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Abstract:  
               This document presents a fully pipelined implementation of the Advanced 
Encryption Standard decryption algorithm with 128-bit input and key length (AES-128), 
implemented on Xilinx’ Spartan-3. The design implements a combinational logic based 
Rijndael S-Box implementation for the Sub Byte transformation in the Advanced 
Encryption Standard (AES) algorithm for Field Programmable Gate Arrays (FPGAs).  
 
                          In the present work, architecture is developed which aims to achieve a 
high throughput, lesser IO lines, on-chip key generation for physical security. The design 
has been implemented in Galois Subfield which leads to memory-less architecture. A 
new architecture has been implemented for mix column and inverse mix column to 
optimize hardware overhead. Intelligent clocking has been performed to reduce the 
power. The width of the data input and output buses are 32 bits for easy interface. The 
key scheduling architecture has been multiplexed to prevent external attack during the 
normal functioning of the chip. Modules have been designed which would be a part of the 
design when both encryption and decryption are implemented in a single architecture. 
 
 
1. INTRODUCTION: 
 
                               The importance of cryptography is constantly increasing, since the 
amount of sensitive data being transmitted over open environments is growing at an 
unprecedented pace. Software-based implementations of cryptographic algorithms fall 
short of the required performance, as the transmission speeds of core networks reach the 
gigabits per second (Gbps) range. The significance and applicability of hardware-based 
implementations of cryptographic algorithms is therefore of interest also to the Field 
Programmable Gate Array (FPGA) design community. 
 
The implementation of fully unrolled secret-key cryptographic algorithms is feasible on 
million-gate FPGAs. If the entire algorithm with full inner and outer loop pipelining fits 
on a single FPGA, the limiting factor for throughput is the achieved clock rate as follows:  
 
                           throughput = blocksize x f requency  
 
Since the block size of AES is fixed at 128 bits, a 100 MHz clock rate implies a 
throughput of 12.8 Gbps. Clock rates above 100MHz should be achieved in modern 
FPGAs by partitioning the design into stages and pipelining the entire system. 
 
 
 
 

 



2. THE AES ALGORITHM  
 
               The Advanced Encryption Standard (AES) algorithm is a symmetric block 
cipher that processes data blocks of 128 bits using cipher keys with lengths of 128, 192 
and 256 bits. The AES algorithm is also called the Rijndael algorithm named after its 
inventors, Joan Daemen and Vincent Rijmen. In the present work, only the 128 bit 
decryption version is considered. In the following chapters, the description generally 
concentrates on AES-128, but whenever the description is valid for all variants of AES, 
the generic abbreviation AES is used.   
 
Data is handled mainly as bytes in the AES algorithm. One byte forms an element in a 
polynomial representation of Galois Field GF (28). A byte can be represented in 
hexadecimal notation as {ab}, where a represents the four most significant bits (MSB) 
and b represents the four least significant bits (LSB) of the byte.  
 
In this document, the representation used in the official standard is called F1, formally 
defined as GF (2) [x] =m(x), where m(x) is an irreducible polynomial  
 
 
                              m (x) = x8 + x4  + x3 + x + 1  
 
Additions are performed as bitwise XORs between operands in polynomial 
representations of F1. Multiplications in F1 are performed as a multiplication of the 
regular polynomials. The multiplication result can be a 14-degree polynomial which 
doesn’t fit into a byte. Thus the final multiplication result in F1 is the result of the 
polynomial multiplication modulo m(x).  
 
 
128-bit data block and key are considered as a byte array with four rows and four 
columns. AES-128 consists of ten rounds. One AES encryption round includes four 
transformations: SubBytes, ShiftRows, MixColumns and AddRoundKey. The first and 
last round differ from other rounds in that there is an additional AddRound- Key 
transformation at the beginning of the first round and no Mix- Columns transformation is 
performed in the last round. Key Expansion in the AES algorithm calculates RoundKeys 
based on the original cipher key. The RoundKeys are needed in AddRoundKeys. In AES-
128 encryption, the first RoundKey used in the additional AddRoundKey at the 
beginning of the first round is always the original key. Intermediate results after every 
transformation are calledStates. Of all the transformation above, the ByteSub is most 
computationally heavy.  
 
 

 

 



2.1 The State, the Cipher Key and the number of rounds 
 
State: the intermediate cipher result is called the State. The State can be pictured as a 
rectangular array of bytes. This array has four rows; the number of columns is denoted by 
Nb and is equal to the block length divided by 32.The Cipher Key is similarly pictured as 
a rectangular array with four rows. The number of columns of the Cipher Key is denoted 
by Nk and is equal to the key length divided by 32. These representations are illustrated 
in Figure. 
 
