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Abstract

A computing system consists of a multitude of hardware and software components

that are bound to fail eventually. In many systems, such component failures can lead

to unanticipated, potentially disruptive failure behavior and to service unavailability.

In distributed system as the size of system grows, so does the probability that

some component may fail. Recovering from such failures is notoriously difficult

and is important in the design and development of reliable systems, applications &

protocols. Checkpointing and rollback recovery is a widely used scheme for dealing

with failures at the application level. Extension of these distributed checkpointing

protocols from application level to the virtual operating systems in XEN framework

is not implemented so far. The aim of this work is to provide users/applications with

a checkpointing library along with few implemented basic checkpointing algorithm,

synchronous & asynchronous, which would enable them to checkpoint a group of

VMs that are communicating among themselves.
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Chapter 1

Introduction

Virtualization is a widely used technique in which a software layer mutliplexes

lower-level resources among higher level software applications and systems. Ex-

amples of virtual systems include a vast body of work in the area of operating

systems[14, 17, 16, 13, 8, 4] , high level language virtual machines such as those for

Java and .NET and more recently, Virtual Machine Monitors (VMMs). Hardware

Virtualization, which is old technology of 1960’s, is experiencing a revival in both

industry and research communities in form of VMM. VMM virtualizes entire soft-

ware stack including operating system and application, via a software layer betwen

hadrware and OS of the machine. VMMs offer a wide range of benefits including ap-

plication and full system isolation, OS based migration, distributed load balancing,

performance isolation, security, checkpointing and recovery, non-native application

execution and suport for multiple or customized operating systems. This use of

virtualization can improve reliability, flexibility and recovery time after OS crashes.

From now on, whenever we refer to virtualization, it refers to Hardware Virtualiza-

tion using VMMs and Virtual Machine (VM) will refer to instance of virtualized

OS.

Distributed systems have become popular because of several advantages they
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offer over centralized ones. They enable many applications, including client-server

systems, transaction processing, World Wide Web, scientific computation, etc. The

vast computing potential of these systems is often hampered by their susceptibil-

ity to failures. Many techniques have been developed to add reliability and high

availability to distrubted systems. One of them is Checkpointing and Recovery.

Checkpoint is saved local state of a processor. All the local checkpoints, one from

each site, collectively form a global checkpoint. A global checkpoint is called a con-

sistent set of checkpoints, if every message recorded as received in a local checkpoint

is also recorded as sent in another local checkpoint that constitute the same global

checkpoint.

There are 2 approaches towards distributed checkpointing and recovery, syn-

chronous checkpointing and asynchronous checkpointing. The synchronous check-

pointing is to ensure that all processes keep local checkpoint in stable storage and

coordinate their local checkpoint action such that global checkpoint is guaranteed to

be consistent. When a failure occurs, processors roll back and restart from their most

recent checkpoints. In asynchronous approach each processor takes local checkpoints

independently and a consistent global state is constructed using the checkpoints dur-

ing recovery.

1.1 Motivation

Numerous systems have been designed which use virtualization to subdivide the

ample resources of a modern computer. Some require specialized hardware, or can-

not support commodity operating systems. Some target 100% binary compatibility

at the expense of performance. Others sacrifice security or functionality for speed.

Few offer resource isolation or performance guarantees; most provide only best-

effort provisioning, risking denial of service. Xen is a VMM produced by Univer-
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sity of Cambridge Computer Laboratory and released undger GNU General Public

License. Xen allows multiple commodity operating systems to share conventional

hardware in a safe way with minimal performance and functionality loss. Xen VMM

has become one of the popular hypervisor due to performance benefits it offers over

other similar systems like VMware, VirtualPC etc. It is emerging as an open stan-

dard for virtualization on x86 systems. Xen VMM works on IA-32, x86-64, IA-64

and PowerPC 970.

System level virtualization provides several advantages like load balancing, fault

tolerance etc. However, Xen is still new, work on checkpoint/restart of a VM in

Xen is in progress. Design of Xen is targeted at hosting up to 100 VM instances

simultaneously on a mordern server. Distributed applications running on Xen still

don’t have support for distributed checkpointing and recovery of domains. Thus,

the aim of project is to add Distributed Checkpoint and Recovery Mechanism to

Xen. Exact details will follow in next section.

1.2 Problem Definition

In distributed system, as the size of the system grows so does the probability that

some component will fail. Recovering from such failures is notoriously difficult and

is important in design and development of reliable systems, applications and pro-

tocols. Checkpointing and rollback recovery is a widely used scheme for dealing

with failures at the application level. Extension of these distributed checkpoinitng

protocols from application level to the virtual operating systems in XEN framework

is not implemented so far. We aim to provide users/applications with a check-

pointing library along with few implemented basic checkpointing algorithms, which

would enable them to checkpoint a group of VMs that are communicating among

themselves.
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1.3 Contributions

In this work, I have successfully created the following:

1. Checkpointing and Recovery Library

2. A Synchronous Checkpointing & Recovery Algorithm using the library

3. A Asynchronous Checkpointing & Recovery Algorithm using the library

4. Proper Documentation

1.4 Thesis Outline

The rest of the thesis is structured as follows. Section 2 describes the related work

done in XEN and Checkpointing and Recovery Algorithms. Section 3 describes the

Checkpointing and Recovery Library and its development. Section 4 provides future

directions and conclusions. This is followed by bibliography.
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Chapter 2

Background & Related Work

This chapter provides a background by looking into some of the central concepts of

virtualization and checkpointing. First the concept of VMs is presented describing

different approaches to virtualization and types of VMs. Next Section then gives

a brief overview of Xen from an architectural point of view. Then we look at the

work on checkpointing and recovery and final section is about implementation of

checkpointing in Xen.

