

Focuused Web

Thes

of the Re

C

Departm

Ind

b Crawli

sis to be subm

equirements f

Master

Computer Sci

Su

Udit Sajja

Under th

Prof.

ment of Comp

ian Institute o

M

ng for E-

mitted in Parti

for the Award

r of Technolo

In

ience and En

ubmitted by:

anhar (03CS

he supervisio

Pabitra Mitr

puter Science

of Technology

May 2008

-Learnin

al Fulfillment

d of the Degre

ogy

ngineering

S3011)

on of

ra

and Engineer

y Kharagpur

ng Conten

t

ee of

ring

nt

1

2

Certificate

This is to certify that the thesis titled Focused Web Crawling for E-Learning Content ,

submitted by Udit Sajjanhar, to the Department of Computer Science and Engineering, in

partial fulfillment for the award of the degree of Master of Technology is a bonafide record of

work carried out by him under our supervision and guidance. The thesis has fulfilled all the

requirements as per the regulations of the institute and, in our opinion, has reached the standard

needed for submission.

Prof. Pabitra Mitra

Dept. of Computer Science and Engineering
Indian Institute of Technology
Kharagpur 721302, INDIA

Udit Sajjanhar

Dept. of Computer Science and Engineering
Indian Institute of Technology
Kharagpur 721302, INDIA

3

Abstract

A focused crawler is designed to traverse the Web to gather documents on a specific topic. It can

be used to build domain-specific Web search portals and online personalized search tools. To

estimate the relevance of a newly seen URL, it must use information gleaned from previously

crawled page sequences.

The work describes the design of the focused crawler for Intinno, an intelligent web based

content management system. Intinno system aims to circumvent the drawbacks of existing

learning management systems in terms of scarcity of content which often leads to the cold start

problem. The scarcity problem is solved by using a focused crawler to mine educational content

from the web. Educational content is mined from University websites in the form of course

pages.

We present a survey of various probabilistic models such as Hidden Markov Models(HMMs) and

Conditional Random Fields(CRFs) and other techniques like using context graphs for building a

focused crawler and finally we describe the design of the system by applying CRFs. The system

consists of the following components: learning the user browsing pattern while he or she shows

how to collect relevant information and using the learnt model to predict a utility score for links

that prioritizes their download.

It is often observed that University websites are structurally similar to each other. Humans are

good at navigating websites to reach specific information within large domain-specific websites.

Thus the user browsing behavior is mapped to a problem of sequential learning where states in

the sequence are pages of the same nature. The model parameters of this learning problem are

estimated with the help of a Conditional Random Field.

During the crawling phase, the focused crawler is required to prioritize the order in which the

links will be downloaded so that the ratio of relevant pages visited to the total number of pages

visited is maximized. This prioritization is done using Reinforcement Learning which estimates

the ability of a partially observed sequence to end up in the goal state by using the probabilistic

model parameters learnt during the training.

4

Table of Contents

Chapter 1: Introduction ... 5

1.1 Background .. 5

1.2 Motivation .. 8

Chapter 2: Previous work in Focused Crawling ... 10

Chapter 3: Problem Definition .. 14

3.1 Stratergies for crawling .. 15

3.2 Content from University Courses ... 17

3.3 Problem Formulation.. 18

3.4 Possible Approaches .. 20

Chapter 4: Realtional Learning using Graphical Models ... 22

4.1 Introduction .. 22

4.2 Graphical Models ... 22

4.3 Conditional Random Fields .. 27

Chapter 5: Our Approach .. 30

5.1 Model Training ... 30

5.2 Path Foraging ... 31

5.3 Expremental Results ... 34

Bibliography ... 38

5

Chapter 1. Introduction

1.1 Background

A Learning Management System (or LMS) is a software tool designed to manage user learning

processes [1]. LMSs go far beyond conventional training records management and reporting. The

value-add for LMSs is the extensive range of complementary functionality they offer. Learner

self-service (e.g. self-registration on instructor-led training), learning workflow (e.g. user

notification, teacher approval, waitlist management), the provision of on-line learning, on-line

assessment, management of continuous professional education, collaborative learning (e.g.

application sharing, discussion threads), and training resource management (e.g. instructors,

facilities, equipment), are some of the additional dimensions to leading learning management

systems [2].

In addition to managing the administrative functions of online learning, some systems also

provide tools to deliver and manage instructor-led synchronous and asynchronous online

teaching based on learning object methodology. These systems are called Learning content

management systems or LCMSs. An LCMS provides tools for authoring and re-using or re-

purposing content as well as virtual spaces for learner interaction (such as discussion forums and

live chat rooms). The focus of an LCMS is on learning content. It gives authors, instructional

designers, and subject matter experts the means to create and re-use e-learning content more

efficiently [3].

The current learning management systems have a number of drawbacks which hinder their wide

acceptance among teachers and students. One of them is the non availability of free content.

LMS’s assume that the content will be put up by users i.e. teachers and students. This leads to

the cold start problem. Instructors who begin to make up a course don't have the material to start

up. Materials presented may lack coverage of the subject area and thus fail to cater information

needs of all students in a class. On the other hand, students while studying or reading a lecture

have to waste a lot of their time in searching for relevant resources from the web.

6

We aim to build a system which solves the above problem to a large extent. The system uses the

power of Web to solve the cold start problem. While putting up new course, assignment or a

lecture, similar resources would be available from the digital library either by search or by

recommendations. Also when a student reads a lecture he will have to his disposal:

1. Recommended Material: This will save his time in searching for relevant material from

the web.

2. Learning Material Abstractions: This would help the student to efficiently grasp the

learning content.

Focused
 Crawler

SCORM
Module

Knowledge
Representation

Module

ITS Application 1

ITS Application 2

ITS Application 3

Application
Builder

Documents in Web
Non‐Structured Documents

Structured Documents in SCORM format

Knowledge Representation by Ontology

Figure 1. Components of the Intinno System

7

The major components of the system are:

1. Focused Crawler:

This exploits the structural similarity among University websites by learning human

browsing pattern. From the learned parameters, it downloads educational resources with

the goal of maximizing the ratio of relevant pages to the number of pages downloaded.

2. SCORM Module:

The data downloaded by the Focused crawler is unstructured. Educational Data is

represented in SCORM (Sharable Content Object Reference Model) [28] format to

enable easier exchange and reuse. This module organizes the unstructured data

downloaded by the crawler and coverts it into SCORM format so that it can be used by

the Application builder in an efficient manner.

3. Knowledge Representation Module:

SCORM format only enables the easier exchange and reuse of Learning Objects [29].

However to build intelligent ITS applications we have to capture the semantic relations

between the documents. This is done by the Knowledge Representation Module which

tries captures the Semantic relations by automatic construction of Ontologies. This is

done by recognition of keywords from documents and then extraction of relationships

between keywords.

4. ITS applications:

These are the end products of the system with which the user interacts. For a student, the

ITS applications recommend similar material so that the time spent in searching for

relevant resources on the web is minimized. Also the ITS applications present to the

student an abstraction over the material that he/she is currently reading. This helps in the

easier grasping of concepts making the learning process efficient.

In this work we describe the focused crawler component of the Intinno System.

8

1.2 Motivation

The size of the publicly index able world-wide-web has provably surpassed one billion

documents [30] and as yet growth shows no sign of leveling off. Dynamic content on the web is

also growing as time-sensitive materials, such as news, financial data, entertainment and

schedules become widely disseminated via the web. Search engines are therefore increasingly

challenged when trying to maintain current indices using exhaustive crawling. Even using state

of the art systems such as Google, which reportedly crawls millions of pages per day, an

exhaustive crawl of the web can take weeks. Exhaustive crawls also consume vast storage and

bandwidth resources, some of which are not under the control of the search engine.

