
Pushing points and Grid Optimization
Characterization and Algorithms

Synopsis of a Thesis Submitted in Partial Fulfillment of the

Requirements

for the Degree of

Master of Technology
in

Computer Science and Engineering

by

Shah Rushin Navneet

03CS3012

under the guidance of

Dr. Arijit Bishnu

Department of Computer Science and Engineering
Indian Institute of Technology

Kharagpur
May, 2008

Chapter 1

The Red-Blue Problem

1.1 Motivation

Many real-world problems can be modeled as matrices consisting of C different types
of cells. We refer to such matrices as C coloured matrices. In addition to the C
colours, a cell might also be of no colour at all, a situation where we refer to the
cell as being empty. For all such matrices with various values of C, of particular
interest to us is the case C = 2. For example, indicator dye injected into the human
bloodstream might attach itself to certain specific types of cells, while leaving others
unattached. In image processing, grayscale images consist of white and black pixels
only. Cells may also correspond to memory locations in storage devices.

There are many tasks we wish to perform efficiently in these situations, and this
problem corresponds to finding efficient algorithms for manipulating the cells of such
matrices. Such manipulations might include rearranging the cells of a matrix to
achieve homogeneity, or emptying cells of a particular colour without affecting those
of other colours, using specially designated receptor cells. We consider the problem
of emptying all cells from a 2-coloured matrix, using the minimum possible number
of transitions.

1.2 Problem Definition

We are given an M × N matrix of cells. Each such cell can have 3 possible values:

• R - Red

• B - Blue

1

2 1. The Red-Blue Problem

• E - Empty

Let Nr denote the number of red cells, Nb denote the number of blue cells and Ne

denote the number of empty cells.

Then M × N = Nr + Nb + Ne

A cell with value E can exchange its value with any of its neighbouring cells. A
cell with value R or B can exchange its value only with a neighbouring E cell.

We denote the cell in the ith row and jth column as (i, j).
The cell (1, 1) is called a R receptor. Any R in this cell can be instantaneously

replaced by an E.

The cell (1, N) is called a B receptor. Any B in this cell can similarly be replaced
by an E.

These replacements can hence be thought of as emptying an R or B from the
matrix.

Within this framework, we examine a number of interesting problems, as described
below:

We consider the problem of finding a lower bound on the number of E cells re-
quired in the matrix, in order to ensure that all the non - E cells can be emptied. We
prove that this lower bound is Ne = 1, i.e. even if the matrix contains just 1 empty
cell, it is possible to empty all the R and B cells from it, using this empty cell.

The proof for this particular lower bound also implies a strategy to empty all
the coloured cells from the matrix. However, this strategy doesn’t account for the
possibility that emptying cells might become progressively easier as the number of
E cells in the matrix increases. Hence, in order to devise an optimal algorithm, we
must consider a strategy that takes advantage of the inherent structure of the problem.

It is our intuition that the problem of emptying all coloured cells from the matrix
can be optimally accomplished in O(n3) time. We produce a proof for this particular
upper bound.

Having obtained such a proof, we state an algorithm that empties the entire ma-
trix, which in addition to having optimal asymptotic time complexity, also minimizes
the number of cell transitions required to achieve its task. We also prove the opti-

1.3. Ne required to empty the matrix 3

mality of this algorithm.

In addition, we have discussed our implementation of this algorithm, and its ap-
plication to various matrices. We start with a fixed number of empty cells Ne and
vary the matrices according to the difficulty of emptying them greedily. We then
repeat this procedure over different values of Ne. We present and discuss our results.

1.3 Ne required to empty the matrix

We sketch our proof that Ne = 1 suffices to empty all the coloured cells in the matrix:

Suppose there exists only 1 E cell in the M × N matrix.

We know that E can shift to any cell in the matrix. Without loss of generality,
assume it is in position (1, 1).

Now, suppose we have a given configuration as follows:

⎛
⎜⎜⎝

E B B R
B B B B
B B B B
B B B R

⎞
⎟⎟⎠

The B receptor is blocked by an R cell. The R cell at position (M, N) is separated
from the E cell at (1, 1) by only B cells. If we can show a procedure to remove this
R cell before removing any other cell, we can use this procedure to empty any R or
B cell from the matrix, no matter how many opposite coloured cells separate it from
the E cell.

