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Chapter 1

The Red-Blue Problem

1.1 Motivation

Many real-world problems can be modeled as matrices consisting of C different types
of cells. We refer to such matrices as C coloured matrices. In addition to the C
colours, a cell might also be of no colour at all, a situation where we refer to the cell
as being empty. For all such matrices with various values of C, of particular interest
to us is the case C = 2.

The most obvious examples of these matrices are microarrays. We consider a
particular sub-type: DNA microarrays. These are small, solid supports onto which
the sequences from thousands of different genes are immobilized, or attached, at fixed
locations. Microarrays are very important in the study of areas such as gene expres-
sion, genomic gains and losses, as well as mutations in DNA. They allow scientists
to analyze expression of many genes in a single experiment quickly and efficiently.
Microarray technology is used to try to understand fundamental aspects of growth
and development as well as to explore the underlying genetic causes of many human
diseases.

For an example of how microarrays are used in studying gene expression, consider
two cells: cell type 1, a healthy cell, and cell type 2, a diseased cell. For each cell
type, scientists isolate messenger RNA (mRNA) from the cells and use this mRNA as
a template to generate a strand of DNA complementary to the original DNA of the
cell. This type of newly produced DNA is known as cDNA. Different fluorescent tags
are attached to the cDNA produced from the different cell types, so that the samples
can be differentiated in subsequent steps. The two labeled samples are then mixed
and incubated with a microarray. The labeled molecules bind to the sites on the array
corresponding to the genes expressed in each cell. This microarray is then scanned in

1



2 1. The Red-Blue Problem

a microarray scanner to visualize fluorescence of the two fluorophores. Thus it can be
represnted as a matrix with colour C = 2. The relative intensities of each fluorophore
may then be used in ratio-based analysis to identify up-regulated and down-regulated
genes.

Many sophisticated statistical algorithms need to be performed on microarrays in
order to analyze the vast amounts of biological data present on them. These include
permutation analysis, k-means clustering, t-tests, etc. The results of these operations
correspond to important biological data, for example, the level of expression of a gene,
or the sequence of nucleotides that are part of a gene, or finding the centers of gene
expression. One would also like to extract specific gene sequences, which is the same
as extracting specific coloured chains.

Other examples of such matrices include grayscale images in image processing,
which consist of white and black pixels only. The matrices are also used to represent
memory storage devices, in which cells correspond to individual memory locations,
and cell transitions represent applications of different voltages at different cells.

There are many tasks we wish to perform efficiently in these situations, and this
problem corresponds to finding efficient algorithms for manipulating the cells of such
matrices. Such manipulations might include, as mentioned earlier, k-means clus-
tering, t-tests, and also sorting the cells, permuting them to achieve or to remove
homogeneity, or emptying cells of a particular colour without affecting those of other
colours, using specially designated receptor cells. We consider the problem of empty-
ing all cells from a matrix with colour C = 2, using the minimum possible number of
transitions.

1.2 Problem Definition

We are given an M ×N matrix of cells. Each such cell can have 3 possible values:

• R - Red

• B - Blue

• E - Empty

Let Nr denote the number of red cells, Nb denote the number of blue cells and Ne

denote the number of empty cells.
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Then M ×N = Nr + Nb + Ne

A cell with value E can exchange its value with any of its neighbouring cells. A
cell with value R or B can exchange its value only with a neighbouring E cell.

Such exchanges are achieved in real-world examples, such as microarrays, with the
help of different voltages being applied at the different positions of the microarray.

We denote the cell in the ith row and jth column as (i, j).
An R receptor is located outside the matrix, adjacent to the cell (1, 1). Any R in

this cell is removed by the R receptor, and hence can be replaced in cell (1, 1) by an E.

Similarly, a B receptor is located outside the matrix, adjacent to the cell (1, N).
Any B in this cell is removed by the B receptor, and hence can be replaced in cell
(1, N) by an E.

Thus, these receptors provide a mechanism for emptying R and B cells from the
matrix.

For example, consider the following matrix and its associated receptors:

A =

R �
⎛
⎜⎜⎝

E B B R
B R R B
B B R B
R R B R

⎞
⎟⎟⎠

� B

Here, M = 4, N = 4, Ne = 1, Nr = 7, Nb = 8

However, for the sake of simplicity, whenever we give any examples of matrices,
we shall omit representations of the R and B receptors and implicitly assume their
existence unless stated otherwise.

Without the receptors shown, a typical example case looks like:

A =

⎛
⎜⎜⎝

E B B R
B R R B
B B R B
R R B R

⎞
⎟⎟⎠

Within this framework, we examine a number of interesting problems. For exam-
ple, consider the problem of finding a lower bound on the number of E cells required
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in the matrix, in order to ensure that all the non - E cells can be emptied. We prove
that this lower bound is Ne = 1, i.e. even if the matrix contains just 1 E cell, it is
possible to empty all the R and B cells from it, using this E cell.

The proof for this particular lower bound also yields a strategy to empty all the
coloured cells from the matrix. However, this strategy doesn’t account for the possi-
bility that emptying cells might become progressively easier as the number of E cells
in the matrix increases. Hence, in order to devise an optimal algorithm, we must
consider a strategy that takes advantage of the inherent structure of the problem.

It is our intuition that the problem of emptying all coloured cells from the matrix
requires Ω(n3) time. We produce a proof for this particular lower bound.

