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Abstract 
 
    High level synthesis is the process of generating the register transfer level 
(RTL) design from the behavioral description. The synthesis process consists of 
several interdependent phases: Preprocessing, Scheduling, Register Allocation and 
Binding of variables, Control Path and Data Path generation, and Generation of 
synthesizable Verilog code (RTL).  
     A High-level synthesis tool, called Structured Architecture Synthesis tool 
(SAST), has been developed which support hand-in-hand synthesis and 
verification. The existing framework is the SAST, and this work is to enhance this 
tool by incorporating a Normalizer and a Code Motion Verifier.  
    The complexity of present-day VLSI systems is very high. The specification is 
given at a high level of abstraction compared to that of the output. In addition 
several optimization and transformations may be made at each phase to improve 
the performance of the design. Hence it is important to ensure that after each phase 
the behavior of the original specification is preserved. Hence is the need of phase-
wise verification.  
    Verification of high level synthesis is a formal method for checking the 
equivalence between two descriptions of the target system, one before a particular 
phase and the other after that phase. The descriptions are represented as Finite 
State Machines with Data paths (FSMD).The basic principle is to show that any 
computation of one FSMD is covered by a computation on the other. 
     While finding the equivalent path for a path, it is required to check the 
equivalence of the respective conditions as well as the data transformations of the 
paths. Since the condition of execution and the data transformation of a path 
involve the whole of integer arithmetic, checking equivalence of paths reduces to 
the validity problem of first order logic which is undecidable; thus, a canonical 
form does not exist for integer arithmetic. There we use a normalized form for 
conditional expression and data transformation expression. 
    It may be possible to transform the input behavior to some equivalent 
description, by incorporating several high-level code transformation techniques, 
which results in amore efficient scheduling behavior. Thus the need to enhance the 
verifier to handle various code motion techniques while verification. 
 
 
 
Key Words: High-level Synthesis, Verification, Equivalence Checking, 
Normalization, FSMD models, Code Motion Techniques, SAST. 
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Chapter 1 
 
Introduction 
 
1.1 High Level Synthesis 
High level synthesis is a process to translate a behavioral specification into RTL 
description. It takes a CDFG as input and undergoes some processes and produces 
output as a data path and a controller, so that the data transfers under the controller 
exhibiting the specified behavior. 
High level synthesis consists of several phases: 

• Preprocessing: Translation of the input control data flow graph (CDFG) to 
an intermediate representation (IR) and calculation of necessary 
information for scheduling. 

• Schedule of the operations and the transfer of variables in minimum 
number of control steps for a given architectural specification. The 
scheduler accomplishes functional unit formation. 

• Allocation and binding of variables to registers. 
• Data path generation from the schedule of operations, bus transfers and the 

variable mapping to the registers. 
• Generation of synthesizable Verilog code (RTL).  
 

    A High-level synthesis tool, called Structured Architecture Synthesis tool 
(SAST), has been developed which support hand-in-hand synthesis and 
verification. 
 
1.2 Phase Wise Verification: 
Formalization of a general verification methodology can be applied to all the 
phases of High Level Synthesis. It handles the difficulties of each phase. The input 
and output of every phase of HLS is represented by FSMD’s. The phase wise 
verification methodology is based on the equivalence problem of two FSMD’s, the 
FSMD before the phase and the FSMD after the phase. 

 
 
 
 
 



 
 

 

 
 

 
Fig. Phase wise verification. 

 
 
1.3 Motivation of the Present Work: 

• The complexity of present day VLSI systems is very high. The 
Specification is given at a high level of abstraction compared to the output. 
In addition different types of optimization are performed in each phase of 
the High-Level Synthesis. The input behavior to the scheduler is modified 
in several ways in order to use a minimum number of time steps to schedule 
the operations. Also, incorporation of several code-motion techniques in the 
scheduling process leads to moving operations across the basic Blocks (BB) 



boundaries. Consequently, the results of the scheduling do not have a one to 
one correspondence with the input. 

• Finding equivalence between two FSMDs involves finding equivalence 
between two paths which in turn involves checking equivalence between 
two sets of arithmetic expressions. Hence, checking equivalence of two 
paths reduces to the validity problem of first-order logic which is 
undecidable; thus, a canonical form does not exist for integer arithmetic. 
Instead, in this work we adapt a normal form for the arithmetic expressions 
over integers. The normalization process renders many computationally 
equivalent formulas syntactically identical as it forces all the formulas to 
follow a uniform structure. 

 
 
1.4 Contribution of the Present Work: 

• Implementation of a Normalizer. 
• Implementation of a code-motion verifier. 
• Implementation of a test bench ( IEEE754 ) 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 



Chapter 2 
 
Overview of FSMDs and their Equivalence 
 
2.1 Finite State machines With Data Paths (FSMDs) 
An FSMD is a universal specification model that can represent all hardware 
designs. The FSMD is defined as an ordered tuple < Q,  q0,  I,  V, O,  f,  h >, 
where 
1) Q = {q0, q1, q2, . . . , qn} is the finite set of control states, 
2) q0 ∈ Q is the reset state, 
3) I is the set of primary input signals, 
4) V is the set of storage variables, and Σ is the set of all data storage states or 
simply data states, 
5) O is the set of primary output signals, 
6) f : Q × 2S → Q is the state transition function, 
7) h : Q × 2S → U is the update function of the output and the storage variables, 
where S and U are defined as follows: 

a) S = {L ∪ E} is the set of status expressions, where L is the set of 
Boolean literals of the form b or ¬b, b ∈ B ⊆ V is a Boolean variable and 
E is the set of arithmetic predicates over I ∪ (V − B). Any arithmetic 
predicate is of the form eR0, where e is an arithmetic expression and R ∈ 
{==, ≠,>,≥,<, ≤}. 
b) U is a set of storage or output assignments of the form {x ⇐ e|x ∈ O ∪ V, 
and e is an arithmetic predicate or expression over I ∪ (V − B)} that 
represents a set of storage or output assignments. 

The implicit connective among the members of the set of status expressions, 
which occurs as the second argument of the function f (or h), is conjunction. 
Parallel edges between two states capture the disjunction of status expressions. 
Thus, the next (control and data) state and the output depend not only on the 
present state and the input signals but also on the conjunction of the status 
expressions that indicate whether a predicate holds on the data state of the storage 
and the input variables. The state transition function and the update function are 
such that the FSMD model remains deterministic. Thus, for any state q, if f(q, S1) 
and f(q, S2) are different, then the sets S1 and S2 of status expressions are 
disjointed. The same property holds for the update function h. It may be noted that 
we have not introduced any final state in the FSMD model as we assume that a 
system works in an infinite outer loop. 
 
