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                                          ABSTRACT 

 
This thesis presents a fully pipelined implementation of the Advanced Encryption 

Standard decryption algorithm with 128-bit input and key length (AES-128),  

implemented on Xilinx’ Virtex-E and Virtex-II devices. In the present work, architecture 

is developed which aims to achieve a high throughput, lesser IO lines, on-chip key 

generation for physical security. The design implements a combinational logic based 

Rijndael S-Box implementation for the Inv Sub Byte transformation in the Advanced 

Encryption Standard (AES) algorithm for Field Programmable Gate Arrays (FPGAs). 

The Memory less pipelined architecture achieves a speed of 13.5Gbps @ 107 MHz clock. 

An architecture has been implemented for mix column and inverse mix column which 

optimizes hardware overhead. Intelligent clocking has been performed to reduce the 

power. The width of the data input and output buses are 32 bits for easy interface. The 

key scheduling architecture has been multiplexed to prevent external attack during the 

normal functioning of the chip.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1 
 

  

1. INTRODUCTION:  
 

                              The importance of cryptography is constantly increasing, since the 

amount of sensitive data being transmitted over open environments is growing at an  

unprecedented pace. Software-based implementations of cryptographic algorithms fall  

short of the required performance, as the transmission speeds of core networks reach the  

gigabits per second (Gbps) range. The significance and applicability of hardware-based  

implementations of cryptographic algorithms is therefore of interest also to the Field  

Programmable Gate Array (FPGA) design community. FPGAs are nearly ideal  

candidates for high-speed cryptography for several reasons. The target market is  

generally low- to medium sized, which makes the usage of Application Specific  

Integrated Circuits (ASIC) less attractive because of the large initial costs included in  

starting a ASIC manufacturing process. FPGA-designs also have a quicker time-to- 

market cycle than ASICs. A programmable platform has also applications in a multi- 

protocol environment, such as IPSec [5], since the cryptographic algorithm to be used can  

be configured on-the-fly to the target device in a fraction of a second.  

 

  

The National Institute of Standards and Technology (NIST) of the United States  

announced in 1997 an Advanced Encryption Standard (AES) development effort to  

replace the Digital Encryption Standard (DES). There were five candidates in the last  

round of the AES algorithm selection process: MARS, RC6, Rijndael, Serpent and  

Twofish. In autumn 2000 the Rijndael algorithm, developed by Joan Daemen and  

Vincent Rijmen [4], was selected as the AES algorithm. AES was formally published on  

November 26 2001 in Federal Information Processing Standards’ (FIPS) publication  

FIPS-PUB 197 [7]. The standard became effective on May 26, 2002.  

 

The implementation of fully unrolled secret-key cryptographic algorithms is feasible on  

million-gate FPGAs. If the entire algorithm with full inner and outer loop pipelining fits  

on a single FPGA, the limiting factor for throughput is the achieved clock rate as follows:  

 

                         Throughput = block size x frequency  
 

  

Since the block size of AES is fixed at 128 bits, a 100 MHz clock rate implies a  

throughput of 12.8 Gbps. Clock rates above 100MHz should be achieved in modern  

FPGAs by partitioning the design into stages and pipelining the entire system. 

 

 

 

 

 

 



A typical feature of modern FPGAs is the inclusion of embedded internal memory within  

the device, for example BlockRAMs in Xilinx’ Virtex devices and Embedded System  

Blocks (ESBs) in Altera’s Apex devices . This has several benefits, since lookup tables  

and conversion functions can be easily implemented as small RAMs within the device.  

However, the amount of available internal memory may also become a bottleneck when  

implementing a heavily pipelined design where each stage of the pipeline requires its  

own unshared memory block. This may be the case with fully pipelined secret-key  

cryptographic algorithms, for example DES and AES, which implement non-linear  

substitutions with so-called S-boxes. In these cases, a smaller and less expensive target  

device requires implementing the design in an entirely combinatorial manner without  

resorting to memory accesses.  

 

 

1.1 MOTIVATION OF THE WORK:  
 

                             Over the years many FPGA and ASIC implementations of Rijndael 

have been reported. Most of them have used look up tables to implement S-Boxes. 

Although some ASIC implementation can support any combination of block and key 

length (128,192,256) it incurs much more hardware complexity to implement LUT based 

S-Boxes. The advent of composite field GF (2
4
)
2
 arithmetic S-Box was first seen in the 

works of Rijmen and Rudra et. al.  

 

 All works mentioned above either concentrated on either high throughput or area  

optimization. However in real life applications there are many issues to be addressed such  

as high throughput without compromising on area, lesser IO lines (standard 32 bits  

interface which is used in most processors), physical security and maximum utilization  

of symmetry (reusability of modules/hardwares) in the architecture.  

 

 

1.3 OBJECTIVE AND DESIGN ISSUES:  
 

                               Our objective is to come up with an architecture addressing the issues 

of throughput, easy IO interface, physical security and low area. In the present work, 

architecture is developed which aims to achieve a high throughput, lesser IO lines,  

on-chip key generation for physical security. The design has been implemented in Galois  

Subfield which leads to memory-less architecture. An architecture has been  

implemented for mix column and inverse mix column to optimize hardware overhead.  

Intelligent clocking has been performed to reduce the power. The width of the data input  

and output buses are 32 bits for easy interface. The key scheduling architecture has been  

multiplexed to prevent external attack during the normal functioning of the chip.  