Consider the following series of transitions:

RB

xE
→ RE

xB
→ ER

xB
→ BR

xE

Thus any RB duo can be converted to a BR duo and vice-versa using only 1 adja-
cent E cell.

We denote any transformation of this type as RB ↔ BR

4 1. The Red-Blue Problem

Using this result, we show that an R at (M, N) i.e. at maximum possible sepa-
ration from (1, 1), and separated from (1, 1) entirely by B cells, can still be emptied
using just 1 E cell.

Every cell in the matrix can be emptied using this procedure. In fact, in many
cases, a coloured cell will have a clear path of E cells to its receptor, and will not be
separated thus by opposite cells, and emptying it will require fewer transitions. Thus
the procedure we have shown accounts for the worst case scenario.

1.4 Complexity of emptying the matrix

For a cell at position (i, j), at least
√

i2 + j2 transitions will be required to empty it.
Thus, the minimum number of transitions required to empty all such cells is given
by:

S =

M∑
i=1

N∑
j=1

√
i2 + j2

The order of this double summation S is the worst case lower bound of the prob-
lem of emptying all cells from the matrix.

Without loss of generality, let us assume that M = θ(N)

Let S ′ = S + T , where T =
∑N

i=1

√
i2 + i2

Now, S ≥ N2, so adding T to S will not change the order of S.

Hence S = θ(S ′).

Now, S ≤ √
2
∑

i

∑
j

√
max(i, j)2

S ≤ 2
√

2n ∗ n + (n − 1) ∗ (n − 1) . . .

S = 2
√

2
∑

n2

S = O(n3)

Hence, S = O(n3)

1.5. Insight into Optimality 5

Similarly,

S ′ ≥ √
2
∑

i,j

√
min(i, j)2 +

∑N
t=1

√
t2 + t2

S ′ = 2
√

2n ∗ 1 + 2 ∗ (n − 1) + 3 ∗ (n − 2) . . .

S ′ = o(
∑

r(n − r))

S ′ = o(n3)

Thus, S = o(n3) and we proved ealier that S = O(n3)

Hence, S = θ(n3)

Thus, we have shown that the problem of emptying all the cells from the matrix
has a complexity of θ(n3). There are many algorithms that will succeed in performing
the task with this time complexity. However, we want to find the most optimal of all
such possible algorithms, i.e. one that achieves the task by using minimum possible
number of transitions. We present such an algorithm in our work.

1.5 Insight into Optimality

Let us define a non-optimal transition to mean moving an R cell away from the R
receptor or a B from its receptor.
If we show that no non-optimal transitions occur in our algorithm then we have proved
that the algorithm will be optimal.

However, we prove a lemma that in some problem configurations, non-optimal
transitions are unavoidable.

Lemma 1: some matrices cannot be emptied without RB ↔ BR transformations.
e.g. consider the 2 row matrix shown below:

(
B B B R R R
E B B R R R

)

Thus in this case, in order to empty the cells, we need to make some RB ↔ BR
transformations.

6 1. The Red-Blue Problem

Lemma 2: some non optimal transitions are unavoidable in some cases.
For the matrix presented in Lemma 1, in order to empty its cells, we need to make
some BR ↔ RB transformations. However, according to the definition of these trans-
formations, they include non-optimal transitions. Hence, in some cases, non-optimal
transitions are required.

Hence to prove the optimality of our algorithm, we must now prove that the num-
ber of non-optimal transitions is minimized during the execution of the algorithm.
We have managed to do so.

1.6 Implementation of our Algorithm

We implemented our algorithm in C++. The user specifies the size of the matrix, as
well as the number of R, B and E cells. The matrix can either be generated randomly,
or entered by the user.

There is only one initial condition, namely that there exists at least one E in the
matrix, and specifically that it is in the second row. This is necessary for a subroutine
of our optimal algorithm. Since an E can move to any cell in the matrix in O(n) time,
we can assume this initial condition without loss of generality.

At each pass of the algorithm, the intermediate matrices are computed, including
versions after non-optimal removal and after greedy removal. The total cost for re-
moving all the cells is stored in memory.