Focused crawlers [3,4] aim to search and retrieve only the subset of the world-wide web that

pertains to a specific topic of relevance. The ideal focused crawler retrieves the maximal set of

relevant pages while simultaneously traversing the minimal number of irrelevant documents on

the web. Focused crawlers therefore offer a potential solution to the currency problem by

allowing for standard exhaustive crawls to be supplemented by focused crawls for categories

where content changes quickly. Focused crawlers are also well suited to efficiently generate

indices for niche search engines maintained by portals and user groups [31], where limited

bandwidth and storage space are the norm. Finally, due to the limited resources used by a good

focused crawler, users are already using personal PC based implementations. Ultimately simple

focused crawlers could become the method of choice for users to perform comprehensive

searches of web-related materials.

The major open problem in focused crawling is that of properly assigning credit to all pages

along a crawl route that yields a highly relevant document. In the absence of a reliable credit

assignment strategy, focused crawlers suffer from a limited ability to sacrifice short term

document retrieval gains in the interest of better overall crawl performance. In particular,

existing crawlers still fall short in learning strategies where topically relevant documents are

found by following off-topic pages.

9

The credit assignment for focused crawlers can be significantly improved by equipping the

crawler with the capability of modeling the context within which the topical materials is usually

found on the web [32]. Such a context model has to capture typical link hierarchies within which

valuable pages occur, as well as describe off-topic content that co-occurs in documents that are

frequently closely associated with relevant pages.

The focused crawler for the Intinno system tries to collect the course pages which are rich source

of authenticated educational content. Crawling the whole university and then separating out the

course pages with the help of a classifier is the simplest solution. However such a solution is

highly in-efficient both in terms of Space and Time required. In another scheme crawler learns

the user browsing pattern as the user starts from the University homepage and follows a path

which consists of many non-topical pages to reach the pages hosting course content. Hence a

context driven crawling scheme which learns the link hierarchies among the pages leading to the

relevant page is required to train the crawler.

10

Chapter 2: Prior Work in Focused Crawling

The first generation of crawlers [33] on which most of the web search engines are based rely

heavily on traditional graph algorithms, such as breadth-first or depth-first traversal, to index the

web. A core set of URLs are used as a seed set, and the algorithm recursively follows hyper links

down to other documents. Document content is paid little heed, since the ultimate goal of the

crawl is to cover the whole web.

A focused crawler efficiently seeks out documents about a specific topic and guides the search

based on both the content and link structure of the web [4]. Figure 2 graphically illustrates the

difference between an exhaustive breadth first crawler and a typical focused crawler. A focused

crawler implements a strategy that associates a score with each link in the pages it has

downloaded [4, 15, 20]. The links are sorted according to the scores and inserted in a queue. A

best first search is performed by popping the next page to analyze from the head of the queue.

This strategy ensures that the crawler preferentially pursues promising crawl paths.

Figure 2:
a) A standard crawler follows each link, typically applying a breadth first strategy. If the crawler starts
from a document which is i steps from a target document, all the documents that are up to i-1 steps from
the starting document must be downloaded before the crawler hits the target.
b) A focused crawler tries to identify the most promising links, and ignores off-topic documents. If the
crawler starts from a document which is i steps from a target document, it downloads a small subset of all
the documents that are up to i-1 steps from the starting document. If the search strategy is optimal the
crawler takes only i steps to discover the target.

a) Standard Crawling b) Focused Crawling

11

A variety of methods for focused crawling have been developed. The term focused crawler was

first coined by Chakrabarti in [4], however, the concept of prioritizing unvisited URLs on the

crawl frontier for specific searching goals is not new, and Fish-Search [34] by De Bra et al.

(1994) and Shark-Search [35] by Hersovici et al. (1998) were some of the earliest algorithms for

crawling for pages with keywords specified in the query. In Fish-Search, the Web is crawled by a

team of crawlers, which are viewed as a school of fish. If the ‘‘fish’’ finds a relevant page based

on keywords specified in the query, it continues looking by following more links from that page.

If the page is not relevant, its child links receive a low preferential value. Shark-Search is a

modification of Fish-search which differs in two ways: a child inherits a discounted value of the

score of its parent, and this score is combined with a value based on the anchor text that occurs

around the link in the Web page.

The focused crawler introduced in [4] uses canonical topic taxonomy. The user specifies a

number of starting points, and browses from these pages. The user matches pages to the best

categories while browsing. This categorization is used to train a classifier which makes relevance

judgements on a document to the topic. A distiller then determines visit priorities based on hub-

authority connectivity analysis. Intelligent crawling with arbitrary predicates is described in [22].

The method involves looking for specific features in a page to rank the candidate links. These

features include page content, URL names of referred Web page, and the nature of the parent and

sibling pages. It is a generic framework in that it allows the user to specify the relevant criteria.

Also, the system has the ability of self-learning, i.e. to collect statistical information during the

crawl and adjust the weight of these features to capture the dominant individual factor at that

moment.

Similar methods can be found in [20, 36, 37]. These methods have in common that they use a

baseline best-first focused crawling strategy combined with different heuristics based on local

features extracted from the parent page, such as similarity to a query, in-degree, PageRank, and

relevance feedback. All of the methods mentioned above are based on the assumption that on the

Web a relevant page would link to other relevant pages. Thus if the crawler has found a relevant

page then the links extracted out of this page will have a greater probability of being downloaded

as compared to the links extracted from a less relevant page.

12

Other methods used to capture path information leading to targets include reinforcement learning

[16], genetic programming [38], and Context Graph algorithms [32]. In [16], an algorithm was

presented for learning a mapping performed by Naive Bayes text classifiers from the text

surrounding a hyperlink to a value function of sum of rewards, the estimate of the number of

relevant pages that can be found as the result of following that hyperlink.

A genetic programming algorithm is used in [38] to explore the space of potential strategies and

evolve good strategies based on the text and link structure of the referring pages. The strategies

produce a rank function which is a weighted sum of several scores such as hub, authority and

SVM scores of parent pages going back k generations.

A problem with the approaches mentioned above is that they cannot exploit patterns of pages

along a route leading to a goal page. The only pattern they exploit is the relevance to a specific

topic. However in some cases often pages on unrelated topics might consistently lead to topics of

interest. To explicitly address this problem, Rennie and McCallum [16] used reinforcement

learning to train a crawler on specified example web sites containing target documents. The web

site or server on which the document appears is repeatedly crawled to learn how to construct

optimized paths to the target documents. However, this approach places a burden on the user to

specify representative web sites. Initialization can be slow since the search could result in the

crawling of a substantial fraction of the host web site. Furthermore, this approach could face

difficulty when a hierarchy is distributed across a number of sites.

The Context Graph method, proposed by Diligenti et al. [32] uses backlinks to estimate the link

distance from a page to target pages. Their method starts from a set of seed documents, follows

backlinks to a certain layer, and then builds up a context graph for the seed pages. A classifier is

constructed for each layer using the Naı¨ve Bayes algorithm. As a new document is found, it is

classified into a layer. Documents classified into layers closer to the target are crawled first. The

experiments showed that this approach maintained a higher level of relevance in the retrieved

Web pages. However, the assumption that all pages in a certain layer from a target document

belong to the same topic described by a set of terms does not always hold. Also this does not take

into account the case in which multiple pages of similar kind may have to be passed before

13

transiting to a page of another kind. Graphical models such as HMMs and CRFs are able to

include such cases as well, thereby making the model stronger. Also relying on Search engines

for back links is not a efficient strategy. A complete framework to evaluate different crawling

strategies is described in [39 - 41]. An application of extending digital libraries with a focused

crawler can be found in [42].

