
Scheduling Verification in High-Level Synthesis -
Implementation of a Normalizer and

 a Code Motion Verifier

 SYNOPSIS OF
DUAL DEGREE – M. TECH PROJECT

Under the guidance of

Prof. C. R. Mandal
Department of Computer Science and Engineering,

Indian Institute of Technology Kharagpur
And

 Prof. Dipankar Sarkar
Department of Computer Science and Engineering,

Indian Institute of Technology Kharagpur

Submitted by:

Pramod Kumar (03CS3019)

Introduction

 High level synthesis is the process of generating the register transfer level
(RTL) design from the behavioral description. The synthesis process consists of
several interdependent phases:
 1. Preprocessing: Translation of the input control data flow graph (CDFG) to an
 intermediate representation (IR) and calculation of necessary information
 for scheduling.

2. Schedule of the operations and the transfer of variables in minimum number
of control steps for a given architectural specification. The scheduler

 accomplishes functional unit formation.
 3. Allocation and binding of variables to registers.
 4. Data path generation from the schedule of operations, bus transfers and the
 variable mapping to the registers.

5. Generation of synthesizable Verilog code (RTL).
 A High-level synthesis tool, called Structured Architecture Synthesis tool
(SAST), has been developed which support hand-in-hand synthesis and
verification. The existing framework is the SAST, and this work is to enhance this
tool by incorporating a Normalizer and a Code Motion Verifier

 The complexity of present-day VLSI systems is very high. The
specification is given at a high level of abstraction compared to that of the output.
In addition several optimization and transformations may be made at each phase to
improve the performance of the design. Hence it is important to ensure that after
each phase the behavior of the original specification is preserved. Hence is the
need of phase-wise verification.

 Verification of high level synthesis is a formal method for checking the
equivalence between two descriptions of the target system, one before a particular
phase and the other after that phase. The descriptions are represented as Finite
State Machines with Data paths (FSMD).The basic principle is to show that any
computation of one FSMD is covered by a computation on the other.

 While finding the equivalent path for a path, it is required to check the
equivalence of the respective conditions as well as the data transformations of the
paths. Since the condition of execution and the data transformation of a path
involve the whole of integer arithmetic, checking equivalence of paths reduces to
the validity problem of first order logic which is undecidable; thus, a canonical
form does not exist for integer arithmetic. There we use a normalized form for
conditional expression and data transformation expression.

It may be possible to transform the input behavior to some equivalent
description, by incorporating several high-level code transformation techniques,
which results in amore efficient scheduling behavior. Thus the need to enhance the
verifier to handle various code motion techniques while verification.

[1] NORMALIZATION :
 While finding the equivalent path for a path, it is required to check the
equivalence of the respective conditions as well as the data transformations of the
paths. Since the condition of execution and the data transformation of a path
involve the whole of integer arithmetic, checking equivalence of paths reduces to
the validity problem of first order logic which is undecidable; thus, a canonical
form does not exist for integer arithmetic.

The normalization process reduces many computationally equivalent
formulas syntactically identical as it forces all the formulas to follow a uniform
structure. In the following, the normal form chosen for the formulas and the
simplification carried out on the normal form during the normalization phase are
briefly described.
 A condition of execution (formula) of a path is a conjunction of relational
and Boolean literals. A Boolean literal is a Boolean variable or its negation. A
relational literal is an arithmetic relation of the form s r 0, where s is a normalized
sum and r belongs to { <=, >=, ==, != }. The relation > (<) can be reduced to >=
(<=) over integers. For example, x – y > 0 can be reduced to x - (y – 1) >= 0.
 The data transformation of a path is an ordered tuple < ei > of algebraic
expressions such that the expression ei represents the value of the variable vi after
execution of the path in terms of the initial data state. So, each arithmetic
expression in data transformation can be represented in the Normalized Sum form.
A normalized sum is a sum of terms with at least one constant term; each term is a
product of primaries with a non-zero constant primary; each primary is a storage
variable, an input variable or of the form abs(s), mod(s1, s2), exp(s1, s2) or
div(s1, s2), where s, s1, s2 are Normalized Sums. These syntactic entities are
defined by means of production of the following grammar.

Grammar Of The Normalized Sum :

Various simplifications that can be carried out at the normalization
phase are as follows:

Simplification at the arithmetic expression (normalized sum) level:

• Any expression involving only integer constants is immediately
 evaluated, e.g., (5 / 2) is evaluated to 2.

