
Distributed Chekpointing of Virtual Mahines in XenFrameworkSynopsis Submitted In Partial Fulfillment Of The RequirementsFor The Degree Of
Master of TehnologyinComputer Siene and Engineering

bySankalp AgarwalRoll No: 03CS3023under the guidane ofDr. Arobinda Gupta
Department of Computer Siene and EngineeringIndian Institute of TehnologyKharagpurMay 2008

Distributed Chekpointing of VMs in Xen FrameworkSankalp Agarwal, 03CS3023April 30, 2008AbstratA omputing system onsists of a multitude of hardware and software omponents that are boundto fail eventually. In many systems, suh omponent failures an lead to unantiipated, potentiallydisruptive failure behavior and to servie unavailability. In distributed system as the size of systemgrows, so does the probability that some omponent may fail. Reovering from suh failures isnotoriously di�ult and is important in the design and development of reliable systems, appliations& protools. Chekpointing and rollbak reovery is a widely used sheme for dealing with failuresat the appliation level. Extension of these distributed hekpointing protools from appliationlevel to the virtual operating systems in XEN framework is not implemented so far. The aim of thiswork is to provide users/appliations with a hekpointing library along with few implemented basihekpointing algorithm, synhronous & asynhronous, whih would enable them to hekpoint agroup of VMs that are ommuniating among themselves.1 IntrodutionA system onsists of a set of hardware and software omponents. Failure of a system ours when thesystem doesn't perform its servies in the manner spei�ed. An erroneous state of the system is a statewhih ould lead to a system failure by a sequene of valid state transitions. A fault is an anomalousphysial ondition whih may be aused due to design errors, manufaturing problems et. An error isthat part of the system state whih di�ers from its intended value[19, 16, 12℄.A system failure ours when the proessor fails to exeute. It is aused by hardware problems orsoftware errors. In ase of system failure, the proessor is stopped and restarted in orret state. Whenthe nature of the errors and damage aused by faults an be aurately and ompletely assessed thenit is possible to remove the errors and enabling the system to move forward. This tehnique is alledforward error reovery. On the other hand, if it is not possible to foresee the errors or remove the errorsin the system's state, then the system's state an be restored to a previous error-free system state. Thistehnique is known as bakward error reovery[19℄.Bakward error reovery an be ahieved by 2 methodologies, operation-based and state-based[12℄.In operation based approah, we store the state of the system in su�ient detail so that a previousstate an be restored by reversing all the hanges made to the state. In state based approah, ompletestate is saved when a reovery point is established and reovering a system involves reinstating its savedstate and resuming the exeution from that state[19, 6℄. The proess of saving state is referred to ashekpointing or taking a hekpoint. The proess of restoring a proess to a previous state is alled asrolling bak of the proess.Distributed Systems have beome popular beause of several advantages they have over entralizedones. They provide enhaned performane and inreased availability. One way of realizing enhanedperformane is through onurrent exeution of many proesses, whih ooperate in performing a task.An important requirement of distributed systems is the ability to tolerate failures. The probability thatsome omponent in a distributed system will fail inreases with the inrease in the size of the system.Chekpointing in distributed systems is muh more ompliated. Eah proessor saves its state at theloal stable storage. These reovery points are alled loal hekpoints. All the loal hekpoints, onefrom eah site, olletively form a global hekpoint. A global hekpoint is alled a onsistent set ofhekpoints, if every message reorded as reeived in a loal hekpoint is also reorded as sent in anotherloal hekpoint that onstitute the same global hekpoint.There are 2 approahes towards distributed hekpointing, synhronous hekpointing and asyn-hronous hekpointing[22, 20, 13, 11, 9, 6℄. The synhronous hekpointing is to ensure that all pro-esses keep loal hekpoint in stable storage and oordinate their loal hekpoint ation suh that1