Layer 1

Layer 2

Documents in Layer2 Documents in Layer1 Target Document Representation

Figure 3: A context graph represents how a target document can be accessed from the web. In each node a web
document representation is stored. The graph is organized into layers: each node of layer i is connected to one (and
only one) node of the layer i-1 (except the single node in layer 0). There are no connections between nodes at the same
level. The seed document is stored in layer 0. A document is in layer i if at least i steps (link followings) are needed to
reach the target page starting from that document.

14

Chapter 3: Problem Definition

Web being a rich repository of learning content, we attempt to collect high volume of learning

material from web using a web miner [3]. The type of content required for the digital library

would include:

(a) Courses

(b) Assignments

(c) Lectures & Tutorials

(d) Animations & Videos

(e) Quizzes & Questions.

(f) Discussion Forums.

(g) Information of relevant technologies from the industry.

This content can be mined from the following sources:

1. Websites hosting standardized, reviewed and open source course material like MIT Open

Courseware, NPTEL India.

2. Course websites of large international universities.

3. Discussion Forums - Google Groups, Yahoo Answers

4. Websites for animations/videos - Youtube, Google Video and metacafe

5. Websites for general content - Wikipedia, Mathworld

6. Company Websites for product related info and case studies
7. Domain specific websites for questions, tutorials etc.

 Figure 4: Pictorial description of sources to be mined for content

15

3.1 Strategies for crawling the above resources

3.1.1 Open source and reviewed course pages

A general purpose crawler to crawl all the courses from MIT OCW and NPTEL is employed.

Content is structured and thus is easier to crawl. Also it provides us a list of basic courses to

include in the digital library. Courses from MIT OCW can be downloaded directly and the

download data is arranged into folders. The content from NPTEL is ad hoc and cannot be

downloaded directly. Hence, data downloaded from NPTEL will have to be catalogued.

3.1.2 Content from University course pages

Full crawl is not possible in this case and we opt for focused crawling [4]. Focused crawling is

possible due to the following observations in most universities page structures.

• Every University page has a page listing all its schools and departments

• Every Dept will have a page listing all its faculty members

• Every faculty member will have links of the courses on his home page.

The above structure is utilized to tune the focused crawler. The focused first learns this structural

similarity by observing the browsing behavior of a human who intends to reach a course page

starting from the University homepage. This structural similarity is modeled in terms of features

from the pages and the features from the links. Using probabilistic models the focused crawler

learns the features and while crawling it uses the learned features to prioritize the download of

links. The exact scheme is described in Chapter 5.

We also attempted direct search on Google for university course material. Using Google search

keywords of the form: <name of course> course page syllabus etc.. often returns many course

pages. However this approach has the problem of manually listing the names of all the courses in

order to reach them. The problem lies in the fact that we don't have a exhaustive list of courses.

Also since we don’t have the list of courses from a particular university, quantifying the recall

16

for this method would be difficult. Also the number of automatic queries that can be sent to a

search engine are limited and thus this method is not efficient.

Another issue involved for such course pages is that of extraction of learning content from

courses on the web. The data downloaded from a course on the web, may be arranged in various

ways and needs to be processed to extract the relevant information. Here we propose a simplistic

algorithm for doing it in each of the following two cases:

Case 1: All the data of a particular course lies on one page. In this case different kinds of data

will we be under corresponding headings. For example all the assignments of a particular course

will be under the assignments headings and all the questions will be under the questions heading.

To extract data from such a course, we detect the headings on a particular page and we

hypothesize that all the data under a heading is of that type. The algorithm is described in section

5.3.2 and has about 65% accuracy.

Case 2: The course page has separate links for separate kind of data i.e. the assignments are on

one page and the questions on another. We assume that these separate pages have such an anchor

text that indicates the type of content on the page. For example the main course has links to

Assignments / Lectures and Quizzes. To extract data from such a course we assume that type of

content on each page to be given by the anchor text on the hyperlink.

3.1.3 Unstructured data: Discussion forums and animation videos

Full Crawl is irrelevant and is also not possible. Focused crawling is the approach adopted. From

the courses already stored in the digital library now extract a set of keywords, including, (i)

Terms from the name of the course, (ii) Terms from the syllabus of the course, and (iii) Terms

from assignment heading/name, Lecture heading/name.

Next we search for discussions/Animations/Videos from the web which match the above list of

keywords and index the results obtained above with the keywords with which they were found

and the content of the entity obtained.

17

3.1.4 General purpose collections like WikiPedia

Full Crawl of Wikipedia is possible and can be obtained as a single XML document. However,

full crawl/download may not be necessary and may in fact weaken precision of the search on

digital library. We use a keyword based focused approach described above to limit the pages

being indexed in Wikipedia. Each Wikipedia article can be characterized a lectures or tutorials.

While indexing the articles of Wiki more importance should is given to the headings and the sub

headings on the page.

3.1.5 Websites of industrial corporations

Websites in this category will have to be handpicked and will be few in number. Examples of

company websites includes whitepapers, manuals, tutorials obtained from research lab of

companies like IBM, Google, Microsoft, GE. Handpicked websites of popular corporate training

resources like those offering questions/quizzes on C and those offering tutorials like How Stuff

Works.

3.2 Content from university course pages

Out of the above mentioned sources, course websites of different Universities are the richest

source of learning content. The advantages of this content are:

1. Since this content is hosted on the University site, under the professor/teacher taking this

course, the content is deemed to be authenticated and correct.

2. Also this type of content is used in a real scenario the teach the students and hence is

most relevant to the students.

However, along with being the richest source of valid educational content this type of content is

most difficult to mine. This is due to the fact that this content is non-structured in nature. There

are following difficulties in mining this content:

18

• Every teacher has his/her own way of hosting the content. Some might be putting up the

whole content in a single page while others might be having a more structured

representation of content with different sections for assignments, lectures, etc.

• Every University has their own sitemap. A set of rules to reach the course pages starting

from University homepage, if designed for a particular university, might not work for

every case.

 One of the solutions to get the course pages from a particular university would be to crawl the

whole university and separate out the course pages from the set of all crawled pages. The

separation of course pages will be done by a binary classifier that will be trained on the prior set

of course pages that can be obtained with the help of a search engine. However crawling the

whole university for course pages would be inefficient both in terms of Time and Space required.

Hence we need a focused crawling [4] technique to efficiently mine relevant course pages

starting from the university homepage.

3.3 Problem Formulation

It is often observed that University websites are structurally similar to each other. Humans are

good at navigating websites to reach specific information within large domain-specific websites.

Our system tries to learn the navigation path by observing the user’s clicks on as few example

searches as possible and then use the learnt model to automatically find the desired pages using

as few redundant page fetches as possible. Unlike in focused crawling [4], our goal is not to

locate the websites to start with. These are collected from web directories [5] and similar

resource websites. We start from a listing of University homepages and after watching the user

find the specific information from a few websites in the list, we automate the search in the

remaining.

