
Intinno: A Web Integrated Digital Library and Learning Content

Management System

Thesis to be submitted in Partial Fulfillment of the

 Requirements for the Award of the Degree of

Master of Technology

In

Computer Science and Engineering

Submitted By:

Arpit Jain (03CS3009)

Under the supervision of

Prof. Pabitra Mitra

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

May 2008

Certificate

This is to certify that the thesis titled Intinno: A Web Integrated Digital Library and Learning

Content Management System, submitted by Arpit Jain, to the Department of Computer Science

and Engineering, in partial fulfillment for the award of the degree of Master of Technology is a

bonafide record of work carried out by him under our supervision and guidance. The thesis has

fulfilled all the requirements as per the regulations of the institute and, in our opinion, has

reached the standard needed for submission.

Prof. Pabitra Mitra

Dept. of Computer Science and Engineering
Indian Institute of Technology
Kharagpur 721302, INDIA

Arpit Jain

Dept. of Computer Science and Engineering
Indian Institute of Technology
Kharagpur 721302, INDIA

Abstract
The work describes the design of Intinno, an intelligent web based learning content management

system. The system aims to circumvent certain drawbacks of existing learning management

systems in terms of scarcity of content, lack of intelligent search and context sensitive

personalization.

The scarcity problem is solved by using web mining to crawl learning content from the web. Web

mining is done by using a focused crawler that is trained to mine only educational content from

the web. The mined content is then automatically archived in SCORM format for further reuse

and exchange.

The archived content used to develop concept maps that capture the various semantic relations

among data. Automatic annotation using the concept maps is used to archive the crawled content

into a digital library. Multi-parameter indexing and clustering is done to provide intelligent

content based search.

The semantic content from the digital library is used to develop intelligent learning applications.

These applications focus on making the learning process for a student both efficient and

effective. Algorithms for learning applications like generation of memory maps and table of

contents for a specific topic are proposed. Context sensitive and personalized recommendation

on content is supported. The initial version of the system is available online at

http://www.intinno.com

Table of Contents
Abstract ... 3

Chapter 1: Introduction ... 5

1.1 Learning Management Systems ... 6

1.1.1 Introduction ... 6

1.1.2 Problems faced by LCMS ... 7

1.1.3 Advantages of LCMS ... 8

1.1.4 LCMS + Web 2.0 = E-Learning2.0 ... 9

1.2 Intelligent tutoring Systems (ITS) .. 10

1.2.1 Introduction ... 10

1.2.2 Disadvantages of ITS .. 12

1.2.3 Advantages of ITS .. 12

1.3 Motivation .. 12

1.4 Proposed Approach .. 13

1.4.1 Introduction ... 13

1.4.2 Useful Applications .. 14

Chapter 2: Architecture of Intinno .. 17

2.1 Introduction .. 17

2.2 Learning Resources on Web .. 18

2.2.1 Open source and reviewed course pages .. 20

2.2.2 Content from University course pages .. 20

2.2.3 Unstructured data: Discussion forums and animation videos 22

2.2.4 General purpose collections like WikiPedia ... 23

2.2.5 Websites of industrial corporations .. 24

2.3 Mining Resources from the web .. 24

2.3.1 Why a focused Crawler? ... 24

2.3.2 Content from University Course pages ... 25

2.3.3 Possible approaches of mining course content from university homepages 26

2.3.4 Our Approach ... 28

2.4 Domain Knowledge Representation ... 29

2.4.1 Introduction ... 30

2.4.2 Why Knowledge Representation ? .. 31

2.4.3 An Approach ... 31

2.4.4 Our Approach – The Motivation... 33

2.1.5 Our Design .. 34

Chapter 3: Intelligent Applications for Intinno ... 36

3.1 Introduction .. 36

3.2 Memory Maps ... 38

3.2.1 Need for Memory Maps ... 38

3.2.2 Approach 1 .. 40

3.2.3 Approach 2 .. 41

Chapter 4: Implementation and Results .. 45

4.1 Implementation of CMS ... 45

References ... 48

Chapter 1: Introduction

1.1 Learning Management Systems

1.1.1 Introduction

A Learning Management System (or LMS) is a software tool designed to manage user

learning processes . LMSs go far beyond conventional training records management and

reporting. The value-add for LMSs is the extensive range of complementary functionality they

offer. Learner self-service (e.g. self-registration on instructor-led training), learning workflow

(e.g. user notification, teacher approval, waitlist management), the provision of on-line learning,

on-line assessment, management of continuous professional education, collaborative learning

(e.g. application sharing, discussion threads), and training resource management (e.g. instructors,

facilities, equipment), are some of the additional dimensions to leading learning management

systems [1].