Having obtained such a proof, we describe an algorithm that empties the entire
matrix, which in addition to having optimal asymptotic time complexity, also mini-
mizes the number of cell transitions required to achieve its task. We also prove the
optimality of this algorithm.

In addition, we have discussed our implementation of this algorithm, and its ap-
plication to matrices of various sizes and contributions. We start with a fixed number
of empty cells Ne and vary the matrices according to the difficulty of emptying them
greedily. We then repeat this procedure over different values of Ne. We have pre-
sented the results obtained for these cases and tried to infer the influence of factors
such as Ne and the distribution of R and B cells on the cost of emptying the matrix.

1.3 Lower Bound for Ne Required to Empty a Ma-

trix

We wish to prove that if Ne ≥ 1, all the coloured cells in the matrix can be emptied.

In order to prove this, if we can give a procedure for 1 E to remove a coloured
cell from the hardest possible position X, which does not depend on removing any
cells prior to removing the cell at X, we can use that procedure to remove all other
coloured cells subsequently.

Let us elaborate on the notion of the hardest possible position. Consider the
following 4× 4 matrix:
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⎛
⎜⎜⎝

E B B R
B B B B
B B B B
B B B R

⎞
⎟⎟⎠

The B receptor is blocked by an R cell, so no B cells can be emptied in this con-
figuration.
Now, consider the R cell at position (M, N):

• This R is separated from the cell (1, 1) adjacent to the R receptor by only B
cells.

• Moreover, the lone E cell in the matrix is the maximum possible distance away
from this R cell, i.e. at cell (1, 1).

It is clear that if we can show a procedure to remove this R cell, which doesn’t
depend on removing any cell prior to it, we can use then this procedure to empty any
remaining R or B cell from the matrix, no matter how many opposite coloured cells
separate it from its own receptor or how far it is from the nearest E cell. Thus we
can see that this R cell at (M, N) in this example matrix is at the hardest possible
position, and providing a strategy for removing it, without requiring the removal of
any other cell, is equivalent to proving that 1 E cell suffices to empty any given matrix.

Lemma 1 For any given matrix A, ∃ always a strategy for emptying A, if Ne ≥ 1

Proof: Consider the following 4× 4 matrix A:

A =

⎛
⎜⎜⎝

E B B R
B B B B
B B B B
B B B R

⎞
⎟⎟⎠

Here, the R cell at (4, 4) is at the hardest possible position to empty.

Now, for a 2× 2 subset (
R B
x E

)

of some given matrix, consider the following series of transitions:
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(
R B
x E

)
−→

(
R E
x B

)
−→

(
E R
x B

)
−→

(
B R
x E

)

These transitions prove that any RB duo can be converted to a BR duo and vice-
versa using only 1 adjacent E cell, and without disturbing any other cell.

We denote any transformation of this type as RB
E
↔ BR

E
.

Now, consider the following series of transitions:

⎛
⎜⎜⎝

E B B R
B B B B
B B B B
B B B R

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝

B B B R
B B B B
B B E B
B B B R

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝

B B B R
B B B B
B B E R
B B B B

⎞
⎟⎟⎠

−→

⎛
⎜⎜⎝

B B B R
B B E B
B B B R
B B B B

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝

B B B R
B B E B
B B R B
B B B B

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝

B B B R
B B E B
B R B B
B B B B

⎞
⎟⎟⎠

−→

⎛
⎜⎜⎝

B B B R
B R E B
B B B B
B B B B

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝

B B E R
B R B B
B B B B
B B B B

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝

B R E R
B B B B
B B B B
B B B B

⎞
⎟⎟⎠

−→

⎛
⎜⎜⎝

B R B R
E B B B
B B B B
B B B B

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝

R B B R
E B B B
B B B B
B B B B

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝

E B B R
E B B B
B B B B
B B B B

⎞
⎟⎟⎠

Thus we have removed the R cell at the hardest possible position (M, N), and
initially separated from its receptor entirely by B cells, using a sequence of RB

E
↔ BR

E

transitions. Hence every other R or B cell in A can be removed using a sequence of
such transitions. Also, it is clear that all the R or B cells in any other given matrix
where Ne ≥ 1 can be removed using similar sequences of RB

E
↔ BR

E
transitions. �

It is also apparent upon inspection that removing an R or B cell in this manner
takes O(n) time. In many cases, a coloured cell will have a clear path of E cells to its
receptor, and will not be separated thus by oppositely coloured cells, and emptying
it will hence require fewer transitions. Thus the procedure we have shown accounts
for the worst case scenario.
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1.4 Complexity of The Problem

For a cell at position (i, j), at least �√i2 + j2� transitions will be required to empty
it. Thus, the minimum number of transitions required to empty all such cells is given
by:

S =

M∑
i=1

N∑
j=1

�
√

i2 + j2�

The order of this double summation S is the worst case lower bound of the prob-
lem of emptying all cells from the matrix.

Without loss of generality, let us assume that M = θ(N)

Let S ′ = S + T , where T =
∑N

i=1

√
i2 + i2

Now, S ≥ N2, so adding T to S will not change the order of S.

Hence S = θ(S ′).

It is trivial to see that S = O(n3):

S ≤ √2
∑

i

∑
j

√
max(i, j)2

S ≤ 2
√

2n ∗ n + (n− 1) ∗ (n− 1) . . .

S = 2
√

2
∑

n2

Hence, S = O(n3)

However, we are much more interested in obtaining a Lower Bound for S. Consider:

S ′ ≥ √2
∑

i,j

√
min(i, j)2 +

∑N
t=1

√
t2 + t2

S ′ = 2
√

2n ∗ 1 + 2 ∗ (n− 1) + 3 ∗ (n− 2) . . .