 
 
 



 
 

 
Fig. (a) M0: FSMD of GCD before scheduling.  

    (b) M1: FSMD of GCD after scheduling 
 
 
Example 1:  
The FSMD model M0 for the behavioral specification of GCD example is depicted 
in Fig. (a). Specifically, 
1) M0 = <Q, q0, I, V, O, f, h>. 
2) Q = {q00, q01, q02, q03, q04, q05, q06}, q0 = q00, V = {res, y1, y2}, I = {P0,    
    P1}, and O = {yout}. 
3) U = {y1 ⇐ P0, y2 ⇐ P1, res ⇐ 1 res ⇐ res ∗ 2,= y1 ⇐ y1/2, y2 ⇐ y2/2, y1 ⇐ y1 − y2,   
     y2 ⇐ y2 − y1, res ⇐ res ∗ y1}. 
4) S = {even(y1), even(y2), y1 == y2, y1 > y2}, where even(y) is the abbreviation   
    of “y mod 2 = 0.” 



5) f and h are as defined in the transition graph shown in Fig. (a). 
6) Some typical values of f and h are as follows. 

a) f(q00, {true}) = q01. 
b) f(q05, {y1 > y2}) = q01. 
c) h(q05, {y1 > y2}) = {y1 ⇐ y1 − y2}. 
d) h(q04, {even(y2)}) = {y2 ⇐ y2/2}. 
 

2.2 Paths and Transformations along a Path 
      A (finite) path α from qi to qj , where qi, qj ∈ Q, is a finite transition sequence 
of states of the form <qi = q1−c1→ q2−c2→. . . −cn-1→ qn = qj> such that ∀l, 1≤ 
l ≤ n − 1, ∃cl ∈ 2S such that f(ql, cl) = ql+1, and qk, 1 ≤ k ≤ n − 1, are all 
distinct. The state qn may be identical to any qk, 1 ≤ k ≤ n − 1. The condition of 
execution Rα of the path α = <q1−c1→ q2−c2→. . . −cn-1→ qn> is a logical 
expression over I ∪ V such that Rα is satisfied by the (initial) data state at q1 if 
the path α is traversed. Thus, Rα is the weakest precondition of the path α. Often, 
for brevity, the aforementioned path α is represented as [q1 ⇒ qn]. 
    We assume that inputs and outputs occur through named ports. The ith input 
from port P is a value symbolically represented as Pi. Thus, if some variable v 
stores an input from port P (for the ith time along a path), it is equivalent to the 
assignment v ⇐ Pi. In essence, Pi’s comprise the input variable set I and each input 
variable in I is read only once in a computation (path). 
    The simple data transformation sα of a path α over V is an ordered tuple <ej> of 
algebraic expressions over I ∪ V such that the expression ej represents the value 
of the variable vj after execution of the path in terms of the initial data state (i.e., 
the values of the variables at the initial control state) of the path. Taking into 
account the outputs that may occur in a path, the data transformation rα of a path α 
over V is the tuple <sα, Oα>, where the output list Oα = [OUT(Pi1,  e1), OUT(Pi2,  
e2),  . . .]. More specifically, for every expression e output to port P along the path 
α, there is a member OUT(P,  e) in the list appearing in the order in which the 
outputs occur in α. 
 
2.3 Computation of Rα and rα 
    Computation of the condition of execution Rα can be obtained by backward 
substitution or by forward substitution. The former is more easily perceivable and 
is based on the following rule: If a predicate c(y) is true after the assignment y ← 
g(y), then the predicate c(g(y)) must have been true before the assignment. The 
transformation sα is found indirectly using the same principle. The forward-
substitution method of finding Rα is based on symbolic execution. The ordered 
pairs at various points in Fig. represent the values of (Rα, sα) at that point. 
 
 
 



 

 
 

Fig.  Typical path, its condition of execution, and its simple data transformation. 
 
 
2.4 Characterization of Paths 
     The characteristic formula τα(v’,  v’f, O) of the path α is Rα(v’) ∧ (v’f = sα(v’)) 
∧ (O = α(v’)), where sα is the data transformation, Oα is the output list in the path 
α, v’ represents a vector of variables of I U V and v’f represents a vector of 
variables of V . The formula captures the following: If the condition of execution 
Rα of the path α is satisfied by the (initial) vector v’ at the beginning of the path, 
then the path is executed, and after execution, the final vector v’f of variable 
values becomes sα(v’), and the output Oα(v’) is produced.  
     Let τα(v’,  v’f, O) : Rα(v’) ∧ (v’f =sα(v’)) ∧ (O=Oα(v’)) be the characteristic 
formula of the path α and τβ(v’,  v’f, O) : Rβ(v’) ∧ (v’f = sβ(v’)) ∧ (O = Oβ(v’)) 
be the characteristic formula of the path β. The characteristic formula for the 
concatenated path αβ is ταβ(v’, v’f, O) = ∃v’α∃O1∃O2 (τα(v’,  v’α, O1) ∧ 
τβ(v’α, v’f, O2)) = Rα(v’) ∧  Rβ(sα(v’)) ∧  (v’f = sβ(sα(v’))) ∧  (O = 
Oα(v’)Oβ(sα(v’))). O is the concatenated output list of Oα(v’) and Oβ(sα(v’)). It is 
necessary to increment the input indices on each port in the formulas for β to start 
after the last index of the corresponding port in α. 
 
 



2.5 Computations and Path Covers of an FSMD 
      A computation of an FSMD is a finite walk from the reset state q0 back to 
itself without having any intermediary occurrence of q0. Such a computational 
semantics of an FSMD is based on the assumption that a revisit of the reset state 
means the beginning of a new computation and that each computation terminates. 
A computation μ of an FSMD M may be characterized as τμ(v’i,  v’f, O) : Rμ(v’i) 
∧ (v’f = sμ(v’i)) ∧ (O = Oμ(v’i)), where v’i is the vector of the initial input with 
which the computation is started, Rμ is a satisfiable condition over the domain of I, 
sμ is a function over this domain to the co domain of values over V and Oμ is the 
concatenation of the output lists resulting from output operations along μ. The 
ordered pair <sμ, Oμ> is denoted as rμ.  
    Definition 1: Two computations μ1 and μ2 having the characteristic formula τμ1 
and τμ2 , respectively, are said to be equivalent, denoted as μ1 ≡ μ2, if Rμ1 = Rμ2 
and rμ1 = rμ2 . 
    The computational equivalence of two paths p1 and p2 can be defined in a 
similar manner and is denoted as p1 ≡ p2. Equivalence checking of paths, 
therefore, consists in establishing the computational equivalence of the respective 
condition of execution and the respective data transformation. 
    Any computation μ of an FSMD M can be looked upon as a computation along 
some concatenated path [α1α2α3, . . . , αk] of M such that the path α1 emanates 
from and the path αk terminates in the reset state q0 of M for 1 ≤ i ≤ k, αi 
terminates in the initial state of the path αi+1, and αi’s may not all be distinct. The 
characteristic formula τμ of μ can accordingly be defined in terms of characteristic 
formula of the concatenated paths corresponding to μ. Hence, we have the 
following definition. 
    Definition 2—Path Cover of an FSMD: A finite set of paths P = {p0, p1, 
p2, . . . , pk} is said to be a path cover of an FSMD M if any computation μ of M 
can be looked upon as a concatenation of paths from P. 
 
