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Abstract 

 
The heterogeneity present in the real-world networks like peer-to-peer networks 

make them particularly vulnerable to attacks as large-scale cascade may be triggered 

by disabling a set of key nodes. In addition to this vulnerability towards dynamic 

events, real world networks react quite strongly towards certain types of attacks which 

may adversely affect their static properties. This brings an obvious concern for the 

security and robustness of these systems. In this thesis, empirical results are presented 

that show how robustness of overlay networks, measured in terms of different 

parameters like size of largest connected component, number of components and 

diameter, percolation point and number of nodes failed, can be improved by applying 

various edge modification schemes. The dynamic effect of node removal along with 

its static impact on the network is observed in order to study the impact network 

topology has on its robustness. Also by assuming simple models of communication 

between the network nodes, the impact that the routing schemes have on the 

robustness of the network given its topology is studied. 
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Chapter 1 
 
Introduction 
 

The study of attacks on complex networks is important in order to identify the 

vulnerabilities of real-world networks, which can be used either for protection (e.g., of 

infrastructures) or for destruction (e.g., in the control of epidemic diseases). Additionally, 

it can provide guidance in designing more robust artificial networks (e.g., communication 

networks). An important property of networked systems is their robustness against 

various types of failures and attacks on network nodes. Although several design methods 

have been proposed for creating a network that has optimal robustness according to a 

given measure, in most real world situations we are often faced with an existing network 

that cannot be substantially modified or redesigned. Moreover, real world networks are 

result of many different processes that may not take the robustness into account. For 

example we can consider the peer-to-peer networks, which are largely decentralized and 

highly dynamic systems. One cannot have explicit control over their structure to ensure 

properties like robustness under various types of disrupting events such as a random 

failure or an intended attack. The robustness of such networks can be improved by a 

small degree of modification [1]. 

The modification could be in the form of either edge addition or edge rewiring. The 

network can be modified at two different stages to increase the robustness. One is a 

preventive stage in which the network is made more robust so that it does not breakdown 

under attack or failure. The second stage is after a disrupting event, by applying some 

repair strategies to restore the original properties of the network. For applying any kind of 

edge modification to a network to improve its robustness, it is important to understand 

how the existing topologies deal with failures and attacks. In this work, the effect of 
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random failure and targeted attack on network nodes in a particular peer-to-peer overlay 

network, a crawl of Gnutella super-peer network, has been studied. Both static and 

dynamic effects of the node removal have been considered to see if, by suitably 

modifying the network we can improve it robustness against failures and attacks without 

appreciably degrading its performance. 

Two types of cost are incurred by modifying a network. The first type of cost is that 

associated with adding or rewiring edges, i.e. modifying the network. Second is the cost 

incurred due to the changes in particular properties, which the network is designed to 

have, due to the application of various modification schemes on the network. These costs 

are application-specific. The modification schemes are evaluated based on the cost, along 

with the improvement in the robustness measures. 

The propagation of the node failure in the network depends both on the network 

structure as well as the routing strategy followed to pass messages in the network. 

Different routing strategies choose different intermediate nodes to route messages 

between the same end nodes. This leads to congestion at different nodes and hence causes 

their failure. Therefore, the routing strategies also affect the cascading effect of node 

removals in the network. By choosing an appropriate routing strategy the network can be 

made more stable without making any change in the network topology. This method 

would not have costs due to modification of the network, but might lead to the increase in 

communication costs based on the routing strategy. To understand the effect of the 

routing strategies on the robustness of the network, a few routing models have been 

simulated on the network and the cascading effect was observed.  

The remainder of this thesis is organized as follows. Chapter 2 provides background 

and related work on various studies on robustness of complex graphs. Chapter 3 describes 

our edge modification schemes and the metrics used to measure robustness, and Chapter 

4 describes the simulation methodology. Chapter 5 discusses implications of the study of 

robustness as a measure of modification. Chapter 6 studied the effect of routing strategy 

has on robustness and Chapter 6 concludes this thesis. 
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Chapter 2 
 
Background and Related Work 
  

Many authors have studied the effect of failures and attacks on various complex 

networks. Scale-free networks are known to be sensitive to targeted attacks, which are 

biased towards higher degree, in comparison with random attacks[2]. This is due to the 

heterogeneity present in the scale free networks. In these networks, degree distribution 

i.e. probability of a node having degree k, decreases with power of k[3]. Therefore 

randomly chosen node is likely to have a low degree, so its removal has little effect on 

the network. Removal of a high degree node can have a significant effect since such a 

node may hold a large part of the network together by connecting many other nodes. For 

Erdos-Renyi random graphs[6], there is not much difference between random failures and 

targeted attacks due to the homogeneous nature of these networks. In these graphs every 

pair of nodes is connected with a fixed probability p, independently of every other pair. 

They have a binomial degree distribution, Pb(k), which approaches a Poisson distribution 

as the number of nodes becomes large. Hence, there is very less chance of encountering a 

hub. Therefore, targeted attacks have less effect on these graphs. It is found that these 

networks are more vulnerable to random failures than to intended attacks, compared to 

scale-free networks. 