S ′ = Ω(
∑

r(n− r))

S ′ = Ω(n3)
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Thus, S = Ω(n3) �

(We have proved earlier that S = O(n3), hence, S = θ(n3))

Thus, we have shown that the complexity of the problem of emptying all the cells
from the matrix has a lower bound Ω(n3). There are many algorithms that succeed
in performing the task with asymptotically optimal time complexity. For example,
consider the following algorithms:

Algorithm 1

while ∃ any R or B cell in the matrix do
Empty the closest R or B cell by brute force, using RB

E
↔ BR

E
transformations.

end while

Since there are O(n2) cells, and removing each such cell takes O(n) time, this
algorithm runs in O(n3) time.

Algorithm 2

repeat
Greedily remove all the R or B cells that can be removed.
Remove the closest R or B cell using RB

E
↔ BR

E
transformations.

until � any R or B cell in the matrix

The cells that are removed greedily utilize minimum number of transitions by
definition. Hence this algorithm too runs in O(n3) time.

Thus we can see that there are many algorithms possible that would run in O(n3)
time. However, we want to find an algorithm that achieves the task by using mini-
mum possible number of transitions. We define such an algorithm to be an Optimal
algorithm. We will present such an algorithm in the following sections.

1.5 Non-Optimal Transitions

Definition 1 We define a non-optimal transition to mean moving an R cell away
from the R receptor or a B cell away from its receptor. Any transition that is not a
non-optimal transition is defined as an optimal or greedy transition.
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If no non-optimal transitions occur in an algorithm that solves the problem, then
by definition, such an algorithm would be Optimal. However, we now prove that in
some problem configurations, non-optimal transitions are unavoidable.

Result 1 RB
E
↔ BR

E
transformations contain non-optimal transitions.

RB
E
↔ BR

E
transformations are defined as the following series of transitions:

(
R B
x E

)
−→

(
R E
x B

)
−→

(
E R
x B

)
−→

(
B R
x E

)

Here, we can see that B temporarily moves from its current row to the next lower
one. Hence, its distance from the B receptor increases. Thus, even though this B
might have moved closer to the B receptor by the end of this series of transitions, ∃
one transition in this series which causes it to move further from its receptor, and is
hence by definition, non-optimal.

Lemma 2 Some matrices cannot be emptied without RB
E
↔ BR

E
transformations.

Proof: Consider the 2-row matrix shown below:

(
B B B R R R
E B B R R R

)

In this case, the greedy strategy has no success in emptying the matrix. Thus in
order to start emptying the cells, we need to make some RB

E
↔ BR

E
transformations.

�

Thus, by Result 1 and Lemmas 1, we can see that there are some matrices that
require non-optimal transitions to be completely emptied.

In general, non-optimal transitions will be unavoidable whenever we have collec-
tions of cells of the form:

(
B X1 X2 . . . Xl−1 Xl R . . .

)
, where any cell of the type Xi can be either R or B.

We shall refer to such collections of cells bounded by a B cell at the left and an R
cell at the right simply as a BR duo, since to empty these cells we need to make at
least a few RB

E
↔ BR

E
non-optimal transformations.

Thus, even the best possible algorithm for solving this problem, i.e. the Opti-
mal algorithm would still have to make a few non-optimal transitions. To prove the
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optimality of such an algorithm, we must prove that the number of non-optimal tran-
sitions is minimized during its execution.

We now consider the question of whether some matrices are easier to empty than
others. Intuitively, matrices in which R cells are closer to the B receptor and B cells
to the R receptor require non-optimal transitions to be emptied, and are hence harder
to empty i.e. require more transitions, than matrices in which the cells of each colour
are closer to their own receptor. Also, we note the following result:

Result 2 Once the 1st row has been emptied, the rest of the rows can be emptied
optimally.

We provide a simple intuitive argument for this result. First, any cell in the 2nd row
can be brought to the 1st row by directly swapping it with the E cell above it in the 1st

row, and can then be brought to its receptor by successively swapping it with E cells.
Once the 2nd rows is emptied in this manner, any cells in the 3rd row can be brought
up to the 1st row by swapping it with the 2 E cells above it, and then emptied as
described above. In this manner, all the cells in all the rows can be emptied. Since all
the transitions here are greedy transitions, and move any coloured cell strictly closer
to its receptor, we can see that all the rows from the 2nd row onwards can be emptied
optimally. �

Accordingly, we restrict ourselves to considering only the 1st row when considering
the difficulty classes of matrices. Here, we must note that once the cells of any one
particular colour have been removed, the 1st row only consists of E cells and cells of
the other colour, and hence the 1st row can now be entirely emptied using greedy
transitions. With these facts in mind, we define the difficulty classes of the matrices
as:

• Easy :
The matrices in which the entire 1st row can be emptied greedily, without
needing any non-optimal transitions are known as Easy-level matrices.

• Medium:
The matrices in which a mixture of greedy and non-optimal transitions are
required to empty either all the R or all the B cells in the 1st row are known as
Medium-level matrices.

• Hard :
The matrices in which either the R or B cells in the 1st row can be emptied only
using non-optimal transitions are known as Hard-level matrices.
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1.6 Optimal Algorithm

We present an algorithm, which we claim to be optimal, for emptying all the R and
B cells from a matrix. The proof of its optimality follows in the next section.