In addition to managing the administrative functions of online learning, some systems

also provide tools to deliver and manage instructor-led synchronous and asynchronous online

teaching based on learning object methodology. These systems are called Learning content

management systems or LCMSs. An LCMS provides tools for authoring and re-using or re-

purposing content as well as virtual spaces for learner interaction (such as discussion forums and

live chat rooms). The focus of an LCMS is on learning content. It gives authors, instructional

designers, and subject matter experts the means to create and re-use e-learning content more

efficiently [2].

LCMSs provide instructors with the ability to perform the following tasks [3]:

• Place course materials online. Most CMSs provide pre-programmed buttons for the

course syllabus, course schedule, and course materials linked to specific lessons, such as

copies of readings and PowerPoint slides from lectures.

• Track student progress through assessment features, which enable instructors to give

quizzes and tests online, and an online gradebook, where instructors can post student

grades.

• Discussion board, where instructors and students can discuss readings and continue class

discussions between formal class sessions.

• Other communications tools, which let instructors send announcements to classes and

communicate individually with students.

• Lock box for students, where students can store class materials in a safe place—either a

presentation to give later in class or backing up class assignments in a safe place.

• Course statistics, which provide information on the use of the course site, including who

used the course site and when.

LCMSs also have proven popular in managing asynchronous academic distance courses, too,

because of their ability to manage discussions. In addition, given that LCMSs were already

installed and in wide use only adds to their popularity. When using a LCMS to manage a

distance course, instructors post a core lessons master script, of sorts, that guides students

through readings, discussions, and learning activities instead of merely posting readings and

PowerPoint slides for each lesson,. Instructors then use the discussion board to manage the

course discussions, which are usually more extensive than those used in classroom courses.

1.1.2 Problems faced by LCMS

The current course management systems have a number of drawbacks which hinder their wide

acceptance among teachers and students.

• One of them being the problem of cold start. Instructors who begin to make up a course

don't have the material to start up.

• Seamless content reuse is often not possible.

• Materials presented may lack coverage of the subject area and thus fail to cater

information needs of all students in a class.

• Students while studying or reading a lecture have to waste a lot of their time in searching

for relevant resources from the web.

1.1.3 Advantages of LCMS

The current course management systems have a number of advantages:

• LCMSs enable instructors to easily create a course website by following a template and

uploading existing documents in PowerPoint, Word, Excel, Acrobat and other popular

formats without converting them to a web format (like HTML), they require few

specialized skills.

• LCMSs are easy to learn and were quickly adopted by instructors, even those who might

claim to be luddites.

• LCMSs allow active participation of students in learning activities even outside the

physical boundaries of a classroom.

• LCMSs help the instructors to create and archive of the course material and discussions

which would be helpful to the students opting the course next year.

1.1.4 LCMS + Web 2.0 = E-Learning2.0

The changes in e-learning are being driven by two primary forces [4]. The first force is a

steady increase in the pace information creation, boosted by the availability of easy to use

LCMS. This has led to a shift in work, especially knowledge work, and an evolution in

information needs. The second driver affecting workplace learning is the advent of Web 2.0.

In its most basic form, Web 2.0 means that anyone should be able to easily create and contribute

content on the Internet. This ranges from writing a blog, to providing video on YouTube, to

putting pictures on Flickr, to contributing written content on wikis such as Wikipedia, as well as

developing a social network on something like MySpace. The key components to Web 2.0 are

the ease of using the tools and the collaboration/social interaction that naturally results. One of

the interesting results from Web 2.0 is something called collective intelligence. For example,

consider how Amazon's user ratings and comments influence buyer behavior.