2.1 Virtual Machines

An abstraction of a common computer is defined as the three layers: hardware,

operating system and application software. Each of these layers may be emulated

having other layers or even computer architectures as platforms. The concept of

such emulation is called a VM. A VM is an emulation of lower layers of a computer

abstraction on behalf of higher layers to a certain extent, the higher layer mechanisms

are given the illusion that they are running on a certain lower layer mechanism, yet

they are actually running on a virtual instance of this mechanism.

5



As a VM can be implemented on any layer in this abstraction while providing

another virtual layer, many combinations exist in possible VM solutions; however,

the most common are software based and provide higher level runtime environments

or virtualization of hardware or operating systems. Higher level runtime environ-

ments provide an abstraction on which programs compiled for the particular VM

may run. A virtualization of operating system services may be performed between

the layers of the operating system and the higher level software, giving the higher

level software the necessary execution environment to perform its tasks. Virtualiza-

tion of hardware usually is performed running as an application above the operating

system; thereby a virtual instance of arbitrary hardware architecture lies on top of

the actual hardware, on which an operating system may run.

Hardware level VMs have many applications. Some allow virtualization of ar-

chitectures so that programs designed for a particular architecture may be executed

in a VM on a different architecture; some allow architectures to be developed virtu-

ally, so that these may be tested and evaluated, and software may be developed for

them, before realization. Moreover, most hardware level VMs that are implemented

in software, allow several virtual instances of architecture to run on a single archi-

tecture, providing a platform for running multiple operating systems on a single

computer.

The execution of a virtual machine (VM) implies that one or more virtual systems

are running concurrently on top of the same hardware, each having its own view

of available resources. The level in the software hierarchy where the virtualization

occurs influences the transparency and performance overhead. The system-level

virtualization incorporates a management facility called a Hypervisor, which oversees

VMs on a host machine.

There are different approaches to providing a virtual architecture.
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2.1.1 Full Virtualization

Virtual machines emulate some real or fictional hardware, which in turn requires

real resources from the host (the machine running the VMs). This approach, used

by most system emulators, allows the emulator to run an arbitrary guest operating

system without modifications because guest OS is not aware that it is not running

on real hardware. The main issue with this approach is that some CPU instructions

require additional privileges and may not be executed in user space thus requiring a

virtual machines monitor (VMM) to analyze executed code and make it safe on-the-

fly. Hardware emulation approach is used by VMware products, QEMU, Parallels

and Microsoft Virtual Server.

2.1.2 Paravirtualization

This technique also requires a VMM, but most of its work is performed in the guest

OS code, which in turn is modified to support this VMM and avoid unnecessary use

of privileged instructions. The paravirtualization technique also enables running

different OSes on a single server, but requires them to be ported, i.e. they should

”know” they are running under the hypervisor. The paravirtualization approach is

used by products such as Xen and UML.

2.1.3 Virtualization on the OS level

Most applications running on a server can easily share a machine with others, if

they could be isolated and secured. Further, in most situations, different operating

systems are not required on the same server, merely multiple instances of a single

operating system. OS-level virtualization systems have been designed to provide the

required isolation and security to run multiple applications or copies of the same
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OS (but different distributions of the OS) on the same server. OpenVZ, Virtuozzo,

Solaris Zones & FreeBSD Jails are examples of OS-level virtualization.

2.2 Xen

A few commercial VMMs exist today, such as VMware and VirtualPC. They provide

a true x86 VM platform with performance losses that are small enough to make

them feasible in some applications, yet large enough to make them infeasible for

high performance purposes.

Xen is a novel VMM which allows multiple commodity operating systems to share

conventional hardware in a safe way with minimal performance and functionality

loss. The Xen VMM was originally intended to be an integral part of a UK research

project, Xenoserver. The Xenoserver project aims to provide a wide-area distributed

computing platform on which members of the public can submit code for execution.

Later Xen emerged as a separate entity.

Design principles of Xen are[5]:

• Support for unmodified application binaries is essential, or users will not tran-

sition to Xen. Hence all architectural features required by existing standard

ABIs must be virtualized.

• Supporting full multi-application operating systems is important, as this al-

lows complex server configurations to be virtualized within a single guest OS

instance.

• Paravirtualization is necessary to obtain high performance and strong resource

isolation on uncooperative machine architectures such as x86.
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Figure 2.1: Xen Architecture

• Even on cooperative machine architectures, completely hiding the effects of re-

source virtualization from guest OSes risks both correctness and performance.

A Xen virtual environment consist of several items that work together to deliver

the virtualization environment which are as follows:

1. Xen Hypervisor

2. Domain 0

3. Domain Management and Control (Control Software + Domain0 Control In-

terface)

4. Domain U (Dom U)

The basic organization of these domains is shown in Figure 2.1.

9



Xen Hypervisor

The Xen Hypervisor is the basic abstraction layer of software that sits directly on

the hardware below any operating systems. It is responsible for CPU scheduling

and memory partitioning of the varoius virtual machines running on the hardware

device. The hypervisor not only abstracts the hardware for the virtual machines but

also controls the execution of virtual machines as they share the common processing

environment. It has no knowledge of networking, external storage devices, video or

any other common I/O functions found on a computing system.

Domain 0

Domain0, a modified Linux kernel, is a unique virtual machine running on the Xen

hypervisor that has special rights to access physical I/O resources as well as interact

with the other virtual machines running on the system. All Xen virtualization

environments require Domain0 to be running before any other virtual machine can

be started. Two drivers are included in Domain0 to support network and local disk

requests from DomainU or guest domains; the Network Backend Driver and the

Block Backend Driver. The Network Backend Driver communicates directly with

the local networking hardware to process all virtual machines requests coming from

Domain U guests. The Block Backend Driver communicates with the local storage

disk to read and write data from the drive based upon Domain U requests.

Domain U

DomainU refers to all paravirtualized virtual machines running on a Xen hypervisor.

They run modified Linux operating systems, Solaris, FreeBSD, and other UNIX

operating systems. There are also fully virtualized machines like running Windows
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etc. which are known as HVM Guests. For our work, we will concentrate only on

paravirtualized virtual machines.