We use the following data structures in our algorithm:

• Matrix :
We are given an M ×N matrix, with the assumption that M = θ(n). For sake
of simplicity, without loss of generality, we can assume that we are given an
N ×N matrix. Numbering starts from 1 for both rows and columns, i.e. (i, j)
refers to the cell in the ith row and jth column.

• ER , EB :
These are two variables that indicate how many consecutive cells from the R or
B receptors in the 1st row are E cells. (ER is the variable corresponding to the R
receptor, and EB is the variable corresponding to the B receptor). For example,
ER = 4 implies that cells (1, 1), (1, 2), (1, 3), (1, 4) are R. Initially, both of these
pointers are set to NULL.

• Cost :
Cost is an integer variable that indicates the number of transitions observed till
the present time, i.e. the cost incurred during the execution of the algorithm
so far.

We now define some sub-routines that are used in the control loop of our algorithm:

CheckBoundary :

if (1, 1) == R then
(1, 1)←− E
if ER == NULL then

ER ←− 1
end if

end if
if (1, N) == B then

(1, N)←− E
if EB == NULL then

EB ←− N
end if

end if{Any transition from R or B to E is spontaneous, so the value of Cost
remains unchanged.}
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ExpandGreedily :

repeat
if ER +1 == R then

ER +1←− E
ER ←− ER +1
Cost ←− Cost + Length(ER))

end if
if EB −1 == B then

EB −1←− E
EB ←− EB −1
Cost ←− Cost + Length(EB))

end if
if ER +1 == E then

ER ←− ER +1
end if
if EB −1 == E then

EB ←− EB −1
end if
if ER +1 == EB then

ER ←− N
EB←− 1 {The 1st row has been emptied, so set both pointers to include
the whole 1st row}

end if
until � R or E in contact with ER and � B or E in contact with EB
for i = 1 to N - 1 do

if (1, i) == B AND (1, i + 1) == E then
Swap (1, i) and (1, i + 1)
Cost ←− Cost +1

end if
end for
for i = N - 1 to 1 do

if (1, i) == E AND (1, i + 1) == R then
Swap (1, i) and (1, i + 1)
Cost ←− Cost +1

end if
end for

SelectForNonOptimality :

SR←− Sum of distances of R cells in 1st row from R receptor
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SB ←− Sum of distances of B cells in 1st row from B receptor
if SR ≤ SB then

RETURN R
else

RETURN B
end if{Whichever colour has the lesser sum should be eliminated using non
optimal transitions so that such transitions are minimized}

The colour to be used by the RemoveNonOptimally function explained below
is decided by this SelectForNonOptimality function.

RemoveNonOptimally :

Require: There is at least 1 E in the 2nd row.
C ←− Colour returned by SelectForNonOptimality
C’ ←− Opposite Colour to C
X ←− Closest C to EC
Y longleftarrow Closest E in 2nd row to X
Bring Y to the cell directly below X. Add the cost of this movement to Cost
{Y is now directly below a BR duo.}
repeat

Convert BR to RB, using RB
E
↔ BR

E
transformation

Cost longleftarrow Cost +3
Shift Y by one place in the direction that X shifts to
Cost longleftarrow Cost +1

until X has been brought to EC
Replace X with E
Cost longleftarrow Cost + Length(EC)
Increment EC pointer by 1 in its correct direction

ClearNextRows :

Require: The 1st row has been totally cleared of coloured cells.
for i = 2 to N do

for j = 2 to N do
Set (i, j) to E
Add i+j (or �√i2 + j2�, depending on whether we use L1 or L2 distance)
to the value of Cost

end for
end for

With these sub-routines, we now present our main algorithm:
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EmptyOptimally :

CheckBoundary
ExpandGreedily
SelectForNonOptimality
repeat

RemoveNonOptimally
ExpandGreedily

until The 1st row has been emptied, and consists entirely of E cells
ClearNextRows
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1.7 Proof of Optimality

In the worst case, the 1st row will be of the form:

(
B B B R R R

)

In this case, for removing each R or B in the 1st row:
First an E has to reach the target cell. This takes O(N) time.
Then, this cell is brought to the ER or EB boundary (depending on its colour).

This also (1 + 3) ∗O(N) = O(N) time.
Thus each R or B is removed in O(N) time, and there are O(N) such cells. Hence
the 1st row can be emptied in O(N2) time.
Once this is done, the rest of the rows are emptied optimally. Hence, the entire algo-
rithm operates in O(N3) time. Thus the algorithm is asymptotically optimal.

However, in order to prove the Optimality of this algorithm, asymptotic optimal-
ity is not enough; we must also prove that it makes the minimum possible number of
non-optimal transitions.

We evaluate each of the functions used in the algorithm and show that in each
function, either only optimal transitions take place, or if non-optimal transitions oc-
cur, their number is minimized.

CheckBoundary :
This function is instantaneous, and there are no transitions at all.

ExpandGreedily :
This function empties coloured cells in a greedy manner. Any R or B cell that is
removed is done so using the shortest path to its receptor. Also, whenever a BE
or ER duo is reached, the coloured cell is moved strictly closer to its receptor.
Hence, there are no non-optimal transitions.

SelectForNonOptimality :
This function simply evaluates two mathematical sums and compares them; it
does not execute any transitions. Hence, we can easily note that there are no
non-optimal transitions here.
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RemoveNonOptimally :
As the name suggests, some non-optimal transitions are performed in this func-
tion. We will prove that the number of such transitions is kept to a minimum.