global hekpoint is guaranteed to be onsistent. When a failure ours, proesses roll bak and restartfrom their most reent hekpoints. While rash reovery is easy and simple in this ase, additionalmessages are generated for eah hekpoint, and synhronization delays are introdued during normaloperations. If there are no failures, then above approah plaes an unneessary burden on the system inform of additional messages and message delays. Similarly, when a proessor rolls bak and restarts aftera failure, a number of additional proesses are fored to roll bak with it. The proesses indeed roll bakto a onsistent state, but not neessary to maximum onsistent state. In the asynhronous approah,eah proessor takes loal hekpoints independently and a onsistent global state is onstruted usingthese hekpoints during reovery. To help in rash reovery and minimize the amount of omputationdone during a rollbak, all inoming messages are logged (stored on a stable storage) at eah proessor. 2approahes are available for message logging namely, pessimisti message logging and optimisti messagelogging.Virtualization is widely used tehnique in whih a software layer multiplexes lower-level resouresamong higher level software programs and systems. Examples of virtualization systems inlude a vastbody of work in the area of operating systems[15, 18, 17, 14, 8, 4℄, high-level language virtual mahinessuh as those for Java and .Net, and more reently, virtual mahine monitors (VMMs). VMM virtualizesentire software staks inluding the operating system and appliation, via a software layer betweenhardware and the OS of the mahine. VMMs o�er a wide range of bene�ts inluding appliation and fullsystem isolation, OS based migration, distributed load balaning, OS-level hekpointing and reovery,non-native appliation exeution and support for multiple or ustomized operating systems. This useof virtualization an improve reliability, �exibility and reovery time after OS rashes. From now on,whenever we refer to virtualization, it refers to OS virtualization using VMMs and Virtual Mahine willrefer to instanes of virtualized OS.Virtual Mahines give higher performane by ooperating together to omplete tasks. They maybe running multiple distributed appliations. Failure of one Virtual Mahine auses failure of all theproesses that were running inside the VM. Reovering from suh failures require oordination betweenhekpointing proesses running on various virtual mahines.In our work, we aim to give a distributed hekpointing library in Xen, using whih user an implementhis/her own protool for distributed hekpoint of VMs in Xen framework. Library would be pakagedwith synhronous and asynhronous algorithms for diret usage.The rest of the report is as follows: Setion 2 gives brief introdution to virtual mahines, Xen VMMand hekpoint implementation in Xen. Setion 3 explains the problem statement, our approah andsolution to it. The report is onluded in Setion 4.2 BakgroundThis setion provides a bakground by looking into some of the entral onepts of virtualization andhekpointing. First the onept of VMs is presented desribing di�erent approahes and types of VMs.This is followed by desription of Xen virtual mahine monitor from an arhitetural point of view.Finally the last setion is about hekpointing of VM implemented in Xen.2.1 Virtual MahinesAn abstration of a ommon omputer de�ned as the three layers: hardware, operating system and higherlevel software. Eah of these layers may be emulated having other layers or even omputer arhiteturesas platforms. The onept of suh emulation is alled a VM. A VM is an emulation of lower layers ofa omputer abstration on behalf of higher layers to a ertain extent, the higher layer mehanisms aregiven the illusion that they are running on a ertain lower layer mehanism, yet they are atually runningon a virtual instane of this mehanism.As a VM an be implemented on any layer in this abstration while providing another virtual layer,many ombinations exist in possible VM solutions; however, the most ommon are software based andprovide higher level runtime environments or virtualization of hardware or operating systems. Higherlevel runtime environments provide an abstration on whih programs ompiled for the partiular VMmay run. A virtualization of operating system servies may be performed between the layers of theoperating system and the higher level software, giving the higher level software the neessary exeutionenvironment to perform its tasks. Virtualization of hardware usually is performed running as an appli-ation above the operating system; thereby a virtual instane of arbitrary hardware arhiteture lies ontop of the atual hardware, on whih an operating system may run.2