The DomainU guest virtual machine is aware that it doesnot have direct access

to the hardware and recognizes that other virtual machines are running on the same

machine. The DomainU Guest virtual machine is not aware that it is sharing pro-

cessing time on the hardware and that other virtual machines are present. DomainU

contains 2 drivers for network and disk access, Network Frontend Driver and Block

Frontend Driver.

Domain Management and Control

A series of Linux daemons are classified as Domain Management and Control by the

open source community. These services support the overall management and control

of the virtualization environment and exist within the Domain0 virtual machine.

Brief Working

The idea behind Xen is to run guest operating systems not in ring 0, but in a higher

and less privileged ring. Running guest OSes in a ring higher than ring 0 is called

”ring de-privileging”. The default Xen installation on x86 runs guest OSes in ring

1, termed Current Privilege Level 1 (or CPL 1) of the processor. It runs a virtual

machine monitor (VMM), the ”hypervisor”, in CPL 0. The applications run in ring

4 without any modification[2].

However, some instructions in IA-32 instruction set are problematic in running

in ring 1. These instructions can be problematic in two senses. First, running the

instruction in ring 1 may cause General protection exception (GPE), which also may

be called a general protection fault (GPF). For example, running HLT immediately

11



Figure 2.2: Xen runs in ring 0, Guest Domain runs in ring 1, User applications run
in ring 4

causes a GPF. Some instructions, such as CLI may cause a GPF if a certain condition

is met. That is, a GPF occurs if the CPL is greater than the IOPL of the current

program or procedure and, as a result, has less privilege. Another problem occurs

with instructions that don’t cause GPF but still fail. Many Xen articles use the term

”fail silently” to describe such cases. Xen handles these problems via a provision

called hypercall. A hypercall is Xen’s analog to Linux system call. A system call is

an interrupt (0x80) called in order to move from user space (CPL3) to kernel space

(CPL0). A hypercall is also an interrupt (0x82). It passes control from ring1, where

guest domains are running to ring0, where Xen runs[1] . To provide safe hardware

isolation, Xen uses Virtual Split Drivers. Domain 0 is the only one which has direct

access to hardware devices, and it uses original Linux drivers. But domain 0 has

another layer, the backend, which contains netback and blockback virtual drivers[3].

Similarly, the unprivileged domains have access to a frontend layer, which con-

sist of netfront and blockfront virtual drivers. The unprivileged kernel issues I/O

12



Figure 2.3: The Split Device Driver Model in Xen

requests to the frontend in the same way that I/O requests are sent to ordinary

Linux kernel. However, because frontend is only a virtual interface with no access

to real hardware, these requests are delegated to the backend. From there they are

sent to the real devices. In xen domains use Event Notifications and Grant Tables

to communicate between each other.

Event notifications in Xen travel between domains via Event channels. An event

in Xen is equivalent to a hardware interrupt. They essentially store one bit of

information, the event of interest is signaled by transitioning this bit from 0 to 1.

Event notifications can be masked by setting a flag; this is equivalent to disabling

interrupts and can be used to ensure atomicity of certain operations in the guest

kernel.

Xen’s Grant Tables provide a generic mechanism to memory sharing between

domains. This shared memory interface underpins the split device drivers for block

and network IO. Each domain has its own grant table. This is a data structure that

is shared with Xen; it allows the domain to tell Xen, what kind of permissions other

domains have on its pages. Entries in grant tables are identified as grant references.
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A grant reference is an integer, which indexes into grant table.

Thus these two features provide an asynchronous notification mechanism between

domains.

2.3 Checkpointing and Recovery

A system consists of a set of hardware and software components. Failure of a system

occurs when the system doesn’t perform its services in the manner specified. An

erroneous state of the system is a state which could lead to a system failure by a

sequence of valid state transitions. A fault is an anomalous physical condition which

may be caused due to design errors, manufacturing problems etc. An error is that

part of the system state which differs from its intended value [18, 15, 11].

A system failure occurs when the processor fails to execute. It is caused by

hardware problems or software errors. In case of system failure, the processor is

stopped and restarted in correct state. When the nature of the errors and damage

caused by faults can be accurately and completely assessed then it is possible to

remove the errors and enabling the system to move forward. This technique is

called forward error recovery. On the other hand, if it is not possible to foresee the

errors or remove the errors in the system’s state, then the system’s state can be

restored to a previous error-free system state. This technique is known as backward

error recovery [18] .

Backward error recovery can be achieved by 2 methodologies, operation-based

and state-based[11] . In operation based approach, we store the state of the system in

sufficient detail so that a previous state can be restored by reversing all the changes

made to the state. In state based approach, complete state is saved when a recovery

point is established and recovering a system involves reinstating its saved state and
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resuming the execution from that state[18, 6] . The process of saving state is referred

to as checkpointing or taking a checkpoint. The process of restoring a process to a

previous state is called as rolling back of the process.

Distributed Systems have become popular because of several advantages they

have over centralized ones. They provide enhanced performance and increased avail-

ability. One way of realizing enhanced performance is through concurrent execution

of many processes, which cooperate in performing a task. An important requirement

of distributed systems is the ability to tolerate failures. The probability that some

component in a distributed system will fail increases with the increase in the size of

the system. Checkpointing in distributed systems is much more complicated. Each

processor saves its state at the local stable storage. These recovery points are called

local checkpoints. All the local checkpoints, one from each site, collectively form a

global checkpoint. A global checkpoint is called a consistent set of checkpoints, if

every message recorded as received in a local checkpoint is also recorded as sent in

another local checkpoint that constitute the same global checkpoint.