In this function, we perform two steps which are sources of non optimality:

1. Moving E to a BR duo. We shall denote the colour selected by Select-
ForNonOptimality as C.

2. Repeatedly swapping RB to BR by using a RB
E
↔ BR

E
transformation and

propagating the E cell.

We will prove that in our function, the non-optimality in both steps is mini-
mized.

1. First we have to decide whether to remove R or B non-optimally. This
decision is made using the SelectForNonOptimality function such that the
colour with lesser cumulative distance of its cells from their receptor is
chosen, so the non-optimality due to this decision is minimized. We must
now move an E in the 2nd row to the BR duo. If there are multiple E cells
in this row, we must decide which E to move. We pick the closest E to
that BR duo, and hence minimize the number of non-optimal transitions.

2. Prior to calling RemoveNonOptimally, we have arranged the 1st row using
the function ExpandGreedily such that all E cells are made part of either
the ER list or the EB list., i.e. the BR duos (as defined earlier) are bunched
together without any E cells in between them. Thus, in this part of the
RemoveNonOptimally funtion, the number of RB

E
↔ BR

E
transformation

is minimized, i.e. the number of greedy transitions of C through EC is
maximized. Once C is brought to EC, the rest of the function proceeds in
a greedy manner, without any further non-optimal transitions.

ClearNextRows :
From Result 2, once the 1st row has been cleared entirely, all cells in subsequent
rows can be removed by bringing them strictly closer to their receptor at each
step, i.e. only by greedy transitions. This is what is done in this function.

Thus all function except RemoveNonOptimally utilize only greedy transitions, and
the number of non-optimal transitions used in the function RemoveNonOptimally is
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minimized. Hence, our algorithm is Optimal.

1.8 Implementation and Results

We implemented our algorithm in C++. The user specifies the size of the matrix, as
well as the number of R, B and E cells. The matrix can either be generated randomly,
or entered by the user.

There is only one initial condition, namely that there exists at least one E in the
matrix, and specifically that it is in the second row. This is necessary for a subroutine
of our optimal algorithm. Since an E can move to any cell in the matrix in O(n) time,
we can assume this initial condition without loss of generality.

At each pass of the algorithm, the intermediate matrices are computed, including
versions after non-optimal removal and after greedy removal. The total cost for re-
moving all the cells is stored in memory.

We first consider the case of 4 × 4 matrices, as these are small enough to trace
their transitions. We ran our program on various 4 × 4 matrices of each difficulty
class as shown below:

• Easy :

E1 =

⎛
⎜⎜⎝

R R B B
E R B R
B R R B
B B B B

⎞
⎟⎟⎠ , E2 =

⎛
⎜⎜⎝

R R R R
R R E B
B B B B
B R B R

⎞
⎟⎟⎠

• Medium:

M1 =

⎛
⎜⎜⎝

R B R B
E R B R
B R R B
B B B B

⎞
⎟⎟⎠ , M2 =

⎛
⎜⎜⎝

R B B R
R R E B
B B R R
B R B R

⎞
⎟⎟⎠

• Hard :

H1 =

⎛
⎜⎜⎝

B B R R
E R B R
B R R B
R B B R

⎞
⎟⎟⎠
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While running our program on the above matrices, we obtained the following tran-
sitions:

E1: ⎛
⎜⎜⎝

R R B B
E R B R
B R R B
B B B B

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝

E E E E
E R B R
B R R B
B B B B

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝

E E E E
E E E E
E E E E
E E E E

⎞
⎟⎟⎠

E2:

⎛
⎜⎜⎝

R R R R
R R E B
B B B B
B R B R

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝

E E E E
R R E B
B B B B
B R B R

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝

E E E E
E E E E
E E E E
E E E E

⎞
⎟⎟⎠

M1:

⎛
⎜⎜⎝

R B R B
E R B R
B R R B
B B B B

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝

E B R E
E R B R
B R R B
B B B B

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝

E E B E
R B E R
B R R B
B B B B

⎞
⎟⎟⎠

−→

⎛
⎜⎜⎝

E E E E
R B E R
B R R B
B B B B

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝

E E E E
E E E E
E E E E
E E E E

⎞
⎟⎟⎠

M2:

⎛
⎜⎜⎝

R B B R
R R E B
B B R R
B R B R

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝

E B B R
R R E B
B B R R
B R B R

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝

E E B B
R E R B
B B R R
B R B R

⎞
⎟⎟⎠

−→

⎛
⎜⎜⎝

E E E E
R E R B
B B R R
B R B R

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝

E E E E
E E E E
E E E E
E E E E

⎞
⎟⎟⎠

H1:

⎛
⎜⎜⎝

B B R R
E R B R
B R R B
R B B R

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝

B B R R
E R B R
B R R B
R B B R

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝

E B B R
R E B R
B R R B
R B B R

⎞
⎟⎟⎠
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−→

⎛
⎜⎜⎝

E B B R
R E B R
B R R B
R B B R

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝

E E B B
R E B B
B R R B
R B B R

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝

E E E E
R E B B
B R R B
R B B R

⎞
⎟⎟⎠

−→

⎛
⎜⎜⎝

E E E E
E E E E
E E E E
E E E E

⎞
⎟⎟⎠

The costs of emptying these 4×4 matrices in each of these cases are listed in Table 1.1

Index Nr Nb Cost
E1 6 9 28
E2 8 7 30
M1 6 9 32
M2 8 7 33
H1 8 7 41

Table 1.1: Results for the case 4× 4, Ne = 1

Based on the results in Table 1.1, we can see that the distribution of R and B cells
in the matrix plays a role the easy of emptying it, since the matrices defined as Easy
accoring to our framework show a lower value of Cost than those defined as Medium,
which in turn show a lower Cost than the Hard matrix.