Hardware level VMs have many appliations. Some allow virtualization of arhitetures so thatprograms designed for a partiular arhiteture may be exeuted in a VM on a di�erent arhiteture;some allow arhitetures to be developed virtually, so that these may be tested and evaluated, andsoftware may be developed for them, before realization. Moreover, most hardware level VMs that areimplemented in software, allow several virtual instanes of arhiteture to run on a single arhiteture,providing a platform for running multiple operating systems on a single omputer.The exeution of a virtual mahine (VM) implies that one or more virtual systems are runningonurrently on top of the same hardware, eah having its own view of available resoures. The levelin the software hierarhy where the virtualization ours in�uenes the transpareny and performaneoverhead. The system-level virtualization inorporates a management faility alled a Hypervisor, whihoversees VMs on a host mahine. The VMs run on the hostThere are di�erent approahes to providing a virtual arhiteture.2.1.1 Full VirtualizationVirtual mahines emulate some real or �tional hardware, whih in turn requires real resoures fromthe host (the mahine running the VMs). This approah, used by most system emulators, allows theemulator to run an arbitrary guest operating system without modi�ations beause guest OS is notaware that it is not running on real hardware. The main issue with this approah is that some CPUinstrutions require additional privileges and may not be exeuted in user spae thus requiring a virtualmahines monitor (VMM) to analyze exeuted ode and make it safe on-the-�y. Hardware emulationapproah is used by VMware produts, QEMU, Parallels and Mirosoft Virtual Server.2.1.2 ParavirtualizationThis tehnique also requires a VMM, but most of its work is performed in the guest OS ode, whihin turn is modi�ed to support this VMM and avoid unneessary use of privileged instrutions. Theparavirtualization tehnique also enables running di�erent OSes on a single server, but requires themto be ported, i.e. they should "know" they are running under the hypervisor. The paravirtualizationapproah is used by produts suh as Xen and UML.2.1.3 Virtualization on the OS levelMost appliations running on a server an easily share a mahine with others, if they ould be isolatedand seured. Further, in most situations, di�erent operating systems are not required on the sameserver, merely multiple instanes of a single operating system. OS-level virtualization systems have beendesigned to provide the required isolation and seurity to run multiple appliations or opies of the sameOS (but di�erent distributions of the OS) on the same server. OpenVZ, Virtuozzo, Solaris Zones &FreeBSD Jails are examples of OS-level virtualization.2.2 The XEN Virtual Mahine MonitorA few ommerial VMMs exist today, suh as VMware and VirtualPC. They provide a true x86 VMplatform with performane losses that are small enough to make them feasible in some appliations, yetlarge enough to make them infeasible for high performane purposes.Xen is a novel VMM whih allows multiple ommodity operating systems to share onventionalhardware in a safe way with minimal performane and funtionality loss. The Xen VMM was originallyintended to be an integral part of a UK researh projet, Xenoserver. The Xenoserver projet aims toprovide a wide-area distributed omputing platform on whih members of the publi an submit odefor exeution. Later Xen emerged as a separate entity.The overall system struture is illustrated in Figure 1. Note that a domain is reated at boot timewhih is permitted to use the ontrol interfae. This initial domain, termed Domain0, is responsible forhosting the apliation level management software. The ontrol interfae provides the ability to reateand terimnate other domains and to ontrol their assoiated sheduling parameters, physial memoryalloations and the aesss they are given to the mahine's physial disks and network devies. Inaddition to proessor and memory resoures, the ontrol interfae supports the reaeting and deletion ofvirtual network interfaes (VIFs) and blok devies (VBDs)[5℄. These virtual I/O devies have assoiatedaess-ontrol information whih determines whih domains an aess them, and with what restritions.3

