine's physi
al disks and network devi
es. Inaddition to pro
essor and memory resour
es, the 
ontrol interfa
e supports the 
reaeting and deletion ofvirtual network interfa
es (VIFs) and blo
k devi
es (VBDs)[5℄. These virtual I/O devi
es have asso
iateda

ess-
ontrol information whi
h determines whi
h domains 
an a

ess them, and with what restri
tions.3



Figure 1: The stru
ture of a ma
hine running Xen hypervisor, hosting a number of di�erent guestoperating systems, in
luding domain0 running 
ontrol intera
eThe idea behind Xen is to run guest operating systems not in ring 0, but in a higher and lessprivileged ring. Running guest OSes in a ring higher than ring 0 is 
alled "ring de-privileging". Thedefault Xen installation on x86 runs guest OSes in ring 1, termed Current Privilege Level 1 (or CPL 1) ofthe pro
essor. It runs a virtual ma
hine monitor (VMM), the "hypervisor", in CPL 0. The appli
ationsrun in ring 4 without any modi�
ation[2℄. A hyper
all is Xen's analog to Linux system 
all. A system
all is an interrupt (0x80) 
alled in order to move from user spa
e (CPL3) to kernel spa
e (CPL0). Ahyper
all is also an interrupt (0x82). It passes 
ontrol from ring1, where guest domains are running toring0, where Xen runs[1℄. To provide safe hardware isolation, Xen uses Virtual Split Drivers. Domain0 is the only one whi
h has dire
t a

ess to hardware devi
es, and it uses original Linux drivers. Butdomain0 has another layer, the ba
kend, whi
h 
ontains netba
k and blo
kba
k virtual drivers[3℄.Similarly, the unprivileged domains have a

ess to a frontend layer, whi
h 
onsist of netfront andblo
kfront virtual drivers. The unprivileged kernel issues I/O requests to the frontend in the same waythat I/O requests are sent to ordinary Linux kernel. However, be
ause frontend is only a virtual interfa
ewith no a

ess to real hardware, these requests are delegated to the ba
kend. From there they are sentto the real devi
es.Event noti�
ations in Xen travel between domains via Event 
hannels. An event is Xen is equivalentto a hardware interrupt. They essentially store one bit of information, the event of interest is signaled bytransitioning this bit from 0 to 1. Event noti�
ations 
an be masked by setting a �ag; this is equivalentto disabling interrupts and 
an be used to ensure atomi
ity of 
ertain operations in the guest kernel.Xen's grant tables provide a generi
 me
hanism to memory sharing between domains. This sharedmemory interfa
e underpins the split devi
e drivers for blo
k and network IO. Ea
h domain has its owngrant table. This is a data stru
ture that is shared with Xen; it allows the domain to tell Xen, what kindof permissions other domains have on its pages. Entries in grant tables are identi�ed as grant referen
es.A grant referen
e is an integer, whi
h indexes into grant table.2.3 Che
kpoint in XENThe Xen Hypervisor provides me
hanisms that allow users to take 
he
kpoints of the VMs. The hyper-visor is responsible for the 
he
kpoint and restart of a virtual ma
hine. However, the hypervisor worksin 
on
ert with the host OS to a

ess resour
es to a
tually 
arry out the pro
ess, i.e., writing 
he
kpoint4



Figure 2: Xen runs in ring 0, Guest Domain runs in ring1, User appli
ations run in ring 3