So far, we have only considered matrices of the form 4 × 4. We now give some
examples of Easy, Medium and Hard matrices (with Ne = 1) of the form 7× 7:

E7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

R R R R B B B
R R B E B B R
R R B B B R R
B B R R B R R
B R R B R B R
R R B B R R B
B R R R B R B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

M7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

B B R R B B R
R R B E B B R
R R B R B R R
B B R R R B B
B R R R R B R
B R B R B R R
B R R R B B B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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H7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

B B B B R R R
B R B E B R R
R R B B B R B
B B R R B B R
B R R B B B R
B R B B R R B
B R R B B R B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

For these matrices, we list the costs of emptying them in Table 1.2

Index Nr Nb Cost
E7 27 21 188
M7 26 22 208
H7 21 27 230

Table 1.2: Results for the case 7× 7, Ne = 1

From the results of Table 1.2 too, our intuition that matrices in which R cells are
closer to the R receptor and B cells are closer to the B receptor are easier to empty,
is confirmed. The Easy matrix shows significantly lower time to be emptied than the
Medium and Hard ones, even though all other factors such as Ne, Nr, Nb are equal,
or approximately so.

All the matrices that we have considered so far have shared one property: Ne = 1.
We also ran our code on 7× 7 matrices with different values of Ne. The empty cells
are interspersed throughout the matrix in question. Consider the following randomly
generated examples for Ne = 5 and Ne = 10:

Ne5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

B B B B B B R
R R B E B B B
R R E B B R R
B E R R B R R
E R R B R B R
B R B B R R B
E R R R B R B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Ne10 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

B E B B B B B
R R B E B E B
R R E B B R R
E E R R B R R
E R R B R E R
E R B B R R B
E R R B B R B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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The costs for emptying these matrices are given in Table 1.3

Ne Nr Nb Cost
5 22 22 191
10 20 19 153

Table 1.3: Results for the case 7× 7, Ne = 5, 10

Similarly, we can obtain matrices for higher values of Ne. We now consider matri-
ces of dimension varying from 10 to 100, at intervals of 10. For Ne, we have included as
cases the base value Ne = 1 as well as the values Ne = 0.05, 0.10, 0.15, 0.20, 0.25×N2.
The matrices are randomly generated, and we use roughly equal values for Nr and
Nb. We present our results for Cost in emptying the matrices in all of these cases in
Tables 1.4 and 1.5.

Ne N = 10 N = 20 N = 30 N = 40 N = 50
1 634 5237 17826 42509 82422

0.05×N2 609 5050 16719 40119 78195
0.10×N2 542 4662 15841 37956 74607
0.15×N2 545 4544 15111 36501 69706
0.20×N2 507 4095 13999 34140 65391
0.25×N2 443 3845 13474 31624 61897

Table 1.4: Results for N = 10, 20 . . .50, Nez = 1, 0.05×N2 . . . 0.25×N2

Our results indicate that the value of Ne, i.e. the number of empty cells in the
matrix has a significant impact on the number of transitions needed to remove all
the cells. This impact is pronounced if multiple E cells happen to be in the 1st row.
Moreover, we can also see, based on comparing the costs of emptying matrices of var-
ious sizes that the number of transitions grows as O(n3), thus offering experimental

Ne N = 60 N = 70 N = 80 N = 90 N = 100
1 144329 226389 339480 484963 666207

0.05×N2 134521 215826 323374 460616 629378
0.10×N2 129871 186218 307367 437359 597430
0.15×N2 120142 172419 287625 412956 563117
0.20×N2 114596 181917 270936 373141 531186
0.25×N2 107100 170920 254192 349165 494344

Table 1.5: Results for N = 60, 70 . . . 100, Nez = 1, 0.05×N2 . . . 0.25×N2
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validation of the algorithm’s complexity.

1.9 Conclusion

In this chapter, we introduced the red-blue problem. We proved that it was possible
to empty the entire matrix, no matter what its initial configuration, provided there
was at least one empty cell in it initially. We also proved that an optimal algorithm for
this task would run in O(n3) time, where n is the order of the number of rows/columns
of the matrix. We then presented various optimal complexity algorithms, and proved
that for certain matrix configurations, some non-optimal transitions were necessary.
We then presented an algorithm that minimizes these non-optimal transitions, i.e. an
optimal algorithm to solve our problem. We then discussed our implementation of
this algorithm, and the results obtained by it for matrices of various sizes and with
different values of Ne. We considered the impact of the distribution of R and B cells
as well as the number of E cells in the matrix, on the total cost of emptying it. The
matrices in which R cells are closer to their receptor and similarly so for the B cells
have a lower cost of being emptied than those in which R cells are closer to the B
receptor and vice versa. In addition, the cost of emptying matrices decreases as the
value of Ne increases. This algorithm can be applied in many practical domains. The
most important of these is biological microarrays, but they also include other diverse
areas such as memory storage devices and image processing.