2.6 Equivalence of FSMDs 
Let the behavior given as input to the scheduler be represented by the FSMD M0 = 
<Q0, q00, I, V0, O, f0, h0> and the scheduled behavior be represented by the 
FSMD M1 = <Q1, q10, I, V1, O, f1, h1>. Our main goal is to verify whether M0 
behaves exactly as M1. This means that for all possible input sequences, M0 and 
M1 produce the same sequences of output values and eventually, when the 
respective reset states are revisited, they are visited with the same storage element 
values. In other words, for every computation from the reset state back to itself of 
one FSMD, there exists an equivalent computation from the reset state back to 
itself in the other FSMD and vice versa.  
    Definition 3: An FSMD M0 is said to be contained in an FSMD M1, 
symbolically M0 ⊑ M1, if, for any computation μ0 of M0, there exists a 
computation μ1 of M1 such that μ0 ≡  μ1.  



    Definition 4: Two FSMDs M0 and M1 are said to be computationally equivalent 
if M0 ⊑ M1 and M1 ⊑  M0.  
    Theorem 1: An FSMD M0 is contained in another FSMD M1 (M0 ⊑ M1) if 
there exists a finite cover P0 = {p00, p01, . . . , p0l} of M0 for which there exists a 
set P1 = {p10, p11, . . . , p1l} of paths of M1 such that p0i ≡ p1i, 0≤ i ≤ l.  
    Proof: M0 ⊑ M1 if, for any computation μ0 of M0, there exists a computation μ1 
of M1 such that μ0 and μ1 are computationally equivalent [by Definition 3].  
    Now, let there exist a finite cover P0 = {p00, p01, . . . , p0l} of M0. 
Corresponding to P0, let a set P1 = {p10, p11, . . . , p1l} of paths of M1 exist such 
that p0i ≡  p1i, 0 ≤  i  ≤ l.  
    Since P0 covers M0, any computation μ0 of M0 can be looked upon as a 
concatenated path [p0i1p0i2 · · · p0in] from P0 starting from the reset state q00 
and ending again at this reset state of M0. From the above hypothesis, it follows 
that there exists a sequence Π1 of paths [p1j1p1j2 . . . p1jn] of P1, where p0ik ≡ 
p1jk , 1 ≤  k ≤ n. Therefore, in order that Π1 represents a computation of M1, it is 
required to prove that Π1 is a concatenated path of M1 from its reset state q10 
back to itself. The following definition is in order. 
    Definition 5—Corresponding States: Let M0 = <Q0, q00, I, V0,O, f0, h0> and 
M1 = <Q1, q10, I, V1,O, f1, h1> be the two FSMDs having identical input and 
output sets, I and O, respectively, and q0i, q0k ∈ Q0 and q1j , q1l ∈ Q1. 
1) The respective reset states q00 and q10 are corresponding states. 
2) If q0i ∈ Q0 and q1j ∈ Q1 are corresponding states and there exist q0k ∈ Q0 
and q1l ∈ Q1 such that, for some path α from q0i to q0k in M0, there exists a path 
β from q1j to q1l in M1 such that α ≡  β, then q0k and q1l are corresponding states. 
     Now, let p0i1 : [q00 ⇒ q0f1 ]. Since p1j1 ≡  p0i1, from the above definition of 
corresponding states, p1j1 must be of the form [ q10 ⇒ q1f1 ], where <q00, q10> 
and <q0f1, q1f1> are corresponding states. Thus, by repetitive application of the 
above argument, it follows that if p0i1 : [q00 ⇒ q0f1 ], p0i2 : [q0f1 ⇒ q0f2 ], . . . , 
p0in: [q0fn−1 ⇒  q0fn = q00], then p1i1 : [q10 ⇒  q1f1 ], p1i2 : [q1f1 ⇒ 
q1f2 ], . . . , p1in: [q1fn−1 ⇒ q1fn = q10], where <q0fm, q1fm>, 1 ≤ m ≤ n, are 
pairs of corresponding states. Hence, Π1 is a concatenated path representing a 
computation μ1 of M1, where μ1 ≡  μ0. 
 
2.7 Equivalence of Paths  
     Theorem 1 reduces the equivalence problem of two FSMDs into the problem of 
determining whether a path of one FSMD is equivalent to some path of the other 
FSMD. A computation μ0 of FSMD M0 can be compared with a computation μ1 
of M1 as long as both M0 and M1 have the same input variable set I because Rμ0 , 
Rμ1 , rμ0 , and rμ1 are all defined over I. In contrast, a comparison of a path p0 of 
M0 with a path p1 of M1, however, is not so straightforward because, in general, 
M0, M1 may involve different storage variable sets V0 and V1, respectively. This 