Intuitively, matrices in which R cells are closer to the R receptor and B cells to
their receptor must be easier to empty, than matrices in which it is the other way
round. Accordingly, we informally define the following classes of matrices:

• Easy

• Medium

• Hard

The costs of emptying various sample 4 × 4 matrices in each of these cases are
listed in Table 1:

1.6. Implementation of our Algorithm 7

Index Nr Nb Cost
Easy 1 6 9 28
Easy 2 8 7 30

Medium 1 6 9 32
Medium 2 8 7 33

Hard 8 7 41

Table 1.1: Results for 4 x 4, Ne = 1

We repeated this procedure for similar matrices with Ne = 1, however of size 7×7.
For these examples, we obtained the following results:

Index Nr Nb Cost
Easy 27 21 188

Medium 26 22 208
Hard 21 27 230

Table 1.2: Results for 7 x 7, Ne = 1

Next, we ran our program on other 7 x 7 matrices, with varied values of Ne. The
empty cells are interspersed throughout the matrix in question.

Similarly, we can obtain matrices for higher values of Ne. We consider matrices of
dimension 7 x 7, for cases from Ne = 5 to Ne = 15. We ran our program on randomly
generated matrices, for various values of Nr, Nb, Ne. We present our results in the
thesis.

Our results indicate that the value of Ne, i.e. the number of empty cells in the
matrix does not have a significant impact on the number of transitions needed to
remove all the cells. The ratio of R cells to B cells also plays a role in determining
the cost of emptying the matrix. If they are evenly balanced, the cost tends to be
higher. There is a significant impact of the number of E cells only if multiple such
cells happen to be in the first row. Moreover, we can also see, based on comparing
the costs of emptying 4×4 versus 7×7 matrices that the number of transitions grows
as O(n3), thus offering experimental validation of the algorithm’s complexity.

Chapter 2

Linear Programming Problem

2.1 Problem Definition

We are given a N × N lattice. Each point (i, j) of the lattice may be either ON or
OFF. If it is OFF, its associated value is said to be 0, and if it is ON, its associated
value is said to be 1. Initially, a sequence of points from this lattice is set as ON.
We wish to compute a new sequence of ON points which utilizes as few ON points as
possible, and is subject to the following constraints:

• The boundary points are the same as those of the original sequence.

• The error compared to the given sequence is minimized.

• The point sequence is irreducible.

• The change in slope between successive points of the sequence is bounded.

We wish to formulate this problem as one of linear programming.

Now, since the lattice points can only take the values 0 or 1, this problem, once
formulated as an instance of linear programming, will actually be an instance of in-
teger linear programming, which is known to be NP-hard. Hence, we must initially
ignore this constraint, and allow the point to take any real value between 0 and 1.

Once the problem has been formulated as an instance of linear programming, we
obtain a solution to it using a standard mathematical software package, e.g. Mathe-
matica. We then round off the values of the points of this solution to either 0 or 1, to
obtain a solution to our original problem. There will be an error in the solution thus
obtained, and hence we solve various example point sequences, and try to obtain an
upper bound on this error by analyzing the errors produced in these individual point

9

10 2. Linear Programming Problem

sequences.

2.2 Formulation as linear programming

If a point (i, j) is initally ON, let Bij = 1, else let Bij = 0.
Let the two boundary points of the initial sequence be denoted by (il, jl) and (ih, jh).
Hence Biljl

and Bihjh
are necessarily equal to 1.

If a point (i, j) is ON in the computed sequence, let Xij = 1, else let Xij = 0.

We elaborate on the constraints mentioned earlier on the target point sequence:

Boundary:

The target sequence should have the same boundary points as the original se-
quence. Therefore, Xiljl

and Xihjh
must be equal to 1.

Error:

Let error E be defined as −∑
i,j BijXij.

We can see that E as defined above measures the distance between the original
and computed point sequences. BijXij = 1 only if the point (i, j) is ON in both
sequences, 0 otherwise. Each such point that has differing states in the sequences
contributes to the error E by an increment of 1.

Irreducibility:

Define every point of a sequence that is not a boundary point to be an interior
point.
Define the neighbourhood of a point (i, j) to be the set of points {(i − 1, j − 1), (i −
1, j), (i − 1, j + 1), (i, j − 1), (i, j + 1), (i + 1, j − 1), (i + 1, j), (i + 1, j + 1)}.