Chapter 2

Application of Linear
Programming to Discrete Curve
Fitting

2.1 Introduction

Curve fitting is a standard problem in Mathematics and Computer Science, and much
work has been done in this area. Traditionally, techniques such as interpolation and
regression analysis are used, and structures used for approximation are usually 1st

or higher order algebraic polynomials. There are many variations to this approach,
including splines, trigonometric polynomials, wavelets, etc. Here, we examine a linear
programming approach to this problem. We model the problem as finding a target
sequence of points in a lattice that has maximal similarity to an initially given set of
points in this lattice, subject to various constraints.

The application of linear programming to curve fitting is not a new idea; indeed,
it has been investigated earlier.[9], [10]. However, we consider a variety of constraints
on the fitted curve, such as irreducibility, monotonicity, and an upper bound on the
change in slope at any step in the sequence. We first formulate these concepts as
linear constraints, and provide a formal procedure to convert an instance of discrete
curve fitting into an equivalent integer linear programming problem (The problem
of integer linear programming is NP-Hard, so we must initially relax some criteria,
to obtain a relaxed problem which is an instance of linear programming, which is
solvable in P-time). Once we have obtained such a procedure, we obtain solutions
for given point sequences of various sizes, using standard linear programming algo-
rithms such as the Simplex method or the Interior Point method. We then use these
solutions for the relaxed version of the problem to obtain approximate solutions for

23
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instances of our original problem. As we shall see, this approach still manages to
produce satisfactory solutions in most cases.

2.2 Problem Definition

We are given a N × N lattice. Each point (i, j) of the lattice may be either ON
or OFF. We associate a value with each such point (i, j). If the point is OFF, its
associated value is set to 0, and if the point is ON, its associated value is set to 1.

Initially, a set of points from this lattice is set to be ON. We now wish to compute
a target sequence of ON points, which approximates the original set as far as possible,
but is also subject to the following constraints:

• The boundary points of the target sequence are the same as those of the original
sequence.

• The target sequence is irreducible.

• The change in slope between successive points of the target sequence is bounded.

We wish to formulate this problem as one of linear programming.

Now, since the lattice points can only take the values 0 or 1, this problem, once
formulated as an instance of linear programming, will actually be an instance of in-
teger linear programming, which is known to be NP-hard. Hence, we must initially
ignore this constraint, and allow the point to take any real value between 0 and 1.

Once the problem has been formulated as an instance of linear programming, we
take various point sets, convert them into equivalent linear programming problems,
and solve these problems using a standard mathematical software package. We then
round off the values of the points of this solution to either 0 or 1, to obtain a solu-
tion to our original problem. There will, of course, be an error in the solution thus
obtained.

2.3 Formulation as Linear Programming

We are given a lattice

L = N ×N
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. The point in the ith row and jth column is referred to as (i, j).

Let Bij denote the original status of (i, j). If (i, j) is initally set to ON, Bij = 1,
else Bij = 0.

Let the two boundary points of the initial sequence be denoted by (il, jl) and
(ih, jh).
Hence Biljl

= 1 and Bihjh
= 1

Let Xij denote the status of (i, j) in the target sequence. If (i, j) is ON in the
target sequence, Xij = 1, else Xij = 0.

Thus, the variables in our linear programming problem are Xij , where i = 1, 2, . . .N, j =
1, 2, . . .N

We want the sequence Xij to approximate Bij as closely as possible. In order to
state this formally, we need a definition of the error E between the target sequence
and the original point set.

We define this error E as E =
∑

i,j(1−BijXij).

We can see that E as defined above measures the distance between the original
and computed point sequences. For a point (i, j), 1 − BijXij = 0 only if the point
(i, j) is ON in both sequences, 1 − BijXij = 1 otherwise. Each such point that has
differing states in the sequences contributes to the error E by an increment of 1.

Hence, for the target sequence to be as close to the original sequence as possible,
this error E must be minimized, i.e. E or some variation of it is the objective function
that we try to minimize using linear programming.

Now, we elaborate on the constraints mentioned earlier on the target point se-
quence:

Boundary:

The target sequence should have the same boundary points as the original se-
quence. Therefore, Xiljl

= 1 and Xihjh
= 1.

Irreducibility:

Definition 2 We define every point of a sequence that is not a boundary point to be
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an interior point.

Definition 3 We define the neighbourhood of a point (i, j) to be the set of points
{(i−1, j−1), (i−1, j), (i−1, j+1), (i, j−1), (i, j+1), (i+1, j−1), (i+1, j), (i+1, j+1)}.

For a point sequence to be irreducible, each interior point of this sequence must
have no more than 2 ON points in its neighbourhood, and each boundary point of
the sequence must have no more than 1 ON point in its neighbourhood.

Intuitively, if a point sequence is not irreducible, there exists a smaller point se-
quence that can convey the same amount of information.

Bounded change in Slope:

The slope of 2 points p = (i1, j1) and q = (i2, j2) to be S2,1 = (j2 − j1)/(i2 − i1).
When we say that the change in slope at any point p = (i, j) in the sequence is
bounded, we mean:

| (Sp+1,p − Sp,p−1) | ≤ β, where p + 1 is the next point and p − 1 is the previous
point in the sequence, and β is some predefined bound.

However, this is not a linear equation. Moreover, it is not an equation in the
variables we have designated, Xij.

We need to find constraints in terms of the variables Xij , which are linear, and
have an equivalent effect on the target point sequence. It is not immediately obvious
how to approach this problem.