 
 

a0,0 a0,1 a0,2 a0,3 

a1,0 a1,1 a1,2 a1,3 

a2,0 a2,1 a2,2 a2,3 

a3,0 a3,1 a3,2 a3,3 

k0,0 k0,1 k0,2 k0,3 

k1,0 k1,1 k1,2 k1,3 

k2,0 k2,1 k2,2 k2,3 

k3,0 k3,1 k3,2 k3,3 

 
 
3. RIJNDAEL IN A COMPOSITE FIELD: 
 
                                                       Rijndael involves arithmetic on GF (28) elements. In a 
straightforward implementation, inverse, multiplication and substitution are likely to be 
the operations that determine the overall complexity of the implementation. 
 
3.1 ISOMORPHISM BETWEEN F1 and F2: 
 
                    Instead of the table implementation in F1 it was decided to perform the 
SubBytes transformation by calculating the multiplicative inverse of the SubBytes in 
 

                           F2:= GF (2
4
) [x] =(x2 +Ax+B) 

 
To make this work a byte representing an element in F1 must be transformed to a byte 
representing an element in F2. All multiplications in GF (24) are performed in  
GF (2) [y] = (y4 +y+1). Constants A and B can be chosen freely as long as x2 +Ax+B is 
irreducible. The constants are chosen as follows: A = 0b0001 = {1} and B = 0b1000 = 
{8}. Thus the irreducible polynomial becomes x2 +x+y3. 
 
 
 
 
 
 



 
 The transformation matrix ø is expressed in matrix form as:  
 

 
 
The inverse transformation ø 

-1
: F2  F1 is also needed ø 

-1 
can be defined by inverting 

the matrix F with the result as follows:  
 
 

 
 
In addition to the multiplicative inverse also other transformations in the AES-128 
decryption algorithm are calculated in F2. This makes decryption faster and saves 
significant amounts of space since the transformations ø and ø -1 performed only  once. 
The transformation ø is performed for both the key and data block at the beginning of the 
decryption and the inverse transformation ø -1 is performed for the decrypted data block 
at the end of the last round. The following subsections describe how the mapping of 
InvSubBytes, InvMixColumns, AddRoundKey, InvShiftRows and Key Expansion to F2 
was performed.  
 
4. The SubByte and InvSubByte in F2: 
 
               If a byte is mapped to F2 with the transformation F, the multiplicative 
inverse can be calculated as follows: 
 

(bx +c)
-1

= b (b
2
λ+c (b+c))

-1
x + (c+b) (b

2
λ+c (b+c))

-1 
 



Let b 
’ 
= Tb + c be the affine transformation in F1 and   

Let b 
’’
= Tøbø+ cø  be the affine transformation in F2  

 

Now because b 
’
 = ø = ø 

-1
(Tøbø + cø) = ø 

-1
(Tøøb + cø) 

 

                                   b 
’
  = (øTøø)b + ø 

-1
 cø 

 
Comparing with above we get,  

                                          T = ø 
-1

Tø ø or Tø = ø Tø ø 
-1 

 
 
And similarly,   cø = ø c  
 
The Affine Transformation in F2 can therefore be expressed as: 
 
 

 
 
Similarly for inverse affine transformation. 
 
5. INVERSE MIX COLUMN:  
 
                                The InvMixColumns transformation of the AES-128 decryption 
algorithm must also be mapped to F2. The addition in F2 is calculated in a similar 
fashion as in F1 (that is, by bitwise XORing the operands), and therefore only the 
multiplications must be mapped to F2.  
 
The InvMixColumns transformation multiplies the polynomial formed by each column of 
the State with a -1 (x) modulo x4 +1, where  
 
                                a -1 (x) = {0b}x3 + {0d}x2 + {09}x + {0e} 
 



 And in Mix Column  a column is considered as a polynomial over F1 and multiplied 
modulo x4 +x+1 with the polynomial  
 
                                 a(x) = {03}x3 + {01}x2 +{01}x+{02}  
 
We use different procedure to implement the Inv Mix Column. The Mix Column 
multiplication will be used to implement the Inv Mix Columns Because F maps {01} to 
{01} it suffices to map only the multiplications with {02}.Writing, 
 

                  a = a7x
7 
+ a6x

6 
+ a5x

5 
+ a4x

4 
+ a3x

3 
+ a2x

2 
+ a1x +a0 

 multiplication with {02}* a  in F1 can be calculated as:   
 
