
Masters Project Synopsis

Random Walk based Search and
Community Formation in Power

Law P2P networks

Author:

Tathagata Das
Roll No: 03CS3022

Supervisor:

Prof. Niloy Ganguly
Assistant Professor

Department of Computer Science & Engineering

Indian Institute of Technology
Kharagpur

April 30, 2008

1 Introduction & Motivation

Efficient search in unstructured P2P networks is becoming a real challenge, as the
P2P user base is increasing exponentially. Search efficiency can be improved upon
by maintaining some information from previous search experiences locally in the
peer nodes. Another alternative is to restructure the network such that the nodes
containing similar content or data profiles are moved closer to each other. The idea
essentially is to go for a community-based semi-structured network. P2P network,
being an appropriate example of socio-technological networks, inherently has the
potential for developing a community structure. Therefore, the latter approach
seems to be intuitively appealing and does not involve the overhead of maintaining
search related information, as in the previous case. In this approach too, there are
a number of alternatives possible. The search mechanisms may vary from flooding
based searches to random walk based searches. Each different scheme has its own
pros and cons. Community formation can boost the efficiency of all the search
schemes, each to a different degree. There has been a number of recent research
work done in the area of community formation, but mostly using flooding based
techniques. Random walk based searches have the advantage of having a very low
bandwidth consumption compared to flooding. But its efficiency in finding search
results in the network is also poor, and the challenge lies in attempting to signifi-
cantly improve random walk based searches by forming interest based communities.
This is the challenge that motivated this work.

The idea of forming P2P communities to improve search efficiency is an ongoing
research field. Many groups have explored this concept with very specific types
of networks (distributed libraries for example [3]) while other have applied it to
Erdos-Renyi networks [4]. However, except some of our previous works by Prof.
Ganguly [2],[1], there has hardly been work on algorithms where the search process
itself triggers community formation. Prof. Ganguly’s work explored the concept
of community formation by restructuring the neighborhood in a grid-like topology.
The algorithms developed there could not be ported in a more realistic power law
network. Hence, completely new algorithms have been developed based upon a
much more thorough understanding of the effect of various dynamics performed
on the network. Different varieties of random and greedy search mechanisms are
applied in order to understand the dynamics. Finally, an algorithm is suggested
which consists of a healthy mix of random and greedy walking.

In the rest of the synopsis, Section 2 describes the model of the P2P network that
we use and the details of the various algorithms. Their performance in simulations
is analyzed in section 3 and a final algorithm based on these results is proposed in
section 4. Finally, we conclude in section 5 with the possible ways of improving
these results.

1

2 Model and Algorithms

In this section, the model of the P2P network is defined, that has been used for this
work. Then, the detailed implementation of the search and community formation
algorithms are discussed.

2.1 Peer-To-Peer Model

The internet at large, as well as, popular P2P networks exhibit power law topol-
ogy [7],[6], which is why a realistic power-law topology was assumed for our P2P
network. Also, in order to form content-based communities, we have classified the
information content of the peers into abstract subcategories. The details are pro-
vided below.

2.1.1 Topology & Network Load

According to the characteristic heavy tailed nature of power law networks, few
nodes have high degrees while the majority of the nodes have low degrees. These
initial connections are assumed to form a connectivity layer among the nodes and
are hence termed as Connectivity Edges. New edges that are added to the network
with the intention of forming community structures over the connectivity layer are
called Community Edges.

For the purpose of the analysis, we consider the degree of a node as a measure of
its continuous bandwidth usage, assuming that a low bandwidth consuming gossip
protocol maintains the communication between the neighbors. Hence, there is a
limit to the total number of edges it can have. In other words, each node can sustain
only a limited number of new community edges. This increase in network load is
measured relative to the initial network degree (that is, the degree corresponding
to its connectivity edges). This measure is termed as X where

X =
New Degree − Initial Degree

Initial Degree

The maximum network load that each node can tolerate is assumed to be Xmax times
the initial network load (that is, the initial degree). Also, during the search protocol,
there will be bursts of high bandwidth usage when a node needs to communicate
with its neighbors. This is also limited by a maximum number of neighbors that a
node can contact in a single burst of communication. Let this limit be known as
Ymax.