 In an expression, common sub expressions are collected together. Ex.

 Simplifications at the relational expression (relational literal) level:

 Any relational expression built from constant arithmetic expressions may
be immediately evaluated to TRUE or FALSE.

For example, 4 – 1 >= 0 is evaluated to TRUE.

 Common constant factors are extracted from the normalized sum and the
 relational expression is consequently simplified. For example,

 is mapped to

Simplification at the formula level:
 Some literals of the formula can be deleted by the rule “ if (A --> B) then
(A&&B is equivalent to A) “. For this step of simplification, it becomes
necessary to detect implication among literals. It is possible to detect whether a
relational literal implies another relational literal when they involve the same non-
constant sums. Let the literals be l1: (s1 + c1) R1 0 and l2 : (s2 + c2) R2 0. If
s1 == s2 == s, then table depicts the relationship between the constants c1 and c2
depending upon R1 and R2, which must be satisfied for l1 to imply l2. Removal of
repetitions of literals in a formula is possible using this rule as for any literal l1, l1

 l2 is always TRUE. For example, the literal (A >= B) has multiple
occurrences in the formula (A >= B && C <= D && A >= B). So, this formula is
simplified to (A >= B && C <= D).

Table: Conditions on c1 and c2 for which (s1 + c1) R1 0 implies (s2 + c2) R2 0

[2] ENHANCING THE VERIFIER TO HANDLE CODE MOTION
TECHNIQUES :

1) Reverse Speculation: In reverse speculation the operations before a
conditional Block are moved into the blocks subsequent to the conditional
block In a special case of Reverse Speculation the scheduler may move an
operation, say ‘O’, before the conditional block into only one of the
conditional branch.This is possible when the operations in the other branch
as well as all the operations following the merging of the conditional
branches are not dependent on the result of the operation ‘O’.

 figure 1.1: Reverse Speculation

2) Early Condition Execution: This transformation involves restructuring the
original code so as to execute the conditional operations as soon as possible.
This, in effect, means that the conditional operation is moved-up in the
design, and hence, all the operations before the conditional operation are
reverse speculated into the conditional branches.

 figure 2.1: Early Condition Execution

 In the above figure, the conditional statement operation ‘c’ is executed
one step early in the scheduled behavior and the operation ‘b’ is reverse
speculated in the conditional branches. This is also a kind of Reverse
Speculation and can be handled.

3) Speculation: Speculation refers to the unconditional execution of

instructions that were originally supposed to be executed conditionally. In
this approach, the result of a Speculated operation is stored in a new
variable. If the condition under which the operation was to execute
evaluates to true, then the stored result is copied to the variable from the
original operation, else the stored result is discarded.

 figure 3.1: Speculation
 In the above figure, the operation d=x+y is speculated out of the branch
with condition ‘!c’ of the FSMD M0 and the result of the operation is stored in
d’. It may be noted that if we do not store the value in d’, then the variable ‘a’
gets the wrong value (by the operation a=b+d) when the execution is through
the branch with condition ‘c’ of the FSMD M1.

4) Loop Shifting and Compaction: Loop Shifting is a technique whereby an

operation ‘op’ is moved from the beginning of the loop body to the end of
the loop body. To preserve the correctness of the program, a copy of the
operation ‘op’ is also placed before the start of the loop. Shifting an
operation results in execution of the operation one more time than in the
original code. This situation is similar to the speculation and can be handled.

 figure 4.1: Loop Shifting and Compaction

Work Done:
1. Implementation of the Normalizer:
1.1 Implementation of Structure for Normalized Form (A Normalized Cell) :

struct normalized_cell { LIST NC *list;

 char type;
 TYPE int inc;

 NC *link;
}; INC

Normalized Expression: A Normalized Condition is represented as

 LINK

[(s + c) R 0], where ‘s’ is a Normalized Sum, ‘c’ is an integer constant, ‘R’ is a
Relational operator.Example: Normalized Condition: [(3 + 1 * x – 2 * y) >= 0].