Figure 3: Split devi
e driver stru
ture in Xen
5



to disk, send/re
eive data on network. Therefore the 
he
kpoint/restart me
hanism for virtual ma
hinesis 
omposed of two parts[21℄:1. Hypervisor 
he
kpoint me
hanism2. The 
he
kpoint manager and resour
e manager that run the host OSThe implemented hypervisor 
he
kpoint me
hanism 
onsists of 2 parts[7℄:Che
kpoint Me
hanism at Guest/DomU1. Hypervisor asks the guest for help by writing a suspend message to a lo
ation in xenstore on whi
hthe guest has a wat
h.2. Guest dis
onne
ts itself from devi
es3. Guest unplugs all starting from CPU4. Interrupts are disabled5. Page tables of all the pro
esses are pinned into RAM6. Prepares a suspend re
ord, the Xen_start_info stru
ture, with the address of store and 
onsolepages 
onverted to PFN, so that restore 
an rewrite them on restore7. Makes a suspend hyper
all that doesn't returnChe
kpoint Me
hanism at Domain 01. Serialize guest 
on�guration2. Wait for Xen to announ
e that the domain has suspended3. Map guest memory in bat
hes and write it out with a header listing the PFNs in the bat
h4. Write out VCPU state for ea
h VCPU, with MFN to PFN �x-upsAlong with the 
he
kpoint me
hanism at the hypervisor, the implementation 
he
kpoint manager, re-sour
e manager is proposed[21℄. In se
tion 2.3.3 we dis
uss brie�y about the disk 
he
kpointing.2.3.1 Che
kpoint ManagerThe 
he
kpoint 
oming from the Hypervisor is a raw 
he
kpoint saving the entire VM image. Beforestoring a 
he
kpoint, it may be interesting to modify this 
he
kpoint. The 
he
kpoint manager is re-sponsible for preparing the 
he
kpoint for storage, to in
lude modi�
ations like 
ompression, transfer toremote pla
e, et
.2.3.2 Resour
e ManagerOn
e a 
he
kpoint is ready for storage, the system has to a

ess a hardware resour
e. The Resour
eManager (RM) is responsible for these aspe
ts of the system. The storage may be lo
al (e.g., lo
al disk,lo
al memory) or remote (e.g., remote disk, remote memory) to the VM that is being 
he
kpointed. CMtakes 
are of managing the 
he
kpoints and resour
e manager abstra
t the storage method for the CMResour
e Manager is 
omposed of multiple 
omponents, ea
h of them being dedi
ated to a spe
i�
resour
e a

ess (for instan
e lo
al vs. remote, memory vs. disks). Whenever a 
he
kpoint is re
eived,in order to identify the 
orre
t 
omponent that 
an store the 
he
kpoint, the RM sends a request toall the 
omponents. If a 
he
kpoint's 
hara
teristi
s mat
h 
omponent requirements, the 
omponentsaves the 
he
kpoint. This enables dynami
 management of resour
es sin
e RM 
omponents may bea
tivated/dea
tivated a

ording to the resour
e availability2.3.3 Disk Che
kpointingDisk 
he
kpointing is yet not implemented in Xen, however, a solution with sta
kable �le system(UnionFS) is proposed.On
e the VM's disk and memory state have been re
orded a full rollba
k me
hanism is possiblewithout potential for in
onsisten
y during 
he
kpoint/restart.6



3 Problem de�nition and approa
hVirtual ma
hines provide enhan
ed performan
e when they 
ooperate together to perform tasks. Che
k-pointing a VM in Xen is on progress. This dire
tly leads us to the path of 
he
kpointing a group of VMsrunning over various ma
hines. In this work, we aim to provide a distributed 
he
kpointing library thatwould enable user/appli
ation to build up a distributed 
he
kpointing algorithm for a group of VirtualMa
hines without having to worry about details of Virtual Ma
hine Spe
i�
ations. We would pa
kage 2
he
kpointing algorithms (syn
hronous & asyn
hronous) along with the library.The 5-step approa
h to deliver the library is as follows:1. Read Xen sour
e 
ode & implementation of VM 
he
kpointing in Xen2. Implementation of syn
hronous and asyn
hronous distributed 
he
kpointing algorithm over a groupof VMs3. Creation of Library4. Testing of Algorithms and Library5. Library Do
umentation3.1 Syn
hronous Distributed Che
kpoint of VMs in Xen3.1.1 System ModelThe system is assumed to 
onsist of various virtual ma
hines in Xen Framework. All virtual ma
hinesand domain0 of all ma
hines have a se
ondary storage system. The se
ondary storage system is assumedto be stable storage i.e. it doesn't lose information in the event of system failure. No halting failureso