A convenient way to address the robustness of a complex network is to examine how 

the diameter, size of the largest connected component and number of connected 

components, which measure the efficiency of communication (or information flow) 

within the network, are changing under random or intentional attacks. But these measures 

address only the static properties of the networks. Cascading failures have been reported 

for numerous networks, which refer to subsequent failure of other parts of the network 
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induced by the failure of or attacks on few key nodes. Researchers have investigated 

mechanisms leading to cascades of overload failures in complex networks by 

constructing models incorporating the flow of physical quantities in the network [4].  An 

important question for many real-world situations is how attacks affect the functioning of 

a network when the flow of information or other physical quantities in the network are 

taken into consideration. In particular, the removal of nodes changes the balance of flows 

and it may trigger a cascading failure, as the one that happened on August 10, 1996 in the 

western U.S. power grid. Authors have shown that for networks where network flow can 

redistribute among the nodes, intentional attacks on highly loaded nodes can trigger a 

large-scale cascade of overload failures[7]. 
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Chapter 3 
 
Network Modification: Simulation Model 
 

The various schemes which are used to increase robustness of networks are discussed 

here. In addition to that some simple measures which can quantify the robustness of any 

network are also discussed. 

3.1. Edge Modification Schemes 

Various edge modification schemes have been proposed in the literature, which 

aim at improving the robustness of these complex networks [1].  These can be 

broadly categorized into - Edge Addition schemes and Edge Rewiring schemes. Edge 

addition schemes result in increased number of edges or connectivity in the network 

whereas rewiring schemes change the properties of the network while keeping the 

number of edges constant. 

  The following modification schemes are considered: (Note that 'Random' as used 

here means randomly chosen with uniform probability and duplication of edges 

between any two already connected nodes is not allowed) 

1. Random Edge Addition - An edge is added between any two randomly 

chosen nodes. 

2. Preferential Edge Addition - An edge is added between two unconnected 

nodes having the lowest degrees in the network. 

3. Random Edge Rewiring - A random edge is removed and then a random 

edge is added between two random nodes. 



 

6 
 

4. Random Neighbor Rewiring - A node is chosen at random and an edge to 

a random neighbor is disconnected from that node. The loose end of this 

edge is connected to a random node. 

The Random neighbor rewiring is a new edge modification scheme that we have 

introduced. It is a variation from the previously stated Random neighbor rewiring 

schemes [1]. 

If we choose a random neighbor of a randomly chosen node, the probability of the 

neighbor node having degree k is proportional to kpk, where pk is the probability that 

the randomly chosen node has degree k. Therefore the random neighbors of randomly 

chosen nodes have higher degree, given that the assortativity is low. In such cases, 

where assortativity is low, the Random neighbor rewiring scheme disconnects the 

edge connected to a high degree neighbor and reconnects it to a random node, which 

would be a lower degree node given the power law nature of the scale-free graphs. 

This tends to bring in a degree of homogeneity into the graph structure, the extent of 

which depends on the amount of rewiring. 

These edge modification schemes can be mapped to different network 

management processes that take place in unstructured peer-to-peer overlay networks. 

For example, the superpeers connect to new superpeers which come into the network 

and disconnect old superpeers with time, in order to exchange network information, 

as well as to handle the network churn. This process is equivalent to random rewiring 

if no preference is used in choosing new neighbors. Therefore, studying the effect of 

these modification schemes on the robustness of the overlay network can help in 

designing robust network management protocols.  

3.2. Metrics to calculate Robustness 

We measure the robustness of the networks on the basis of following parameters: 

1. Diameter of the graph 

2. Size of the largest connected component (LCC) 
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3. Number of components 

4. Percolation Point 

5. Node Failure 

 

The first three parameters are static measures of robustness of the network, i.e. 

they do not capture the effect of cascading of the network flow upon a failure or an 

attack. These three metrics were chosen as they are simple and also capture the 

essential requirements for a robust network without flow considerations. The 

diameter of graph is the maximum of all longest paths between any two nodes in the 

network. Size of largest connected component is the maximum number of nodes 

present in a component among all the components present. Number of components is 

the number of weakly connected components present in the network. These metrics 

quantify robustness of a network as the diameter is a measure of the maximum time 

for information propagation in the network, whereas the size of LCC and number of 

components measure the availability of the network. A network is considered more 

robust if it has a low diameter and high availability. Therefore any increase in 

diameter, or an increase in the number of components, or a decrease in the size of 

LCC can be considered as degradation of the network and hence reflects on the low 

robustness of the network graph. The last metric Node Failure measures the dynamics 

of node removals. It shows how many nodes go down due to the overload of flow in 

the network caused by the previously removed nodes. It is a measure of the cascading 

effect created due to removing any set of nodes from the network and the breakdown 

in the information flow caused by it. We show that networks where load can be 

redistributed among the remaining nodes, targeted attacks on key nodes can lead to 

breakdown of the whole network. 