There are 2 approaches towards distributed checkpointing, synchronous check-

pointing and asynchronous checkpointing [21, 19, 12, 10, 9, 6]. The synchronous

checkpointing is to ensure that all processes keep local checkpoint in stable storage

and coordinate their local checkpoint action such that global checkpoint is guaran-

teed to be consistent. When a failure occurs, processes roll back and restart from

their most recent checkpoints. While crash recovery is easy and simple in this case,

additional messages are generated for each checkpoint, and synchronization delays

are introduced during normal operations. If there are no failures, then above ap-

proach places an unnecessary burden on the system in form of additional messages

and message delays. Similarly, when a processor rolls back and restarts after a fail-

ure, a number of additional proce‘sses are forced to roll back with it. The processes

indeed roll back to a consistent state, but not necessary to maximum consistent
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state. In the asynchronous approach, each processor takes local checkpoints inde-

pendently and a consistent global state is constructed using these checkpoints during

recovery. To help in crash recovery and minimize the amount of computation done

during a rollback, all incoming messages are logged (stored on a stable storage) at

each processor. 2 approaches are available for message logging namely, pessimistic

message logging and optimistic message logging. In pessimistic logging, each pro-

cess has to block wait for the processor state of a non deterministic event before the

effects of that event can be seen by outside world or other processes. It simplifies

recovery but hurts failure free operation. In optimistic logging, the process doesn’t

block, and determinants are spooled to stable storage asynchronously. Optimistic

logging reduces failure-free overhead, but complicates recovery.

In message passing system, recovery via rolling back is complicated because

transmission and reception of messages introduce interprocess dependencies during

failure free operation. Upon a failure of one or more processes of the system, these

dependencies may force some of the processes that didn’t fail to rollback, creating

what is known as rollback propagation. Under some senarios, rollback propagation

may extend back to the initial state of the computation, losing all work performed

before a failure. This situation is known as domino effect.

2.4 Checkpointing and Recovery in Xen

The Xen Hypervisor provides mechanisms that allow users to take checkpoints of the

VMs. The hypervisor is responsible for the checkpoint and restart of a virtual ma-

chine. However, the hypervisor works in concert with the host OS to access resources

to actually carry out the process, i.e., writing checkpoint to disk, send/receive data

on network. Therefore the checkpoint/restart mechanism for virtual machines is

composed of two parts[20]:
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1. Hypervisor checkpoint mechanism

2. The checkpoint manager and resource manager that run the host OS

The implemented hypervisor checkpoint mechanism consists of 2 parts[7]:

Checkpoint Mechanism at Guest/DomU

1. Hypervisor asks the guest for help by writing a suspend message to a location

in xenstore on which the guest has a watch.

2. Guest disconnects itself from devices

3. Guest unplugs all starting from CPU

4. Interrupts are disabled

5. Page tables of all the processes are pinned into RAM

6. Prepares a suspend record ? the Xen start info structure, with the address of

store and console pages converted to PFN, so that restore can rewrite them

on restore

7. Makes a suspend hypercall that doesn’t return

Checkpoint Mechanism at Domain 0

1. Serialize guest configuration

2. Wait for Xen to announce that the domain has suspended

3. Map guest memory in batches and write it out with a header listing the PFNs

in the batch

4. Write out VCPU state for each VCPU, with MFN to PFN fix-ups
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Along with the checkpoint mechanism at the hypervisor, the implementation check-

point manager, resource manager is proposed[20]. In later section we discuss briefly

about the disk checkpointing.

Checkpoint Manager

The checkpoint coming from the Hypervisor is a raw checkpoint saving the entire VM

image. Before storing a checkpoint, it may be interesting to modify this checkpoint.

The checkpoint manager is responsible for preparing the checkpoint for storage, to

include modification like compression, transfer to remote place, etc.

Resource Manager

Once a checkpoint is ready for storage, the system has to access a hardware resource.

The Resource Manager (RM) is responsible for these aspects of the system. The

storage may be local (e.g., local disk, local memory) or remote (e.g., remote disk,

remote memory) to the VM that is being checkpointed. CM takes care of managing

the checkpoints and resource manager abstract the storage method for the CM

Resource Manager is composed of multiple components, each of them being ded-

icated to a specific resource access (for instance local vs. remote, memory vs. disks).

Whenever a checkpoint is received, in order to identify the correct component that

can store the checkpoint, the RM sends a request to all the components. If a check-

point’s characteristics match component requirements, the component saves the

checkpoint. This enables dynamic management of resources since RM components

may be activated/ deactivated according to the resource availability
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Disk Checkpointing

Disk checkpointing is yet not implemented in Xen, however, a solution with stackable

file system (UnionFS) is proposed.

Once the VM’s disk and memory state have been recorded a full rollback mech-

anism is possible without potential for inconsistency during checkpoint/restart.
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Chapter 3

Distributed Checkpoint and

Recovery of VMs in Xen

Running large distributed applications on VMs make its very important that the

states of these VMs can be restored to most recent state possible in the event of

failure. For this purpose, we have built up a distributed CnR library to provide

users/applications to write their own checkpoint and recovery algorithm at system

level. Before we go on to the library, we look at the packet transmission and reception

strategy inside Xen.

3.1 Architecture of Xen Network Split Device Driver

The network Xen driver is a split driver i.e. it has a portion in a privileged do-

main handling the physical device called backend and a frontend in the unprivileged

domain acting as a proxy upon the backend. The backend and frontend communi-

cate using shared event channels and ring buffers, in an architecture known as the

Xenbus.
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From now on, netfront refers to the frontend interface, netback refers to the

backend interface.

The network interface uses two ”descriptor rings”, one for transmit, the other for

receive. Each descriptor identifies a block of contigous machine memory allocated

to the domain. The transmit ring carries packets to transmit from the guest to the

backend domain. The return path of the transmit ring carries messages indicat-

ing that the contents have been physically transmitted and the backend no longer

requires the associated pages of memory.