may happen due to various code-motion techniques applied during scheduling. 
Since paths can start from any cut points of the FSMD, their conditions of 
execution and the data transformations will be in terms of the inputs and the 
storage variables. Thus, the path p0 may involve variables from the set V0 and the 
path p1 may involve variables from V1 ≠ V0. To handle such situations, the 
condition Rα, the data transformation sα and the output list Oα of any path α 
should also be restricted over the variables V0 ∩ V1 and the inputs I.  
    Any expression (arithmetic or status) is defined over the variable set V0 ∩ V1 if 
all the variables it involves belong to V0 ∩ V1. A tuple of expressions over V0 or 
V1, restricted to V0 ∩ V1, is its projection over V0 ∩ V1 in which all the 
component expressions are defined over V0 ∩ V1. The restrictions of Rα and rα of 
a path α follow from the restrictions of their constituent expressions as defined 
above. The restrictions of the condition of execution and the data transformation 
of a path α on the variable set V0 ∩ V1 are denoted as Rα|V0 ∩ V1 and rα|V0 ∩ V1, 
respectively. For example, let V0 = {v0, v1, v2} and V1 = {v1, v2, v3}. Therefore, 
V0 ∩ V1 is {v1, v2}. Let the condition of execution of a path in M1 be (v1 − v2 > 0 
∧ v1≤ v2+v3); under restriction to V1, the condition becomes undefined as v3 
occurs in the conditional expression. Let the data transformation of a path in M1 
be <<v1 − v2, v2 + 2, v3 − v1>,  −>, where the order of the variables is v1 ≺  v2 ≺  
v3. Under restriction to {v1, v2}, the transformation becomes <<v1 − v2, v2 + 2>, 
- >. Thus, the transformation of this path under restriction to V0 ∩ V1 is defined 
even if the final value of the variable v3 is not restricted to V0 ∩ V1 because the 
final values of v0 and v3 are not considered during checking the equality of the 
data transformations of paths of M0 and M1. Consider another path in M1 whose 
data transformation is <<v1 − 1, v2 + v3, v2 + 1>, −>. This transformation 
becomes undefined when restricted to {v1, v2} as v3 occurs in the expression value 
of v2 ∈ V0 ∩ V1. Hence, we have the following definition. 
    Definition 6: A path α of M0 = <Q0, q00, I, V0, O, f0, h0> and a path β of M1 = 
<Q1, q10, I, V1, O, f1, h1> are said to be equivalent if Rα, rα, Rβ and rβ are 
defined over V0 ∩ V1 and Rα|V0 ∩ V1 = Rβ|V0 ∩ V1 and rα|V0 ∩ V1 = rβ|V0 ∩ 
V1. The Rα|V0 ∩ V1 , Rβ|V0 ∩ V1 , rα|V0 ∩ V1 , and rβ|V0 ∩ V1 become 
undefined even if the scheduler transformations are correct when some of the 
variables (in V0 ∩ V1) are eliminated or some of the variables (in V1 ∩ V0) are 
introduced (defined) prior to the start state of the path under consideration. In 
these cases, our algorithm reports false negative. 
 
2.8 VERIFICATION METHOD 
Theorem 1 suggests a verification method for checking equivalence of two 
FSMDs which consists of the following steps. 
1) Construct the set P0 of paths of M0 so that P0 covers M0. Let P0 = {p00, 
p01,  . . . ,  p0k}. 
2) Show that ∀p0i ∈ P0, there exists a path p1j of M1 such that p0i ≡  p1j . 



3) Repeat steps 1 and 2 with M0 and M1 interchanged.  
      Because of loops, it is difficult to find a path cover of the whole computation 
comprising only finite paths. Therefore, any computation is split into paths by 
putting cutpoints at various places in the FSMD so that each loop is cut in at least 
one cutpoint. The set of all paths from a cutpoint to another cutpoint without 
having any intermediary cutpoint is a path cover of the FSMD.  
    We, therefore, devise a good strategy for setting the cut points which would 
work for many cases but not for all cases. In the following, we propose one such 
method which combines the first two steps listed previously into one. More 
specifically, the method constructs a path cover of M0 and also finds its equivalent 
path set in M1 hand in hand. We choose the cutpoints in any FSMD as follows. 
1) The reset state is chosen. 
2) A state qi is chosen if there is a divergence of flow from qi. More formally, qi is 
a cutpoint if ∃c1, c2 ∈ S such that c1 ≠ c2 and <qi, c1, qj> ∈ f and <qi, c2, ql> 
∈ f ;  qj, ql are not necessarily distinct. 
     Obviously, the cutpoints chosen by the aforementioned rules cut each loop of 
the FSMD in at least one cutpoint because each internal loop has an exit point. 
Corresponding to each path from a cutpoint to a cutpoint without having an 
intermediary cut point, we have to find an equivalent path in the other FSMD 
which, however, may not exist. Let p : [ q0i ⇒ q0j ] be such a path. The path is 
modified by concatenating with p all the paths from q0j to the subsequent 
cutpoints and trying to find their equivalent paths in the other FSMD. The process 
continues until a path of M1 that is equivalent to an extended path is obtained or 
the extension needs to be carried beyond the reset state or the extended path 
becomes a loop; in the last two cases, the algorithm reports the FSMDs to be 
possibly nonequivalent. This capability of the present method (of extending paths 
during equivalence checking) is central to its ability to handle situations where the 
path structure of the input behavior is changed by a path-based scheduler or an 
operation is moved beyond Basic Block boundaries. The verification algorithm is 
as follows: 
 
Verification Algorithm 
 
Input: The FSMDs M0 and M1. 
Output: P0: a path cover of M0, 
E: ordered pairs <β, α> of paths of M0 and M1, respectively, such that β ∈ P0 
and β ≡ α. 
Step 1: Let η be the set of corresponding state pairs. 
Let η ← <q00,  q10>. 
Insert cutpoints in M0 using the rule stated in the last section.  
Let P’0 be the set of all paths of M0 from a cutpoint to a cutpoint having no 
intermediary cutpoint. 



Let P0 and E be empty. 
Step 2: If P’0 = empty, then return P0 as a path cover of M0 and E as the set of 
ordered pairs of equivalent paths of M0 (from P0) and M1 and exit (success);   
else go to Step 3. 
Step 3: Find a path of the form <q0i ⇒ q0f> from P’0 s.t. q0i has a corresponding 
state q1j . 
If no path is obtained, then go to Step 4; 
else go to Step 5. 
Step 4: If P’0 ≠ empty, then report “M0 may not be contained in M1” and exit 
(failure);  
else return P0 as a path cover of M0 and E as a set of ordered pairs of equivalent 
paths of M0 (from P0) and M1 and exit (success). 
Step 5: Let the path obtained in Step 3 be β = <q0i ⇒ q0f>. 
Let <q0i,  q1j> be the corresponding state pair in η. 
If Rβ or rβ is undefined, then report “The Rβ and/or rβ of β is not defined and exit 
(failure),” 
else find a path of M1 emanating from q1j which is equivalent to the path β. If 
such a path is found, then go to Step 6; 
else go to Step 7. 
Step 6: Let this path of M1 be α. 
η ← η U {<endState(β),  endState(α)>}, 
E ← E U {<β, α>}, 
P0 ← P0 U {β},  
P’0 ← P’0 − {β}.  
go to Step 2. 
Step 7: P’0 ← P’0 − {β}.  
Extend β (= <q0i ⇒ q0f >) inM0 by moving through the cutpoint q0f until the next 
cutpoints but without moving through the reset state or any cutpoint more than 
once.  
Let Bm be the set of all such extensions of the path β.  
P’0 ← P’0—{paths of P’0 originating from q0f which got appended to β}.  
P’0 ← P’0 U Bm.  
go to Step 8. 
Step 8: If Bm = empty, then report “β may not have any equivalent in M1 and 
cannot be extended” and exit (failure);  
else go to Step 2. 
 

 
 
 
 
 



 

 
 

Fig. control flow of the verification algorithm in terms of steps. 
 