2.1.2 Profile Distribution

In a file sharing P2P network, each node shares some data with other nodes in the
network. These data are categorized into abstract categories called Information
Profiles. The profiles (PI) therefore reflect the informational content as well as the
informational interest of the user. A profile is represented in our system as a m-bit

2

binary value, thus producing 2m distinct categories. These profiles are distributed
among the nodes following Zipf’s Law with the idea that some categories of data
are highly popular whereas others are not.

2.1.3 Search & Matching

A search query is defined as a m-bit binary value, which is taken to be equal to
the information profile PI of the node that is initiating the search. This is based
on the simple idea that the user of the node would like to search for items that
fall into the same category as his own information content. In order to find nodes
having similar content, the query packet is forwarded in the network according to
the rules set by the search algorithm. Each node that encounters the query packet
tries to match its own profile with the queried profile. When a node is found whose
information profile exactly matches the query profile, it is said to be a search hit
and the initiator node and matched node are said to be similar nodes.

2.2 Algorithms

As indicated in section 2, four major types of the proliferation-based search al-
gorithms – named RR, RG, GR and GG, were tested out. In this section, these
algorithms are described in full detail. As mentioned earlier, there are two distinct
processes in the algorithms – Search and Community Formation.

2.2.1 Search

Any node in the networks can start a search query. Let the search be initiated at
a node U . It sends a search query message M to a few of its randomly selected (at
most Ymax) neighbors, carrying the information profile (PI) of U as the query pro-
file to be searched. This message packet walks through the network until it comes
across a node whose information profile matches with the queried profile. Then it
is said to have made a search hit. Let that node be called node A. Following the
search hit, A performs two operations - Proliferation and Community Formation.
A proliferates (replicates) the query to a number of its neighbors (at most Ymax

neighbors) with the aim of making a more intensified search in its vicinity. This
is done to exploit the fact that due to community formation, nodes similar to A
(hence similar to U) should be present in the neighborhood of A. Moreover, the
general walk is further optimized by making each query packet store the nodes it
has traversed through, so that they are avoided while forwarding the packets.

The neighbor selection process for general walking and proliferation decides
the randomness / greediness of the overall walk mechanism. The neighbors for the
general query forwarding can be selected in two ways.

• Random: Any neighbor connected by any type of edge is chosen randomly

• Greedy : A neighbor connected by community edges is preferred over other
neighbors

3

Similarly, during proliferation, the neighbors can be chosen in either of the following
ways.

• Random: Any number of the connected neighbors are chosen without any
bias

• Greedy : Neighbors connected by community edges are preferred over other
neighbors

Search algorithms
Neighbor selection strategy RR GR RG GG
During query forwarding Random Greedy Random Greedy
During proliferation Random Random Greedy Greedy

Table 1: Neighbor selection strategies in different search algorithms

Various permutations of these general walk and proliferation schemes lead to four
different types of searches. As shown in table 1, they have been named by two
letters based on the Random or Greedy scheme used. The first letter represents the
scheme used for general walk and second letter for the proliferation scheme. We
next explain the latter process, that is, Community Formation.

2.2.2 Community Formation

Whenever there is a search hit, we want to evolve the topology in order to increase
the probability of the next query reaching the node A from U . This can be ensured
simply by connecting the similar nodes U and A with a new community edge. This
brings the similar nodes within one hop distance of each other, thus increasing the
probability of reaching it in the next search attempt. On the other hand, due to the
network load limit of Xmax, the algorithm is forced to delete edges when a new edge
AB causes the network load of A and/or B to exceed its limit. Hence, deletion of
edges is done with the following strategy. If both A and B exceed limits because of
the new edge AB, then this edge is removed. If either A or B exceeds the limit, then
another community edge is randomly selected for deletion from the corresponding
node. Furthermore, each edge is added with a probability of Padd. This regulates
the speed of addition and prevents the network load of each node from reaching
its limit very fast. Hence each node gets ‘time’ to learn and the network does not
unnecessarily undergo a huge amount of churn to stabilize. It must also be noticed
that we are churning only the community edges, and not the connectivity edges,
which ensures that the whole network remains connected at all times.