There are two phases to this task:

1. Training phase: where the user teaches the system by clicking through pages and labeling

a subset with a dynamically defined set of classes, one of them being the Goal class. The

19

classes assigned on intermittent pages along the path can be thought of as “milestones”

that capture the structural similarity across websites. At the end of this process, we have a

set of classes C and a set of training paths where a subset of the pages in the path are

labeled with a class from C. All unlabeled pages before a labeled page are represented

with a special prefix state for that label. The system trains a model using the example

paths, modeling each class in C as a milestone state.

2. Crawling phase: where the given list of websites is automatically navigated to find all

goal pages. The system uses the model parameters learnt in the training phase to

prioritize the download of links trying to optimize the ratio of the number of relevant

pages downloaded to the total number of pages downloaded.

Formally, we are given a website as a graph W(V,E) consisting of vertex set V and edge set E,

where a vertex is a webpage and an edge e = <u, v> is a hyperlink pointing from a webpage u to

a webpage v. The goal pages PG constitute a subset of pages in W reachable from starting seed

page PS. We have to navigate to them starting from PS visiting fewest possible additional pages.

Let P : P1, P2, . . . , Pn be one such path through W from the start page P1 = PS to a goal page Pn

 PG. The ratio of relevant pages visited to the total number of pages visited during the execution א

is called the harvest rate. The objective function is to maximize the harvest rate.

This problem requires two solutions.

1. Recognizing a page as the goal page. This is a classification problem where given a

webpage we have to classify it as being a goal page or not. Often the page alone may not

hold enough information to help identify it as the goal page. We will need to consider

text around the entire path leading to the goal page in order to decide if it is relevant or

not. For example, if we want to get all course pages starting from a university root page,

then it is necessary to follow a path through departments’ homepages and then through

professors’ homepage. A course page on its own might be hard to classify.

20

2. Foraging for goal pages. This can be thought as a crawling exercise where, starting from

the entry point, we want to visit as few pages as possible in finding the goal pages. This

problem is different from the previous work on focused crawling[4] where the goal is to

find all web pages relevant to a particular broad topic from the entire web. In our case,

we are interested in finding course pages starting from a University homepage. We

exploit the regularity in the structures of University websites to build more powerful

models than is possible in the case of general-purpose focused crawlers.

3.4 Possible Approaches

One possible method of solving the problem is to train a classifier that can discriminate the goal

pages from the non-goal pages. Then, extract from the classifier the set of prominent features to

serve as keywords to a search engine that indexes all the websites of interest. By restricting the

domain to each given starting URL in turn, we issue a keyword search to get a set of candidate

pages. We further classify these pages to identify if these are goal pages or not. However this

method cannot provide high accuracy for the simple reason that the goal page itself may not hold

enough information to correctly identify it as the goal page. The path leading to the goal page is

important too.

University Homepage
Dept. listing page Department Homepage Faculty List Page

Faculty Homepage
Course Pages

Figure 5: Pictorial description of the Sequential labeling problem for reaching the course pages

21

A Focused crawler must use information gleaned from previously crawled page sequences to

estimate the relevance of a newly seen URL. Therefore, good performance depends on powerful

modeling of context as well as the current observations. Probabilistic models, such as Hidden

Markov Models(HMMs)[6] and Conditional Random Fields(CRFs)[7], can potentially capture

both formatting and context.

Thus a second approach and the one that we use is to treat this as a sequential labeling problem

where we use Hidden Markov Models (HMMs) and the Conditional Random Fields to learn to

recognize paths that lead to goal states. We then superimpose ideas from Reinforcement

Learning [8] to prioritize the order in which pages should be fetched to reach the goal page. This

provides an elegant and unified mechanism of modeling the path learning and foraging problem.

22

Chapter 4: Relational learning using Graphical Models

4.1 Introduction

Relational data has two characteristics: first, statistical dependencies exist between the entities

we wish to model, and second, each entity often has a rich set of features that can aid

classification. For example, when classifying Web documents, the page’s text provides much

information about the class label, but hyperlinks define a relationship between pages that can

improve classification [43]. Graphical models are a natural formalism for exploiting the

dependence structure among entities. Traditionally, graphical models have been used to represent

the joint probability distribution p(y, x), where the variables y represent the attributes of the

entities that we wish to predict, and the input variables x represent our observed knowledge

about the entities. But modeling the joint distribution can lead to difficulties when using the rich

local features that can occur in relational data, because it requires modeling the distribution p(x),

which can include complex dependencies. Modeling these dependencies among inputs can lead

to intractable models, but ignoring them can lead to reduced performance.

A solution to this problem is to directly model the conditional distribution p(y|x), which is

sufficient for classification. This is the approach taken by conditional random fields [7]. A

conditional random field is simply a conditional distribution p(y|x) with an associated graphical

structure. Because the model is conditional, dependencies among the input variables x do not

need to be explicitly represented, affording the use of rich, global features of the input.

4.2 Graphical Models

4.2.1 Definitions

We consider probability distributions over sets of random variables V = X ∪ Y, where X is a set

of input variables that we assume are observed, and Y is a set of output variables that we wish to

predict. Every variable v ∈ V takes outcomes from a set V, which can be either continuous or

discrete. We denote an assignment to X by x, and we denote an assignment to a set A ⊂ X by xA,

and similarly for Y.

23

A graphical model is a family of probability distributions that factorize according to an

underlying graph. The main idea is to represent a distribution over a large number of random

variables by a product of local functions that each depend on only a small number of variables.

Given a collection of subsets A ⊂ V, we define an undirected graphical model as the set of all

distributions that can be written in the form

,ݔሺ݌ ሻݕ ൌ
1
ܼ Ψ

஺
ሺݔ஺ ,ݕ஺ ሻ

for any choice of factors F = {ΨA}, where ΨA:νn ℜ+. (These functions are also called local

functions or compatibility functions). The term random field to refer to a particular distribution

among those defined by an undirected model. To reiterate, the term model is used to refer to a

family of distributions, and random field (or more commonly, distribution) to refer to a single

one. The constant Z is a normalization factor defined as

ܼ ൌ ෍ ෑΨ஺
஺௫,௬

ሺݔ஺ ,ݕ஺ ሻ

which ensures that the distribution sums to 1. The quantity Z, considered as a function of the set

F of factors, is called the partition function in the statistical physics and graphical models

communities. In this chapter we assume that local functions have the form:

Ψ஺ ൫ݔ஺ ,ݕ஺ ൯ ൌ ݌ݔ݁ ൝෍ θ஺௞ ஺݂௞
௞

൫ݔ஺ ,ݕ஺ ൯ൡ

for some real-valued parameter vector θA, and for some set of feature functions or sufficient

statistics {fAk}. This form ensures that the family of distributions over V parameterized by θ is an

exponential family.

A directed graphical model, also known as a Bayesian network, is based on a directed graph G =

(V, E). A directed model is a family of distributions that factorize as:

,ݔሺ݌ ሻݕ ൌ ෑ ሻሻݒπሺ|ݒሺ݌
௩ ∈ ௏

where π(v) are the parents of v in G. An example of directed model is shown in figure 6. The

term generative model to refer to a directed graphical model in which the outputs topologically

precede the inputs, that is, no x ∈ X can be a parent of an output y ∈ Y. Essentially, a generative

model is one that directly describes how the outputs probabilistically “generate” the inputs.