Figure 1: The struture of a mahine running Xen hypervisor, hosting a number of di�erent guestoperating systems, inluding domain0 running ontrol interaeThe idea behind Xen is to run guest operating systems not in ring 0, but in a higher and lessprivileged ring. Running guest OSes in a ring higher than ring 0 is alled "ring de-privileging". Thedefault Xen installation on x86 runs guest OSes in ring 1, termed Current Privilege Level 1 (or CPL 1) ofthe proessor. It runs a virtual mahine monitor (VMM), the "hypervisor", in CPL 0. The appliationsrun in ring 4 without any modi�ation[2℄. A hyperall is Xen's analog to Linux system all. A systemall is an interrupt (0x80) alled in order to move from user spae (CPL3) to kernel spae (CPL0). Ahyperall is also an interrupt (0x82). It passes ontrol from ring1, where guest domains are running toring0, where Xen runs[1℄. To provide safe hardware isolation, Xen uses Virtual Split Drivers. Domain0 is the only one whih has diret aess to hardware devies, and it uses original Linux drivers. Butdomain0 has another layer, the bakend, whih ontains netbak and blokbak virtual drivers[3℄.Similarly, the unprivileged domains have aess to a frontend layer, whih onsist of netfront andblokfront virtual drivers. The unprivileged kernel issues I/O requests to the frontend in the same waythat I/O requests are sent to ordinary Linux kernel. However, beause frontend is only a virtual interfaewith no aess to real hardware, these requests are delegated to the bakend. From there they are sentto the real devies.Event noti�ations in Xen travel between domains via Event hannels. An event is Xen is equivalentto a hardware interrupt. They essentially store one bit of information, the event of interest is signaled bytransitioning this bit from 0 to 1. Event noti�ations an be masked by setting a �ag; this is equivalentto disabling interrupts and an be used to ensure atomiity of ertain operations in the guest kernel.Xen's grant tables provide a generi mehanism to memory sharing between domains. This sharedmemory interfae underpins the split devie drivers for blok and network IO. Eah domain has its owngrant table. This is a data struture that is shared with Xen; it allows the domain to tell Xen, what kindof permissions other domains have on its pages. Entries in grant tables are identi�ed as grant referenes.A grant referene is an integer, whih indexes into grant table.2.3 Chekpoint in XENThe Xen Hypervisor provides mehanisms that allow users to take hekpoints of the VMs. The hyper-visor is responsible for the hekpoint and restart of a virtual mahine. However, the hypervisor worksin onert with the host OS to aess resoures to atually arry out the proess, i.e., writing hekpoint4

Figure 2: Xen runs in ring 0, Guest Domain runs in ring1, User appliations run in ring 3

Figure 3: Split devie driver struture in Xen
5

to disk, send/reeive data on network. Therefore the hekpoint/restart mehanism for virtual mahinesis omposed of two parts[21℄:1. Hypervisor hekpoint mehanism2. The hekpoint manager and resoure manager that run the host OSThe implemented hypervisor hekpoint mehanism onsists of 2 parts[7℄:Chekpoint Mehanism at Guest/DomU1. Hypervisor asks the guest for help by writing a suspend message to a loation in xenstore on whihthe guest has a wath.2. Guest disonnets itself from devies3. Guest unplugs all starting from CPU4. Interrupts are disabled5. Page tables of all the proesses are pinned into RAM6. Prepares a suspend reord, the Xen_start_info struture, with the address of store and onsolepages onverted to PFN, so that restore an rewrite them on restore7. Makes a suspend hyperall that doesn't returnChekpoint Mehanism at Domain 01. Serialize guest on�guration2. Wait for Xen to announe that the domain has suspended3. Map guest memory in bathes and write it out with a header listing the PFNs in the bath4. Write out VCPU state for eah VCPU, with MFN to PFN �x-upsAlong with the hekpoint mehanism at the hypervisor, the implementation hekpoint manager, re-soure manager is proposed[21℄. In setion 2.3.3 we disuss brie�y about the disk hekpointing.2.3.1 Chekpoint ManagerThe hekpoint oming from the Hypervisor is a raw hekpoint saving the entire VM image. Beforestoring a hekpoint, it may be interesting to modify this hekpoint. The hekpoint manager is re-sponsible for preparing the hekpoint for storage, to inlude modi�ations like ompression, transfer toremote plae, et.2.3.2 Resoure ManagerOne a hekpoint is ready for storage, the system has to aess a hardware resoure. The ResoureManager (RM) is responsible for these aspets of the system. The storage may be loal (e.g., loal disk,loal memory) or remote (e.g., remote disk, remote memory) to the VM that is being hekpointed. CMtakes are of managing the hekpoints and resoure manager abstrat the storage method for the CMResoure Manager is omposed of multiple omponents, eah of them being dediated to a spei�resoure aess (for instane loal vs. remote, memory vs. disks). Whenever a hekpoint is reeived,in order to identify the orret omponent that an store the hekpoint, the RM sends a request toall the omponents. If a hekpoint's harateristis math omponent requirements, the omponentsaves the hekpoint. This enables dynami management of resoures sine RM omponents may beativated/deativated aording to the resoure availability2.3.3 Disk ChekpointingDisk hekpointing is yet not implemented in Xen, however, a solution with stakable �le system(UnionFS) is proposed.One the VM's disk and memory state have been reorded a full rollbak mehanism is possiblewithout potential for inonsisteny during hekpoint/restart.6