 

 

 

 

 

 



Chapter 2 

 

REVIEW OF RELATED WORKS 

 
                       In this chapter we present a survey of works related to the present  

work. First one deals in detail about the AES algorithm and the second one deals with  

efficient implementation which consider the optimization of area, speed. A discussion  

with merits and demerits is presented in this section. 

 

 

2.1 The AES Algorithm  
 

                                   The Advanced Encryption Standard (AES) algorithm is a 

symmetric block cipher that processes data blocks of 128 bits using cipher keys with 

lengths of 128, 192 and 256 bits. The AES algorithm is also called the Rijndael algorithm 

named after its inventors, Joan Daemen and Vincent Rijmen. In the present work, only 

the 128 bit decryption version is considered. A detailed specification of the AES 

algorithm, including AES-192 and AES-256 can be found in [7]. In the following 

chapters, the description generally concentrates on AES-128, but whenever the 

description is valid for all variants of AES, the generic abbreviation AES is used.  

 

Data is handled mainly as bytes in the AES algorithm. One byte forms an element in a  

polynomial representation of Galois Field GF (2
8
). A byte can be represented in 

hexadecimal notation as {ab}, where a represents the four most significant bits (MSB) 

and b represents the four least significant bits (LSB) of the byte.  

 

In this document, the representation used in the official standard is called F1, formally  

defined as GF(2) [x]=m(x), where m(x) is an irreducible polynomial 
  

 

                           
 

  

Additions are performed as bitwise XORs between operands in polynomial  

representations of F1. Multiplications in F1 are performed as a multiplication of the  

regular polynomials. The multiplication result can be a 14-degree polynomial which  

doesn’t fit into a byte. Thus the final multiplication result in F1 is the result of the  

polynomial multiplication modulo m(x).  
 

  

 

 

 

 

 



128-bit data block and key are considered as a byte array with four rows and four  

columns. AES-128 consists of ten rounds. One AES encryption round includes four  

transformations: SubBytes, ShiftRows, MixColumns and AddRoundKey. The first and  

last round differ from other rounds in that there is an additional AddRound- Key  

transformation at the beginning of the first round and no Mix- Columns transformation is  

performed in the last round. Key Expansion in the AES algorithm calculates RoundKeys  

based on the original cipher key. The RoundKeys are needed in AddRoundKeys. In AES- 

128 encryption, the first RoundKey used in the additional AddRoundKey at the  

beginning of the first round is always the original key. Intermediate results after every  

transformation are calledStates. Of all the transformation above, the ByteSub is most  

computationally heavy.  

 

 

2.2 THE STATE, THE CPHER KEY AND THE NUMBER OF ROUNDS 
 

 

State: the intermediate cipher result is called the State. The State can be pictured as a  

rectangular array of bytes. This array has four rows; the number of columns is denoted by  

Nb and is equal to the block length divided by 32.The Cipher Key is similarly pictured as  

a rectangular array with four rows. The number of columns of the Cipher Key is denoted  

by Nk and is equal to the key length divided by 32. These representations are illustrated  

in the Figure 

 

 

 

 

 
 

 

 

 

 

 

 

 

 



 
 

 

 

2.3 ALGORITHM OPERATIONS 
 

2.3.1 SubByte and InvSubByte  
 

                              SubByte performs the nonlinear byte-wise substitution.The SubByte  

transformation is computed by taking the multiplicative inverse followed by an affine  

transformation. For its reverse, the InvSubByte transformation, the inverse affine 

transformation is applied first prior to computing the multiplicative inverse.  

The steps involved for both transformation is shown below:   

 

    SubByte: Multiplicative Inversion in GF (2
8
) > Affine Transformation 

 

InvSubByte: Inverse Affine Transformation > Multiplicative Inversion in GF (2
8
) 

 

 

The Affine Transformation and its inverse can be represented in matrix form and it is  

shown as 

 

 

 

 

 



 

 

 
 

 

 

The AT and AT
-1 

are the Affine Transformation and its Inverse respectively while the  

vector a is the multiplicative inverse of the input byte from the state array. From here, it  

is observed that both the SubByte and the InvSubByte transformation involve a  

multiplicative inversion operation. Thus, both transformations may actually share the  

same multiplicative inversion module in a combined architecture. An example of such  

hardware architecture is shown below. Switching between SubByte and InvSubByte is  

just a matter of changing the value of INV. INV is set to 0 for SubByte while 1 is set  

when InvSubByte operation is desired.  



 
 

 

2.3.2 SHIFT ROW AND INV SHIFT ROW  
 

                      The ShiftRows transformation performs a cyclical left shift on the last three  

rows of the State. The first row is not shifted. The second row is shifted one byte, the  

third row is shifted two bytes and the fourth row is shifted three bytes. The same  

operation is done in InvShiftRow but is shifted right. Thus, ShiftRows proceeds as 

follows:  

 
 

 
 

2.3.3 MIX COLUMN AND INVMIX COLUMN 
 

                               The MixColumns transformation operates separately on every column  

of the State. A column is considered as a polynomial over F1 and multiplied modulo  

x
4
 +x+1 with the polynomial   

 

a (x) = {03}x 
3
 + {01} x 

2
 +{01}x+{02} 

 



The transformations in the decryption process perform the inverse of the corresponding  

transformations in the encryption process. Specifically, the InvMixColumns  

transformation multiplies the polynomial formed by each column of the State with  

a 
-1

(x) modulo x 
4
 +1, where  

 

a 
-1

(x) = {0b} x 
3
 + {0d} x 

2
 + {09}x + {0e} 

 

  

 

 2.3.4 ADD ROUND KEY 
 

                                 The Round Key addition is the last element of every round and a  

Round Key is applied to the State by a simple bitwise XOR. The Round Key is derived  

from the key schedule, which we’ll talk later. Note this implies that Round Key addition  

is its own reverse. The operation is represented in Figure  

 

 

 
 

 

2.3.5 KEY EXPANSION  
 

                                The Key Expansion calculates RoundKeys for every AddRound- Key 

transformation. In AES-128 encryption, the original cipher key is the first RoundKey 

rk[0] used in the additional AddRound- Key at the beginning of the first round. 