To receive packets, the guest places descriptors of unused pages on the receive

ring. The backend will return received packets by exchanging these pages in the

domain’s memory with new pages containing the received data, and passing back

descriptors regarding the new packets on the ring. This zero-copy approach allows

the backend to maintain a pool of free pages to receive packets into, and then deliver

them to appropriate domains after examining their headers. If a domain doesn’t

keep its receive ring stocked with empty buffers then packets destined to it may be

dropped. This provides some defence against receive livelock problems because an

overloaded domain will cease to receive further data. Similarly, on transmit path,

it provides the application with feedback on the rate at which packets are able to

leave the system.

Flow control on rings is achieved by including a pair of producer indexes on the

shared ring page. Each side will maintain a private consumer index indicating the

next outstanding message. In this manner, the domains cooperate to divide the

ring into two message lists, one in each direction. Notification is decoupled from the

immediate placement of new messages on the ring; the event channel will be used to

generate the notification when either a certain number of outstanding messages are

queued, or a specified number of nanoseconds have elapsed since the oldest message

was placed on the ring.
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How actually this process takes place is covered in Section and Section .

3.1.1 Transmission of packets

Network Stack sends the socket buffer to the device driver which calls hard start xmit

function. In case of Xen it is network start xmit. In this function, frontend calcu-

lates the number of fragments corresponding to the socket. It then acquires a trans-

mission lock. Transmission lock provides mutual exclusion for sending the packet

to the backend domain via request descriptors. Frontend then request for a slot

in transmit ring and enqueues the request to the backend to transmit the socket

buffer. Check for Generic Segmentation Offloading takes place and if TCP segmen-

tation offloading is enabled then another request descriptor is queued in trasmit ring

to convey details about the same. If a socket buffer has fragments then frontend

sends them via more request descriptors. Finally, it notifies the backend via irq on

event channel. Frontend then checks whether there are any pending responses on

the transmit ring. Finally, it releases the transmission lock and update the network

statistics about number of bytes and packets transmitted.

The backend on receiving the irq adds the network interface to the schedule list

and schedules a tasklet to handle the requests from the frontend. The net tx action

tasklet picks up the network interface (netif) next in schedule and checks for requests

in the transmit ring for that interface. The credits for scheduling the netif are

updated. Check for GSO is made followed by creating a local copy of the ring request

descriptors for the fragments. Now backend starts reconstructing the socket buffer.

Metadata for constructing the socket buffer has arrived via request descriptors and

the data is received using pages shared via grant table mechanism. Then socket

buffer is queued in a transmission queue. Backend continues in this loop till no

interface requests scheduling or its buffers are filled with the maximum requests it

can handle. Now it dequeues the socket buffer from transmission queue, performs
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check for appropriate permission for grant references. It than copies the header of

the packet to socket buffer and updates some more fields and finally trasferring the

socket buffer to upper layers.

3.1.2 Reception of Packets

The socket buffer arrives at the backend in netif be start xmit function. The socket

buffer is then enqueued in receive queue and a tasklet is scheduled for its further

processing. This tasklet calls net rx action function. In this function, sockets are

dequeued from receive queue. Then they are mapped to shared pages whose informa-

tion is stored in the request descriptors in receive ring using grant table mechanism.

After this they are queued in another receive queue, rxq. Once we have no more

socket buffers to process, we dequeue packets from the rxq and responses are en-

queued inside the receive ring. Finally a notification is sent to the frontend over

event channel via irq.

In the frontend, the irq is handled by netif int function which schedules device for

polling to handle reception of packets on finding unconsumed responses inside the

receive ring. Inside the netif poll function, 3 types of queues exist. They are tmpq

(temporary queue), rxq (receive queue) and errq (error queue). First the socket

buffers are read by analyzing the response descriptors and then they are enqueued

in tmpq. In case of error, they are enqueued in errq. Then socket is dequeued from

the tmpq and checked for GSO optimization. Then its fragments are attached to it

by reading response descriptors corresponding to them. Now we update fields of the

socket buffer and enqueue it in rxq. All the socket buffers in errq are now freed as we

don’t need to do anything with them anymore. Once we have successfully received

the socket buffers and queued them in rxq, we need to send them to the higher

network layers. for further processing. Therefore, we dequeue the socket buffers,

find out the which protocol handler they need to be transmitted to and on basis of
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that processing continues further. After sending the socket buffer to higher layers

we allocate more shared pages for use by the backend and send their identification

via requests in receive ring.

3.2 Synchronous Checkpoint and Recovery

Once, we have seen how the packet gets transferred from domainU to domain0, we

can now now modify it to get a control over the packets transmission and reception

at system level.

As, we have discussed before, a synchronous checkpointing algorithm coordinates

among the participants to take a consistent global checkpoint. We now describe its

implementation on VMs instead of processes in following subsections.

3.2.1 System Model

The system is assumed to consist of various virtual machines in Xen Framework.

All virtual machines and domain0 of all machines have a secondary storage sys-

tem. The secondary storage system is assumed to be stable storage i.e. it doesn’t

lose information in the event of system failure. No halting failures occur in the

system. The virtual machines communicate by exchanging messages via communi-

cation channels. Channels are FIFO in nature. End to end protocols are assumed

to cope with message loss due to communication failure. Communication failures

do not partition the network. There is no shared memory or clock between all VMs.

The checkpointing algorithm takes two kinds of checkpoints on stable storage,

permanent and tentative. A permanent checkpoint is a local checkpoint at a VM

and is part of a consistent global checkpoint. A tentative checkpoint is a temporary
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checkpoint that is made a permanent checkpoint on the successful termination of

the checkpoint algorithm. Process rollback only to their permanent checkpoint.

3.2.2 Checkpoint Algorithm

Checkpoint algorithm assumes single initiator, as opposed to multiple initiators con-

currently invoking the algorithm to take checkpoints. The algorithm is modified ver-

sion of synchronous checkpointing algorithm proposed by Koo and Touegaccording

to architecture of Xen. The algorithm has 3 phases.