 

{02} * a  = x (a7x
7 
+ a6x

6 
+ a5x

5 
+ a4x

4 
+ a3x

3 
+ a2x

2 
+ a1x +a0)  

              = a7x
8 
+ a6x

7 
+ a5x

6 
+ a4x

5 
+ a3x

4 
+ a2x

3 
+ 

                             a1x
2
+a0x mod x

8
 + x

4 
+ x

3
 + x + 1  

             = a6x
7 
+ a5x

6 
+ a4x

5 
+ (a3+ a7)x

4 
+ (a2 + a7)x

3 
+ 

                             a1x
2
+ (a0 + a7)x + a7  

 
And multiplication {04} * a results in the following equation: 
 
{04} * a = a5x7 + a4x6 + (a3+a7) x5 + (a2 + (a6+a7)) x4 
                          + (a1+a6) x3 + (a0+a7) x2 + (a6+a7) x + a6 
 
In matrix form the above multiplication is expressed as  
 

 
 
 



 
The matrices Mø2 can be expressed in F2 and can be calculated from M2 as follows: 

 
 
 
6. ADD ROUND KEYS AND INVSHIFT ROWS IN F2 

                                          Because addition is calculated as a bitwise XOR in both F1 
and in F2 there is no need for changes in the AddRoundKey transformation. Also the 
ShiftRows transformation remains unchanged, because no calculations are required there  
 
7. KEY EXPANSION IN F2:  

                          In the Key Expansion, the function SubWord() and the round 
constant rcon[i] must be mapped to F2. SubWord(), which consists of four SubBytes, is 
mapped as described in Section 3.1.The rcon[i] values (powers of x) are mapped to F2 by  
multiplying them with the matrix ø. All the transformations of the AES-128 decryption 
algorithm have now been mapped from F1 to F2. The decryption can be implemented as 
follows: first both the 128-bit data block and the 128-bit key are mapped to F2 with the 
transformation ø and then the decryption is carried out as described above. At the end of 
the last round the encrypted data is mapped back to F1 with the inverse transformation  
ø-1.  
 
8. TOP LEVEL ARCHITECTURE: 

 



9. THE DECRYPTING UNIT 
 

                    
 
9.1 INV MIX COLUMN:  

                    In matrix form, the InvMixColumns transformation can be expressed by  
 

 
This can be rewritten as: 

 
 
Using substructure sharing, the InvMixColumn can be implemented by the architecture 
illustrated below. The “mult4” block computes the constant multiplication of {04} 
transformed by ø, can be implemented by two serially concatenated “mult2” block.  
 



 

 
 
9.2 Key Scheduler:   

The KeyScheduling unit has been multiplexed with the databus Figure 1. The 
CRYPT signal when high sets the keygeneration mode whereby the input data is streamed 
into the scheduler and creates all the subkeys. The multiplexing successfully reduce the pin 
count as no extra pins are required for the input key. Further, when the AES core is used to 
process (decrypt) the data the keymemory is not accessible from the external world through 
the IO pins. Thus the round keys are secured from external attack during the normal 
operation of the device.  
 

 
 



9.3 The Data Scheduler 
 
                                   The Data Scheduling Unit converts a GF(28) element into a  
GF(24)2 element and buffers in the data at each system clock. At the fourth clock when 
128 bit (32 x 4) of data has arrived the unit dumps the data into a 128-bit register . When 
a valid block is being decrypted, a corresponding signal of high modein is passed in. This 
signal is synchronized with the data block, so that a high modeout indicates that the result 
is corresponding to a valid input. 
 
 
 

 
 
9.4 The Dispatch Unit 
                                   The Dispatch Unit converts the output word is to GF(28) and 
streams out as a 32-bit wide stream of processed data. 
 
10. Synthesis Report: 
                                   The design was implemented in Xilinx virtex 2vp30ff1152-7 device 
and simulated by Xilinx ISE simulator. 
============================================================== 
*                            Final Report                               * 
============================================================== 
Device utilization summary: 
--------------------------- 
Selected Device : 2vp30ff1152-7  
 Number of Slices:                         10155  out of  13696    74%   
 Number of Slice Flip Flops:          3383  out of  27392    12%   
 Number of IOs:                              69 
 Throughput (Gbps)                       13.8 
 Clock frequaency (MHz)              107.8 