RoundKey rk[i], where i > 0, is calculated from the previous RoundKey rk[i -1].  

 

Let p[ j], where 0 <j < 3, be the column j of the previous Round- Key rk[i-1] and let w[ j]  

be the column j of the RoundKey being calculated. Then the new RoundKey rk[i] is  

calculated as follows:  

 
w[0] = p[0] xor (RotWord(SubWord(p[3])) xor rcon[i]) 

 
                         w[1] = p[1] xor w[0] 

 
                         w[2] = p[2] xor w[1] 

 
                         w[3] = p[3] xor w[2] 

 



RotWord() is a function that takes a four byte input [a0;a1;a2;a3] and returns it rotated:  

[a1;a2;a3;a0]. The function SubWord() performs a SubBytes transformation for four  

bytes. The Round constant rcon[i] contains values [x
i-1

; {00}; {00}; {00}] where x
i-1

 

are the powers of x (x is denoted as {02}) in F1.  

 

 
2.4 AES DESIGN CONSIDERATIONS:  
 

 

                               The central design principle of AES algorithm is simplicity [25].  

Simplicity facilitates implementations on different platforms under different sets of 

constraints. The simplicity is realized by two means: adoption of symmetry at different 

levels and choice of basic operations. The first level of symmetry lies in the fact that AES 

algorithm encrypts/decrypts 128 bits block of plaintext by repeatedly using the same 

round transformation as outlined in the above fig. AES-128 applies 10 rounds, AES-192 

applies 12 rounds and AES-256 applies 14 rounds. Symmetry can be found within the 

definitions of round transformations of AES. The symmetry in the structure allows the 

reuse of hardware components leading to economic implementations. The basic 

operations in AES can be very easily defined in terms of the operations defined over the 

finite field GF (2
8
). This property allows us to reason about the algorithm using 

established mathematical techniques, facilitating security analysis as well as construction 

of optimal implementations. Moreover finite field arithmetic can be very efficiently 

implemented in hardware as compared to integer arithmetic. 

 

 

 

2.5 HARDWARE APSECTS OF AES 
 

 

                          AES operations are byte oriented. So they can be executed efficiently  

on 8 bit processors. On 32 bit processors also AES is important because some 8 bits  

operations can be combined to form 32 bits operations. In hardware implementation any  

word size is suitable. Most hardware implementations prefer 128 bit architecture. This  

offers the greatest degree of parallelism to increase concurrency of AES computations. 

A higher degree of concurrency offers higher throughput.  

  

The size of the architecture defines the size of the circuit. A 32 bit architecture will  

require 4 S-Boxes to compute the Sub Byte operation. S-Boxes are the most spacious  

component of the AES implementation. Use of an efficient architecture is important for  

AES hardware module. Basic option is to use look up tables using ROMs. Another  

technique is to compute S-Box output by first computing the multiplicative inverse and  

then the affine transformation. Wolkerstorfer [26] pointed out that use of combinational  

logic can do this as efficiently as ROMs can do table look ups. In particular use of  

combinational logic is superior in many cases of AES hardware implementation when 

decryption is needed too.  

 



The storage requirement of an AES implementation also has an impact on the overall size 

of the circuit. It requires at least 256 bits: 128 bits to store the state and 128 bit key to 

store the actual round key. On some platforms it is more efficient to store additional 

memory. On Xilinx FPGA, duplication of the State can reduce the overall hardware cost. 

Memory considerations are also important regarding the round key generation. On area 

efficient hardware implementation round keys are generated on the fly. Software 

implementations on 32-bit platforms generate the round keys before hand thus saving 

time. 

 

 

2.5.1 LUT BASED APPROACHES 
 
                       Byte Sub can be calculated using an S-Box (LUT) which contains 

precalculated values of the transformation. One 256 x 8 bit S-Box is required for each 

byte of the state. Therefore 16 parallel S-Boxes are required if Byte Sub is performed for 

the entire state at once. If S-Boxes are implemented on Xilinx FPGAs using Block 

RAMs, 100 block RAMs are needed, because one dual port block RAM can implement 

two S-Boxes. Block RAM based S-box implementations have been reported in many 

implementation[27,28]. 

 

In addition to Byte Sub, Mix Column can be implemented using LUT approach. An LUT 

combining Byte Sub and Mix Column is called a T Box. Fisher and Drutarovsky studied 

implementation techniques based on S-Boxes and T-Boxes on an Altera FPGA[29]. They 

concluded that slightly faster performance was attained with the T-Box but the memory 

requirement increased. 

 

 

2.5.2 COMPOSITE FIELD BASED APPROACHES 
 
                              Rijndael involves arithmetic on GF (2

8
) elements. In the 

straightforward implementation inversion, multiplication and substitution are the 

operations that are determine the overall complexity. The most common approach is to 

use table look up approach for these operations. A major drawback is that the size of the 

memory may be the bottle neck. Another approach is to use combinational logic to 

implement the multiplicative inversion and affine transformation for the Byte Sub 

transformation. Inversion in GF (2
8
) can be implemented using inversion in GF (2

4
) or 

GF (2
2
) accompanied by Galois field addition and multiplication.