2.3 Evaluation Criteria

We will like to evaluate the performance of these algorithms based on the following
criteria.

4

2.3.1 Search related metrics

Let the ith search produce a total of hi search hits using a total of pi packets. Let the
total number of nodes similar to the initiator node (that is the maximum possible
search hits) be Hi. Let the search be performed n times. Then the search-related
metrics are defined as follows:
Total Hit Count : Average number of hits (similar nodes) found in each search, i.e.
1
n

∑
i hi

Efficiency : Average number of hits per search packet, i.e. 1
n

∑
i

hi

pi

Similar Node Coverage Average fraction of all the similar nodes present in the
network that is returned in each search, i.e. 1

n

∑
i

hi

Hi
× 100.

2.3.2 Metrics related to community formation

The community edges make connections between similar nodes only. If the nodes
of a particular profile are considered, then these edges form a community overlay
network over these nodes. The size of the largest connected component (LCC) in
a network is generally considered as a measure of its connectedness. Since, it is
desired that all the nodes of a profile are well connected by the community overlay
network, the LCC of the network is taken to be a measure of the ‘goodness ’ of the
community structure. It is expressed in terms of the percentage of nodes of each
particular profile that lie within the LCC. This is averaged over all the profiles in
the system, and is termed as Average LCC of the community structure.

3 Simulation and Results

In order to test out the performance of the proposed algorithms, we resorted to
simulations whose details are as follows.

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30

H
it
 c

o
u

n
t

Generations of search

RR with CEA

RR with REA

(a) Total number of hits and packets gener-
ated

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 5 10 15 20 25 30

S
e

a
rc

h
 e

ff
ic

ie
n

c
y

Generations of search

RR with Community Edge Addition
RR with Random Edge Addition

(b) Search efficiency

Figure 1: Performance of RR search using Community Edge Addition (CEA) com-
pared to Random Edge Addition (REA)

5

3.1 Simulation Scheme

The algorithms were simulated on a power-law network of 1000 nodes, generated us-
ing the Barabasi-Albert preferential attachment method [5], which gave us a gamma
of approx 2.0. 16 profiles (m = 4) were distributed among the nodes by Zipf’s law
with a gamma of 0.8. Each search query is propagated in this network up to 15
hops. A set of search queries (generally 200) executed on random nodes constitute
a generation and all performance metrics were averaged over a generation. Edge
addition probability Padd is 0.2, while the network load limit Xmax is 1.5. Ymax was
chosen to be 3 nodes. A number of generations performed on the same network
constitute a simulation. Multiple simulations are performed on different profile dis-
tributions for averaging the performance of the algorithm.

In order to prove the importance of community formation, a fairness test was
performed by comparing the performance of network formed through community
edge addition (CEA) with an equivalent network. In this equivalent network, start-
ing from the same initial power law network as the actual simulated network, edge
are added randomly (that is, random edge addition (REA)) to compensate for the
increase in the edge count of the original network (due to community edge addition).
The results of these simulations follows next.