The term E-Learning 2.0 was coined by Stephen Downes, a Canadian researcher, and it

derives from the overall e-learning trends stated above in combination with Web 2.0. To begin

to examine E-Learning 2.0, let’s consider an example:

A small team of five practitioners in a corporate learning department has adopted e-

learning 2.0 tools as part of their daily work. They need to define their strategy around the use of

"rapid e-learning" and present it to management as part of the annual budget process. Here are

some of the ways the workgroup will take advantage of E-Learning 2.0 tools:

• Search for useful web pages, then tag, add comments, and share them by using such

social bookmarking tools as del.icio.us or Yahoo MyWeb. By using these tools, the team

will keep a copy of each page; the page is full-text searchable; it can be accessed from

any computer; and everyone on the team has access to the same links.

• Create public blog posts (using a tool like Blogger) that will outline the team's current

thinking about how rapid e-learning fits into its future strategic plans. The blog also will

solicit feedback from everyone on the team, as well as the larger e-learning blog

community.

• Write or copy-and-paste notes into a wiki, which will become a shared resource that

everyone on the team can edit.

• Use an RSS reader (for example, Bloglines) to track updates to the wiki, social

bookmarking tools, and the blog. This eliminates the need for email as the reader

becomes the single place each team member visits to see whatâ€™s happened recently.

E-Learning 2.0 is making an impact in formal learning settings, and they are particularly

useful for collaborative formal learning. For example, wikis can be used as part of group

projects; blogs can be used to submit written work and offer the opportunity for peers to provide

feedback in a collaborative learning setting; and social bookmarking tools can be used as part of

collaborative research. Again, the ease-of-use and collaborative nature of these tools make them

a natural fit for learning.

1.2 Intelligent tutoring Systems (ITS)

1.2.1 Introduction

Imagine that each learner in a classroom has a personal training assistant who pays

attention to the participant's learning needs, assesses and diagnoses problems, and provides

assistance as needed. The assistant could perform many of the routine instructional interventions

and alert the instructor of learning problems that are too difficult for it. By taking on basic

assistance tasks, the instructor would be free to concentrate on training issues that require greater

expertise.

Providing a personal training assistant for each learner is beyond the training budgets of

most organizations. However, a virtual training assistant that captures the subject matter and

teaching expertise of experienced trainers provides a captivating new option. The concept,

known as intelligent tutoring systems (ITS) [5] or intelligent computer-aided instruction (ICAI),

has been pursued for more than three decades by researchers in education, psychology, and

artificial intelligence. Today, prototype and operational ITS systems provide practice-based

instruction to support corporate training, schools and college education, and military training.

The goal of ITS is to provide the benefits of one-on-one instruction automatically and

cost effectively. Like training simulations, ITS enables participants to practice their skills by

carrying out tasks within highly interactive learning environments. However, ITS goes beyond

training simulations by answering user questions and providing individualized guidance. Unlike

other computer-based training technologies, ITS systems assess each learner's actions within

these interactive environments and develop a model of their knowledge, skills, and expertise.

Based on the learner model, ITSs tailor instructional strategies, in terms of both the content and

style, and provide explanations, hints, examples, demonstrations, and practice problems as

needed.

ITS systems typically rely on three types of knowledge, organized into separate software

modules (as shown in Figure 1). The "expert model" represents subject matter expertise and

provides the ITS with knowledge of what it's teaching. The "student model" represents what the

user does and doesn't know, and what he or she does and doesn't have. This knowledge lets the

ITS know who it's teaching. The "instructor model" enables the ITS to know how to teach, by

encoding instructional strategies used via the tutoring system user interface.

Simulation

Tutoring

System UI

Instructor

Expert

Student

Figure 1: Components of an intelligent Tutoring System

1.2.2 Disadvantages of ITS

ITS needs careful preparation in terms of describing the knowledge and possible

behaviors of experts, students and tutors. This description needs to be done in a formal language

in order that the ITS may process the information and draw inferences in order to generate

feedback or instruction. Therefore a mere description is not enough, the knowledge contained in

the models should be organized and linked to an inference engine. It is through the latter's

interaction with the descriptive data that tutorial feedback is generated. All this is a substantial

amount of work. This means that building an ITS is an option only in situations in which they, in

spite of their relatively high development costs, still reduce the overall costs through reducing

the need for human instructors or sufficiently boosting overall productivity. Such situations

occur when large groups need to be tutored simultaneously or many replicated tutoring efforts

are needed. Cases in point are technical training situations such as training of military recruits

and high school mathematics.