 

 
In particular, composite field inversions are found to be more effective than GF (2

8
) and 

are used to implement compact AES implementation[15]. In contrast to Rijmen’s 

proposal which suggests the optimal normal basis representation of finite field 

representation, the use of polynomial representation of finite field elements results in far 

more flexible architecture without the necessity of the complex conversion from one 

representation to another. 

 

 



The most popular technique used in composite field implementation of Byte Sub 

operation is:  

   

          ● Map the elements of GF (2
8
) to the composite field F using an isomorphic   

              Function (ø) 

 

          ● Compute the multiplicative inversion over the field F. 

 

          ● Finally map the computation back into the original field using the inverse  

             isomorphic function (ø
-1

) 

 
 
2.5.3 AREA OPTIMIZED APPROACHES 
 
                              The highest benefit of combinational implementation of Byte Sub is 

that it can be pipelined and high throughput can be achieved. This however increases the 

latency of the implementation. The slice requirements also increases compared to block 

RAM implementation because the Byte Sub is implemented using logic. In many 

applications it is important to optimize area than to optimize throughput.  

 

FeldHofer et al [30] implemented 128 bit AES “on a grain of sand”. It is a 8-bit 

architecture which exploits  composite field GF(2
4
)
2
 for S-Box optimization. Pramsteller  

implemented AES encryption and decryption with all key lengths. It used a novel state 

representation which solves the problem of accessing both the rows and column of the 

state.  

 

 
 
2.6 PERFORMANCE COMPARISON OF DIFFERENT DESIGNS 
 
                       The performance comparisons of different AES implementation is hard due 

to various reasons. First the large variety of target devices available makes a fair 

comparison difficult. Second, many authors don’t specify their device well enough to 

ensure easy comparison eg. size or the speed grade of the device is not provided. Third 

area comparison is difficult because both slices and embedded memory i.e block RAMs 

in Xilinx is used. Performance on different devices is not ideal to compare because 

performance of the implementation is greatly determined by the device.  

 
 
 
 
 
 
 
 
 



Chapter 3 

 
GALOIS FIELD ARITHMETIC AND COMPOSITE FIELD 

 
                         Composite fields are frequently used in the implementation of Galois 

Field Arithmetic. In cases where arithmetic operations involve table look up, subfield 

arithmetic is used to reduce look up related costs. This technique has been used to obtain 

relatively efficient implementation of specific operations such as multiplication, inversion 

and exponentiation.   

 

The two pairs {GF (2
n
),Q(y)} and {GF(2

n
)
m

, P(x)} constitute a composite field if GF (2
n
) 

is constructed from GF(2) by Q(y) and GF(2
n
)
m

 is constructed from GF (2
n
) by P(x), 

where Q(y) and P(x) are polynomials of degree n and m respectively. The fields GF(2
n
)
m

 

and GF (2
k
), k=nm are isomorphic to each other. Since the complexity of various 

arithmetic operations differs from one of these fields to other, we can take advantage of 

the isomorphism to map a computation from one to the other in search of efficiency. For 

a given underlying field of GF, our gain depends on the choice of n and m respectively as 

well as of the polynomials Q(y) and P(x).  

 

 

3.1 RIJNDAEL IN A COMPOSITE FIELD:  

 

                              Rijndael involves arithmetic on GF (2
8
) elements. In a straightforward 

implementation, inverse, multiplication and substitution are likely to be the operations 

that determine the overall complexity of the implementation.  

 

 

3.2 ISOMORPHISM BETWEEN COMPOSITE FIELDS F1 and F2:  
 

                                     The SubBytes/InvSubBytes transformation of the AES algorithm 

can be implemented with lookup tables located in Block-RAMs. This has obvious 

benefits, but in designing a fully pipelined design, the amount of available internal 

memory may become a bottleneck. Consequentially, a more expensive target device may 

be needed if every SubBytes transformation is implemented as a lookup table.  

 

Instead of the table implementation in F1 it was decided to perform the SubBytes 

transformation by calculating the multiplicative inverse of the SubBytes in F2:= GF (2
4
) 

[x] =(x
2
 +Ax+B)   

 

To make this work a byte representing an element in F1 must be transformed to a byte  

representing an element in F2. All multiplications in GF (2
4
) are performed in GF (2)  

[y]= (y
4
 +y+1). Constants A and B can be chosen freely as long as x

2
 +Ax+B is 

irreducible. The problem is to find the isomorphism ø: F1�F2.  

 
 

 



3.3 FINDING A TRANSFORM: 
 
                          We show the construction of the conversion matrix T from the composite 

field GF (2
4
)
2 

to binary field GF (2
8
). Let GF (2

8
) be constructed using the primitive 

polynomial p(x) = x
8 
+ x

4 
+ x

3 
+ x + 1 and α be a root of p(x), thus α is a primitive 

element in GF (2
8
). We have γ = α

r 
is a primitive element in the ground field GF (2

4
)
2
.
 

 

We construct the composite field GF (2
4
)
2 

over the field GF (2
4
)
 
using the irreducible 

polynomial q(x). The irreducible polynomial q(x) which is of degree 2 and its coefficient 

are from the ground field GF (2
4
). In order to represent the elements of the ground field 

GF (2
4
), we use the constant term in q(x). 