The stability of superpeer networks are measured in terms of a certain fraction of 

nodes ( fc ) called percolation threshold [8], removal of which disintegrates the 

network into large number of small, disconnected components. Below that threshold, 

there exists a connected component which spans the entire network. The value of the 
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percolation threshold fc theoretically signifies the stability of the network; higher 

values indicate greater stability against attack. During the experiment, we remove a 

fraction of nodes ft from the network in step t and check whether we reach the 

percolation point. If not then in the next step t + 1 we remove ft+1 = ft + Є fraction of 

nodes from the network and check again. This process is continued until we reach the 

percolation point. After each step, we find out the status of the network in terms of 

the number and size of the components formed. We collect the statistics of s and ns 

where s denotes size of the components and ns, number of components of size s and 

define the normalized component size distribution CSt(s) = sns / Σs sns at step t. We 

compute CSt(s) for all the steps starting from t = 1 and observe the behavior of CSt(s) 

after each step. Initially the CSt(s) shows unimodal character confirming a single 

connected component or bimodal character confirming a large component along with 

a set of small components. As the fraction of nodes removed from the network 

increases gradually, the network disintegrates into several components. This leads to 

the change in the behavior of CSt(s) whereby at a particular step, tn, CStn(s) becomes 

monotonically decreasing function indicating tn as the percolation point. Therefore tn 

is considered as the time step where percolation occurs and the total fraction of nodes 

removed at that step ftn specifies the percolation threshold. Figure 3.1 shows the 

graphs of the component size distributions at various time instances taking Є value as 

0.01. It can be seen that initially there was one big connected component. Later at 

time t = 10, there is a bimodal distribution of the component sizes signifying presence 

of large components spanning the network. At time t = 31, the network completely 

disintegrates into very small components. This corresponds to the percolation point of 

the network. 
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The various edge modification schemes are studied under the light of how they 

affect these metrics which are computed as a function of percentage modification for 

a given percentage of removed nodes. These metrics give us insight into making the 

network more robust against attack on nodes by taking proper preventive measures. 

3.3. Simulation Methodology 

The simulations are mainly concentrated around the preventive measures 

introduced in the first section of this thesis. The effect of failure and attack on the 

original graph and to understand the nature of the network topology is studied first. 

Then the various edge modification schemes are simulated on the network graph to 

get modified graphs. The effect of attacks and failures are observed on these modified 

graphs and the results are compared for the various modification schemes. The 

methodology is described in the flowchart given in Figure 4.1. The network graph, 

modification and attack analysis models are described here. 
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Figure 3.2. : The Component Size Distribution for Gnutella Network for Є = .01, showing the 
occurrence of percolation point at t = 31.   
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3.3.1.Network Graph 

Attack and edge modification schemes were simulated and their effects upon 

the peer-to-peer overlay networks are studied. The simulations were performed on 

the overlay network of size 5000 nodes, obtained by crawling Gnutella. The 

original network contained more than a million nodes but we selected a connected 

subset of the original graph for simulation purpose, since the computation of 

certain metrics is very costly. This subgraph has a heterogeneous degree 

distribution but does not follow power law. Its an hybrid between ER and Power 

Law graphs. Even though real world networks follow power law and are scale 

free in nature when the graph is considered as a whole, subgraphs of these 

networks might not posses these characteristics fully. But they surely have a 

certain degree of heterogeneity as they are random subgraphs of huge 

Gnutella Overlay Graph 

5000 Nodes, 10548 Edges 

Failure & Attack 
Simulation 

Simulate various 
edge modification 

Study the effect 
on Robustness 

metrics

Study the effect 
on Robustness 

metrics 

Cascading Failure 
Analysis 

Failure & Attack 
Simulation 

Figure 3.2 : Simulation Flow Chart: Showing the steps executed for studying the effect of 
various modification schemes and node failures on the graph 
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heterogeneous graphs. Since one of the motivations behind the study of the 

various edge modification schemes is to help in designing robust network 

management protocols, and since these protocols are most effective when based 

on local knowledge, it justifies studying the robustness and the effect of the edge 

modification schemes on random subgraphs of the full network. 

3.3.2.Edge Modification Model 

The edge modification schemes used are random edge addition, preferential 

edge addition, random edge rewiring and random neighbor rewiring as explained 

in the previous section. First two modification schemes add edges between two 

nodes which didn't have any edge between them in the original graph. The last 

two modification schemes try to rewire the edges i.e; number of edges in the 

network essentially remains the same. Edge modification is applied on the 

original graph at various percentages (5, 10, 15, 20, 30, 50, 70 %) for each of the 

four schemes mentioned above. 

3.3.3.Attack Model 

Two types of node removal are studied, Random Failure and Preferential 

Attack. In random failure a set of random nodes are removed from the network. In 

case of preferential attack, a set of nodes with high degree are removed from the 

network. This type of attacks can be very crucial to the network as the more 

important nodes, hub-like nodes which contribute more in network management, 

will be down which might lead to a break down of the network into various 

partitions. On each of the original as well as the modified graphs, three levels of 

failure and attack (5, 10, 15 %) are simulated and the values for the above 

mentioned metrics were observed. Therefore, the effect of the edge modification 

is studied by seeing how the measured parameters of the network change with the 

amount of modification for various levels of failure and attack.  
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3.3.4.Cascaded Failure Model 

For studying the cascaded effect of failures, we assume that the number of 

messages being transmitted through a node is proportional to the betweenness of 

that node in the network. Also, initially the network is in a stationary state where 

the load at each node is less than the capacity of that node. Therefore we assign 

capacities to each node on the basis of its initial betweenness centrality in the 

network, (1 + α)L, where L is the initial load (initial betweenness centrality) at 

each node and α is a small positive fraction. For our simulations we used the 

value α = 0.3. The load at each node at any time step is computed as a function of 

total number of shortest paths passing through that node. We have used a 

modification of dijkstra algorithm for computing betweenness centrality of each 

node[8]. Then a small percentage of nodes is removed using either the Random 

Failure model or Targeted Attack model. After attack step, loads of the removed 

nodes are redistributed in the network which changes the betweenness centralities 

of the remaining nodes. Then each node is checked to see if the load i.e; the 

betweenness centrality of that node, has exceeded its capacity or not. If yes, the 

node is treated as failed and removed from the network. This way the cascading 

of node failures was simulated for a fixed number of time steps or until the 

network had become stable again. 
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Chapter 4 
 
Network Modification: Results & Analysis 
 

4.1. Static Analysis 

The static analysis deals with the first three metrics mentioned in the last chapter. 