1.2.3 Advantages of ITS

An ITS system has the following advantages:

• They provide the benefits of one-on-one instruction automatically in a cost effective

manner.

• ITS-taught students generally learn faster and translate the learning into improved

performance better than classroom-trained participants.

• Provides direct feedback to the students without the intervention of human beings.

1.3 Motivation
LCMS and ITS systems are two ends of same rope. Both the systems have the basic goals

of making the learning process efficient for the students and reducing the work required to be

done by the teacher. However both the systems differ in the way they go about achieving the

basic goals. LCMS provide a platform where it is easier for the teacher to upload content,

students have a central place for all their learning materials and the discussion/questions are

extended out from the physical boundaries of the classroom. LCMS systems are easier to build

and such systems involve active participation from the student community. However LCMS

suffer from the problem that they have no intelligence built into them.

ITS systems are intelligent. They model how a teacher would teach in the class and also

keep a track of the student’s performance. Such systems use the record of students performance

to enhance their learning process. However these systems are expensive to build and model.

They require much human expertise and are domain specific. Thus we see that neither LCMS nor

ITS system is a one stop solution to making the learning process efficient. ITS systems are

difficult to build and LCMS aren’t intelligent enough. An intelligent application would be the

one that would combine the benefits of both the systems into one, i.e. it is as easy a CMS for the

use of the teacher (eliminating the task of annotating the sources), involves high participation

from the user and is also intelligent enough to make the user learning process easier and

efficient.

1.4 Proposed Approach

1.4.1 Introduction

We propose a LMS, Intinno, motivated from the above discussion. Intinno being an LMS

would be easy to build and would have all the benefits of an LCMS. To make Intinno intelligent

we propose the addition of intelligent applications to the system. These applications would be

directly integrated in the LCMS and would use Data-mining techniques [6] to make the learning

process efficient. Till date there has been no work on integrating intelligent application into an

LCMS that enhance the students learning process. However there have been several attempts to

develop stand alone intelligent applications.

The work in [7] focuses on helping a teacher moderate a classroom of students using e-

discussion tools in which the students comprise multiple discussion groups. Generally a teacher

can bring to bear his or her experience and moderation expertise to steer the discussions when

problems occur and provide encouragement when discussions are productive. However when

multiple e-discussions occur simultaneously, a single teacher may struggle to follow all of the

discussions. To direct the teacher’s attention to the ‘hot spots,’ this paper proposes software tools

that pre-process, aggregate, and summarize the incoming flood of data. [8] proposes Information

Retrieval techniques to detect conflicts within the same exam. A Conflict exists in an exam if at

least two questions within that exam are redundant in content, and/or if at least one question

reveals the answer to another question within the same exam. However none of these mentioned

application aim to enhance the student’s learning process.

1.4.2 Useful Applications

From the student’s point of view, an application that abstracts the learning material and

presents it in way that is easier to grasp would be highly useful. Such an application would help

the student to learn the whole concept by learning small related set of concepts. Proposed set of

such applications are:

• Memory Maps: This application would extract a set of keywords from the document and

present a graph of these keywords connected by a set of associations. It would be similar

to making an automatic memory map of the concept to be learned.

• Presentation Module: This module would abstract a given page in the form of a power

point presentation. This application would help the users to grasp a few important aspects

of the concepts to be learned. It would also prove as the starting for preparing

presentations from a given piece of content.

With the explosion of Web2.0 the content on the web has increased manifold. This has

provided the user with treasures of information. However there is a catch here. Since the number

of sources that present the same content to the user is large, a large portion of the user’s time is

spent in searching for appropriate material on the web. The same logic applies to students. Also

there exist no educational search engines that focus only on educational content. Applications

that can be developed to cater to the above problems:

• Recommendation Engine: This engine would implicitly help the user in getting similar

content. When a student is reading a lecture then similar content would be automatically

recommended to him. The recommendation would be content diversified, i.e. if the

person is currently studying Lectures then he/she will be recommended

questions/quizzes/Assignments. however on the other hand if the person is bust doing

Assignments or solving questions then he/she will be recommended lectures/tutorials on

that particular subject from the digital library. Recommendation will be personalized i.e

it will be based on the courses that the user has done and also on his/her level of

understanding which can be judged from his courses list.