 

 An element  A is expressed in basis B2 as 

 

A = a'0 + a'1α 

 

where a'j Є GF (2
4
). We can express a'j using γ as the basis element  

 

a'j = a”j0 + a”j1 γ + a”j2 γ
 2
 + a"j3 γ

 3
 

 

 

where a”ji Є GF(2) for j = 0 ,1 and i=0, 1,2,3. Therefore, the representation of A in the  

composite field is found as: 

 

A= a”00 + a”01 α
17

 + a”02α
34

 + a"03α
51

 

                                                      + a”11α + a”12α
18

 + a"13α
35 

+ a"13α
52

 

  

The next step is to reduce the terms α
17i+j 

for j= 0, 1  and i=0,1,2,3 using the generating  

polynomial p(x)= x
8 
+ x

4 
+ x

3 
+ x + 1. This will give us α terms in the above 

expression with exponents between 0 and 7. A term of the form  α
17i+j

 is reduced modulo 

p(x) by successively using the relation  α
 8 

= α
 4 

+ α
 3 

+ α + 1. We obtain the 

representation of A in the binary field GF (2
8
) using the basis B1={ 1, α,......... α

7
}as: 

 

A= a0 + a1α + a2 α
 2
 + a3 α

 3
 + a4 α

 4 
+ a5 α

 5
 + a6 α

 6 
+ a7 α

 7
 + a8 α

 8 
  

 

The relationship between the terms ah for h=0,1,2…7 and a”ji for j=0,1 and i=0,1,2,3 

determines the elements tjih of the conversion matrix T. The first row of the matrix T is 

obtained by gathering the constant terms in the right-hand side after the substitution, 

gives the constant coefficient in the left hand side, i.e., the term a0. 

 

 

 
 



The transformation matrix ø
-1

: F2�F1 is expressed in matrix form as: 

 

 
 

The inverse of the above transformation ø: F1�F1 is defined by inverting the matrix F with 

the result as follows:  

 

 
 
 
 

In addition to the multiplicative inverse also other transformations in the AES-128 

decryption algorithm are calculated in F2. This makes decryption faster and saves 

significant amounts of space since the transformations ø and ø -1are performed only 

once. The transformation ø is performed for both the key and data block at the beginning 

of the decryption and the inverse transformation ø
-1

 is performed for the decrypted data 

block at the end of the last round. The next subsections describe how the mapping of 

InvSubBytes, InvMixColumns, AddRoundKey, InvShiftRows and Key Expansion to F2 

was performed. 
 
 
 
 
 
 
 
 
 



3.4 SUB BYTE AND INVSUB BYTE in F2:  
 

                               If a byte is mapped to F2 with the transformation F, the multiplicative  

inverse can be calculated as follows  

 

(bx +c)-1 = b (b2
λ

 + c (b+c))-1 x + (c+b) (b2
λ

 + c (b+c))-1 
 
where b are the four most significant and c the four least significant bits of the byte. As  

already mentioned, it was chosen that A = 0b0001 = {1} and  λ  = 0b1000 = {8}. Also 

the affine transformation defined by Equation (1.1) must be mapped to F2. Since ø is also 

a linear transformation, the affine transformation can be calculated as follows:  
 

Let b’= Tb + c be the affine transformation in F1 and  

Let bø’= Tø bø + cø be the affine transformation in F2  

 

Now because b’= ø
-1

 bø’ = ø
-1

(Tø bø + cø) = ø
-1

(Tø øb + cø)  

                                         

Or            b’= (ø
-1

Tø ø)b + ø
-1

cø 

 

Comparing with above we get,  

 

T = = ø
-1

Tø ø   
 

And similarly, cø = øc  

 

The Affine Transformation in F2 can therefore be expressed as: 

 

 
 

 

 

And similarly for inverse affine transformation. 

 

 

 

 

 



3.5 INVERSE MIX COLUMN:   
 

                                              The InvMixColumns transformation of the AES-128 

decryption algorithm must also be mapped to F2. The addition in F2 is calculated in a 

similar fashion as in F1 (that is, by bitwise XORing the operands), and therefore only the  

multiplications must be mapped to F2.  

 

The InvMixColumns transformation multiplies the polynomial formed by each column of  

the State with with a 
-1

(x) modulo x 
4
 +1, where  

 

a -1(x) = {0b} x 3 + {0d} x 2 + {09}x + {0e} 
 

And in Mix Column a column is considered as a polynomial over F1 and multiplied  

modulo x
4
 +x+1 with the polynomial  

 

a (x) = {03}x 3 + {01} x 2 +{01}x+{02} 
 

 

We use different procedure to implement the Inv Mix Column. The Mix Column  

multiplication will be used to implement the Inv Mix Columns Because F maps {01} to  

{01} it suffices to map only the multiplications with {02}.Writing,  

 

a = a7x
7 + a6x

6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0 
 
 

multiplication with {02}* a in F1 can be calculated as: 

 
 
 

  



In matrix form the above multiplication is expressed as  

 

 

 
 

 

 

The matrices Mø2 can be expressed in F2 and can be calculated from M2 as follows: 
 

 

 

 
 
 

 

3.6 ADD ROUND KEYS AND INVSHIFT ROWS IN F2  
 

  

                   Because addition is calculated as a bitwise XOR in both F1  

and in F2 there is no need for changes in the AddRoundKey transformation. Also the  

ShiftRows transformation remains unchanged, because no calculations are required there. 

 

 

 

 

 

 

 

 

 



3.7 KEY EXPANSION IN F2:  
 

                                 In the Key Expansion, the function SubWord() and the round  

constant rcon[i] must be mapped to F2. SubWord(), which consists of four SubBytes, is  

mapped as described earlier.The rcon[i] values (powers of x) are mapped to F2 by  

multiplying them with the matrix ø. The values of rcon[i] are presented in Table 1. All  

the transformations of the AES-128 encryption algorithm have now been mapped from  

F1 to F2.   