3.2 Results and Analysis

Comparing the performance of RR with community edge addition versus random
edge addition on an equivalent graph, Fig. 1(a) shows that as generations of search
progress, the total number of hits returned by community edge addition increases
steeply compared to random edge addition. Finally the former produces an average
of 20 hits compared to 11 by the latter. In terms of the search efficiency, the former
performs up to 20% better than the latter (Fig. 1(b)). This clearly proves that
strategic addition of edges by community formation improves the search efficiency,
unlike random addition edges.
Next we present the performance of RG and GG (the result of GR is omitted due

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90 100

H
it
 c

o
u

n
t

Generations of search

GG

RG

RR

(a) Hit count

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80 90 100

S
e

a
rc

h
 e

ff
ic

ie
n

c
y

Generations of search

GG
RG
RR

(b) Search Efficiency

Figure 2: Performance of RR, RG and GG wrt hit count and search efficiency

6

to lack of interesting inferences). All these cases undergo community edge addition.
Figure 2(a) shows that on average, the number of results brought by both types
of greedy-proliferation based searches are comparable, while being more than 2.6
times better than that of RR. In terms of search efficiency, GG and RG perform
about 30% and 50% better than RR, respectively. Also, GG saturates much slower
compared to RG. Both these figures confirm without doubt the importance of
greedy walking in proliferation. This is actually obvious – only by greedily choos-
ing the community edges can the already formed community be efficiently searched.

The most obvious question that arises is - what produces the difference in the
search efficiencies of GG and RG? This is primarily because of the extent of com-
munity formation in both cases. To quantitatively measure the community formed
between nodes of a particular profile, we calculate the size of the largest connected
component (LCC) in terms of the fraction of the similar nodes it contains. The
larger this fraction, the more well connected they are. Referring to Fig. 3(a), the
LCC in case of RG encompasses around 80% of all the similar nodes while it is
just 40% in case of GG. Greedy general walking in GG is unable to produce as
good a community structure as the random walking in RG, since it directs all the
query packets into already discovered areas of the network and hence inhibiting the
exploration (that is, node discovery). But on the other hand, RG is also not able to
exploit the good community structure created, as it is returning a smaller fraction
of similar nodes compared to that present in the LCC. Refer Fig. 3(b), GG is finding
almost all (95%) the nodes that constitute the LCC (36%), while RG returns just
around 60% of all such nodes in LCC (79%).

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 s

iz
e
 L

C
C

 (
in

 p
e
rc

e
n
ta

g
e
)

Generations of search

GG
RG

(a) Average LCC of community formed

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

P
e
rc

e
n
ta

g
e
 o

f
s
im

ila
r

n
o
d
e
s
 r

e
tu

rn
e
d

Generations of search

GG
RG

(b) Percentage of similar nodes returned

Figure 3: Correspondence between LCC size and fraction of similar nodes returned
in RG and GG

To summarize, while a random general walk has a better performance in terms
of node discovery and node retrieval, greedy general walk is better at efficiently
searching the already discovered nodes. Hence, it will be beneficial if we are able
to develop a search algorithm that embraces the best of both.

7

4 An Approach to Self-Adjusting Search (SA)

We wish to design an algorithm that has the intelligence to adjust itself between
two phases - Exploratory Phase and Search Phase. In terms of our problem, our
search algorithm should, in the initial stages, explore the graph with maximum
probability (for developing the best community structure as soon as possible) and
in the later stages search the network with maximum efficiency. In other words, it
must be able to identify automatically whether it should put the maximum effort
in exploring the network or in searching the network efficiently. We propose such
an algorithm in the next section.

4.1 Algorithm

As evident in earlier results, RG performs a better exploration of the network, while
GG performs a better search of the already explored regions. Each of the algorithms
is individually suited for each of the two phases, respectively. So we need to de-
sign an algorithm that can adjust itself based on the phase of the system, in a
decentralized manner. The key requirement for designing such an algorithm is to
identify a property / parameter in the network based on which we can control the
randomness / greediness of the search process.

In order to make the search tunable to random or greedy schemes, each query
packet now holds another parameter - Random Walk Probability (P). At the time of
initiation of the search, the value of the probability is set by the initiator node. This
probability is also copied to the new packets created at the time of proliferation.
Based on this probability, the non-matching nodes, through which the packets pass,
will either forward the packet randomly (like R∗) or greedily (G∗). In the match-
ing nodes, the behavior is always the same - greedy proliferation (as in ∗G). The
probability can be set to different values between 0.0 and 1.0 to get a behavior in
between pure RG and pure GG.