24

4.2.2 Sequence Models

The true power of graphical models lies in their ability to model many variables that are

interdependent. In this section, we discuss perhaps the simplest form of dependency, in which

the output variables are arranged in a sequence. To motivate this kind of model, we discuss an

application from natural language processing, the task of named-entity recognition (NER). NER

is the problem of identifying and classifying proper names in text, including locations, such as

China; people, such as George Bush; and organizations, such as the United Nations. The named-

entity recognition task is, given a sentence, first to segment which words are part of entities, and

then to classify each entity by type (person, organization, location, and so on). The challenge of

this problem is that many named entities are too rare to appear even in a large training set, and

therefore the system must identify them based only on context. One approach to NER is to

classify each word independently as one of either: Person, Location, Organization, or Other

(meaning not an entity). The problem with this approach is that it assumes that given the input,

all of the named-entity labels are independent. In fact, the named-entity labels of neighboring

words are dependent; for example, while New York is a location, New York Times is an

organization.

This independence assumption can be relaxed by arranging the output variables in a linear chain.

This is the approach taken by the Hidden Markov model (HMM) [6]. An HMM models a

sequence of observations X = {xt} t=1 T by assuming that there is an underlying sequence of states

Y = {yt} t=1 T drawn from a finite state set S. In the named-entity example, each observation xt is

the identity of the word at position t, and each state yt is the named-entity label, that is, one of the

entity types Person, Location, Organization, and Other.

y

x

Figure 6: The naïve Bayes Classifier, as a directed graphical model.

25

To model the joint distribution p(y, x) tractably, an HMM makes two independence assumptions.

First, it assumes that each state depends only on its immediate predecessor, that is, each state yt

is independent of all its ancestors y1, y2, . . . , yt−2 given its previous state yt−1. Second, an HMM

assumes that each observation variable xt depends only on the current state yt. With these

assumptions, we can specify an HMM using three probability distributions: first, the distribution

over initial states p(y1); second, the transition distribution p(yt | yt−1); and finally, the observation

distribution p(xt |yt). That is, the joint probability of a state sequence y and an observation

sequence x factorizes as

,ݕሺ݌ ሻݔ ൌ ෑ ݐݕ | ݐݕ ሺ݌ െ 1ሻ
்

௧ୀଵ

pሺݐݕ| ݐݔሻ

In natural language processing, HMMs have been used for sequence labeling tasks such as part-

of-speech tagging, named-entity recognition, and information extraction.

4.2.3 Discriminative Generative Models

An important difference between naive Bayes and logistic regression is that naïve Bayes is

generative, meaning that it is based on a model of the joint distribution p(y, x), while logistic

regression is discriminative, meaning that it is based on a model of the conditional distribution

p(y|x). In this section, we discuss the differences between generative and discriminative

modeling, and the advantages of discriminative modeling for many tasks. For concreteness, we

focus on the examples of naive Bayes and logistic regression, but the discussion in this section

actually applies in general to the differences between generative models and conditional random

fields.

The main difference is that a conditional distribution p(y|x) does not include a model of p(x),

which is not needed for classification anyway. The difficulty in modeling p(x) is that it often

contains many highly dependent features, which are difficult to model. For example, in named-

entity recognition, an HMM relies on only one feature, the word’s identity. But many words,

26

especially proper names, will not have occurred in the training set, so the word-identity feature is

uninformative. To label unseen words, we would like to exploit other features of a word, such as

its capitalization, its neighboring words, its prefixes and suffixes, its membership in

predetermined lists of people and locations, and so on.

To include interdependent features in a generative model, we have two choices: enhance the

model to represent dependencies among the inputs, or make simplifying independence

assumptions, such as the naive Bayes assumption. The first approach, enhancing the model, is

often difficult to do while retaining tractability. For example, it is hard to imagine how to model

the dependence between the capitalization of a word and its suffixes, nor do we particularly wish

to do so, since we always observe the test sentences anyway. The second approach, adding

independence assumptions among the inputs, is problematic because it can hurt performance. For

example, although the naive Bayes classifier performs surprisingly well in document

classification, it performs worse on average across a range of applications than logistic

regression.

Naïve Bayes

Logistic Regression

Conditional Conditional

HMMs
Sequence

Sequence
Linear Chain CRFs

Figure 7: Diagram of relationship between Naïve Bayes, Logistic Regression, HMMs and Linear Chain CRfs

27

Furthermore, even when naive Bayes has good classification accuracy, its probability estimates

tend to be poor. To understand why, imagine training naïve Bayes on a data set in which all the

features are repeated, that is, x = (x1, x1, x2, x2, . . . , xK, xK). This will increase the confidence of

the naive Bayes probability estimates, even though no new information has been added to the

data. Assumptions like naive Bayes can be especially problematic when we generalize to

sequence models, because inference essentially combines evidence from different parts of the

model. If probability estimates at a local level are overconfident, it might be difficult to combine

them sensibly. Actually, the difference in performance between naive Bayes and logistic

regression is due only to the fact that the first is generative and the second discriminative; the

two classifiers are, for discrete input, identical in all other respects. Naive Bayes and logistic

regression consider the same hypothesis space, in the sense that any logistic regression classifier

can be converted into a naive Bayes classifier with the same decision boundary, and vice versa.

The principal advantage of discriminative modeling is that it is better suited to including rich,

overlapping features. To understand this, consider the family of naïve Bayes distributions. This is

a family of joint distributions whose conditionals all take the “logistic regression form”. But

there are many other joint models, some with complex dependencies among x. By modeling the

conditional distribution directly, we can remain agnostic about the form of p(x). This may

explain why it has been observed that conditional random fields tend to be more robust than

generative models to violations of their independence assumptions. Simply put, CRFs make

independence assumptions among y, but not among x.

4.3 Conditional Random Fields

Assume a vector f of local feature functions f = <f1, . . . , fK>, each of which maps a pair (x, y)

and a position i in the vector x to a measurement fk(i, x, y) א R. Let f (i, x, y) be the vector of

these measurements and let F(x, y) = ∑ ,ሺ݅ ܎ ,ܠ |ሻ.|௫ܡ
௜ For the case of NER, the components of f

might include the measurement f13(i, x, y) = [[xi is capitalized]] · [yi = I]], where the indicator

function [[c]] = 1 if c if true and 0 otherwise; this implies that F13(x, y) would be the number of

capitalized words paired with the label I. For the sake of efficiency, we restrict any feature fk(i, x,

y) to be local in the sense that the feature at a position i will depend only on the previous labels.

28

With a slight abuse of notation, we claim that a local feature fk(i, x, y) can be expressed as fk(yi,

yi−1, x, i). Some subset of these features can be simplified further to depend only on the current

state and are independent of the previous state. We will refer to these as state features and

denote these by fk(yi, x, i) when we want to make the distinction explicit. The term transition

features refers to the remaining features that are not independent of the previous state.

A Conditional Random Field (CRF) is an estimator of the form

Prሺݔ|ݕ, ܹሻ ൌ
1

ܼሺݔሻ ݁ௐ.ிሺ௫,௬ሻ

where W is a weight vector over the components of F and the normalizing term is:

ܼሺݔሻ ൌ ෍ ݁ௐ.ிሺ௫,௬ᇱሻ

௬ᇱ

4.3.1 An Efficient Inference Algorithm

The inference problem for a CRF is defined as follows: Given Wand x, find the best label

sequence, arg maxy Pr(y|x,W)

arg maxܡ Prሺܠ|ܡ, ሻ܅ ൌ arg maxܡ W . Fሺx, yሻ

arg maxܡ Prሺܠ|ܡ, ሻ܅ ൌ arg maxܡ W . ෍ fሺy୨, y୨ିଵ, ,ܠ ሻܒ
୨

An efficient inference algorithm is possible because all features are assumed to be local. Let yi:y

denote the set of all partial labels starting from 1 (the first index of the sequence) to i, such that

the i-th label is y. Let δ(i, y) denote the largest value of W · F(x, y’) for any y’ א yi:y. The

following recursive calculation implements the usual Viterbi algorithm[44]:

,ሺ݅ߜ ሻݕ ൌ ൜
ሺ݅ߜ௬ᇲݔܽ݉ െ 1, ᇱሻݕ ൅ W. fሺyᇱy, x, iሻ, ݂݅ ݅ ൐ 0

1, ݂݅ ݅ ൌ 0

The best label then corresponds to the path traced by maxy δ(|x|, y).