 

                              All the transformations of the AES-128 decryption algorithm have 

now been mapped from F1 to F2. The decryption can be implemented as follows: first 

both the 128-bit data block and the 128-bit key are mapped to F2 with the transformation 

ø and then the decryption is carried out as described above. At the end of the last round 

the encrypted data is mapped back to F1 with the inverse transformation ø
-1

.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4  

 

 

DESIGN OVERVIEW 

 
                          The proposed design is based upon Rijndael private-key Cryptosystem. 

The design contains an on-chip Key Generation Unit which generates the round keys 

used in the crypto-system. The architecture comprises of a full-ten round implementation 

of 128-bit block decryption. The 32-bit data input pins have been multiplexed between 

the key-generation unit and the text inputs to the crypto-system.   

 

 

In the present work, all the ten rounds of the cryptosystem have been unrolled, so that 

there are ten blocks of data which are processed at the same time. This technique is 

known as outer loop pipelining. The number of rounds unrolled increases the throughput 

proportionately. Inside the rounds the concept of inner loop pipelining has been studied. 

Registers inside the cipher rounds have been found to significantly increase the cipher 

throughput but at the expense of significant increase in area. The S-Box in Rijndael poses 

a heavy burden on the area as well as the processing time. To reduce this overhead all 

computations involved in the S-Box have been performed in Galois composite field.  

 

 

The input data is streamed in 32 bits and is converted into a 128-bit block by the Data 

Scheduler at the expense of four clock edges. The data block is decrypted using a slower 

clock (divided by four). Finally, the 128 bit block is being streamed out in units of 32 bit 

by the Dispatch Unit as output data. It may be mentioned that the Data Scheduler 

converts the input data from to GF (2
8
) to GF (2

4
)
2
 and after the processing, the Dispatch 

Unit converts the elements back to GF (2
8
). 

 

 

4.1 TOP LEVEL ARCHITECTURE 
 

                        The schematic view of the top level architecture is shown in the next page. 

 

  

 

 

 

 

 

 

 

 

 

 



 
 

 
4.2 DESIGN CONSTAINTS:  
  

                   The present subsection gives an overview of the constraints under  

which the design was performed. The design strategies adopted to achieve the constraints  

are detailed in the sections 3-8. The architecture has been developed in a step by step  

method to achieve an efficient architecture.  

 

It is intended that the implementation should provide a physically secured key generation 

unit. The memory less design architecture and the novel implementation of the 

InvMixColumns using Galois Subfield helps in reducing the area without imposing much 

penalty on the throughput.  

 

Another important issue is to provide an easy interface by reducing the pin counts.  

A 32’b data input-output interface is to be achieved. Finally the design for testability  

issue should be carefully handled to support both structural and functional modes of  

testing.  

 

 

 
 
 



4.3 THE DECRYPTING UNIT  
 
                    In a direct Inverse Cipher the sequences of transformations 

differ from that of the Cipher, while the same KeyScheduling is used. However, the 

inverse cipher may be manipulated to have the same flow or sequence[5]. The following 

properties are utilised to serve the purpose:  

 

          ● The Inverse SubByte and the Inverse ShiftRow being operations on separate  

             bytes may be interchanged.  

          ● The Add Round Key and the Inverse Mix Columns can be reversed.  

 

We have the following fact,  

 InvMixColumns(state xor RoundKey) = InvMixColumn(state) xor             
                                                                      InvMixColumn(RoundKey)  
since both the operations are linear.  

 

Thus the Round Keys require a further transformation through the InverseMixColumn 

Unit. The operations are not performed for the first or the last 4 words of the 

KeyMemory, since those do not work with an InvMixColumn.Figure below describes the 

decrypting unit.  

   

 



Chapter 5 
 

 

DETAILED HARDWARE IMPLEMENTATION ARCHITECTURES 
 
                             In this section, we present detailed architectures for each of the 

nontrivial transformations in the AES decryption algorithm. 
 

5.1 InvSubBytes IMPLEMENTATION 
 

                            The multiplicative inversion in involved in the Sub-Bytes/InvSubBytes 

is a hardware demanding operation, it takes at least 620 gates to implement by repeat  

multiplications in [13]. However, the gate count can be reduced greatly by using 

composite field arithmetic.  

 

The InvSubBytes has essentially two steps:  

 

1. InvAffine Transformation in GF (2
4
) 

2. Multuplicative inversion in GF (2
4
) 

  

The InvAffine transformation is already described in earlier section. 

 

5.1.1 MULTIPLICATIVE INVERSION MODULE 
 
This section illustrates the steps involved in constructing the multiplicative inverse 

module using composite field arithmetic. Both the SubByte and InvSubByte 

transformation are similar other than their operations which involve the Affine 

Transformation and its inverse. The individual bits in a byte representing a 

GF(2
8
)element can be viewed as coefficients to each power term in the 

GF(2
8
)polynomial. For instance, {10001011}2 is representing the polynomial q

7
 + q

3
 + q 

+ 1 in GF (2
8
). Any arbitrary polynomial can be represented as bx + c, given an 

irreducible polynomial of x
2
 + Ax + B. Thus, an element in F1 after transformed to an 

element in F2 may be represented as bx + c where b is the most significant nibble while c 

is the least significant nibble. From here, the multiplicative inverse can be computed 

using the equation below.  