It considers the static network, i.e. it measures only the network properties after few 

nodes are removed form the network and doesn’t consider the propagation of this 

failure in the network due to the initial node removal. The results from the static 

analysis show that both the addition schemes perform better than the rewiring 

schemes. Addition of new edges increases redundancy in the paths between any two 

nodes, and hence increases the size of largest connected component, while decreasing 

the diameter and the number of components. But edge addition is costly as it would 

lead to extra bandwidth usage in the overlay network. 

Table 1 and 2 show some of the simulation results for the various schemes. It can 

be observed that the number of components increase drastically in case of targeted 

attack as compared to random failure. As we increase the percentage of rewiring, 

number of components decrease indicating increased connectivity in the network. 

Similarly, size of largest connected component (LCC) also grows with the percentage 

of edges rewired.  
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Table 1: Results of Edge Addition Schemes on Gnutella Network  

  

Table 2: Results of Edge Rewiring Schemes on Gnutella Network 
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Figure 4.1 shows how the diameter changes with the percentage of modification 

for all the four modification schemes. Figure 4.2 shows how the size of the largest 

connected component changes with percentage modification and Figure 4.3 shows the 

same results for the number of components. The left side graphs shows the results 

when 5% of nodes are removed randomly from the network and the right side graphs 

show for the case when 5% nodes are removed due to preferential attack. 

It can be seen from the results that Random Neighbor Rewiring outperforms other 

schemes in the static analysis of the network, considering the cost of modifications. 

This can be explained by the assortativity of the network, having an initial value of -

0.19, which means that there is low correlation between the degree of neighboring 

nodes. Hence, as mentioned before the Random Neighbor Rewiring tries to make the 
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Figure 4.2 : The effect of modification schemes on the Size of the Largest Connected Component of the network 
for both random and preferential attack. 
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Figure 4.1 : The effect of modification schemes on the Diameter of the network for random and preferential attack. 
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network more homogeneous and increases the robustness in terms of availability of 

the network.  

 

 

4.2. Dynamic Analysis 

The dynamic analysis considers how the network changes with time. The metrics 

we measure in the dynamic analysis are the percolation point, which is the point at 

which the network disintegrates on removing a constant fraction of the nodes at each 

instant, and number of nodes failed due to the cascading effect of the model of 

communication we proposed earlier. 

Figure 4.4 shows how the percolation point changes as a function of the 

percentage modification for each of the modification schemes. It can be seen that the 

percolation point is reached slower when Addition Schemes are used and also gets 

slower with in increase in the % modification. From the graph we can also see that 

Random Neighbor Rewiring Performs as well as the Addition Schemes.  
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Figure 4.3 : The effect of modification schemes on the Number of Components of the network for both random 
and preferential attack. 
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Figure 4.4 : The effect of modification schemes on Percolation Point of the network.

Figure 4.5 : Node Failure due to Cascading Effect for different types of Attacks 
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Figure 4.5 shows the failure rate of nodes for random and targeted attacks when 

cascading is considered. Preferential attack on 5% nodes causes more than half of the 

nodes to fail in the network (in only two iterations), as expected. It can be seen that 

the removal of highest degree node is more devastating for the network than attacking 

5% nodes of the network randomly. 

 

Table 3 : Cascading effect on Removal of Highest Degree Node of Gnutella Network 

Table 3 shows the cascading effects on removal of the highest degree node from 

the network. As we had stated earlier, removal of a highly connected node from the 

network adversely affects the information flow capability of the network. This fact 

can be easily seen here as removal of the highest degree node from the network 

causes 1304 nodes to fail in 8 iterations of cascaded analysis. Figure  

Table 3 also highlights the performance of various edge modification schemes. 

Clearly, edge addition schemes perform better than the edge rewiring schemes as they 

increase the connectivity between nodes. They create more shortest paths between 

nodes not passing through the highest degree node. Therefore the amount of load to 

be redistributed after the removal is less, and hence causes less nodes to fail due to 

the redistribution.  The edge rewiring schemes do not perform well, as they do not 

contribute much in shifting the betweenness of the highest degree node to other nodes 

in the network.   
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Table 4 : Cascading Effect with Edge Addition Schemes on Gnutella Network 
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Figure 4.6 : Node Failure due to Cascading Effect as a function of the amount of Addition
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We also evaluated different edge modification strategies when a small fraction of 

the network nodes are removed. We show the simulation results obtained for 5% 

random and preferential attacks. Table 4 shows the results for edge addition schemes 

and we find that when a larger number of nodes in the network are randomly 

removed, preferential addition is more efficient. This is represented graphically in 

Figure 4.6. Random addition loses out to preferential addition scheme as the 

randomly chosen nodes which gain edges and contribute in new shortest paths are 

most likely removed in random failure. In case of preferential attacks both the 

schemes fail to make any improvement in the network. 