3 Problem de�nition and approahVirtual mahines provide enhaned performane when they ooperate together to perform tasks. Chek-pointing a VM in Xen is on progress. This diretly leads us to the path of hekpointing a group of VMsrunning over various mahines. In this work, we aim to provide a distributed hekpointing library thatwould enable user/appliation to build up a distributed hekpointing algorithm for a group of VirtualMahines without having to worry about details of Virtual Mahine Spei�ations. We would pakage 2hekpointing algorithms (synhronous & asynhronous) along with the library.The 5-step approah to deliver the library is as follows:1. Read Xen soure ode & implementation of VM hekpointing in Xen2. Implementation of synhronous and asynhronous distributed hekpointing algorithm over a groupof VMs3. Creation of Library4. Testing of Algorithms and Library5. Library Doumentation3.1 Synhronous Distributed Chekpoint of VMs in Xen3.1.1 System ModelThe system is assumed to onsist of various virtual mahines in Xen Framework. All virtual mahinesand domain0 of all mahines have a seondary storage system. The seondary storage system is assumedto be stable storage i.e. it doesn't lose information in the event of system failure. No halting failuresour in the system. The virtual mahines ommuniate by exhanging messages via ommuniationhannels. Channels are FIFO in nature. End to end protools are assumed to ope with message lossdue to ommuniation failure. Communiation failures do not partition the network. There is no sharedmemory or lok between all VMs.The hekpointing algorithm takes two kinds of hekpoints on stable storage, permanent and tenta-tive. A permanent hekpoint is a loal hekpoint at a VM and is part of a onsistent global hekpoint.A tentative hekpoint is a temporary hekpoint that is made a permanent hekpoint on the suessfultermination of the hekpoint algorithm. Domains rollbak only to their permanent hekpoints.3.1.2 Chekpoint and Reovery AlgorithmThe hekpoint algorithm assumes single initiator, as opposed to multiple initiators onurrently invokingthe algorithm to take hekpoints. The algorithm is modi�ed version of synhronous hekpointingalgorithm proposed by Koo and Toueg[11℄ aording to arhiteture of Xen. The algorithm has 3 phases.1. First phase:The hekpoint initiator whih is domain0 sends request to all virtual mahines to getthe information about their domain0. Eah Virtual Mahine then ontats orresponding domain0to hek whether it is ready to take a hekpoint as hypervisor in domain0 an only take thehekpoint. If domain0s are ready then they send on�rmation to the guest domains who want totake hekpoints. The guest domains then send bak the domain0 information to the initiator.2. Seond phase :The initiator then requests all the domain0s orresponding to virtual mahines totake tentative hekpoints. Eah domain informs initiator whether it sueeded in taking a ten-tative hekpoint. If domain0 fails to take a hekpoint, it replies "no" whih ould be due toseveral reasons, depending upon the underlying virtual mahine. If initiator learns that all the pro-esses have suessfully taken tentative hekpoints, initiator deides that all tentative hekpointsshould be made permanent; otherwise initiator deides that all the tentative hekpoints should bedisarded.3. Third phase: The initiator informs all the domain0s of the deision it reahed at the end of the�rst phase. A domain0 on reeiving message from initiator, will at aordingly. Therefore eitherhekpoint is taken for all virtual mahines or for no virtual mahineThe algorithm requires that every proess, one it has taken a tentative hekpoint, not send messagesrelated to underlying omputation until it is informed of initiator's deision.7