ur in the system. The virtual ma
hines 
ommuni
ate by ex
hanging messages via 
ommuni
ation
hannels. Channels are FIFO in nature. End to end proto
ols are assumed to 
ope with message lossdue to 
ommuni
ation failure. Communi
ation failures do not partition the network. There is no sharedmemory or 
lo
k between all VMs.The 
he
kpointing algorithm takes two kinds of 
he
kpoints on stable storage, permanent and tenta-tive. A permanent 
he
kpoint is a lo
al 
he
kpoint at a VM and is part of a 
onsistent global 
he
kpoint.A tentative 
he
kpoint is a temporary 
he
kpoint that is made a permanent 
he
kpoint on the su

essfultermination of the 
he
kpoint algorithm. Domains rollba
k only to their permanent 
he
kpoints.3.1.2 Che
kpoint and Re
overy AlgorithmThe 
he
kpoint algorithm assumes single initiator, as opposed to multiple initiators 
on
urrently invokingthe algorithm to take 
he
kpoints. The algorithm is modi�ed version of syn
hronous 
he
kpointingalgorithm proposed by Koo and Toueg[11℄ a

ording to ar
hite
ture of Xen. The algorithm has 3 phases.1. First phase:The 
he
kpoint initiator whi
h is domain0 sends request to all virtual ma
hines to getthe information about their domain0. Ea
h Virtual Ma
hine then 
onta
ts 
orresponding domain0to 
he
k whether it is ready to take a 
he
kpoint as hypervisor in domain0 
an only take the
he
kpoint. If domain0s are ready then they send 
on�rmation to the guest domains who want totake 
he
kpoints. The guest domains then send ba
k the domain0 information to the initiator.2. Se
ond phase :The initiator then requests all the domain0s 
orresponding to virtual ma
hines totake tentative 
he
kpoints. Ea
h domain informs initiator whether it su

eeded in taking a ten-tative 
he
kpoint. If domain0 fails to take a 
he
kpoint, it replies "no" whi
h 
ould be due toseveral reasons, depending upon the underlying virtual ma
hine. If initiator learns that all the pro-
esses have su

essfully taken tentative 
he
kpoints, initiator de
ides that all tentative 
he
kpointsshould be made permanent; otherwise initiator de
ides that all the tentative 
he
kpoints should bedis
arded.3. Third phase: The initiator informs all the domain0s of the de
ision it rea
hed at the end of the�rst phase. A domain0 on re
eiving message from initiator, will a
t a

ordingly. Therefore either
he
kpoint is taken for all virtual ma
hines or for no virtual ma
hineThe algorithm requires that every pro
ess, on
e it has taken a tentative 
he
kpoint, not send messagesrelated to underlying 
omputation until it is informed of initiator's de
ision.7



3.2 Asyn
hronous Distributed Che
kpoint of VMs in XenSyn
hronous 
hek
poiting simpli�es re
overy, but it has disadvantages like additional message ex
hange,syn
hronization delays and unne
essary overhead in 
ases of no failure. Several asyn
hronous distributed
he
kpointing algorithms have been proposed. We 
hoose an optimisti
 asyn
hronous distributed 
he
k-pionting algorithm given by Juang et. al [10℄. We 
hoose this algoirthm be
ause we don't need to appendany information to the messages so that all the distributed appli
ations written without 
he
kpoint andre
overy support 
an bene�t from this algorithm as all the logging, as we will see, 
an be o�setted tothe kernel.3.2.1 System ModelThe system is assumed to 
onsist of various virtual ma
hines in Xen Framework. All virtual ma
hinesand domain0 of all ma
hines have a se
ondary storage system. The se
ondary storage system is assumedto be stable storage i.e. it doesn't lose information n the event of system failure. No halting failureso

ur in the system. The virtual ma
hines 
ommuni
ate by ex
hanging messages via 
ommuni
ation
hannels. Channels are FIFO in nature. End to end proto
ols are assumed to 
ope with message lossdue to 
ommuni
ation failure. Communi
ation failures do not partition the network. The message delayis arbitrary, but �nite. There is no shared memory or 
lo
k between all VMs.3.2.2 Che
kpoint and Re
overy AlgorithmThe Algorithm assumes two types of log storage are available for logging in the system, namely, volatilelog and stable log. Properties of the volatile log are1. A