 Results on using rewiring schemes are shown in Table 5.  It is seen that rewiring 

schemes also do not perform well in case of preferential attack as compared to 

random failure. But it can be seen that at lower modification percentages the rewiring 

schemes are better than addition schemes. 

Table 5 : Cascading Effect with Rewiring Schemes on Gnutella Network 
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A high percentage of addition is required to gain more advantage than the 

rewiring schemes. This observation is particularly important because in case of 

removing a set of nodes and not just the highest degree node, rewiring is more 

beneficial than and also not as costly as addition. At high modification percentages, 

edge addition schemes outperform both the rewiring schemes which is expected, but 

high percentage of addition would also be extremely costly.  
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Chapter 5 
 
Effect of Routing Strategies 
 

5.1.   Introduction 

The routing strategy used to route packets in the network decides the flow of 

traffic among the network nodes. A few examples of these strategies could be to 

forward the packet to a random neighbor (random-walk), or to send the packet to all 

the neighbors (flooding), or to send it to the highest degree neighbor (preferential-

walk), or to send the packet to the destination by the shortest path. Each of these 

routing strategies require different amount of information of the network, for 

example, only the degree of neighbors in preferential-walk or the information of the 

whole network which routing using the shortest paths. 

Each of these strategies might choose different nodes while routing between the 

same source and destination based on the criteria they emphasize. This would lead to 

an uneven distribution of the load at each node based on its location in the graph 

causing congestion at some nodes.  Therefore the routing scheme along with the 

network topology results in the congestion of certain nodes. If these nodes stay 

congested, stalling the passing of messages between other nodes, the congestion 

would spread causing more delay or failure of transmission. The amount and speed of 

the spread of the congestion in the rest of the network depends on the network 

topology as we have seen in the earlier results. 

 Therefore, the amount of propagation of the node failure in the network depends 

both on the network structure as well as the routing strategy followed to route 
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messages in the network. The cascading effect on the gnutella network is studied 

while using different routing schemes. The impact of the routing scheme is observed 

by comparing the various schemes on the same network, whereas the importance of 

the topology is observed by comparing the results on gnutella network to those on a 

scale-free power law graph. 

We tried to study the cascading effect when random routes were used to 

communicate. It is important to study the random paths in the network because on 

absence of global information in the network, the node has to route packets based 

wholly on local knowledge. The basic routing strategy is to send the message to a 

random neighbor when no information is available. This is also called a random walk 

in the network. We also show the simulation results when partial global data is 

available. That is we follow the shortest path to route when we know it and we use a 

random path when the shortest path information is not available. We see how the 

network is affected as a function of deviation from following shortest paths. 

5.2. Routing Model 

The model considered is as follows. At any time instant, some random source 

nodes try to communicate with random destination nodes by sending packets. This 

time instant is assigned for the transmission of these packets from source to 

destination. Each node in the network has a capacity. Two case were analyzed, one 

with all nodes having constant capacity and the second where the capacity of the node 

is proportional to its degree. A node is considered congested if the number of packets 

routed through this node at a time instant exceeds its capacity. Congested nodes are 

considered failed, since these nodes can’t be used for routing immediately.  

As in the earlier analysis, we don’t consider the recovery of nodes from the congested 

state. Therefore they are removed from the network. This process is repeated for 100 

steps and its effect on the network is studied. 

 First the number of pairs of nodes allowed to communicate at a time instant is 

identified by simulating the model with different values of this number and then a 

value which stabilizes the total node removals is chosen. Shortest paths are used to 
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route messages in the network and a constant capacity of 5 is assigned to each node. 

Figure 6.1 shows the cascading effect as a measure of number of node failed over 

time. It can be seen that at 100 pairs per iteration, the number of nodes failed 

stabilized even though it reaches a high fraction of the network. Therefore, the 

number of pairs to communicate per iteration is taken as 100, i.e., 100 random pairs 

are allowed to communicate before the congested nodes are checked for and removed 

from the network.  

 

The routing schemes considered for routing packets in the network are the 

“random walk” routing and “shortest path” routing. As mentioned earlier these are the 

two extreme cases in terms of the amount of network knowledge required to route 

packets. We compare these two routing strategies on a given network. Also, how the 

network is affected due to deviation from one routing scheme to the other is studied 

by considering deviation percentages of 20, 40, 60 & 80.   

Figure 5.1 : Effect of No. of Communicating Pairs on the cascading effect of node failure on 
using the shortest paths to route the packets and a constant capacity of 5 at each node. 
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5.3. Random Walks 

More recently, random walks on finite graphs have received much attention, and 

mostly to measure the quantitative aspects such as how long we have to walk before 

we return to the starting node? , before we see a given node?, before we see all 

nodes?, etc.[11]. Work has also been done on the relation of random walks with the 

node properties, which are a direct consequence of the network topology. Some 

important results regarding the node properties of the nodes chosen in Random Walks 

are understood better before trying to study the effect of the network topology in the 

model proposed above. 