• Educational Search Engine: This will provide two additional capabilities in addition to

keyword based search, namely (i) Content based search for similar courses, and (ii)

Intelligent search for course materials (i.e. if a search is given for material on

biochemistry course then materials from molecular biology course should also turn up in

the results.

Until now the applications mentioned above have focused only on improving the efficiency

of learning from the student’s point of view. However an intelligent LCMS should minimize the

efforts required from an instructor. Thus the following applications are proposed:

• Automatic Evaluator for Coding Assignments: In large number of courses the

assignments given to students require a coded solution. The final answer is same for

every student. This evaluator will automatically check the answers minimizing the efforts

required from the instructors.

• Automatic Question Answering: One of the major advantages of LCMS is the discussion

forums. However it may so happen that a question/query asked by a particular student

may have been answered before in some other course. This module will seek out such

answers and will present them to the users, automatically.

• Duplicate Detection in Assignments: This application would detect duplication in

submitted assignments by the use of text matching algorithms. The instructor would be

provided of the percentage match between any two submitted assignments.

The current LCMSs have the drawback of non availability of free content. LMS’s assume

that the content will be put up by users i.e. teachers and students. This leads to the cold start

problem. Instructors who begin to make up a course don't have the material to start up. Our

system solves the above problem to a large extent. The web interfaced educational digital library

will solve the cold start problem faced by instructors. While putting up new course, assignment

or a lecture, similar resources would be available from the digital library either by search or by

recommendations.

Chapter 2: Architecture of Intinno

2.1 Introduction
The functionalities provided by the system include, web mining, learning content

management, semantic representation of mined knowledge, search and recommendation.

Accordingly, Intinno has the following major components:

1. Focused Web Miner for Learning Content

2. SCORM module

3. Knowledge Representation Module

4. Intelligent Application Builder

A block diagram of Intinno system is shown in Figure 2. The system tasks may be mainly

classified into the following major steps:

1. Building up of digital library from the content crawled from the web. The subtasks of this

step are

a. Collection of resources from the web

b. Automatic Tagging of collected data for indexing, i.e. converting the downloaded

data into SCORM compatible format.

c. Extraction of semantic knowledge from the SCORM compatible content and

representing it in the form of ontology.

2. Application Builder Module:

a. This module uses the knowledge stored in the digital library for developing

intelligent applications.

3. User Interaction:

a. User mainly interacts with the Intinno system through the Applications developed

and the LCMS Module. The user interactions are recorded for further use by the

applications to enhance user’s learning process.

2.2 Learning Resources on Web

Web being a rich repository of learning content, we attempt to collect high volume of

learning material from web using a web miner [10]. The type of content required for the digital

library would include.

1. Courses

2. Assignments

3. Lectures and Tutorials

4. Animation and Videos

5. Case Studies

Figure 2: Block Diagram of the Intinno LCMS

6. Questions and Quizzes

7. Information of relevant technologies from the industry.

The content described above can be mined from the following major resources:

(a) Websites hosting standardized, reviewed and open source course material like MIT Open

Courseware [12], NPTEL [13] India.

(b) Course websites of large international universities. We have considered US universities

currently.

(c) Discussion Forums - Google Groups, Yahoo Answers

(d) Websites for animations/videos - Youtube, Google Video and metacafe

(e) Websites for general content - Wikipedia, Mathworld

(f) Company Websites for product related info and case studies

(g) Domain specific websites for questions, tutorials etc.

Strategies for crawling the above resources are mentioned below.

Figure 3: Pictorial description of sources on the web to be mined for

2.2.1 Open source and reviewed course pages

A general purpose crawler to crawl all the courses from MIT OCW and NPTEL is

employed. Content is structured and thus is easier to crawl. Also it provides us a list of basic

courses to include in the digital library. Courses from MIT OCW can be downloaded directly and

the download data is arranged into folders. The content from NPTEL is ad hoc and cannot be

downloaded directly. Hence, data downloaded from NPTEL will have to be catalogued.

2.2.2 Content from University course pages

Full crawl is not possible in this case and we opt for focused crawling [14]. Focused

crawling is possible due to the following observations in most universities page structures.