3.2 Asynhronous Distributed Chekpoint of VMs in XenSynhronous hekpoiting simpli�es reovery, but it has disadvantages like additional message exhange,synhronization delays and unneessary overhead in ases of no failure. Several asynhronous distributedhekpointing algorithms have been proposed. We hoose an optimisti asynhronous distributed hek-pionting algorithm given by Juang et. al [10℄. We hoose this algoirthm beause we don't need to appendany information to the messages so that all the distributed appliations written without hekpoint andreovery support an bene�t from this algorithm as all the logging, as we will see, an be o�setted tothe kernel.3.2.1 System ModelThe system is assumed to onsist of various virtual mahines in Xen Framework. All virtual mahinesand domain0 of all mahines have a seondary storage system. The seondary storage system is assumedto be stable storage i.e. it doesn't lose information n the event of system failure. No halting failuresour in the system. The virtual mahines ommuniate by exhanging messages via ommuniationhannels. Channels are FIFO in nature. End to end protools are assumed to ope with message lossdue to ommuniation failure. Communiation failures do not partition the network. The message delayis arbitrary, but �nite. There is no shared memory or lok between all VMs.3.2.2 Chekpoint and Reovery AlgorithmThe Algorithm assumes two types of log storage are available for logging in the system, namely, volatilelog and stable log. Properties of the volatile log are1. Aessing the volatile log takes less time than stable log.2. Contents of volatile log are periodially �ushed to stable storage and leared.The important point to note here is that hekpoint of a guest domain is taken by Domain0 in stablestorage beause of its large size. Hene, proessor state whih in this ase is the hekpoint �le an't bepresent in volatile storage of either the guest domain or domain0. Also, taking hekpoint after everyevent is not possible, we take hekpoint at regular intervals in the guest domain and maintain the logsin kernel spae of guest domain (whih are later �ushed to stable storage) while the hekpoint �le ispresent in stable storage.In our implementation, we reord a tuple (sj , rj) in volatile storage where sj represent number ofmessages sent to jth domain and rj represents the number of messages reeived from jth domain. Whenwe take a hekpoint, dom0 reates a unique hekpoint id and sends it to the orresponding guestdomain. The guest domain stores this unique id along with urrent stats of (sj , rj) tuples in stablestorage.As in other asynhronous algorithms, the guest domain (with the help of domain0) takes hekpointsat regular intervals without ommuniating with the other domains involved in distrbuted omputation.One a domain rashes, it is brought alive by the domain0. It then sends message to all the otherdomains to initiate reovery algorithm. The reovery algorithm stops reording (sj , rj) as it will beupdated after reovery anyways. The hekpointing algorithm stops taking hekpoints. Reovery Algo-rithm uses following datastrutures:
RCV Di←j(CkPti) represents the number of messages reeived by domain i from domain j, per theinformation stored in the hekpoint CkPti.
SENTi←j(CkPti) represents the number of messages sent by domain i to domain j, per the informationstored in the CkPtiThe reovery algorithm is as follows:3.3 Plan for TestingTo get an aurate and omprehensive view of working of implemented hekpointing algorithms, rig-orous testing is essential. In general, testing of distributed appliations is di�ult beause of theirnon-reproduibility of events, omplex timing of events, and omplex states. In this setion, we dis-uss our testing plan to hek the implementation of synhronous as well as asynhronous hekpointingalgorithm.Our plan is as follows: 8

Algorithm 1 Rollbak Reovery Algorithmif di is the rashed domain then
RECi ← the last hekpoint in the stable storageelse
RECi ← the latest event that took plae in diend iffor k ← 1 to |V | dofor eah domain di doompute SENTi→j(RECi)send a rollbak SENTi→j(RECi) message to djend forrepeatwait for a rollback(c) message

m← rollback(c) message reeivedput m into processing queueuntil a rollback message from eah domain is reeivedwhile processing queue 6= Φ dolet m = rollback(c)be a message in processing queuedelete m from rollback processing queueompute the RECEIV EDi←j(RECi) if m ame from pjif RECEIV EDi←j(RECi) > c then�nd the latest hekpoint CkPt suh that
RECEIV EDi←j(e) <= c