1. First phase:The checkpoint initiator which is domain0 sends request to all

virtual machines to send information about their domain0. Each Virtual Ma-

chine then contacts corresponding domain0 to check whether it is ready to

take a checkpoint as hypervisor in domain 0 can only take the checkpoint. If

domain-0s are ready then they send confirmation to the guest domains who

want to take checkpoints. The guest domains then send back the domain-0

information to the initiator.

2. Second phase :The initiator then requests all the domain0s corresponding to

virtual machines to take tentative checkpoints. Each domain informs initiator

whether it succeeded in taking a tentative checkpoint. If domain0 fails to take

a checkpoint, it replies ”no” which could be due to several reasons, depending

upon the underlying virtual machine. If initiator learns that all the processes

have successfully taken tentative checkpoints, initiator decides that all tenta-

tive checkpoints should be made permanent; otherwise initiator decides that

all the tentative checkpoints should be discarded.

3. Third phase: The initiator informs all the domain0s of the decision it reached

at the end of the first phase. A domain-0 on receiving message from initia-
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tor, will act accordingly. Therefore either checkpoint is taken for all virtual

machines or for no virtual machine

The algorithm requires that every process, once it has taken a tentative checkpoint,

not send messages related to underlying computation until it is informed of initiator’s

decision.

3.2.3 Recovery Algorithm

Recovery in case of synchronous checkpointing algorithm is easy as each set of per-

manent local checkpoints combine together to form a consistent global checkpoint.

The algorithm has 2 phases:

1. The failed domain sends message to all the other domains about its failure

and initiate recovery algorithm.

2. All domains request their corresponding domain0 to shutdown them and start

from the last local permanent checkpoint.

3.2.4 Proof of Correctness

A set of permanent checkpoints taken by checkpoint algorithm is consistent because:

1. Either all or none of the VMs is checkpointed

2. A set of checkpoints will be inconsistent if there is a record of a message re-

ceived but not of event sending it. This will not happen as no VM sends

message after a tentative checkpoint of that VM is taken by corresponding hy-

pervisor until the receipt of the initiator’s decision, by which time all domains

would be checkpointed by their corresponding hypervisors.
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The algorithm for the recovery actually recovers the distributed application run-

ning inside the VMs as we start the distributed system of VMs from its last consistent

global checkpoints, which in turn ensures the consistent global checkpoint for the

application.

3.2.5 Complexity

In this section, we find out the message complexity of each of checkpointing and re-

covery algorithm. The first phase of checkpointing algorithm takes 4N in first phase,

2N in second phase and N in the third phase where N is the number of domains

participating in the checkpointing process. Hence, the total message complexity in

worst case is 7N . In case of recovery, if a domain fails then, another N −1 messages

are sent for informing other domains to recover from the failure.

3.2.6 Plan for Testing

To get an accurate and comprehensive view of working of synchronous checkpointing

algorithm implemented above, rigorous testing of algorithm is essential. In general,

testing of distributed applications is difficult because of their non-reproducibility of

events, complex timing of events, and complex states. In this section, we discuss our

testing plan to check the implementation of synchronous checkpointing algorithm.

Our plan is as follows:

1. Correctness of Implementation

The correctness of implementation is checked by running a distributed appli-

cation on various VMs, checkpointing them, making a VM to fail and then

recovering back the application via the consistent set of checkpoints. For our

testing, we have considered two types of applications:
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(a) a simple message passing(client-server) application coded using POSIX

sockets.

(b) a distributed application for example where computation may spread over

various VMs.

In both the cases, we would take a series of permanent checkpoints over suit-

able time intervals and show that we save system resources by restoring the

execution of algorithm from intermediate consistent state rather than starting

the applications from initial state.

2. Fault Tolerance

We need to check the ability of algorithm to perform under failures like com-

munication failure, message delays in network. We implemented our algorithm

over TCP so that tramsmission and reception errors along with communica-

tion failures are tackled by the TCP layer itself. Message Delays are produced

by introducing timeout at every send and receive of message by using timeval

data structure and setsockopt system call provided under Linux APIs. Arrival

of late messages is tackled by keeping data stuctures that change with timeout.

3. Privileges

Checkpoint application need root privileges at every host. These privileges

were checked by using geteguid system call on Linux. The effective user id of

root is 0.

4. Other Tests

Size of each checkpoint file is large which is approximately equal to size of the

physical memory we allocate to each virtual machine. Check to ensure that

enough disk space is available to store the checkpoint.
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3.3 Asynchronous Checkpointing and Recovery

Synchronous checkpointing simplifies recovery, but it has disadvantages like addi-

tional message exchange, synchronization delays and unnecessary overhead in cases

of no failure. Several asynchronous distributed checkpointing algorithms have been

proposed. We choose an optimistic asynchronous distributed checkpionting algo-

rithm given by Juang et. al [?]. We choose this algoirthm because of 2 reasons,

firstly, we don’t need to append any information to the messages so that all the dis-

tributed applications written without checkpoint and recovery support can benefit

from this algorithm as all the logging, as we will see, can be offsetted to the kernel.

Secondly, we don’t need to store processor state (in our case state of VM) for each

message.

The Algorithm assumes two types of log storage are available for logging in the

system, namely, volatile log and stable log. Properties of the volatile log are

1. Accessing the volatile log takes less time than stable log.

2. Contents of volatile log are periodically flushed to stable storage and cleared.

The important point to note here is that checkpoint of a guest domain is taken

by Domain0 in stable storage because of its large size. Hence, processor state which

in this case is the checkpoint file can’t be present in volatile storage of either the

guest domain or domain0. Also, taking checkpoint after every event is not possible,

we take checkpoint at regular intervals in the guest domain and maintain the logs

in kernel space of guest domain (which are later flushed to stable storage) while the

checkpoint file is present in stable storage.
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3.3.1 System Model

The system is assumed to consist of various virtual machines in Xen Framework. All

virtual machines and domain0 of all machines have a secondary storage system. The

secondary storage system is assumed to be stable storage i.e. it doesn’t lose infor-

mation n the event of system failure. No halting failures occur in the system. The

virtual machines communicate by exchanging messages via communication chan-

nels. Channels are FIFO in nature. End to end protocols are assumed to cope with

message loss due to communication failure. Communication failures do not partition

the network. The message delay is arbitrary, but finite. There is no shared memory

or clock between all VMs.