essing the volatile log takes less time than stable log.2. Contents of volatile log are periodi
ally �ushed to stable storage and 
leared.The important point to note here is that 
he
kpoint of a guest domain is taken by Domain0 in stablestorage be
ause of its large size. Hen
e, pro
essor state whi
h in this 
ase is the 
he
kpoint �le 
an't bepresent in volatile storage of either the guest domain or domain0. Also, taking 
he
kpoint after everyevent is not possible, we take 
he
kpoint at regular intervals in the guest domain and maintain the logsin kernel spa
e of guest domain (whi
h are later �ushed to stable storage) while the 
he
kpoint �le ispresent in stable storage.In our implementation, we re
ord a tuple (sj , rj) in volatile storage where sj represent number ofmessages sent to jth domain and rj represents the number of messages re
eived from jth domain. Whenwe take a 
he
kpoint, dom0 
reates a unique 
he
kpoint id and sends it to the 
orresponding guestdomain. The guest domain stores this unique id along with 
urrent stats of (sj , rj) tuples in stablestorage.As in other asyn
hronous algorithms, the guest domain (with the help of domain0 ) takes 
he
kpointsat regular intervals without 
ommuni
ating with the other domains involved in distrbuted 
omputation.On
e a domain 
rashes, it is brought alive by the domain0. It then sends message to all the otherdomains to initiate re
overy algorithm. The re
overy algorithm stops re
ording (sj , rj) as it will beupdated after re
overy anyways. The 
he
kpointing algorithm stops taking 
he
kpoints. Re
overy Algo-rithm uses following datastru
tures:
RCV Di←j(CkPti) represents the number of messages re
eived by domain i from domain j, per theinformation stored in the 
he
kpoint CkPti.
SENTi←j(CkPti) represents the number of messages sent by domain i to domain j, per the informationstored in the CkPtiThe re
overy algorithm is as follows:3.3 Plan for TestingTo get an a

urate and 
omprehensive view of working of implemented 
he
kpointing algorithms, rig-orous testing is essential. In general, testing of distributed appli
ations is di�
ult be
ause of theirnon-reprodu
ibility of events, 
omplex timing of events, and 
omplex states. In this se
tion, we dis-
uss our testing plan to 
he
k the implementation of syn
hronous as well as asyn
hronous 
he
kpointingalgorithm.Our plan is as follows: 8



Algorithm 1 Rollba
k Re
overy Algorithmif di is the 
rashed domain then
RECi ← the last 
he
kpoint in the stable storageelse
RECi ← the latest event that took pla
e in diend iffor k ← 1 to |V | dofor ea
h domain di do
ompute SENTi→j(RECi)send a rollba
k SENTi→j(RECi) message to djend forrepeatwait for a rollback(c) message

m← rollback(c) message re
eivedput m into processing queueuntil a rollback message from ea
h domain is re
eivedwhile processing queue 6= Φ dolet m = rollback(c)be a message in processing queuedelete m from rollback processing queue
ompute the RECEIV EDi←j(RECi) if m 
ame from pjif RECEIV EDi←j(RECi) > c then�nd the latest 
he
kpoint CkPt su
h that
RECEIV EDi←j(e) <= c

