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Abstract

Quantum Computing is an exciting alternative model to classical compu-
tation. In short the theory of quantum computation and quantum information
deals with the tasks of computing and information processing that can be ac-
complished using small systems which follow the fundamental laws of quantum
mechanics. The field has received considerable interests after Shor’s polyno-
mial time quantum algorithm for factorization of numbers [15], a problem
which still has no polynomial algorithm in the classical model and is strongly
believed not to belong to the class P of polynomial time solvable algorithms,
and Grover’s quantum search algorithm which finds an element in an unsorted
array in O(

√
n) time, a task which cannot be done in better than O(n) time

in the classical model, where n is the size of the array. One of the most dif-
ficult hurdles in quantum computation and information is decoherence of the
quantum mechanical systems which makes the results obtained after process-
ing erroneous. Since the quantum mechanical systems are very small it is very
difficult to remove decoherence completely out of the system. Hence the task
at hand is to develop schemes that guarantee results of satisfiable quality i.
e, fault-tolerance. In this direction Shor proved the fault-tolerance the for the
circuit model of quantum computation. Circuit model for quantum computa-
tion is analogous to the circuit model of classical computation. Our work here
is on fault-tolerance of other quantum computing models like that of quantum
cellular automata and adiabatic quantum computing both of which have been
shown to be equivalent to circuit model of quantum computing [1, 19].

As already mentioned implementation is an important problem in Quan-
tum Computation. Which is why it will be very helpful if one can design a
scheme that reduces the complexity of the implementation. So the task at hand
right now is to design an architecture which is simple, computationally pow-
erful and robust. Physical complexity can be reduced considerably if there are
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symmetries in the design. Quantum cellular automata (QCA) is computation
model where the arrangements of the physical qubits and the gate operation
are translation invariant. It has been already shown that one-dimensional QCA
[20] can simulate any quantum computer. So quantum cellular automata has
most of above mentioned qualities except the fact that it is still not known
whether we can develop an fault tolerant scheme to implement quantum cel-
lular automata without losing the topological symmetry of the qubits or the
translation invariant gate operations.

Consider a one-dimensional chain of N qubits initialized in the state |00..0〉
which is applied with the transition function

T = (
N−1⊗
i=1

Λ(Z)i,i+1)(
N⊗

i=1

Hi). (0.1)

That is in each elementary step we first apply first Hadamard gate to each
qubits and then conditional Z to each neighbouring qubits. And in between
each transition operation one may apply transition invariant unitary transfor-
mation of the form

UA(α) =
N⊗

j=1

exp(i
α

2
Aj) (0.2)

where j = {X, Y, Z} and j implies the bit at which the gate is applied. It
has been shown by Robert in [19] that one can implement one-dimensional
QCA using these operation. In this thesis I implemented this one-dimensional
scheme of QCA using surface codes [21]. The physical qubits are arranged in
the lattice edges and they satisfy stabilizer operation [10], i. e they remain
unchanged on application of some operations

SX(v) =
⊗
e∈v

Xe, SZ(f) =
⊗
e∈f

Ze (0.3)

where v and f are the sites and the faces of the lattice and e corresponds to
the edges of the faces and sites. This is an important property of surface codes
which will be helpful in the fault-tolerance. The logical qubits and logical
gate operations are encoded in some form in the surface code and physical
gate operations respectively. All the operation that will be done on the qubits
of the lattice edges will be translation invariant in the physical layer of the
lattice. The scheme that we have developed will have both error detection and
correction properties.

The paper entitled “Quantum Computation by Adiabatic Evolution” by
Farhi et al. [3] is a seminal work in the area of quantum computation. The
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quantum adiabatic thorem [4] can be used to develop algorithm to solve the
3-SAT problem, , 2-SAT on a ring and the Grover Problem as shown in [3].
For the 3-SAT problem the running time for the algorithm is not known but
for the 2-SAT on a ring problem the running time is O(n3), where n is the
size of the input. Aharonov et al. in there paper [1] showed that adiabatic
quantum computer is polynomially equivalent to the standard quantum circuit
model of computing. This equivalence is an important step which will help in
designing new quantum algorithms for problems that till now have no known
efficient algorithm in the standard quantum circuit model and also help in
constructing fault tolerant quantum computers. Since I was working on the
fault-tolerance adiabatic quantum computing and error correcting codes are
an important technique used in circuit model to make robust systems hence
I started studying the paper named “Error Correcting Codes for Adiabatic
Quantum Computation” by Jordan et al. [7]. In this paper it was show how
addition of a constant energy gap is possible using error correcting codes that
protects against 1− and 2−local noises. Stabilizer codes are used to add the
constant energy gap to the adiabatic evolution.

Since it has been shown 2-local Hamiltonians can simulate a quantum com-
puter [1] it is very important to investigate few examples of 2-local Hamilto-
nians under adiabatic evolution. One very good example is the Isisng Model
in a transverse magnetic field which solves a very simple problem of finding a
n-bit number where all the bits are same. The Ising Hamiltonian is given by
the equation

H(t) = −t
N∑

i=1

Xi − (1 − t)
N∑

i=1

ZiZi+1, 0 ≤ t ≤ 1 (0.4)

I have studied the Ising model [12] in transverse magnetic field and have worked
out the details of the diagonalization of the Ising model with using Jordan-
Wigner and Bogoliubov transformations [12] for the cases n = 2, 3 and checked
the results with the numerical simulations. In addition to the above I numer-
ically plotted the eigen values w.r.t time for the Isisng model for n = 4, 5, 6
qubits. I have plotted the eigen values vs time for the encoded Ising model
n = 2, 3 logical bits case and checked with the eigen values obtained from
the analytical calculations done previously. I used 4-qubit encoding from [7]
that protects against 1-local noises. For this work I had to learn Canonical
Commutation Relations (CCRs) for Fermions, consequences of the fremionic
CCRs, diagonalization of Fermi quadratic Hamiltonian and Jordan-Wigner
and Bogoliubov transformations. I followed [12] and [14] for this part of the
work.
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I worked on JFS [7] encoding for adiabatic quantum computing. For a
given Hamiltonian I calculated explicitely the eigen vaules . Worked out the
details of how to add a constant energy gap using the stabilizer formalism [10].
I have explicitly calculated the eigen values for the encoded Hamiltonian for
JFS codes that protect against 1 - local errors and then extended it for 2-local
errors. For calculating the eigen values for the encoded case techniques used
were of stabilizer formalism.

I have been working on the error model used in [7] and [5] . The evolution
equation is of Lindblad [5] form and stems from the coupling of each qubit in
the adiabatic quantum computer to an harmonic oscillator bath. The master
equation for the evolution is

dρ

dt
= −i[HS, ρ] −

a,b∑
Mabεab(ρ) (0.5)

where Mab is a scalar,

εab(ρ) = |a〉〈a|ρ + ρ|a〉〈a| − 2|b〉〈a|ρ|a〉〈b| (0.6)

is an operator and a, b are the eigen states of H(S). Under the following
model is I have numerically simulated the adiabatic passage through the point
of smallest gap in the presence of a bath of local harmonic oscillators.
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