 

(bx +c)-1 = b (b2
λ

 + c (b+c))-1 x + (c+b) (b2
λ

 + c (b+c))-1 
 

 

The Proof of this equation is given in appendix. 

 

The above equation indicates that there are multiply, addition, squaring and  

multiplication inversion in GF (2
4
)operations in Galois Field. Each of these operators can 

be transformed into individual blocks when constructing the circuit for computing the  

the multiplicative inverse. From this simplified equation, the multiplicative inverse circuit  

GF (2
4
)can be produced as shown in Figure.  



 

 

 

 

 
 

 

 

 
 

 

 



 

5.1.1.1 ADDITION IN GF (24) 

 

                      Addition of 2 elements in Galois Field can be translated to simple 

bitwise XOR operation between the 2 elements. 

 
5.1.1.2 SQUARING IN GF (24) 
 

 Let C be the square of A= a0 + a1α + a2 α
 2
 + a3 α

 3
 + a4 α

 4 
+ a5 α

 5
  

                                        + a6 α
 6 

+ a7 α
 7
 + a8 α

 8
. 

 
 
Then C=A.A which can be computed by GF multiplication and repeatedly using the 

irreducible polynomial y
4 
+ y + 1. The result is  

C0 = a0 + a2 

                                                     C1 = a2 

                                                     C2 = a3 + a1 

                                                     C3 = a3   
 
5.1.1.3 MULTIPLICATION IN GF (24):  
                       

                                            Similar to squaring with only instead of A.A it is A.B 

 
5.1.1.4 INVERSION IN GF (24)::  
 

                              The multiplication is implemented as: 

 

 
 

Thus the squaring consists of squaring and multiplication. 

 

 

 
 
 
 
 



5.2 INV SHIFT ROW OPERATION:  
  

                               In the InvShiftRows, the first row of the State does not change, while 

the rest of the rows are cyclically shifted to the right by the same offset as that in the 

ShiftRows. Hence this operation is independent of representation.  

 

  

 
5.3 INV MIX COLUMN:  
 

In matrix form, the InvMixColumns transformation can be expressed by  

 

 

 
 

This can be rewritten as:  

 

 

 
 

Using substructure sharing, the InvMixColumn can be implemented by the architecture  

illustrated below. The “mult4” block computes the constant multiplication of {04}  

transformed by ø, can be implemented by two serially concatenated “mult2” block. 

 



 

 
 

 

The upper half in the Fig.is exactly the same as the architecture for the implementation of 

the MixColumns. Therefore in a joint encryptor/decryptor implementation, only the 

architecture in the above Fig. needs to be implemented for both the MixColumns and the 

InvMixColumns transformations.  

 

 

 

 

 

 

 



5.4 IMPLEMENTATION OF KEY EXPANSION:  
 

                                         Roundkeys can be either generated beforehand and stored in  

memory or generated on the fly. In the former approach, roundkeys can be read out from  

memory using appropriate addresses, and there is no extra delay for decryption. 

However, this approach is not suitable for the applications where the key changes 

constantly. Meanwhile, the delay of memory access is unbreakable, which may offset the 

speedup achieved by pipelining. Therefore it is more advantageous to generate roundkeys 

on the fly in a pipelined architecture.  

 

  

5.5 KEY SCHEDULER: 
 

                                    The KeyScheduling unit has been multiplexed with the databus. 

The CRYPT signal when high sets the keygeneration mode whereby the input data is 

streamed into the scheduler and creates all the subkeys. The multiplexing successfully 

reduce the pin count as no extra pins are required for the input key. Further, when the 

AES core is used to process (decrypt) the data the keymemory is not accessible from the 

external world through the IO pins. Thus the round keys are secured from external attack 

during the normal operation of the device. The basic architecture of the Keyscheduling 

unit is shown in Figure below. The unit consists of a keygeneration module alongwith a 

keymemory.  
 

 

 

 

 

 



 

5.5 REDUCTION OF IO LINES:  
  

                                   The present design has a 32 bit I/O to aid in the interface with the  

conventional data buses of processors. The interfacing units and the control logics have  

been made inbuilt to the architecture. The important blocks are the Data Scheduler and  

the Data Dispatch Unit which performs the I/O interface between the data bus and the  

128 bit decrypt blocks.  

 

5.5.1 THE DATA SCHEDULER 
 

                          The Data Scheduling Unit converts a GF (2
8
) element into a GF (2

4
)
2
 

element and buffers in the data at each system clock. At the fourth clock when 128 bit 

(32 x 4) of data has arrived the unit dumps the data into a 128-bit register . When a valid 

block is being decrypted, a corresponding signal of high modein is passed in. This  

signal is synchronized with the data block, so that a high modeout indicates that the result  

is corresponding to a valid input.  

 

 
 

5.5.2 The DISPATCH UNIT  
 
                                   The Dispatch Unit converts the output word is to GF (2

8
) and 

streams out as a 32-bit wide stream of processed data.  

 

 

 



Chapter 6 

 

RESULTS OBTAINED AND COMPARSIONS 

 
                                          The present design architecture is suited for 128 bit block 

cryptosystems. Inner and outer round pipelining has been used to obtain high 

throughputs. All computations are performed in composite field to reduce the complexity 

of the design. The key scheduling has been provided on chip without any deterioration in 

performance.  

 

6.1 SYNTHESIS REPORT 
 
                The figure below shows the performance evaluation of the design implemented. 