Let us define the unacceptable slope transitions as those transitions that involve
a change of slope β > 2. For example, (0, 0)− > (1, 1)− > (0, 2) is an acceptable
transition, while (0, 0)− > (2, 1)− > (0, 2) is not. Hence, only 2 out of these 3 points
may be ON, and the corresponding slope constraint for this unacceptable transition is:

X00 + X21 + X02 ≤ 2

Therefore, we must enumerate such constraints for every combination of 3 points
from the n2 points of the given lattice that produces a slope change β > 2:

X00 + X21 + X02 ≤ 2
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X00 + X31 + X12 ≤ 2

X11 + X31 + X12 ≤ 2

X00 + X33 + X03 ≤ 2

...

∀(i1, j1), (i2, j2), (i3, j3) such that | ((j2− j1)/(i2− i1))− ((j3− j2)/(i3− i2)) | > 2,
Xi1j1 + Xi2j2 + Xi3j3 ≤ 2

However, each such slope constraint involves a combination of 3 points, and there
are N2 such points, and 3 out of these N2 points can be chosen in N2C3 = O(N6)
ways. We must choose all such combinations that result in a slope transition > 2, and
it is clear that there are at least as many unacceptable transitions as acceptable ones,
hence the number of unacceptable transitions, i.e. the number of slope constraints
according to this formulation would be O(N6).

This is a prohibitively high asymptotic complexity, and it would make the problem
intractable for all but the smallest of lattices. Hence, we need a more efficient way
to express the constraint that the change in slope at any step in the target sequence
should be bounded.

We make the simplifying assumption that the target sequence is not sparse, i.e.
in every column j of the lattice, ∃ a row i such that Xij = 1. This assumption is
validated in practice; target sequences that are usually generated to fit curves, by
various techniques, (including our own, as we shall see later) are not sparse.

Now, if a point (i, j) is ON in the target sequence, suppose that the point that is
ON in column j + 1 is at row i′, where:

i′ − i ≥ 4

However, then, for the change in slope at column j to not exceed β, the point
that is ON in column j − 1 would have to be at a row i′′, where i − i′′ ≥ 2. We
make the additional assumption here, that a sharp slope at any point makes it likelier
that there will also be a sharp change in slope at that point, and disallowing sharp
slopes is equivalent to disallowing sharp changes in slope. Hence, we can now state
the slope-related constraints as:

∀i, j, k ∈ 1, 2, . . .N, Xij + Xkj+1 ≤ 1, where | k − i |≥ 3
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This assumption has the benefit of drastically reducing the number of slope-related
constraints required. There are N columns, and in each column, we have N points,
each of which have slopes in relation to N other points in the subsequent column, so
the total number of such slopes is O(N3), i.e. the number of slope related constraints,
which is some fraction of the total number of slopes, is also O(N3).

We are now ready to formally state the objective function and constraints in order
to state this problem as an instance of linear programming:

Let the objective function be the minimization of
∑

i,j(1− BijXij).

The constraints are:

Xiljl
= 1 and Xihjh

= 1

∑1
k=−1 Xil−kjl−k ≤ 2

∑1
k=−1 Xih−kjh−k ≤ 2

If (i, j) is not a boundary point, ∀(i, j), ∑1
k=−1 Xi−kj−k ≤ 3

∀i, j, k ∈ 1, 2, . . .N, Xij + Xkj+1 ≤ 1, where | k − i |≥ 3

Analysis of constraints

Thus the program has been formulated as an instance of linear programming.
There are:

• 2 boundary constraints.

• O(N2) reducibility constraints. There is one such constraint for each point, and
there are n2 number of points.

• O(N3) slope constraints, as has been mentioned earlier.

Thus, the total number of constraints is O(N3).

Hence, for any given lattice and initial sequence of points, we can enumerate the
various reducibility constraints in O(N2) time, and the various slope constraints in
O(N3) time. Thus we have a procedure to obtain a formal representation of the curve
fitting problem as an instance of linear programming.
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Figure 2.1: N = 5, Initial Set

Figure 2.2: N = 5, Target Sequence

2.4 Solutions and Results

We used the procedure outlined in the previous section to convert lattices and initial
point sequences of various sizes into equivalent linear programming problems. We
then solved these problems using the package Mathematica and running the Simplex
algorithm. We ran our code on randomly generated initial sequences.

We show our results for point sequences of sizes N = 5, 7, 10, 12, 15, 20 in Fig. 2.1
- 2.12.

For each initial sequence, we obtained a set of solutions Xij . However, some of
these elements Xij were real numbers in the range [0, 1]. In these cases, we rounded
off each such Xij to its nearest integer. We thus obtained the target point sequences.
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Figure 2.3: N = 7, Initial Set

Figure 2.4: N = 7, Target Sequence
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Figure 2.5: N = 10, Initial Set

Figure 2.6: N = 10, Target Sequence

2.5 Conclusion

We presented the problem of polynomial curve fitting, and the special case of fitting
curves in lattices. We examined the use of linear programming as a possible tech-
nique to solve this problem, and gave a formal procedure to convert an instance of
curve fitting in lattices into an instance of integer linear programming. Since this
is NP-Hard, we outlined a procedure to convert such an instance into one of linear
programming, by relaxing the integer constraint. We then solved various instances
of this type using Mathematica, and displayed our results for lattices of various sizes
ranging from N = 5 to N = 20.
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Figure 2.7: N = 12, Initial Set

Figure 2.8: N = 12, Target Sequence

Figure 2.9: N = 15, Initial Set
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Figure 2.10: N = 15, Target Sequence

Figure 2.11: N = 20, Initial Set

Figure 2.12: N = 20, Target Sequence
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