The basic definition of a random walk on a graph is as follows: given a graph and 

a starting point, we select a neighbor of it at random, and move to this neighbor; then 

we select a neighbor of this point at random, and move to it etc. The (random) 

sequence of points selected this way is a random walk on the graph[9]. Let G = (V,E) 

be a connected graph with n nodes and m edges. Consider a random walk on G which 

starts at the initial node v0. If at the t-th step we are at a node i, we move to j, a 

neighbor of i with a probability (1/Ki ); ie., the walker selects the neighbors of i with 

equal probability. Therefore the transition probability Pij to go to node j from node i 

at time t is:  

௜ܲ௝ሺݐሻ ൌ ∑ ஺ೖೕ

௄ೖ
௜ܲ௞ሺݐ െ 1ሻ௞ ,                       (1) 

where Akj is the entry in the adjacency matrix (equal to 1 if k and j are neighbors, 

otherwise 0) and Kk  is the degree of node k. The explicit expression for the transition 

probability Pij(t) to go from node I to node j in t steps is obtained by iterating equation 

(1) as follows: 

௜ܲ௝ሺݐሻ ൌ ∑ ஺೔ೕభ
௄೔

.
஺ೕభೕమ
௄ೕభ

…
஺ೕ೟షభೕ

௄ೕ೟షభ
௝భ௝మ…..௝೟షభ  .               (2) 

While comparing the expressions for Pij(t) and Pji(t), due to the undirectedness of 

the network, we can see that  
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௜ܭ ௜ܲ௝ሺݐሻ ൌ ௝ܭ ௝ܲ௜ሺݐሻ.                                             (3) 

For the stationary solution, i.e. at the infinite time limit, equation (3) implies that 

Ki Pj
∞ = Kj Pi

∞, where Pj
∞ = limt -> 0 Pij(t). Therefore we get  

௜ܲ
ஶሺݐሻ ൌ ௄೔

ࣨ
,    where ࣨ ൌ  ∑ ௜௜ܭ .                                 (4) 

This shows that the more links a node has to other nodes in the network, the more 

often it will be visited by a random walker. We have tried to represent this result also 

in terms of the Random Betweenness Centrality. Betweenness Centrality of node is 

defined as the fraction of shortest paths between node pairs that pass through this 

node. Therefore, betweenness reflects the amount of the influence a node has over the 

spread of information through the network. By considering only shortest paths, the 

betweenness centrality shows the influence of any node when the information routing 

is based on shortest paths. We could take into consideration the routing strategy while 

measuring the influence of a node in the spread of information. This would help us to 

find the ‘important’ nodes of the given network topology specific to the routing 

strategy used. A measure based on the random walks, random-walk betweenness, is 

proposed by M.E.J Newman [10] which counts the expected number of times a node 

is traverse by a random walk between two other nodes.  

The method used to compute this measure of random-walk betweenness is briefly 

explained here: 

1. Construct the matrix D−A, where D is the diagonal matrix of vertex degrees 

and A is the adjacency matrix. 

2. Remove any single row, and the corresponding column. For example, one 

could remove the last row and column. 

3. Invert the resulting matrix and then add back in a new row and column 

consisting of all zeros in the position from which the row and column were previously 

removed (e.g., the last row and column). Call the resulting matrix T, with elements 

Tij. 
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4. Calculate the betweenness from Eq. (7), using the values of Ii from Eqs. (5) and 

(6).  

      

௜ܫ
ሺ௦௧ሻ ൌ  ଵ

ଶ
∑ ௜௝หܣ ௜ܶ௦ െ ௜ܶ௧ െ ௝ܶ௦ ൅ ௝ܶ௧ห௝ ,  for i ≠ s, t.         (5) 

௦ܫ
ሺ௦௧ሻ ൌ  1, ௧ܫ

ሺ௦௧ሻ ൌ 1.                                 (6) 

ܾ௜ ൌ  
∑ ூ೔

ሺೞ೟ሻ
ೞಬ೟

భ
మ௡ሺ௡ିଵሻ

                                       (7) 

Since the random betweenness of a node counts the number of paths through it, 

i.e. the number of times the node is visited by a random walker, it should be 

proportional to the degree of the node. Figure 6.2 shows this result true for a scale-

free power-law graph.  It can be seen that the random betweenness values are indeed 

proportional to the degree of the nodes. 

Figure 5.2 : Graph showing the relation between random betweenness of the nodes and their degree 
for a power law graph. 
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We considered two variations of random walks. One is the random walk as 

defined above but with the restriction that a node visited once cannot be visited again 

when going from the source node to the destination. This is obtained by constructing 

a random spanning on the network. We call this scheme the Random Walker 1 from 

here on.  The second one is a variation to the first scheme. In the first the spanning 

tree is built by expanding the tree from a random node. The second scheme uses 

selection criteria for the node which would lead to the expansion of the tree. The node 

chosen to expand is the node to which path degree is the highest. We define the path 

degree as the sum of degrees of all the nodes on a path. We call this scheme the 

Random Walker 2 from here on. The betweenness of nodes can be computed by 

simulating the routing schemes on the network and counting the number of times a 

node is selected in a path between a pair of nodes. Since to compute this measure for 

all pairs of nodes is very computationally intensive, we simulated the routing schemes 

to communicate from about 150 nodes to all other nodes. That is, the random walkers 

are initiated 4999 times at each of the 150 nodes. The computed Random Walkers 

Betweenness are compared with the Random Betweenness of the nodes. 