     The control flow among the steps of the algorithm is shown in above Fig. for 
clarity. The algorithm examines whether M0 equivalent to M1. In order to 
establish the computational equivalence between M0 and M1, the aforementioned 
algorithm is rerun with M0, M1 interchanged to determine whether M1 ⊑ M0 or 
not. 
 

 
 
 
 
 
 
 



Chapter 3 
 

NORMALIZATION 
 
3.1 Introduction: 
While finding the equivalent path for a path, it is required to check the equivalence 
of the respective conditions as well as the data transformations of the paths. Since 
the condition of execution and the data transformation of a path involve the whole 
of integer arithmetic, checking equivalence of paths reduces to the validity 
problem of first order logic which is undecidable; thus, a canonical form does not 
exist for integer arithmetic.  

The normalization process reduces many computationally equivalent 
formulas syntactically identical as it forces all the formulas to follow a uniform 
structure. In the following, the normal form chosen for the formulas and the 
simplification carried out on the normal form during the normalization phase are 
briefly described. 
 A condition of execution (formula) of a path is a conjunction of relational 
and Boolean literals. A Boolean literal is a Boolean variable or its negation. A 
relational literal is an arithmetic relation of the form s R 0, where s is a normalized 
sum and R belongs to {<=, >=, ==, ≠ }. The relation > ( < ) can be reduced to 
>= ( <= ) over integers. For example,  x – y > 0 can be reduced to x - ( y – 1 ) >= 
0. 
 The data transformation of a path is an ordered tuple   < ei >   of algebraic 
expressions such that the expression ei represents the value of the variable vi after 
execution of the path in terms of the initial data state. So, each arithmetic 
expression in data transformation can be represented in the Normalized Sum form. 
A normalized sum is a sum of terms with at least one constant term; each term is a 
product of primaries with a non-zero constant primary; each primary is a storage 
variable, an input variable or of the form abs( s ), mod( s1, s2 ), exp( s1, s2 ) or 
div( s1, s2 ), where s, s1, s2 are Normalized Sums. These syntactic entities are 
defined by means of production of the following grammar. 
 
3.1 Grammar of the Normalized Sum: 

1) S → S + T|cBs, Bwhere cBs  BisB Ban integer. 
2) T → T * P|cBt, Bwhere cBt Bis an integer. 
3) P → abs(S) | (S) mod (S) | S ÷ C Bd B| v | cBm, Bwhere v ∈ I U V, and cBm Bis an 

integer. 
4) C Bd B→ S ÷ CBd B| S. 

 
 

    Thus, the exponentiation and the (integer) division are depicted by infix notation 
and all functions have arguments in the form of normalized sums. In addition to 



the above structure, any normalized sum is arranged by lexicographic ordering of 
its constituent sub expressions from the bottom-most level, i.e., from the level of 
simple primaries. 
Example: The expression ( x + 3 * y + 7 >= 0  &&  4 * xP

2 
P+ 3 * y * z ≠ 0 ) will 

have the normal form [1 * x + 3 * y + 7 >= 0  &&  4 * x * x + 3 * y * z + 2 ≠ 0 ]. 
 
3.2 Various simplifications that can be carried out at the normalization phase 
are as follows: 
    
3.2.1) USimplification at the arithmetic expression (normalized sum) level: 

• Any expression involving only integer constants is immediately evaluated, 
e.g., ( 5 / 2 ) is evaluated to 2. 

• In an expression, common sub expressions are collected together. For 
Example: ( xP

2
P + 3 * x + 5 * z + 4 * xP

 
P) is reduced to ( 1 * x * x + 7 * x + 5 

* z ). 
 
3.2.2) USimplifications at the relational expression (relational literal) level: 

• Any relational expression built from constant arithmetic expressions may 
be immediately evaluated to TRUE or FALSE. For example, 4 – 1   >= 0 is 
evaluated to TRUE. 

• Common constant factors are extracted from the normalized sum and the 
relational expression is consequently simplified. For example, ( 3 * x * x + 
9 * x * y + 6 * z + 7 >= 0 ) is mapped to  ( 1 * x * x + 3 * x * y + 2 * z + 2 
>= 0 ), where [ 7 ÷ 3 ] = 2. 

 
3.2.3) USimplification at the formula level:U 

    Some literals of the formula can be deleted by the rule “ if ( A --> B ) then  ( A 
&& B  is equivalent to A ) “. For this step of simplification, it becomes necessary 
to detect implication among literals. It is possible to detect whether a relational 
literal implies another relational literal when they involve the same non-constant 
sums. Let the literals be l1: ( s1 + c1 ) R1 0   and  l2 : ( s2 + c2 ) R2 0.  If s1 == 
s2 == s, then table   depicts the relationship between the constants c1 and c2 
depending upon R1 and R2, which must be satisfied for l1 to imply l2. Removal of 
repetitions of literals in a formula is possible using this rule as for any literal l1, l1 

 l2 is always TRUE. For example, the literal ( A >= B ) has multiple 
occurrences in the   formula ( A >= B && C <= D && A >= B ). So, this formula 
is simplified   to (A >= B && C <= D). 

   
 
 
 
 

 



 
 
 

 

= >= ≠ <= 

= c1 = c2 c2 >= c1 c1 ≠ c2 c2 <= c1 

>= - c2 >= c1 c2 > c1 - 

≠ - - c1 = c2 - 

<= - - c2 < c1 c2 <= c1 

 
Table: Conditions on c1 and c2 for which (s1 + c1)R1 0 implies (s2 + c2)R2 0 

 
3.3 Data Structure for Normalized Form ( A Normalized Cell ) : 

 
struct normalized_cell 
{ 
   NC *list; 
   char type; 
   int inc; 
   NC *link; 
}; 
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3.4 Representation of the Normalized Expressions : 
 

    All normalized expressions are represented by tree structure which is 
implemented by linked lists [ ]. Each node in the tree is a normalized cell 
consisting of the following four fields : 

1) A LIST-pointer , which points to the entries at the same level of the tree 
or equivalently, at the same hierarchal level of an expression. 

2) A TYPE-field which indicates the type of the cell. Some typical 
examples of the types are ‘S’ for normalized sum, ‘T’ for normalized 
term, ‘R’ for relational literal, etc. TYPE = ‘v’ indicates a program 
variable or more generally a symbolic constant. 

3) An integer field INC , the meaning of which varies from type to type. 
For example, TYPE = ‘S’, INC = 4 means that the integer constant in 
the normalized sum is 4. 

4) A LINK-pointer , which points to the leftmost successor of the node in 
question in the next level of the tree or equivalently, in the next 
syntactic level of the expression.  

    The difference between the LIST-pointer and the LINK-pointer is noteworthy. 
For example, the non-constant terms of a sum are connected by LINK-ing the first 
term to a  normalized cell of TYPE ‘S’ and LIST-ing the other terms starting from 
the first term onwards.  
 