RECi ← CkPtend ifend whileend for1. Corretness of ImplementationThe Corretness of the implemented algorithms is heked by running a distributed appliation onvarious VMs, hekpointing it, making it to fail and then reovering bak the appliation via theonsistent set of hekpoints. For our testing, we have onsidered two types of appliations:(a) a simple message passing(lient-server) appliation oded using POSIX sokets.(b) a distributed appliation for example where omputation may spread over various VMs.In both the ases, we would take a series of permanent hekpoints over suitable time intervalsand show that we save system resoures by restoring the exeution of algorithm from intermediateonsistent state rather than starting the appliations from initial state.2. Fault ToleraneWe need to hek the ability of algorithm to perform under failures like ommuniation failure,message delays in network. We implemented our algorithm over TCP so that tramsmission andreeption errors along with ommuniation failures are takled by the TCP layer itself. MessageDelays are produed by introduing timeout at every send and reeive of message by using timevaldata struture and setsokopt system all provided under Linux APIs. Arrival of late messages istakled by keeping data stutures that hange with timeout.3. PrivilegesChekpoint appliation need root privileges at every host. These privileges were heked by usinggeteguid system all on Linux. The e�etive user id of root is 0.4. Other TestsSize of eah hekpoint �le is large whih is approximately equal to size of the physial memory wealloate to eah virtual mahine. Chek to ensure that enough disk spae is available to store thehekpoint. 9

3.4 Chekpoint and Reovery LibraryThe Chekpoint and Reovery Library is developed whih provides various funtionalities at the kernellevel in the form of system alls to the user. Detailed analysis of system alls is overed in the thesis. Thesystem alls an be devided into two broad ategories, namely, Communiation Control and Logging.Communiation Control involves funtions like bloking and reviving onnetion to other VMs at thekernel level. Logging funtions aim to help the user ollet various statistis about the message exhangesthat take plae between VMs, for example, getting the ount of number of messages sent from nativemahine to some other VM.The Library also provides funtions to initate the synhronous and asynhronous distributed hek-pointing and reovery algorithms.3.4.1 Testing PlanLibrary is tested using Blak Box Model of Testing for eah system all. System alls run in kernel spae,hene, testing them requires a di�erent proedure than normal funtion alls. Kernel Modules also runin kernel spae and are the only way to hak inside the kernel. Hene we develop a kernel module forevery test vetor and manual testing is done rather than automated testing. Also strae is used to traethe system alls.3.5 ChallengesWhile implementing distributed hekpointing in Xen, we faed following hallenges:1. Communiation between guest and parent : Communiation between guest and parent an be donevia TCP/IP sokets or by inbuilt Event hannel Mehanism. If we do it via event hannel meha-nism and grant table mehanism (using shared memory between dom0 and VM) then we need todevelop a fake split driver that would enable both of the features for us. Presently, POSIX soketsare used to ommuniate between guest and parent.2. The appliations presently running inside the VM are unaware of the hekpoint proess of VM. Itis intuitive that an appliation an bene�t itself from the distributed hekpoint of virtual mahines.3. Testing of Kernel Funtions is not easy. Mistakes lead to OS rashes and are di�ult to debug.Crashes often orrupt the �le system as well by orrupting Inode tables. This often requires buildingup the system from srath. Proper bakups are taken to handle suh situations.4. Sine Xen is an opensoure software, various optimizations and hanges take plae. The imple-mentation was started on Xen 3.0.x and now Xen 3.2.x is released. Implementation of our librarywas updated to urrent version to utilize the bene�ts of optimizations and bug-�xes.4 ConlusionVirtual mahines provide enhaned performane when they ooperate together to perform ertain tasks.There are many VMM providers in the market. Out of them, Xen provides an exellent platform fordeploying a wide variety of network-entri servies. It also provides the faility of hekpointing avirtual operating system (guestOS). Distributed VM hekpointing is not implemented so far by anyof the virtualization software inluding Xen, VMware, et. We address this problem and give a libraryalong with few ready to use algorithms that user/appliation an use to either devie a distributedhekpointing protool or diretly use the ones provided by us to hekpoint a group of VMs.Referenes[1℄ Xen Interfae manual 2.[2℄ Xen Interfae manual 3.[3℄ Xen wiki http://wiki.xensoure.om/xenwiki. 10