Figure 6.3 compares the betweenness of nodes when Random Walker 1 is 

simulated to the theoretical Random Betweenness. It can be seen that the trend of 

increase in value of betweenness with the increase in degree is followed in the 

simulated values also. But it can be seen that the betweenness is not proportional the 

degree. In fact the betweenness values are proportion to the square of degree. Similar 

behavior can be seen in Figure 6.4 for the case of Random Walker 2. This deviation 

could be due to observing only a fraction of communicating pairs in the simulation of 

the random walkers. There is also a restriction on the number of times a node can 

appear on a path between two nodes, whereas no such restriction is present while 

calculating the theoretical Random Betweenness. 
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Figure 5.3 : Graph showing the comparison between Random Betweenness and Random Walker1 
Betweenness for power-law graph. 

Figure 5.3 : Graph showing the comparison between Random Betweenness and Random Walker2 
Betweenness for power-law graph. 
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5.4. Cascading Effect 

The routing model is simulated on the Gnutella graph described in Chapter 4.  

The cascading effect is studied for both the random walking variations and compared 

with the shortest path routes to see how many nodes are getting removed, and how the 

network is affected by these removals, i.e. the size of the LCC and the number of 

components, after each iteration. The effect of the amount of global information 

present is also observed by applying various percentages of deviation from the 

number of shortest paths used for routing. 

5.4.1.   Random Walker 1 

Figure 6.5 shows the cascading effect in terms of number of nodes failed due 

to congestion for the case where random walker 1 is used to route packets 

between the random source and destination pairs. It can be seen that on average 

the number of nodes failed after about 30 iterations is almost equal in both 

Random Path Routing and Shortest Path Routing. This value reaches to about 600 

nodes and stabilizes. The more important observation is how the two routing 

schemes affect the network before they reach the point after which there is not 

much difference between the two. The steep raise in the value of the number of 

nodes failed occurs much sooner in case of Random Path Routing (12-17th 

iteration), compared to Shortest Path Routing (20-25th iteration).  

The point at which the number of nodes removed is stabilized varies between 

500 and 600 for the various % deviations from shortest paths. This shows that 

there are at max 500 important nodes in the network on whose removal the whole 

network disintegrates. And these nodes are made to fail in all three routing 

schemes given sufficient time, 30 iterations for the considered routing model. 

Also it can be seen that the number of node failures never exceeds 600 nodes in 

all the cases. 
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Figure 5.5 : Cascading effect in terms of number of nodes failed for Random Walker 1 

Figure 5.6 : Cascading effect in terms of number of components for Random Walker 1 
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Similar trends are observed while measuring the number of components and 

the size of the largest connected component as shown in Figure 6.6 and Figure 6.7 

respectively. The number of components increases drastically due to the removal 

of nodes and reaches a value about 2225. At this point the network is completely 

disconnected having a lot of small components, mostly single disconnected nodes. 

This can be confirmed by looking at how the size of the largest connected 

component decreases drastically and reaches to a very low value. 

 

5.4.2.   Random Walker 2 

Figure 6.8 shows the cascading effect in terms of number of nodes failed due 

to congestion for the case where random walker 2 is used to route packets 

between the random source and destination pairs. Similar results are observed as 

in the case of Random Walker 2. On average the number of nodes failed after 

Figure 5.7 : Cascading effect in terms of size of LCC for Random Walker 1. 
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about 30 iterations is almost equal in both Random Path Routing and Shortest 

Path Routing. Here also this value reaches to about 600 nodes and stabilizes as in 

the case Random Walker 1. This agrees with our earlier observation of the 

presence of important nodes, which are about one-tenth the size of the network in 

number, on whose removal the whole network disintegrates.  

The difference in the points where the number of failures takes a steep raise is 

also present and is more prominent as they are more spread over the time. The 

steep raise even much earlier for Random Path Routing (6-8th iteration) and there 

is a smooth increase in the value of the point with the decrease in the percentage 

of deviation and finally reaches the point of rise for the Shortest Routing Scheme 

(24-26th iteration).  

 

Figure 5.8 : Cascading effect in terms of number of nodes failed for Random Walker 2. 
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Figure 5.9 : Cascading effect in terms of number of components for Random Walker 2. 

Figure 5.10 : Cascading effect in terms of number of components for Random Walker 2. 



 

35 
 

5.4.3.   Comparison with results on power-law graph 

The results on Gnutella network are compared with those on scale-free power-

law graph to understand the effect of the topology. Figure 6.11 and Figure 6.12 

show the cascading effect in terms of number of nodes failed due to congestion 

when random walker 1 and random walker 2 are used respectively. It can be seen 

that the number of nodes failed do not stabilize till the 100th iteration, and the 

maximum number is attained when Random Walker 2 is used. This implies that 

the power-law graph topology is more robust than the Gnutella network topology. 

Also, it can be seen that the power-law network is more vulnerable to Random 

Walker 2 and least vulnerable to Random Walker 1. 