3.4.1 Normalized sum:  
A Normalized Sum is a sum of terms with at least one constant term. Each term is 
a product of primaries with a non-zero constant primary. Each primary is a storage 
variable, an input variable.  
Normalized sum: 3 + 2 * a + 5 * x *  y. 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
Example: 
 
 
 

 
 
 
 
 
 
 
 
 
 
 



 
 
U3.4.2 Representation of a MOD or DIV Expression: 
x % y = 0 + 1 * ( M 0  0 + 1 * x, 0 + 1 * y ) 
 

 
 
 
 
 
 



3.4.3 Normalized Condition:  
A Normalized Condition is represented as [ ( s + c ) R 0 ], where ‘s’ is a 
Normalized Sum, ‘c’ is an integer constant, ‘R’ is a Relational operator. Example: 
Normalized Condition: [ ( 3 + 1 * x – 2 * y )  >= 0 ].  

 
An Example: 
 

 
 

 



3.5. NORMALIZATION   ROUTINES: 
 
 The normalizer is a hierarchically organized module consisting of routines 
at various levels. In order to accomplish a particular task assigned to a routine at 
some level, it can take the help of any other routine, which is at a lower level 
routine, but a lower level routine cannot invoke the higher level ones. All the 
routines assume the inputs to be in normal forms and produce the output in normal 
form.  
 
3.5.1 Remove all multiple occurrences of normalized conditions in a 
Conditional expression:  
This function removes the multiple occurrences of conditions from the conditional 
expression and returns the resultant conditional expression.   
Example: 
Input:  Conditional Expression = ( A && B && B && B && A ).     
Output: Resultant Conditional Expression ( A && B ). 
 
Where, A and B are conditional expressions. 
 
3.5.2 Is Condition A Implies Condition B:  
This function checks if condition A implies condition B in a Conditional 
Expression “A && B”. If success, then Condition B is deleted from Conditional 
Expression and the resultant conditional expression ( A ) is returned.   
Example: 
Input:    [ ( -6 + 2 * x ) >= 0 ] && [ ( 3 + 2 * x) >= 0 ] 
Processing: Let A = [ ( -6 + 2 * x ) >= 0 ], and B = [ ( 3 + 2 * x ) >= 0 ] 
Since A implies B, B will be deleted from Conditional Expression 
Output: [ ( -6 + 2 * x ) >= 0 ]  
 
3.5.3 Simplify Sub Expressions in Sum:  
This function does the sub expression simplification of a normalized sum. The 
common sub expressions are collected together. It returns the resultant normalized 
sum.  
Example: 
Input Sum: 5 + 2 * x + 3 * x + 1* z 
Output Sum: 5 + 5 * x + 1 * z  
 
3.5.4 Simplify Sub Expressions in a Condition: 
 This function does the sub expression simplification of a normalized condition. It 
in turn calls the function “Simplify Sub Expressions in Sum” and the common 
sub expressions of the normalized sum are collected together and returns the 
resultant normalized condition. 
Example: 



Input Sum: [ ( 5 + 2 * x + 3 * x + 1* z ) >= 0 ] 
Output Sum: [ ( 5 + 5 * x + 1 * z  ) >= 0] 
 
3.5.5 Arithmetic Simplification of a Conditional Expression:  
This function does the arithmetic simplification of the normalized sum of a 
conditional expression. The common constant factors are extracted from the 
normalized sum.  
Example: 
Input sum: 7 + 3 * a + 9 * x. 
Output sum: 2 + 1 * a + 3 * x 
 
3.5.6 Substitute a Primary In a Normalized Sum: 
 This function works on the normalized sum 's' to substitute each occurrence of 
primary 'x' in 's' with the normalized sum 'z'.  
Example:  
Input: s = 3 + 2 * x, Primary = x, z = 3 + 1 * p. 
Output: resultant Normalized Sum = 9 + 2 * p. 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 4 
 
CODE MOTION VERIFICATION 
 
4.1 Introduction: 
It may be possible to transform the input behavior to some equivalent description 
which results in amore efficient scheduled behavior. This fact underlines the need 
for incorporating high-level code-transformation techniques in the scheduling 
phase of synthesis to overcome the effects of programming style on the quality of 
generated circuits. Needless to say, these transformations increase the scheduling 
verification challenges. 
 

 
 

Fig. Various Code-Motion techniques. 
 
4.2 Code-Motion Techniques: 
 
4.2.1 Duplicating Down: It moves operations from a Basic Block (BB) preceding 
a Conditional Block (CB) to both the succeeding BBs. This is shown by the arcs 
marked 1 in fig. Reverse Speculation and early Condition execution belong to this 
category. 



 
4.2.1.1 Reverse Speculation: In reverse speculation the operations before a 
conditional Block are moved into the blocks subsequent to the conditional block In 
a special case of Reverse Speculation the scheduler may move an operation, say 
‘O’, before the conditional block into only one of the conditional branch. This is 
possible when the operations in the other branch as well as all the operations 
following the merging of the conditional branches are not dependent on the result 
of the operation ‘O’. 

 
 

 
                 

Fig. Reverse Speculation 
 

    Consider the example in Fig.  The operation `d <= a + b' of the original 
behavior ( FSMD M0 )is moved to only one conditional branch with condition ‘!b 
> c’ in the FSMD M1. This is possible because the operations in the conditional 
branch with condition ‘b > c’ and all possible execution paths following the 
merging node q0i5 of M0 do not use the value of d which is a + b. The 



Verification algorithm fails in this case. However, one modification in verification 
algorithm will suffice for equivalence checking. 
    Let ‘β’ be a path in M0 of the form < q0i => q0j > and < q0i, q1k > be a 
corresponding state pair. When the existing algorithm fails to find the equivalent 
path for ‘β’, then let there exist a path starting from q1k in M1, say ‘α’, whose 
condition of execution matches with that of ‘β’ but the data transformations does 
not match. In such case, we will check whether there is any variable of ‘V0 ∩ V1’ 
(V0 contains the list of variables present in FSMD M0), and V1 contains the list of 
variables present in FSMD M1) which is modified along ‘β’ but not modified in 
the path ‘α’. Let ‘v’ be such a variable. Without any loss of generality, let the 
values of all the variables in ‘V0 ∩ V1’ other than ‘v’ at the end of execution of ‘α’ 
be the same as those for ‘β’. Now, if we can show that the transformed value of ‘v’ 
in ‘β’ is not used in any execution path starting from state ‘q0j’, then ‘α’ is 
equivalent to ‘β’ even if their respective data transformations match partially (only 
on the other variables). In other words, if the variable ‘v’ is always used only after 
it is defined in the subsequent execution paths from q0j, then there is no use of the 
operation that updates ‘v’ in β and we remove this operation during scheduling. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 

Fig. Kripke structure for FSMD M0. 
 