29

4.3.2 Training Algorithm

Learning is performed by setting parameters to maximize the likelihood of a set of a training set

T = {(xl, yl)}Nl_=1 expressed in logarithmic terms as

ሺܹሻܮ ൌ ෍ log Prሺݕ௟|ݔ௟, ܹሻ ൌ
௟

෍ሺܹ. ,௟ݕሺܨ ௟ሻݔ െ log ܼ௪ሺݔ௟ሻሻ
௟

We wish to find a W that maximizes L(W). The above equation is convex and can thus be

maximized by gradient ascent or one of many related methods. The gradient of L(W) is the

following:

ሺܹሻܮߘ ൌ ෍ ,௟ݕሺܨ ௟ሻݔ െ ܧP୰൫௬ᇲหௐ൯
௟

,௟ݔሺܨ Ԣሻݕ

The first set of terms are easy to compute. However, we must use the Markov property of F and

a dynamic programming step to compute the normalizer ZW(xl), and the expected value of the

features under the current weight vector, EPr(y_|W)F(xl, yl).

30

Chapter 5: Our Approach

We first describe the model training phase where the user provided example positive and

negative paths from a few websites are used to train a CRF model. We then describe how this

trained model is used to locate goal pages starting from root pages of other websites.

5.1 Model Training

During training, we are given examples of several paths of labeled pages where some of the

paths end in goal pages and others end with a special “fail” label. We can treat each path as a

sequence of pages denoted by the vector x and their corresponding milestone labels denoted by

y. Each xi is a webpage represented suitably in terms of features derived from the words in the

page, its URL, and anchor text in the link pointing to xi.

A number of design decisions about the label space and feature space need to be made in

constructing a CRF to recognize characteristics of valid paths. One option is to assign a state to

each possible label in the set L which consists of the milestone labels and two special labels

“goal” and “fail”. State features are defined on the words or other properties comprising a page.

For example, state features derived from words are of the form

fk(i, x, yi) = [[xi is “computer” and yi = faculty]]

The URL of a page also yields valuable features. For example, a “tilda” in the URL is strongly

associated with a personal home page and a link name with word “contact” is strongly associated

with an address page. We tokenize each URL on delimiters and add a feature corresponding to

each token. Transition features capture the soft precedence order among labels. One set of

transition features are of the form:

fk(i, x, yi, yi−1) = [[yi is “faculty” and yi−1 is “department”]].

They are independent of xi and are called edge features since they capture dependency among

adjacent labels. In this model transition features are also derived from the words in and around

the anchor text surrounding the link leading to the next state. Thus, a transition feature could be

of the form

31

fk(i, x, yi, yi−1) = [[xi is an anchor word “advisor”, yi is “faculty”, and yi−1 is

“student”]].

A second option is to model each given label as a dual-state —one for the characteristics of the

page itself (page-states) and the other for the information around links that lead to such a page

(link-states). Hence, every path alternates between a page-state and a link-state. There are two

advantages of this labeling. First, it reduces the sparsity of parameters by making the anchor

word features be independent of the label of the source page. In practice, it is often found that the

anchor text pointing to the same page are highly similar and this is captured by allowing multiple

source labels to point to the same link state of label. Second for the foraging phase, it allows one

to easily reason about intermediate probability of a path prefix where only the link is known and

the page leading to it has not been fetched. In this model, the state-features of the page states are

the same as in the previous model, the state features of the link states are derived from the anchor

text. Thus, the anchortext transition features of the previous model, become state features of the

link state. Thus the only transition features in this model are the edge features that capture the

precedence order between labels.

5.2 Path Foraging

Given the trained sequential model M and a list of starting pages of websites, our goal is to find

all paths from the list that lead to the Goal state in M while fetching as few unrelated pages. The

key technical issue in solving this is to be able to score from the prefix of a path already fetched,

all the outgoing links with a value that is inversely proportional to the expected work involved in

reaching the goal pages. Consider a path prefix of the form P1L2P3 . . . Li where Li−1 is a link

to page Pi in the path. We need to find for link Li a score value that would indicate the

desirability of fetching the page pointed to by Li. This score is computed in two parts. First in

section 5.2.1, we estimate for each state y, the proximity of the state to the Goal state. We call

this the “reward” associated with the state. Then in section 5.2.2, we show for the link Li, the

probability of its being in state y.

32

5.2.1 Reward of a State

We apply techniques from Reinforcement Learning to compute the reward score using the CRF

model learnt during path classification phase. Reinforcement Learning is a machine learning

paradigm that helps in choosing the optimal action at each state to reach the Goal states. The

Goal states are associated with rewards that start to depreciate as the Goal states get farther from

the current state. The actions are chosen so as to maximize the cumulative discounted reward.

We apply Reinforcement Learning to compute the probability of a partially-observed sequence to

end-up in a Goal state. Since we cannot predict the state sequence that would be followed by the

unseen observation subsequence, we cannot compute the actual probability of the sequence

ending in a Goal state. Instead, we estimate this probability based on the training data by learning

a reward function R for each state. For each position i of a given sequence x we estimate the

expected proximity to the Goal state from a state y Ri
x (y) recursively as follows:

ܴ௜
௫ ൌ ൞

∑ ܴ௜ାଵ
௫ ሺݕԢሻ݁ௐ௙ሺ௬ᇲ,௬,௫,௜ሻ

௬ᇱ

∑ ݁ௐ௙ሺ௬ᇲ,௬,௫,௜ሻ
௬ᇱ

, 1 ൏ ݅ ൏ ݊

ሾሾ ݕ ൌ ,ሿሿ݈ܽ݋݃ ݅ ൌ ݊

When i = n, the reward is 1 for the Goal state and 0 for every other label. Otherwise, the values

are computed recursively from the proximity of the next state and the probability of transition to

the next state from the current state. We then compute a weighted sum of these positioned

reward values to get position independent reward values. The weight are controlled via γ, a

discount factor that captures the desirability of preferring states that are closer to the Goal state,

as follows:

ܴ௫ሺݕሻ ൌ
∑ ௞ܴ௡ି௞ߛ

௫ ሺݕሻ௡ିଵ
௞ୀ଴

∑ ௞௡ିଵߛ
 ௞ୀ ଴

where n is the length of the sequence. The final reward value of a state is computed by averaging

over all training sequences x1 . . . xN as

ܴሺݕሻ ൌ
∑ ܴ௟

௫ሺݕሻே
௟ୀଵ

ܰ

33

5.2.3 Probability of being in a state

Consider a path prefix of the form P1L2P3 . . . Li where Li−1 is a link to page Pi in the path. We

need to find for link Li, the probability of its being in any one of the link-states. We provide a

method for computing this. Let άi(y) denote the total weight of ending in state y after i states. For

i > 0, this can be expressed recursively as with base case defined as ߙ଴ሺݕሻ ൌ 1.