 

 

Figure 5.11 : Cascading effect in terms of number of nodes failed for Random Walker1. 
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5.5. Routing Analysis 

The above results of Cascading effect can be explained by looking at the nodes 

that have been removed at each of the iteration. For this let us look into the total 

degree of the nodes removed at each iteration. Figure 6.13 compares the total degree 

of the nodes removed per iteration for Random Walker 1 and Shortest Path Routing, 

and Figure 6.14 compares the total degree of nodes removed per iteration for Random 

Walker 2 and Shortest Path Routing. 

It can be seen that the total degree of removed nodes is very high initially for the 

Random Walk Routing compared to Shortest Path Routing. This means either high 

degree nodes are removed or lots of smaller degree nodes are removed. Due to this 

there is an earlier degradation of network in case of Random Path Routing. On 

observing the data it has been seen that both high degree nodes and also large number 

of medium degree nodes are removed initially while using Random Path Routing 

schemes. 

Figure 5.12 : Cascading effect in terms of number of nodes failed for Random Walker 2. 
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Figure 5.13 : Total degree of nodes removed – Random Walker 1. 

Figure 5.14 : Total degree of nodes removed – Random Walker 2. 
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Since the knowledge of the degree of the nodes removed by the routing schemes 

in important in analyzing the effect they have on the network, we tried to formulate 

the degree of the nodes removed due to random walks. Let the probability that a node 

had degree k be pk and the probability that a given node fails due to congestion be qk. 

Therefore, the probability that a node of degree k fails due to congestion is qkpk. This 

probability can be expressed in terms of generating functions as follows 

ሻݔ଴ሺܩ ൌ  ∑ ௞ݔ௞݌௞ݍ
௞ . 

Taking a power-law scale-free graph with the degree distribution  ࢑࢖ ן  ૚. Asି࢑

discussed in the previous section, in random walks the number of times a node gets 

visited is proportional to its degree k. Since the capacity of the node is assumed to be 

constant, the probability of a node failing, i.e. the probability of a node exceeding its 

capacity is proportional to the number of times it gets selected as a node in the paths 

between other nodes. Therefore the probability of failure of a given node is 

proportional to its degree. Hence, we have  ࢑ࢗ ן  So, we can write the generating  .࢑

function of the probability of a node of degree k to fail as  

ሻݔ଴ሺܩ ൌ  ∑ ܿ݇݇ିଵݔ௞ ൌ ∑ ௞ ௞ݔܿ  ௞ , where c is a constant. 

The probability of a node to get congested and eventually removed from the 

network is shown to be independent of its degree. Therefore higher degree nodes tend 

to fail much more than the lower degree nodes.  

We try to verify the above formulation by simulating the random walkers on the 

power-law graph to route packets between 10,000 random pairs and seeing which 

nodes exceed their capacity and noting their degree. Figure 6.15 shows the results for 

random walker1 and Figure 6.16 shows the results for random walker 2. It can be 

seen that the distribution is proportional to k. This follows our earlier result, where 

the betweenness measured for the random walkers was proportional to k2 for lower 

degrees. By replacing qk by k2 instead of k we get a more approximate equation for 

our random walkers which says the probability of failure of a node of degree k is 

proportional to its degree. Therefore, the simulation results support our formulation. 
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Though Figure 6.15 shows a better fit for lower degrees is a k2 curve, above the 

degree 40, the data points show that the probability is linear to the degree.  

 

 

 

 

 

 

 

 

Figure 5.15 : Graph showing the probability of choosing a node of degree k  while using Random 
Walker1 on a power-law graph. 
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The graphs also explain the difference of the affect the Random Path Routing 

scheme had on the cascading effect results observed on the scale-free power-law 

graph. In case of Random Walker 2, not only the high degree nodes have a high 

probability of failure but also the medium degree nodes. This leads to a larger number 

of medium and high degree nodes to fail hence increasing the cascading effect in the 

network.  

 

 

 
 
 
 

Figure 5.16 : Graph showing the probability of choosing a node of degree k  while using Random 
Walker2 on a power-law graph. 
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Chapter 6 
 
Conclusion 
 

In peer-to-peer networks, it is very important to know how to tackle random 

failures and targeted attacks in an efficient way as they are very common. We have 

shown that with small modifications we can improve robustness of these networks. 

We have dealt with the 'preventive' methodology i.e., trying to modify the network to 

make it robust against attacks and failures. In our simulation for static analysis, we 

have noticed that addition schemes perform better than the rewiring schemes as 

expected, but they are expensive. Considering the cost incurred while rewiring or 

adding the edges, we see that the Random neighbor rewiring performs better than the 

others as it tries to equalize the degree among all the nodes, making the network more 

robust against targeted attacks. The cascading effects in the peer-to-peer networks are 

demonstrated by taking a simple data flow model. We have also performed the 

dynamic analysis for the various modification schemes which has given us more 

insight into the usefulness of the rewiring schemes over addition schemes when a 

small fraction of network nodes are removed. The knowledge of how the various 

modification schemes affect the robustness of the network can be used to design 

better distributed network management protocols.  

The effect of routing on the dynamics of the network has been studied. This gives 

us an insight into how different routing strategies can lead to congestion at different 

nodes. This knowledge is useful in selecting a suitable routing scheme, given a 

network topology, which leads to efficient network communication. Therefore, in 

cases where we have no control on the topology of the network or changing the 



 

42 
 

topology is very costly, we can implement a routing strategy with increases the 

throughput of the network. 
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