[4℄ JD Bagley, ER Floto, SC Hsieh, and V. Watson. Sharing data and servies in a virtual mahinesystem. Proeedings of the �fth ACM symposium on Operating systems priniples, pages 82�88,1975.[5℄ P. Barham, B. Dragovi, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, andA. War�eld. Xen and the Art of Virtualization. Proeedings of the nineteenth ACM symposium onOperating systems priniples, pages 164�177, 2003.[6℄ K.M. Chandy and L. Lamport. Distributed Snapshots: Determining Global States of DistributedSystems. ACM Transations on Computer Systems, 3(1):63�75, 1985.[7℄ B. Cully and A. War�eld. Virtual Mahine Chekpointing. Xen Summit, 2007.[8℄ SW Galley. PDP-10 virtual mahines. Proeedings of the workshop on virtual omputer systemstable of ontents, pages 30�34, 1973.[9℄ D.B. Johnson and W. Zwaenepoel. Reovery in Distributed Systems Using Optimisti MessageLogging and Chekpointing. J. Algorithms, 11(3):462�491, 1990.[10℄ T.T.Y. Juang and S. Venkatesan. Crash reovery with little overhead. Distributed ComputingSystems, 1991., 11th International Conferene on, pages 454�461, 1991.[11℄ R. Koo and SAM Toueg. Chekpointing and rollbak-reovery for distributed systems. IEEETransations on Software Engineering, 13:23�31, 1987.[12℄ PA Lee, T. Anderson, JC Laprie, A. Avizienis, and H. Kopetz. Fault Tolerane: Priniples andPratie. Springer-Verlag New York, In. Seauus, NJ, USA, 1990.[13℄ P.J. Leu and B. Bhargava. Conurrent robust hekpointing and reovery in distributed systems.Data Engineering, 1988. Proeedings. Fourth International Conferene on, pages 154�163, 1988.[14℄ S.E. Madnik and J.J. Donovan. Appliation and analysis of the virtual mahine approah toinformation system seurity and isolation. Proeedings of the workshop on virtual omputer systemstable of ontents, pages 210�224, 1973.[15℄ RA Meyer and LH Seawright. A virtual mahine time-sharing system. IBM Journal of Researhand Development, 9(3):199, 1970.[16℄ V.P. Nelson. Fault-tolerant omputing: fundamental onepts. Computer, 23(7):19�25, 1990.[17℄ G.J. Popek and R.P. Goldberg. Formal requirements for virtualizable third generation arhitetures.Communiations of the ACM, 17(7):412�421, 1974.[18℄ G.J. Popek and C.S. Kline. The PDP-11 virtual mahine arhiteture: A ase study. Proeedingsof the �fth ACM symposium on Operating systems priniples, pages 97�105, 1975.[19℄ B. Randell. Reliable Computing Systems. Springer-Verlag London, UK, 1978.[20℄ Y. Tamir and C.H. Sequin. Error reovery in multiomputers using global hekpoints. 13th Inter-national Conferene on Parallel Proessing, pages 32�41, 1984.[21℄ G. Vallee, T. Naughton, H. Ong, and S.L. Sott. Chekpoint/Restart of Virtual Mahines Based onXen. 2006.[22℄ K. Venkatesh, T. Radhakrishnan, and HF Li. Optimal hekpointing and loal reording for domino-free rollbak reovery. Information Proessing Letters, 25(5):295�304, 1987.
11