ሻݕ௜ሺߙ ൌ ෍ Ԣሻݕ௜ିଵሺߙ
௬ᇲא௒

݁ௐ.௙ሺ௬ᇲ,௬,௫,௜ሻ

The probability Li of being in a link state y is then defined as :
ሻݕ௜ሺߙ

∑ Ԣሻ௬ᇱ ఢ ௒ݕ௜ሺߙ

5.2.4 Score of Link

Finally, the score of a link Li after i steps is calculated as the sum of the product of reaching a

state y and the static reward at state y.

௜ሻܮሺ݁ݎ݋ܿܵ ൌ ෍ ܴሺݕሻ
௬

ሻݕ௜ሺߙ
∑ Ԣሻ௬ᇱ ఢ ௒ݕ௜ሺߙ

5.2.5 Algorithm to prioritize links

1. During training, for all training instances, compute R x(y) for all y during the backward

pass.

2. Average the R(y)-values computed in step 1 over all training instances

3. During Training,.

a. Maintain a priority queue of links that lead from pages fetched. Since

computation of score requires the α-values, those are also maintained along with

the link information.

b. In addition to the score and the α-values, the δ-values used to compute the label

are also maintained.

34

c. Initially, the queue contains the URL of seed page with score 0, and the α and δ-

values are set to 1 and 0 respectively.

4. For each seed URL in the priority queue,

a. Crawl the highest priority link to fetch the target page P.

b. Compute α-values and δ-values for the page P.

c. Label the state P with the maximizing label.

d. For every outlink from page P,

i. Calculate α-values to compute the score

ii. Calculate δ-values to label the link

iii. Enter the link in the priority queue

e. If more URLs are to be crawled then go back to step 4(a).

5.3 Experimental Results

The experiments were planned to be conducted in two phases: We first tested the accuracy of the

CRF-based sequential classifier in distinguishing between positive and negative paths and

segmenting a path. In the second phase we plan to use the trained model to fetch the pages in

foraging mode.

5.3.1 Dataset Description

Dataset was generated with labeled sequences for the course page extraction. This data set was

used to train the CRF to recognize the path leading to course pages starting from the university

homepages. The dataset was built manually by starting from the university homepage and then

for each page visited by the user, recording the label for that page, the page link and the content

of the page itself. Sequences were classified into two categories: positive, the ones that led to the

goal page and negative: the ones that led to irrelevant pages. Training was performed on 122

sequences from 7 university domains. The training dataset included 78 positive and 44 negative

sequences and the model was tested on 68 sequences. The test data included some sequences

from domains that were not included in the training data. The results are shown in Table 2.

35

Parameters Dataset Description

#sites 7

#training Examples 122

#training Positives 78

#test Examples 68

#test Positives 43

#labels 26

#Features Learnt 12198

 Precision Recall

Only Goal State 89.6% 92.4%

All States 79.2% 82.5%

5.3.2 Feature Extraction

When an HTML page is fetched, the page is represented in DOM structure format

(http://www.w3.org/DOM/) using the Hypertext Parsing suite. The text content from the page is

split into tokens on white-space delimiters (space, tab, etc.). The page-state tokens are extracted

from the head and body fields of the HTML page, while the link-state tokens are collected from

the URL anchor text and the neighbourhood text around the link. To capture the text around the

anchor text of a hyperlink, we extracted tokens from a fixed-sized window before and after the

link. In our experiments, we kept the window size constant at 10. In addition to these, the words

from the relative part of the target URL and the target file extension are also included as tokens.

As an illustration, for the URL “http://www-2.cs.cmu.edu/׽svc/papers/view-publications-

ckl2004.html”, the tokens extracted from the URL were ׽svc, papers, view, publications,

Table 1: Dataset Description

Table 2: Results for classification using CRFs. Classification
accuracy was measured for Goal states and for all states separately.

ckl2004,

departme

Two othe

1. N

p

sh

th

d

fe

al

2. H

fa

co

p

h

ex

and html.

ental pages, w

er important

Nested patter

oint out pag

hows a facu

hus the HTM

ata. Our Suf

eature if the

lso found to

Headings in a

aculty home

ourses, Rese

arses the HT

eadings belo

xample of he

F

Since ‘׽’

we also add

features are

rns are disco

ges which ha

ulty listing p

ML used to r

ffix tree mat

e page is fou

fire in the D

a page are al

epage then th

earch Interes

TML structu

ong to the pr

eading extra

Figure 8: An e

is a key f

as a sep ’׽‘

e extracted fr

overed by us

ave a list stru

page. Such a

represent ea

tching algor

und to conta

Department l

lso an indica

he headings

st, Publicatio

ure of the p

redefined set

action.

example of he

feature that

parate token.

rom the page

ing Suffix tr

ucture in the

a page is oft

ach of the re

rithm captur

ain such rep

listing page.

ation of the t

 in that pag

ons, Contact

page and ex

t then the he

eading extract

usually dis

e:

ree matching

em. For exam

ften generate

ecurring elem

res this repet

petitive HTM

type of page

ge are genera

t, etc.}. Our

tracts out th

eading featur

tion from a fa

stinguishes h

g. This is a h

mple conside

ed by databa

ments is the

tition in the

ML elements

. We found t

ally from th

heading extr

he headings.

re is fired. F

aculty homepa

homepages

helpful featu

er figure 9 w

ase querying

same excep

page and fi

s. This featu

that if a pag

he set {Teac

raction algor

. If the extr

Figure 8 show

age

36

from

ure to

which

g and

pt the

ires a

ure is

ge is a

ching,

rithm

racted

ws an

5.3.3 Exp

We perfo

is provid

reinforce

to calcul

implemen

MYSQL

perimental p

ormed our ex

ded in the d

ement learnin

late the ά va

nted from s

database int

Figure 9

platform

xperiments o

default pack

ng values fo

alues require

scratch in P

tegration wit

9: A page hav

on the MAL

kage. We m

or each state

ed for calcu

Perl. The im

th the perl co

ving a nested H

LLET [14] to

modified the

. We also m

ulating the li

mplementatio

ode.

HTML structu

oolkit. The b

e basic imp

modified the

ink score.Th

on manages

ure in the for

basic implem

lementation

forward bac

he focused c

the queue

rm of faculty i

mentation of

to calculat

ckward algor

crawler has

of urls by u

information

37

f CRF

e the

rithm

been

using

38

References

[1] Wikipedia : http://www.wikipedia.com

[2] J. Cole and H. Foster, Using Moodle: Teaching with the Popular Open Source Course

Management System (O'Reilly Media Inc., 2007).

[3] S. Chakrabarti, Mining the Web: Discovering Knowledge from Hypertext Data (Morgan-

Kauffman, 2002).

[4] S. Chakrabarti, M.H. Van den Berg, and B.E. Dom, "Focused Crawling: A New Approach to

Topic-Specific Web Resource Discovery," Computer Networks, vol. 31, nos. 11–16, pp. 1623–

1640.

[5] Yahoo Directory:

http://dir.yahoo.com/Education/Higher_Education/Colleges_and_Universities/

[6] Lawrence R. Rabiner. A tutorial on Hidden Markov Models and selected applications in

speech recognition. In Proceedings of the IEEE, volume 77(2), pages 257–286, February 1989.

[7] John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional Random Fields:

Probabilistic Models for Segmenting and Labeling Sequence Data. In Proceedings of the 18th

International Conference on Machine Learning (ICML-2001), pages 282–289. Morgan

Kaufmann, San Francisco, CA, 2001

[8] Tom Mitchell. Machine Learning. McGraw-Hill, 1997.

[9] A. McCallum, D. Freitag, and F. Pereira. Maximum entropy Markov models for information

extraction and segmentation. In International Conference on Machine Learning, 2000.