Next, a suitable parameter need to be chosen for determining the phase of the
system in a decentralized manner. We have chosen this to be the X value of the
node. If X is low, then it means that the node has the capacity of accepting new
community edges and expanding the community structure. In that case, it should
try to explore the network for previously undiscovered similar nodes with a higher
probability. Conversely, when X is high and near its limiting value, its capacity
of adding to the community structure is low. Therefore, instead of exploring, it
should try to efficiently search the community structure that has already been
formed around it. More formally, the probability of random walk is calculated as

P (random walk) = 1− XA

Xmax

where XA = X of the node A that is initiating the search. The overall behavior
would be as we desire - initially, when X is 0 for all the nodes, it will behave like pure

8

RG. Later as the X of all the nodes reach Xmax, the probability of random walk
reduces to zero, that is, it performs pure GG on an optimal community structure.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 L

C
C

 /
 S

im
ila

r
n

o
d

e
s
 r

e
tu

rn
e

d

Generations of search

SA: Average LCC
RG: Average LCC
SA: Similar nodes
RG: Similar nodes

(a) Average LCC

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 10 20 30 40 50 60 70 80 90 100

S
e

a
rc

h
 e

ff
ic

ie
n

c
y

Generations of search

SA
RG

(b) Search Efficiency

Figure 4: Performance of Self-Adjusting Search

4.2 Simulation Results

Figures 4(a) and 4(b) reflect the superiority of SA scheme. The scheme is able
to produce the best possible community structure as fast as RG. Side by side,
it overcomes the shortcomings of RG by being able to find almost all the similar
nodes in the LCC. Refer Fig. 4(a), SA is finding around 90% of the similar nodes
that constitute the LCC, while RG returns just around 60% of all such nodes, thus
producing almost 50% improvement. Finally, we find that the search efficiency of
SA is about 30% better thanRG (and more than 130% better thanRR with REA).

5 Conclusion & Future Work

This paper has presented a community-based search algorithm applicable on power-
law network which derives its inspiration from natural immune systems. Detailed
study of the dynamics of the walk has been done which resulted in an elegant time-
varying algorithm. The algorithm outperforms by far any conventional system and
may have far reaching impact in designing efficient P2P communities in the future.
Further enhancements and a a rigorous testing of the algorithm is the main focus
of the work in the future.

References

[1] Niloy Ganguly, Geoff Canright and Andreas Deutsch. Design Of An Efficient
Search Algorithm For P2P Networks Using Concepts From Natural Immune
Systems, in the 8th International Conference on Parallel Problem Solving from
Nature (PPSN VIII). Birmingham, UK, 2004.

9

[2] Niloy Ganguly, Geoff Canright, Andreas Deutsch. Design of a Robust Search
Algorithm for P2P Networks, in the 11th International Conference on High
Performance Computing. Bangalore, India, 2004.

[3] A. Asvanund, R. Krishnan. Content-Based Community Formation in Hybrid
Peer-to-Peer Networks, Proceedings of the SIGIR Workshop on Peer-to-Peer
Information Retrieval, 2004

[4] M. Khambatti, K. Dong Ryu, P. Dasgupta. Structuring Peer-to-Peer Networks
Using Interest-Based Communities, Databases, Information Systems, and Peer-
to-Peer Computing, 2003

[5] AL Barabsi, R Albert. Emergence of Scaling in Random Networks, Science, 1999

[6] M Ripeanu, A Iamnitchi, I Foster. Mapping the Gnutella Network - Properties
of Large-Scale Peer-to-Peer Systems and Implications for System Design, IEEE
Internet Computing, VOL 6; NUMB 1, pages 50-57, 2002

[7] M Faloutsos, P Faloutsos, C Faloutsos. On power-law relationships of the Inter-
net topology, Computer Communication Review, VOL 29; NUMBER 4, pages
251-262, 1999

10