RECi ← CkPtend ifend whileend for1. Corre
tness of ImplementationThe Corre
tness of the implemented algorithms is 
he
ked by running a distributed appli
ation onvarious VMs, 
he
kpointing it, making it to fail and then re
overing ba
k the appli
ation via the
onsistent set of 
he
kpoints. For our testing, we have 
onsidered two types of appli
ations:(a) a simple message passing(
lient-server) appli
ation 
oded using POSIX so
kets.(b) a distributed appli
ation for example where 
omputation may spread over various VMs.In both the 
ases, we would take a series of permanent 
he
kpoints over suitable time intervalsand show that we save system resour
es by restoring the exe
ution of algorithm from intermediate
onsistent state rather than starting the appli
ations from initial state.2. Fault Toleran
eWe need to 
he
k the ability of algorithm to perform under failures like 
ommuni
ation failure,message delays in network. We implemented our algorithm over TCP so that tramsmission andre
eption errors along with 
ommuni
ation failures are ta
kled by the TCP layer itself. MessageDelays are produ
ed by introdu
ing timeout at every send and re
eive of message by using timevaldata stru
ture and setso
kopt system 
all provided under Linux APIs. Arrival of late messages ista
kled by keeping data stu
tures that 
hange with timeout.3. PrivilegesChe
kpoint appli
ation need root privileges at every host. These privileges were 
he
ked by usinggeteguid system 
all on Linux. The e�e
tive user id of root is 0.4. Other TestsSize of ea
h 
he
kpoint �le is large whi
h is approximately equal to size of the physi
al memory weallo
ate to ea
h virtual ma
hine. Che
k to ensure that enough disk spa
e is available to store the
he
kpoint. 9



3.4 Che
kpoint and Re
overy LibraryThe Che
kpoint and Re
overy Library is developed whi
h provides various fun
tionalities at the kernellevel in the form of system 
alls to the user. Detailed analysis of system 
alls is 
overed in the thesis. Thesystem 
alls 
an be devided into two broad 
ategories, namely, Communi
ation Control and Logging.Communi
ation Control involves fun
tions like blo
king and reviving 
onne
tion to other VMs at thekernel level. Logging fun
tions aim to help the user 
olle
t various statisti
s about the message ex
hangesthat take pla
e between VMs, for example, getting the 
ount of number of messages sent from nativema
hine to some other VM.The Library also provides fun
tions to initate the syn
hronous and asyn
hronous distributed 
he
k-pointing and re
overy algorithms.3.4.1 Testing PlanLibrary is tested using Bla
k Box Model of Testing for ea
h system 
all. System 
alls run in kernel spa
e,hen
e, testing them requires a di�erent pro
edure than normal fun
tion 
alls. Kernel Modules also runin kernel spa
e and are the only way to ha
k inside the kernel. Hen
e we develop a kernel module forevery test ve
tor and manual testing is done rather than automated testing. Also stra
e is used to tra
ethe system 
alls.3.5 ChallengesWhile implementing distributed 
he
kpointing in Xen, we fa
ed following 
hallenges:1. Communi
ation between guest and parent : Communi
ation between guest and parent 
an be donevia TCP/IP so
kets or by inbuilt Event 
hannel Me
hanism. If we do it via event 
hannel me
ha-nism and grant table me
hanism (using shared memory between dom0 and VM) then we need todevelop a fake split driver that would enable both of the features for us. Presently, POSIX so
ketsare used to 
ommuni
ate between guest and parent.2. The appli
ations presently running inside the VM are unaware of the 
he
kpoint pro
ess of VM. Itis intuitive that an appli
ation 
an bene�t itself from the distributed 
he
kpoint of virtual ma
hines.3. Testing of Kernel Fun
tions is not easy. Mistakes lead to OS 
rashes and are di�
ult to debug.Crashes often 
orrupt the �le system as well by 
orrupting Inode tables. This often requires buildingup the system from s
rat
h. Proper ba
kups are taken to handle su
h situations.4. Sin
e Xen is an opensour
e software, various optimizations and 
hanges take pla
e. The imple-mentation was started on Xen 3.0.x and now Xen 3.2.x is released. Implementation of our librarywas updated to 
urrent version to utilize the bene�ts of optimizations and bug-�xes.4 Con
lusionVirtual ma
hines provide enhan
ed performan
e when they 
ooperate together to perform 
ertain tasks.There are many VMM providers in the market. Out of them, Xen provides an ex
ellent platform fordeploying a wide variety of network-
entri
 servi
es. It also provides the fa
ility of 
he
kpointing avirtual operating system (guestOS). Distributed VM 
he
kpointing is not implemented so far by anyof the virtualization software in
luding Xen, VMware, et
. We address this problem and give a libraryalong with few ready to use algorithms that user/appli
ation 
an use to either devi
e a distributed
he
kpointing proto
ol or dire
tly use the ones provided by us to 
he
kpoint a group of VMs.Referen
es[1℄ Xen Interfa
e manual 2.[2℄ Xen Interfa
e manual 3.[3℄ Xen wiki http://wiki.xensour
e.
om/xenwiki. 10