3.3.2 Checkpoint Algorithm

In our implementation, we record a tuple (sj, rj) for every participant domain in

volatile storage where sj represent number of messages sent to jth domain and rj

represents the number of messages received from jth domain. When we take a

checkpoint, dom0 creates a unique checkpoint id and sends it to the corresponding

guest domain. The guest domain stores this unique id along with current stats of

(sj, rj) tuples in stable storage.

Since, the checkpoint procedure is asynchronous, the guest domain (with the help

of domain0 ) takes checkpoints at regular intervals without communicating with the

other participant domains.

3.3.3 Recovery Algorithm

Once a domain crashes, it is brought alive by the domain0. It then sends message

to all the other domains to initiate recovery algorithm.The recovery algorithm stops
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recording (sj, rj) as it will be updated after recovery anyways. The checkpointing

algorithm stops taking checkpoints.

Recovery Algorithm uses following datastructures:

RCV Di←j(CkPti) represents the number of messages received by domain i from

domain j, per the information stored in the checkpoint CkPti.

SENTi←j(CkPti) represents the number of messages sent by domain i to domain

j, per the information stored in the CkPti

Recovery Algorithm has 2 phases.

1. In first phase, the domains stops the logging of messages and finds out the

recovery point. The pseudocode for this phase is given in Algorithm 1. This

algorithm runs at each domain i. In this algorithm, we first decide the last

recovery point for each domain. For the crashed domain it is the last check-

point stored on the stable storage, for others, it is the current state. Now

we send rollback messages to the all the domains which consist of number of

messages sent by i during the execution of some distributed application. Each

domain waits for these messages to arrive from other domains and store them

into a queue. Then we pick up messages at the head of queue and check if

the number of messages received by i from other domain j is greater than the

value stored in rollback message. If this is the case, this implies presence of

orphan messages, hence we have to rollback to checkpoint before the present

checkpoint. This is repeated for times equal to number of domains that are

participating in recovery procedure.

2. In second phase, the domains ask their domain0 to start them from the

recovery point calculated in phase1. The domain0 then restarts the guest

domain at the requested state stored as a checkpoint.
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Algorithm 1 Rollback Recovery Algorithm

if di is the crashed domain then
RECi ← the last checkpoint in the stable storage

else
RECi ← the latest event that took place in di

end if
for k ← 1 to |V | do

for each domain di do
compute SENTi→j(RECi)
send a rollback SENTi→j(RECi) message to dj

end for
repeat

wait for a rollback(c) message
m← rollback(c) message received
put m into processing queue

until a rollback message from each domain is received
while processing queue 6= Φ do

let m = rollback(c)be a message in processing queue

delete m from rollback processing queue

compute the RECEIV EDi←j(RECi) if m came from pj

if RECEIV EDi←j(RECi) > c then
find the latest checkpoint CkPt such that
RECEIV EDi←j(e) <= c

RECi ← CkPt

end if
end while

end for
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3.3.4 Complexity

In worst case, the Phase 1 of algorithm takes n2(n−1)
2

messages to find the recovery

points for all the domains while the phase 2 takes n messages to start domains

from their recovery points where n is the number of domains participating in the

distributed application.

3.3.5 Proof of Correctness

Lemma 3.3.1. At the end of each iteration of the recovery procedure in phase 1, at

least one domain will rollback to its final recovery point unless the current recovery

points are consistent.

Proof. to ensure the consistency of the domain states, we let domains to rollback.

During the first iteration, the processor that rolls back finds the correct recovery

point. At subsequent iterations, it is impossible with respect to state of any of other

domain.

Theorem 3.3.1. At the end of the recovery procedure in phase 1, all the domains

roll back to the optimum consistent recovery points.

Proof. A domain rolls back to a state only because the state immediately following

that was started by message m that transitively depends on an unlogged state of a

failed domain. Thus, the rollback points for all domains are optimum. From Lemma

3.3.1, it is clear that the domain states are consistent.
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3.3.6 Plan for Testing

To get an accurate and comprehensive view of working of asynchronous checkpoint-

ing and recovery algorithm implemented above, rigorous testing of algorithm is

essential. In this section, we discuss our testing plan to check the implementation

of asynchronous checkpointing algorithm.

Our plan is as follows:

1. Correctness of Implementation

The correctness of implementation is checked by running a distributed appli-

cation on various VMs, checkpointing them, making a VM to fail and then

recovering back the application via the consistent set of checkpoints. For our

testing, we have considered two types of applications:

(a) a simple message passing(client-server) application coded using POSIX

sockets.

(b) a distributed application for example where computation may spread over

various VMs.

In both the cases, we would take a series of permanent checkpoints over suit-

able time intervals and show that we save system resources by restoring the

execution of algorithm from intermediate consistent state rather than starting

the applications from initial state.

2. Fault Tolerance

We need to check the ability of algorithm to perform under failures like com-

munication failure, message delays in network. We implemented our algorithm

over TCP so that tramsmission and reception errors along with communica-

tion failures are tackled by the TCP layer itself. Message Delays are produced

by introducing timeout at every send and receive of message by using timeval

34



data structure and setsockopt system call provided under Linux APIs. Arrival

of late messages is tackled by keeping data stuctures that change with timeout.

3. Privileges

Checkpoint application need root privileges at every host. These privileges

were checked by using geteguid system call on Linux. The effective user id of

root is 0.