    We convert the FSMD M0 into an equivalent Kripke structure by some logical 
transformations ( Fig. ). A dummy state will be added for every transition of M0. 
There would be two propositions, ‘D_v’ (defined ‘v’) and ‘U_v’ (used ‘v’), for 
each variable in ‘V0 ∩ V1’. The proposition ‘D_v’ will be true in a dummy state if 
the variable ‘v’ is defined by some operation in the corresponding transition in the 
M0. Similarly, ‘U_v’ will be true in a dummy state if the variable ‘v’ is used in 
some operation in the corresponding transition in M0. By convention if any 
proposition is not present in any state of the Kripke structure, then the negation of 
the proposition is true in that state. The required property that there does not exist 
any path in which ‘v’ has not been defined before it is used can be written as the 
CTL formula “ ! E [ ( ! D_v ) W U_v ] “, were E  represents there exists and W 



represents weak until operator. This formula can be verified using CTL model 
checker ex. NuSMV. If this formula is true in the state ‘q0j’, then ‘β’ is equivalent 
to ‘α’. 
    Consider the example in Fig. The algorithm considers β = q0i0 → q0i1 → q0i2 
of M0 and fails to find the equivalent path in M1 in step 5. It finds α =  q1j0 → 
q1j1 in M1 which has the same condition (true) as that of β but the variable d is 
transformed along β but not along α; the other variable a gets transformed 
identically. It, next, finds that the formula “ ! E [ ( ! D_v ) W U_v ] “ is not true in 
state q0i2 in the Kripke structure of the FSMD M0. So, the control goes to step 7 
and extends β. The extended paths are β =  q0i0 → q0i1 → q0i2    Bb > cB→ q0i3 → 
q0i5 → q0i6 → q0i0 and q0i0 → q0i1 → q0i2    B!b > cB→ q0i4 → q0i5 → q0i6 → 
q0i0 . The equivalent path of the latter one in M1 is q1j0 → q1j1   B!b > cB→ q1j3 → 
q1j4 → q1j5 → q1j0. Step 5 fails to find the equivalent path of the former path; it 
then finds the path α =  q1j0 → q1j1   Bb > cB→ q1j2 → q1j4 → q1j5 → q1j0 in M1 
which has the same condition of execution with β. Again, the variable d is 
transformed along β but not along α. It, next, finds that the formula “ ! E [ ( ! D_v ) 
W U_v ] “ is true in state q0i0 in the Kripke structure of the FSMD M0. So, α is 
equivalent to β. In this way, the equivalence of M0 and M1 can be established. 
 
4.2.1.2 Early Condition Execution: This transformation involves restructuring 
the original code so as to execute the conditional operations as soon as possible. 
This, in effect, means that the conditional operation is moved-up in the design, and 
hence, all the operations before the conditional operation are reverse speculated 
into the conditional branches. 
 

 
Fig. Early Condition Execution 

 



            In the above Fig. the conditional statement operation ‘c’ is executed      
one step early in the scheduled behavior and the operation ‘b’ is reverse      
speculated in the conditional branches. This is also a kind of Reverse   
Speculation and can be handled. 
 

4.2.2 Boosting Up: It moves operations from a Basic Block (BB) within a 
conditional branch to its preceding BB. This category is shown as arcs 3 in fig. 
The code-motion techniques, like speculation and loop shifting, fall under this 
category. 
 
4.2.2.1 Speculation: Speculation refers to the unconditional execution of       
instructions that were originally supposed to be executed conditionally. In this 
approach, the result of a Speculated operation is stored in a new variable. If the 
condition under which the operation was to execute evaluates to true, then the 
stored result is copied to the variable from the original operation, else the stored 
result is discarded. 

 
Fig. Speculation 

 
    In the above figure, the operation d=x+y is speculated out of the branch        
with condition ‘!c’ of the FSMD M0 and the result of the operation is       stored in 
d’. It may be noted that if we do not store the value in d’, then the       variable ‘a’ 
gets the wrong value ( by the operation a=b+d ) when the       execution is through 
the branch with condition ‘c’ of the FSMD M1. 
    The proposed Verification algorithm fails in this case. The algorithm uses any 
node with more than one outward transition as a cutpoint. So the node q0i1 in M0 
of Fig. is a cutpoint. The algorithm first tries to find an equivalent of the path β = 
q0i0 → q0i1. It finds α = q1j0 → q1j1 as the equivalent path of β because the 
condition of execution (TRUE) and the data transformation of the common 



variables (a, b, c, d, e, x and y) are the same for β and α. Next, the algorithm tries 
to find the equivalent of the path β = q0i1  BcB→  q0i3 → q0i4 . The corresponding 
equivalent path found by the algorithm is α = q1j1  B!cB→  q1j2 → q1j3. Now, it tries 
to find the equivalent of the path β = q0i1  B!cB→  q0i2 → q0i3 → q0i4 . The 
algorithm fails to find the equivalent path of β because the data transformation of β 
is << b +  x +  y,  b,  c,  x +  y,  x +  y +  e,  x, y>, - > where the variables are in 
the order a < b < c < d < e < x < y. There is no path in M1 starting from q1j1 
with the same data transformation.  
    Actually, the path α = q1j1  B!cB→ q1j2 → q1j3 of M1 is equivalent to the path β. 
As we are using symbolic simulation to find the data transformation, the final 
values of d, a and e in α will be in terms of d’. Specifically, the data 
transformation of α is << b + d’, b, c, d’, d’ + e,  x,  y, d’>, - > , where the 
variables are in the order a < b < c < d < e < x < y < d’  and will not match that 
of β. But if we use the right hand side expression  x +  y of the operation d’<= x +  
y that defines d’ in the path q1j0 → q1j1 as the initial symbolic value of d’, then 
the data transformation in the path α becomes << b +  x +  y,  b,  c,  x +  y,  x +  y 
+  e,  x,  y>, - > which is equal to that of β. Thus, α can be ascertained to be 
equivalent to β. 
    The following simple modifications in the proposed verification algorithm can 
handle this code motion technique. We put cutpoints in M1 by the rules proposed 
and find the set P’1 of paths from one cutpoint to another without having any 
intermediate cutpoints. While finding the equivalent of a path, say β, of M0 in M1, 
paths starting from the corresponding state of the start node of β are considered 
one by one. Let β be of the form < q0i → q0j > and < q0i,  q1k > be the 
corresponding state pair. So, the paths starting from q1k will be checked one by 
one until an equivalent path is found, failing which it is concluded that no 
equivalent path exists for that path. Let α be a path which starts from q1k. If it is 
found that the some variables not belonging to V0 ∩ V1 are used before they are 
defined along α during computation of Rα and rα, then we will find the set of 
paths from P’1 which terminate in q1k. Next, the last operations defining these 
variables in those paths will be found out. This can be done by backward breadth 
first search from q1k. The right hand side expressions of those operations will be 
used as the initial symbolic values of these variables. Consider, for example, the 
path q0i1  B!cB→ q0i2 → q0i3 → q0i4 as β in Fig. The state q1j1 is the 
corresponding state of q0i1. Consider the path q1j1  B!cB→ q1j2 → q1j3 as α. The 
variable d’ ( not belonging to V0 ∩ V1) is used (in the operation d <= d’ ) before it 
is defined along β. Now, the paths q1j0 → q1j1 is the only path which terminates 
in q1j1 and the operation d’ <= x + y defines d’ in that path. So, the expression x 
+ y will be used as the initial symbolic value of d’ while computing the condition 
of execution and the data transformation of α. With this modification, the path α 
will be found as the equivalent path of β. However, the initial symbolic value 
obtained for every variable should be unique in all the paths that terminate in q1k. 
If more than one expression are found for a particular variable or no operation is 