[4℄ JD Bagley, ER Floto, SC Hsieh, and V. Watson. Sharing data and servi
es in a virtual ma
hinesystem. Pro
eedings of the �fth ACM symposium on Operating systems prin
iples, pages 82�88,1975.[5℄ P. Barham, B. Dragovi
, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, andA. War�eld. Xen and the Art of Virtualization. Pro
eedings of the nineteenth ACM symposium onOperating systems prin
iples, pages 164�177, 2003.[6℄ K.M. Chandy and L. Lamport. Distributed Snapshots: Determining Global States of DistributedSystems. ACM Transa
tions on Computer Systems, 3(1):63�75, 1985.[7℄ B. Cully and A. War�eld. Virtual Ma
hine Che
kpointing. Xen Summit, 2007.[8℄ SW Galley. PDP-10 virtual ma
hines. Pro
eedings of the workshop on virtual 
omputer systemstable of 
ontents, pages 30�34, 1973.[9℄ D.B. Johnson and W. Zwaenepoel. Re
overy in Distributed Systems Using Optimisti
 MessageLogging and Che
kpointing. J. Algorithms, 11(3):462�491, 1990.[10℄ T.T.Y. Juang and S. Venkatesan. Crash re
overy with little overhead. Distributed ComputingSystems, 1991., 11th International Conferen
e on, pages 454�461, 1991.[11℄ R. Koo and SAM Toueg. Che
kpointing and rollba
k-re
overy for distributed systems. IEEETransa
tions on Software Engineering, 13:23�31, 1987.[12℄ PA Lee, T. Anderson, JC Laprie, A. Avizienis, and H. Kopetz. Fault Toleran
e: Prin
iples andPra
ti
e. Springer-Verlag New York, In
. Se
au
us, NJ, USA, 1990.[13℄ P.J. Leu and B. Bhargava. Con
urrent robust 
he
kpointing and re
overy in distributed systems.Data Engineering, 1988. Pro
eedings. Fourth International Conferen
e on, pages 154�163, 1988.[14℄ S.E. Madni
k and J.J. Donovan. Appli
ation and analysis of the virtual ma
hine approa
h toinformation system se
urity and isolation. Pro
eedings of the workshop on virtual 
omputer systemstable of 
ontents, pages 210�224, 1973.[15℄ RA Meyer and LH Seawright. A virtual ma
hine time-sharing system. IBM Journal of Resear
hand Development, 9(3):199, 1970.[16℄ V.P. Nelson. Fault-tolerant 
omputing: fundamental 
on
epts. Computer, 23(7):19�25, 1990.[17℄ G.J. Popek and R.P. Goldberg. Formal requirements for virtualizable third generation ar
hite
tures.Communi
ations of the ACM, 17(7):412�421, 1974.[18℄ G.J. Popek and C.S. Kline. The PDP-11 virtual ma
hine ar
hite
ture: A 
ase study. Pro
eedingsof the �fth ACM symposium on Operating systems prin
iples, pages 97�105, 1975.[19℄ B. Randell. Reliable Computing Systems. Springer-Verlag London, UK, 1978.[20℄ Y. Tamir and C.H. Sequin. Error re
overy in multi
omputers using global 
he
kpoints. 13th Inter-national Conferen
e on Parallel Pro
essing, pages 32�41, 1984.[21℄ G. Vallee, T. Naughton, H. Ong, and S.L. S
ott. Che
kpoint/Restart of Virtual Ma
hines Based onXen. 2006.[22℄ K. Venkatesh, T. Radhakrishnan, and HF Li. Optimal 
he
kpointing and lo
al re
ording for domino-free rollba
k re
overy. Information Pro
essing Letters, 25(5):295�304, 1987.
11