 

===============================================================                           

Final Report                                

=============================================================== 

 

Device utilization summary: 

--------------------------- 

 Number of Slices:                          10155  out of  13696    74%   

 Number of Slice Flip Flops:           3383  out of  27392    12%   

 Number of 4 input LUTs:              19065  out of  27392    69%   

 Number of IOs:                               69 

  

6.2 THROUGHPUT COMPARISON:  
 
Design                   Device                    Throughput         BlockRAMs            Slices 
Our design Virtex-E 

XCV1000E-7 
13.5Gps 0 10155 

Weaver’s 

Rijndael 
Virtex-E 

XCV600E-8 
1.75 Gbps 10 770 

GMU, 

Pipelined 
Virtex-E 

XCV1000E-8 
16.00 Gbps 80 9199 

Amphion,  High Speed Virtex-

E XCV50E-8 

1.06 Gbps  10 573 

Amphion,  Ultra High Speed 

Virtex-E 

XCV1600E-8 

9.88 Gbps   100 2397 

Helion,  

Fast 
Virtex-E 

XCV400E-8 
1.19 Gbps 10 450 

Helion, 

Pipelined 

Virtex-E 

XCV????E-8 

>10 Gbps ? ? 

 
 



6.3 FEATURE COMPARISON:  
 

Features       Our Design     Weavers       GMU        Amphion-H    Amphion-U   Helion-F      Helion-P 
Key 

Length 

128, 192, 

256 

128 128 
128,192, 

256 
128 128 128 128 

Includes 

Key 

Expanion 

Yes Yes No Yes Yes Yes Yes 

I/O 

Bits  

32, 128 

32 128 128 32 128 128 128 

 

 

 

6.4 PERFORMANCE COMPARISON 
 
● The present design does not require any RAM compared to 80 block RAMs required   

      by the GMU design team, [100].  

 

● The current design has 32-bit key input as well as text data which can be directly    

    interfaced with the 32-bit data bus of conventional processors. The interfacing  

    module and control logics involved is hence inbuilt in our current design. It is evident  

    that the benefit of a smaller number of I/O lines is obvious, since also smaller target  

    devices with a limited number of input/output-pins can be used. As a disadvantage,  

    decryption slows down considerably, [101]. One of the merits of the present design is  

    in obtaining a high throughput with the fewer I/O lines.  

 

● Key-scheduling is performed on-chip in the proposed design in contrast with the off- 

    chip design reported in [102]. On-chip keyscheduling provides an end to end secured   

    cryptosystem.  

 

● The design results obtained in [102] show that the highest throughput is 16.8 Gbps for  

   Serpent. But, an end to end implementation of the AES-candidates requires the removal  

   of RAMs, the inclusion of on-chip keyscheduling and reduction in pin-count. With  

   these additional design features, a throughput of 13.5Gps is notworthy 

 

● Reduction of Power: An intelligent clocking strategy has been adopted. The main sys 

   tem clock is divided by four to generate a slower clock which is used for the decryption  

   blocks. The slower clock thus reduces the power consumption. The use of Galois  

   Subfield reduces the area significantly and thus the power consumption is also reduced. 

 

 

 
 



6.5 CONCLUSION: 
 
                               In the present document, full outer pipelined 10-round AES-Rijndael 

have been designed and implemented using FPGA. The design includes on-chip 

keyscheduling and RAM free design, inspite of obtaining a high throughput of 13.5 Gbps. 

The performance of the design has been compared with competitive works and has been 

found to be the most efficient when power, throughput, area and other usablity features 

are concerned. 

 

Appendix:  
                   In the composite field GF ((2

4
)
2
), an element can be expressed as shx + sl   

€ GF (2
4
) and x is a root of x

2
 + x + λ. Using Extended Euclidean algorithm, the 

multiplicative inverse of shx + sl  modulo x
2
 + x + λ  can be computed as  

 

                  (shx + sl) 
-1 = sh Ø x+ (sh + sl) Ø     (7.1) 

 

Where Ø= (sh
2
λ + sh sl + sl

2)-1. 
 

The problem of finding the inverse of S(x) = (shx + sl) modulo P(x) = x
2
 + x + λ 

 is equivalent to finding polynomials A(x) and B(x) satisfying the following equation: 

 

                     A(x) P(x) + B(x) S(x) = 1               (7.2)  
 

Then B(x) is the inverse of S(x) modulo P(x). Such A(x) and B(x) can be found by 

using the Extended Euclidean Algorithm for one iteration. First, we need to rewrite 

P(x) in the form of   

 

                     P(x) = Q(x) S(x) + R(x)                (7.3)            
 

Where Q(x) and R(x) are the quotient and remainder polynomials of dividing P(x) by  

S(x), respectively. By long division, it can be derived that 

 

                     Q(x) = sh
-1x + (1+ sh

-1 sl) sh
-1,       (7.4) 

 

R(x) = λ + (1+ sh
-1 sl) sh

-1 sl        (7.5) 

 
 

 

 

 

 

 

 



Substituting the equations (7.4) and (7.5) in (7.3) and multiplying sh
2
 to both sides 

gives  

 

                  sh
2 P(x) = (shx + (sh + sl)) S(x) + (sh

2
λ + sh sl + sl

2) 
 

 

 

Multiplying Ø = (sh
2
λ + sh sl + sl

2)-1
 to both sides of the equation we get 

 

                      Ø sh
2 P(x) = Ø (shx + (sh + sl)) S(x) +1       (7.6) 

 

Since addition and subtraction are the same in the extended field of GF (2), the first 

term on the right side of 7.6 can be moved to the left side. Comparing (7.2) and (7.6), 

it can be observed that  

  

                       S-1(x) = sh Ø x+ (sh + sl) Ø 
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