4. Other Tests

Size of each checkpoint file is large which is approximately equal to size of the

physical memory we allocate to each virtual machine. Check to ensure that

enough disk space is available to store the checkpoint.

3.4 Implementation of Checkpoint and Recovery

Library in Xen

The implementation of checkpointing and recovery on the system level requires

support from the operating system in controlling the network drivers. In case of

Xen since each domain has modified OS to support paravirtualization. Hence, we

will have to change the modified OS. In our case we do it for modified Linux Kernel.

The control over these changes are made available to the users/applications via

system call.

3.4.1 Functions

The functions that have been implemented as system calls are as follows:

1. initIpArray

35



This function is used to tell the kernel the ip address of the domains partic-

ipating in the distributed task. It is assumed that the ip remains constant

throughout.

2. deinitIpArray

Once, we are done with everything, we need to free the kernel space occupied

by the ip address of various participating domains. DeinitIpArray serves the

same purpose

3. blockips

Once, we take a checkpoint for eg. in synchronous checkpointing, we need to

ensure that no message exchange takes place between participating domains.

Since applications are not aware of the checkpointing process, we implement

blockips function at the system level assuming that the message loss will be

taken care by lower network layers like TCP.

4. unblockips

The blocked communication with the domains is started with this function

5. initMsgStatsSpace

This function allocates space in the kernel for storing the logs and stats of

the message exchange that takes place between the domains. These logs are

required in asynchronous checkpointing and recovery process.

6. takeMsgStats

TakeMsgStats function tells kernel to start the logging the details of the mes-

sages sent and received from the local domain to other participating domains

7. storeMsgStats

This function allows user to stop the logging and get the current logs in user

data structures, so that user can store them in stable storage.
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8. resetMsgStats

ResetMsgStats function is used to reset the values stored in the logs to some

desired value. This function is needed when we recover from the failure and

the domains restart from the last recovery point decided during the recovery

algorithm.

9. removeMsgStats

Once, we are done with the messages, we need to remove the space allocated

in the kernel for taking the stats. We use removeMsgStats to do it for us.

Apart from these functions we have fucntions to initiate the synchronous and

asynchronous checkpointing and recovery procedures described in previous sections.

But these are not implemented as the library functions, instead they are included

in the domain control interface in domain0.

3.4.2 Plan for Testing

Testing of system calls is not similar to the testing any function call. It is different

because, these system calls are integrated with the kernel and mistakes often give

rise to the OS and filesystem crash. The testing of these system calls is not possible

via normal programs either. Only way to hack kernel is via Module Programming.

Hence, kernel modules are written for each test case for system call. Testing is done

manually instead of automatic, as the size of library is not big.

3.5 Challenges Faced

While implementing distributed checkpointing in Xen, we faced following challenges:
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1. Communication between guest and parent : Communication between guest and

parent can be done via TCP/IP sockets or by inbuilt Event channel Mecha-

nism. If we do it via event channel mechanism and grant table mechanism

(using shared memory between dom0 and VM) then we need to develop a fake

split driver that would enable both of the features for us. Presently, POSIX

sockets are used to communicate between guest and parent.

2. The applications presently running inside the VM are unaware of the check-

point process of VM. It is intuitive that an application can benefit itself from

the distributed checkpoint of Virtual machines.

3. Testing of Kernel Functions is not easy. Mistakes lead to OS crashes and are

difficult to debug. Crashes often corrupt the file system as well by corrupting

Inode tables. This often requires building up the system from scratch. Proper

backups are taken to handle such situations.

4. Since Xen is an opensource software, various optimizations and changes take

place. The implementation was started on Xen 3.0.x and now Xen 3.2.x is

released. Implementation of our library was updated to current version to

utilize the benefits of optimizations and bug-fixes.
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Chapter 4

Conclusion and Future Work

In this final chapter, we recapitulate the road we travelled to get here. We hope

that it helps reader to understand the rationale behind our work in thesis.

4.1 Roads Travelled

Starting with the problem of inability of VMs to recover a distributed computation

inspite of their increasing usage in Distributed Applications, we analyzed the reason

for the same. Primary reason behind this was there was no way to implement

distributed checkpointing of Operating System till now. With the introduction of

VMs, taking checkpoint was offloaded to the a special domain called Domain0, while

the original domain can continue the distributed application.

Checkpoint and Recovery for processes is a well-researched topic and there are

many approaches available to checkpoint a group of processes participating in a dis-

tributed computation and a corresponding approach to recover using those check-

points. For, our work, we picked up synchronous and asynchronous distributed

checkpointing and recovery approach to checkpoint a groop of VMs. Xen is one of
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the popular VMM and is opensource. Now, our task was first to understand the

working of Xen, how OS are modified to VMs, mechanism to bring up VMs, net-

working using Xen, etc. Then we looked on how checkpointing is implemented in

Xen.

Then we implemented the synchronous and asynchronous checkpointing and re-

covery algorithms for VMs. CnR library was also formed. Now, we need to validate

and verify our algorithms and functions, hence, we made proper test plans and

conducted tests accordingly. Finally, we give the documentation of the library.

4.2 Contributions

The contributions of this work are as follows:

1. Checkpoint and Recovery Library

2. A synchronous CnR algorithm using library

3. An asynchronous CnR algorithm using library

4. Proper Documentation

4.3 Future Directions

As future work, we can do the following:

1. Garbage Collection

Garbage collection is the procedure to remove the local checkpoints which

don’t constitute the most recent consistent global checkpoint. Garbage Col-

lection (GC) is necessary in our systems if there are constraints on storage
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space. GC algorithms run as secondary tasks and quite a few algorithms ex-

ist. It would be good to have such an algorithm to save storage space.

2. Quasi Synchronous Checkpointing

One of important variants of Synchronous Checkpointing and Recovery is

Quasi Synchronous Checkpointing and Recovery. Adding its implementation

would provide more choices to the user.
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