1.2. Implementation of all the normalization routines for conditional
expressions and the transformation expressions.

2. Implementation of the Code Motion Verifier:
2.1 Handling Reverse Speculation and Early Condition Execution:
 Let ‘β’ be a path in M0 of the form < q0i => q0j > and < q0i, q1k > be a
corresponding state pair. When the existing algorithm fails to find the equivalent
path for ‘β’, then let there exist a path starting from q1k in M1, say ‘α’, whose
condition of execution matches with that of ‘β’ but the data transformations does
not match. In such case, we will check whether there is any variable of ‘V0 ∩ V1’
(V0 contains the list of variables present in FSMD M), and V1 contains the list of
variables present in FSMD M1) which is modified along ‘β’ but not modified in
the path ‘α’. Let ‘v’ be such a variable. Without any loss of generality, let the
values of all the variables in ‘V0 ∩ V1’ other than ‘v’ at the end of execution of
‘α’ be the same as those for ‘β’. Now, if we can show that the transformed value of
‘v’ in ‘β’ is not used in any execution path starting from state ‘q0j’, then ‘α’ is
equivalent to ‘β’.
 We convert the FSMD M0 into an equivalent Kripke structure by some
logical transformations. A dummy state will be added for every transition of M0.
There would be two propositions, ‘D_v’ (defined ‘v’) and ‘U_v’ (used ‘v’), for
each variable in ‘V0 ∩ V1’. The proposition ‘D_v’ will be true in a dummy state if
the variable ‘v’ is defined by some operation in the corresponding transition in the
M0. Similarly, ‘U_v’ will be true in a dummy state if the variable ‘v’ is used in
some operation in the corresponding transition in M0. by convention if any
proposition is not present in any state of the Kripke structure, then the negation of
the proposition is true in that state. The required property that there does not exist
any path in which ‘v’ has not been defined before it is used can be written as the
CTL formula “ ! E [(! D_v) W U_v] “, were E represents there exists and W
represents weak until operator. This formula can be verified using CTL model
checker ex. NuSMV. If this formula is true in the state ‘q0j’, then ‘β’ is equivalent
to ‘α’.

2.2 Handling Speculation:
 While finding the equivalent of a path, say ‘β’ of M0 in M1, paths starting
from the corresponding state of the start node of ‘β’ are considered one by one.
Let path ‘β’ be of the form < q0i => q0j > and < q0i, q1k > be the corresponding
state pair. So, the paths starting from q1k will be checked one by one until an
equivalent path is found, failing which it is concluded that no equivalent path
exists for that path. Let ‘α’ be a path which starts from q1k. If it is found that some
variables not belonging to ‘V0 ∩ V1’ () are used before they are defined along
path ‘α’ during the computation of R_α and r_α, then we will find the set of paths
from P1’ of FSMD M1 which terminates in state ‘q1k’. Next the last operations
defining these variables in those paths will be found out by backward breadth first

search from q1k and the right hand side expressions of those operations will be
used as the initial symbolic values of these variables.

2.3. Handling loop Shifting and compaction:
In order to do so, it is required to perform the following steps. Let the shifted
operation be ‘v <= f()’. The first step is to required to create an operation ‘w <=
f()’ in place of the shifted operation, where ‘w’ is a new variable. In the second
step, all the instances of the operation ‘v <= f()’ in the loop body in the original
behavior are placed by two operations ‘v <= w’ and ‘w <= f()’ in parallel. Finally,
the operations that use the variables ‘v’ in the loop body will now use the variable
‘w’ instead of variable ‘v’. It is demonstrated in figure (d). This situation is similar
to the speculation and can be handled.

REFERENCES :

[1] D. Sarkar and S. C. De Sarkar, “Some Inference Rules for Integer
 Arithmetic for Verification of Flowchart Programs on Integers”,
 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,
 VOL. 15, NO. I. JANUARY 1989.
[2] D. Sarkar and S. C. De Sarkar , “A Theorem Prover for Verifying
 Iterative Programs Over Integers”, IEEE TRANSACTIONS ON
 SOFTWARE ENGINEERING, VOL. 15, NO. 12, DECEMBER 1989.
[3] Chandan Karfa, “Hand-in-hand verification and Synthesis of Digital
 circuits”, M. S. Thesis, I.I.T. KHARAGPUR, 2007.
[4] Chandan Karfa, Chittaranjan Mandal, Dipankar Sarkar, Pramod Kumar,
 “An Equivalence Checking Method for Scheduling Verification in High –
 Level Synthesis”, IEEE Transactions on COMPUTER-AIDED DESIGN of
 Integrated Circuits and Systems, VOL. 27, No. 3, March-2008.