39

[10] D. Pinto, A. McCallum, X. Wei, and W. B. Croft. Table extraction using conditional

random fields. Proceedings of the ACM SIGIR, 2003.

[11] F. Sha and F. Pereira. Shallow parsing with conditional random fields. Proceedings of

Human Language Technology, NAACL 2003, 2003.

[12] J. Wang and F.H. Lochovsky, “Wrapper Induction Based on Nested Pattern Discovery,”

Technical Report HKUST-CS-27-02, Dept. of Computer Science, Hong Kong, Univ. of Science

& Technology, 2002.

[13] V.G.Vinod Vydiswaran and Sunita Sarawagi, Learning to extract information from large

websites using sequential models(In COMAD, 2005. SIGKDD Explorations. Volume 6, Issue 2 -

Page 66)

[14] McCallum, Andrew Kachites. "MALLET: A Machine Learning for Language Toolkit."

http://mallet.cs.umass.edu. 2002.

[15] Hongyu Liu , Evangelos Milios , Jeannette Janssen, Probabilistic models for focused web

crawling, Proceedings of the 6th annual ACM international workshop on Web information and

data management, November 12-13, 2004, Washington DC, USA

[16] J. Rennie and A. McCallum, "Using Reinforcement Learning to Spider the Web

Efficiently," In proceedings of the 16th International Conference on Machine Learning(ICML-

99), pp. 335-343, 1999.

[17] G. Pant and P. Srinivasan, Learning to crawl: Comparing classification schemes, ACM

Transactions on Information Systems 23(4) (2005) 430-462.

[18] Hongyu Liu, Jeannette C. M. Janssen, Evangelos E. Milios: Using HMM to learn user

browsing patterns for focused Web crawling. Data Knowl. Eng. 59(2): 270-291 (2006)

40

[19] Junghoo Cho , Hector Garcia-Molina , Taher Haveliwala , Wang Lam , Andreas Paepcke ,

Sriram Raghavan , Gary Wesley, Stanford WebBase components and applications, ACM

Transactions on Internet Technology (TOIT), v.6 n.2, p.153-186, May 2006

[20] S. Chakrabarti, K. Punera, and M. Subramanyam, "Accelerated Focused Crawling through

Online Relevance Feedback," Proc. 11th Int'l World Wide Web Conf. (WWW 02), ACM Press,

2002, pp. 148–159.

[21] Marc Ehrig , Alexander Maedche, Ontology-focused crawling of Web documents,

Proceedings of the 2003 ACM symposium on Applied computing, March 09-12, 2003,

Melbourne, Florida.

[22] C.C. Aggarwal, F. Al-Garawi, and P. Yu, "Intelligent Crawling on the World Wide Web

with Arbitrary Predicates," Proc. 10th Int'l World Wide Web Conf. (WWW 01), ACM Press,

2001, pp. 96–105.

[23] Srinivasan P, Mitchell JA, Bodenreider O, Pant G, Menczer F. Web Crawling Agents for

Retrieving Biomedical Information. Proc. of the International Workshop on Bioinformatics and

Multi-Agent Systems (BIXMAS). 2002 Jul.

[24] Wallach, H.M.: Conditional random fields: An introduction. Technical Report MS-CIS-04-

21, University of Pennsylvania (2004)

[25] Sutton, C., McCallum, A.: An Introduction to Conditional Random Fields for Relational

Learning. In "Introduction to Statistical Relational Learning". Edited by Lise Getoor and Ben

Taskar. MIT Press. (2006)

[26] McCallum, A.: Efficiently inducing features of conditional random fields. In: Proc. 19th

Conference on Uncertainty in Artificial Intelligence. (2003)

41

[27] Andrew McCallum , Dayne Freitag , Fernando C. N. Pereira, Maximum Entropy Markov

Models for Information Extraction and Segmentation, Proceedings of the Seventeenth

International Conference on Machine Learning, p.591-598, June 29-July 02, 2000

[28] SCROM: http://en.wikipedia.org/wiki/SCORM

[29] Learning Technology Standards Committee (2002), Draft Standard for Learning Object

Metadata. IEEE Standard 1484.12.1, New York: Institute of Electrical and Electronics

Engineers.

[30] “Web surpasses one billion documents: Inktomi/NEC press release.” available at

http://www.inktomi.com, Jan 18 2000.

[31] A. McCallum, K. Nigam, J. Rennie, and K. Seymore, “Building domain-specic search

engines with machine learning techniques,” in Proc. AAAI Spring Symposium on Intelligent

Agents in Cyberspace, 1999.

[32] M. Diligenti et al., "Focused Crawling Using Context Graphs," Proc. 26th Int'l Conf. Very

Large Data Bases (VLDB 2000), Morgan Kaufmann, 2000, pp. 527–534.

[33] O. Heinonen, K. Hatonen, and K. Klemettinen, “WWW robots and search engines.”

Seminar on Mobile Code, Report TKO-C79, Helsinki University of Technology, Department of

Computer Science, 1996.

[34] P.D. Bra, R. Post, Information retrieval in the World Wide Web: making client-base

searching feasible, in: Proceedings of the 1st International WWW Conference, Geneva,

Switzerland, 1994.

[35] M. Hersovici, M. Jacovi, Y. Maarek, D. Pelleg, M. Shtalhaim, S. Ur, The Shark-search

algorithm—an application: tailored Web site mapping, in: Proceedings of the 7th International

WWW Conference, Brisbane, Australia, 1998.

42

[36] J. Cho, H. Garcia-Molina, L. Page, Efficient crawling through URL ordering, in:

Proceedings of the 7th World Wide Web Conference, Brisbane, Australia, 1998.

[37] K. Stamatakis, V. Karkaletsis, G. Paliouras, J. Horlock, et al., Domain-specific Web site

identification: the CROSSMARC focused Web crawler, in: Proceedings of the 2nd International

Workshop on Web Document Analysis (WDA2003), Edinburgh, UK,

2003.

[38] J. Johnson, K. Tsioutsiouliklis, C.L. Giles, Evolving strategies for focused Web crawling,

in: Proceedings of the 20th International Conference on Machine Learning (ICML-2003),

Washington, DC, USA, 2003.

[39] F. Menczer, G. Pant, P. Srinivasan, M. Ruiz, Evaluating topic-driven Web crawlers, in:

Proceedings of the 24th Annual International ACM/SIGIR Conference, New Orleans, USA,

2001.

[40] F. Menczer, G. Pant, P. Srinivasan, Topical Web crawlers: evaluating adaptive algorithms,

ACM TOIT 4 (4) (2004) 378–419.

[41] P. Srinivasan, F. Menczer, G. Pant, A general evaluation framework for topical crawlers,

Information Retrieval 8 (3) (2005) 417–447.

[42] G. Pant, K. Tsioutsiouliklis, J. Johnson, C. Giles, Panorama: extending digital libraries with

topical crawlers, in: Proceedings of ACM/IEEE Joint Conference on Digital Libraries (JCDL

2004), Tucson, Arizona, June 2004, pp. 142–150.

[43] Ben Taskar, Pieter Abbeel, and Daphne Koller. Discriminative probabilistic models for

relational data. In Eighteenth Conference on Uncertainty in Artificial Intelligence (UAI02),

2002.

43

[44] Lawrence R. Rabiner. A tutorial on Hidden Markov Models and selected applications in

speech recognition. In Proceedings of the IEEE, volume 77(2), pages 257–286, February 1989.

[45] Intinno: http://www.intinno.com