found which defines a variable in one path, we will ignore a for equivalence 
checking and consider the next path from q1k.           
 
4.2.2.2 Loop Shifting and Compaction: Loop shifting  is a technique whereby an 
operation op is moved from the beginning of the loop body to the end of the loop 
body. To preserve the correctness of the program, a copy opBcB of the operation op is 
also placed before the start of the loop. Consider the example in Fig. Operations a 
and c of the original behavior are shifted to the end of the loop body as well as 
placed at the entry edge(s) of the loop. The modified FSMD is shown in Fig (b). 

 
 

 
 

Fig. Loop Shifting and Compaction 
 

    It is important to note that shifting operation(s) in a loop reduces the data 
dependencies among the operations within the loop body. For example, if we 
consider the ith iteration of the loop in the original behavior in the FSMD M0 of 
Fig (a), the value of the variable b depends on a and the value of d depends on c. 
But, if we consider the ith iteration of the loop in M’0, then the operations a and c 
of the loop body represent the operations corresponding to the ( i + 1)th iteration 
of M0. So, the operations b and d in the loop body do not depend on the operations 
a and c, respectively. The modified data dependency in the shifted loop is shown 
in the dotted block in Fig (b). As a result, the scope of concurrent execution of the 
operations increases within the loop body. Specifically, it is possible to execute the 



operations b concurrently with a and the operation c concurrently with d. The 
compacted FSMD is shown in Fig. (c). 
    Shifting an operation results in execution of the operation one more time than in 
the original code. For example, if we consider n number of iterations of the loop 
body, then the operations a and c execute n + 1 times in the compacted FSMD 
( Fig. (c)) whereas they would execute n times in the original description (Fig. (a)). 
It needs to ensure that executing the shifted operation one extra time does not 
change the behavior of the program. In order to do so, it is required to perform the 
following steps. Let the shifted operation be v ← f( ). The first step is to create an 
operation “w ← f( )” in place of the shifted operation, where w is a new variable. 
In the second step, all the instances of the operation v ← f( ) in the loop body in 
the original behavior are replaced by two operations “ v ← w” and “w ← f( )” in 
parallel. Finally, the operations that use the variable `v' in the loop body will now 
use the variable w instead of variable v. It is demonstrated in Fig. (d). The results 
of the shifted operations a and c are stored in a’ and c’, respectively. The 
operation a is replaced by a <= a’ and a’ in the loop body. Thus, by the ith 
iteration, a’ is computed i + 1 times but a assumes the value of ith iteration. 
Similarly, the operation c is also replaced. In the original behavior, the operation b 
uses the variable a and the operation d uses the variable c. Hence, they will now 
use the variable a’ and c’, respectively. In the Fig. (d), b( a’) indicates that the 
operation b uses the variable a’. Similarly, d(c’) indicates that the operation d uses 
the variable c’. 
    This situation is similar to the speculation above subsection. So, the proposed 
modification of the algorithm in that subsection can handle this situation. Here, we 
need to check the equivalence between the FSMDs M0 in Fig. (a) and M1 in Fig. 
(d). For the paths q0i0 → q0i1 and q0i1  BP B→ q0i4 in M0, q1j0 → q1j1 and q1j1 
BP B→ q1j4 , respectively, are ascertained to be the equivalent paths in M1. Now, 
while finding the equivalent path of β = q0i1 BP B→  q0i2 → q0i3 → q0i1 , it was 
found that the variables a’,  c’ (∈ V1 − V0) are used before they are defined along 
α =  q1j1 BPB→ q1j2 → q1j1 . Hence, we need to find the paths that terminate in the 
state q1j1. The paths q1j0 → q1j1 and q1j1 BP B→  q1j2 → q1j1 are such paths. In 
both the paths, the same operations a’ and c’ update the variables a’ and c’, 
respectively. In fact, if the right hand side of the respective operations is used as 
the input assertions for a’ and c’, then α will become the equivalent path of β. 
 
 
 
 
 
 
 
 
 



Chapter 5 
 
IMPLEMENTATION OF A TEST BENCH: ( IEEE754  ) 
 
5.1  “IEEE754 FLOATING POINT UNIT – ARITHMETIC OPERATIONS” 

1) Addition of two Floating Point Numbers. 
2) Subtraction of two Floating Point Numbers. 
3) Multiplication of two Floating Point Numbers. 
4) Division of two Floating Point Numbers. 
 

INPUT:  The Integer value of the 32-bit  ( IEEE754 ) representation of the two 
Floating Point Numbers. 
 
PROCESSING: The Mantissa, the Exponent, and the sign of the two Floating 
Point numbers are extracted from the integer values using some integer arithmetic 
operations ( without the use of arrays ). 
 
SIGN = ( INPUT / 2 ^ 31 ) % 2 
 
MANTISSA = INPUT % ( 2 ^ 23 ) + ( 2 ^ 23 )  
 
EXPONENT = ( INPUT * 2 ) / ( 2 ^ 24 ) 
 

31 30       24 23                      0

 
SIGN = 31P

ST
P bit 

 
EXPONENT = 24 – 30 ( 8-bit ) 
 
MANTISSA = 0 – 23 ( 24-bit ) 
 
OUTPUT: The integer value of the 32-bit ( IEEE754 ) representation of the 
resultant floating point number.  
 
RESULT = SIGN * ( 2 ^ 31 ) + EXPONENT * ( 2 ^ 23 ) + MANTISSA % ( 2 ^ 
23 ) 
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