For a point sequence to be irreducible, each interior point of this sequence must
have no more than 2 ON points in its neighbourhood, and each boundary point of
the sequence must have no more than 1 ON point in its neighbourhood.

Intuitively, if a point sequence is not irreducible, there exists a smaller point se-
quence that can convey the same amount of information.

2.2. Formulation as linear programming 11

Bounded change in Slope:

Define the slope of 2 points p = (i1, j1) and q = (i2, j2) to be S2,1 = (j2 − j1)/(i2 −
i1). When we say that the change in slope at any point p = (i, j) in the sequence is
bounded, we mean:

| (Sp+1,p − Sp,p−1) | ≤ β, where p + 1 is the next point and p − 1 is the previous
point in the sequence, and β is some predefined bound.

However, this is not a linear equation. We must state these constraints in an
equivalent linear form. We define the unacceptable slope transitions as those transi-
tions that involve a change of slope β > 2. For example, (0, 0)− > (1, 1)− > (0, 2)
is an acceptable transition, while (0, 0)− > (2, 1)− > (0, 2) is not. Hence, only 2
out of these 3 points may be ON, and the corresponding slope constraint for this
unacceptable transition is:

X00 + X21 + X02 ≤ 2

Therefore, we must enumerate such constraints for every combination of 3 points
from the n2 points of the given lattice that produces a slope change β > 2.

We are now ready to formally state the objective function and constraints in order
to state this problem as an instance of linear programming:

Let the objective function be the minimization of
∑

i,j Xij .

The constraints are:

Xiljl
= 1 and Xihjh

= 1

E = −∑
i,j BijXij < τ , where τ is some predefined threshold.

∑1
k=−1 Xil−kjl−k ≤ 2

∑1
k=−1 Xih−kjh−k ≤ 2

If (i, j) is not a boundary point, ∀(i, j),
∑1

k=−1 Xi−kj−k ≤ 3

X00 + X21 + X02 ≤ 2

12 2. Linear Programming Problem

X00 + X31 + X12 ≤ 2

X11 + X31 + X12 ≤ 2

X00 + X33 + X03 ≤ 2

...
∀(i1, j1), (i2, j2), (i3, j3) such that | ((j2 − j1)/(i2 − i1))− ((j3 − j2)/(i3 − i2)) | > 2,
Xi1j1 + Xi2j2 + Xi3j3 ≤ 2

Analysis of constraints

Thus the program has been formulated as an instance of linear programming.
There are:

• 2 boundary constraints.

• 1 error constraint.

• O(n2) reducibility constraints. There is one such constraint for each point, and
there are n2 number of points.

• O(n6) slope constraints. Each slope constraint involves a combination of 3
points, and there are n2 such points, and 3 out of these n2 points can be chosen
in n2C3 = O(n6) ways. We must choose all such combinations that result in a
slope transition > 2, and it is clear that there are at least as many unacceptable
transitions as acceptable ones, hence the number of unacceptable transitions,
i.e. the number of slope constraints is also O(n6).

Hence, for any given lattice and initial sequence of points, we can enumerate the
various reducibility constraints in O(n2) time, and the various slope constraints in
O(n6) time. Thus we obtain a formal representation of the problem as an instance of
linear programming.

2.3 Solution using Mathematica

In the previous section, we outline a procedure to convert a given lattice and point
sequence into an equivalent linear programming problem. Once the problem is in this
form, it can be solved by any computational mathematics package, such as Mathe-
matica or Matlab, by using standard algorithms. For our task, we used Mathematica.
We wrote a standard linear programming implementation with the variables, function
and constraint as mentioned above, and ran this code on random sequences of various

2.4. Error Analysis 13

sizes and initial point distributions.

For each such sequence, we obtain a set of solutions Xij . However, here each ele-
ment Xij is a real number in the range [0, 1]. Hence, we round off each such Xij to its
nearest integer, since one of the constraints of the original problem, which we relaxed
in order to convert the problem from integer linear programming to linear program-
ming, is that ∀(i, j), Xij = 0 or 1. We thus obtain the resultant point sequences.

2.4 Error Analysis

We compute the errors for each of the resultant point sequences as compared to their
respective original point sequences. Recall that the error is defined as:

E = −∑
i,j BijXij

We perform error analysis, to obtain a bound on this error, as a function of the
input constants and the variables.