• Every University page has a page listing all its schools and departments

• Every Dept will have a page listing all its faculty members

• Every faculty member will have links of the courses on his home page.

The above structure is utilized to tune the focused crawler. Crawling the above pages is

modeled as a problem of sequence learning. CRF [15] techniques are used to learn the model

parameters of the sequence learning problem and Reinforcement learning [16] is used to

prioritize the download of links. A detailed description of the crawling technique is presented in

Chapter 3.

Other than using the complex approach of focused crawling, we also tried our hands at

another simpler approach. We attempted direct search on Google for university course material.

Using Google search keywords of the form: <name of course> course page syllabus returns

course pages. However this approach has the following problems:

• We need a pre defined, exhaustive list of courses in order to find them through a search

engine, which is always not possible.

• Relying on a search engine for Data Mining is not a feasible option as the number of

automatic queries that can be issued per day are limited.

• It is difficult to quantify the recall of this method.

Another issue involved for such course pages is that of extraction of learning content from

courses on the web. The data downloaded from a course on the web, may be arranged in various

ways and needs to be processed to extract the relevant information. The data is represented in

SCORM format to enable easier exchange and reuse. Here we propose a simplistic algorithm for

doing it in each of the following two cases:

Case 1: All the data of a particular course lies on one page. In this case, different kinds of data

will we be under corresponding headings. For example all the assignments of a particular course

will be under the assignments headings and all the questions will be under the questions heading.

To extract data from such a course, we detect the headings on a particular page and we

hypothesize that all the data under a heading is of that type. The algorithm for the detection of

headings has about 65\% accuracy.

Case 2: The course page has separate links for separate kind of data i.e. the assignments are on

one page and the questions on another. We assume that these separate pages have such an anchor

text that indicates the type of content on the page. For example the main course has links to

Assignments / Lectures and Quizzes. To extract data from such a course we assume that type of

content on each page to be given by the anchor text on the hyperlink.

 Figure 4: Sources of course material on the

2.2.3 Unstructured data: Discussion forums and animation videos

Full Crawl is irrelevant and is also not possible. Focused crawling is the approach

adopted to get related content. From the courses already stored in the digital library now extract a

set of keywords:

• Terms from the name of the course

• Terms from the syllabus of the course

• Terms from assignment heading/name, Lecture heading/name.

Next we search for discussions/Animations/Videos from the web which match the above

list of keywords and index the results obtained above with the keywords with which they were

found and the content of the entity obtained.

Figure 5: Type of contents available from course

2.2.4 General purpose collections like WikiPedia

Full Crawl of Wikipedia is possible and can be obtained as a single XML document.

However, full crawl/download may not be necessary and may in fact weaken precision of the

search on digital library. We use a keyword based focused approach described above to limit the

pages being indexed in wikipedia. Each wikipedia article can be characterized a lectures or

tutorials. While indexing the articles of Wiki more importance should is given to the headings

and the sub headings on the page.

Figure 6: Sources of Animations and Videos on the

Figure 7: Sources of Discussions/Questions on the

2.2.5 Websites of industrial corporations

Websites in these categories will have to handpicked and will be few in number.

Examples of company websites includes whitepapers, manuals, tutorials obtained from research

lab of companies like IBM, Google, Microsoft, GE. Handpicked websites of popular corporate

training resources like those offering questions/quizzes on C and those offering tutorials like

How Stuff Works.

2.3 Mining Resources from the web

2.3.1 Why a focused Crawler?

The size of the publicly index able world-wide-web has provably surpassed one billion

documents [17] and as yet growth shows no sign of leveling off. Dynamic content on the web is

also growing as time-sensitive materials, such as news, financial data, entertainment and

schedules become widely disseminated via the web. Search engines are therefore increasingly

challenged when trying to maintain current indices using exhaustive crawling. Even using

state of the art systems such as Google, which reportedly crawls millions of pages per day, an

exhaustive crawl of the web can take weeks. Exhaustive crawls also consume vast storage and

bandwidth resources, some of which are not under the control of the search engine.

Figure 8: Types of Data available by mining Company

Focused crawlers [10, 11, 14] aim to search and retrieve only the subset of the world-wide web

that pertains to a specific topic of relevance. The ideal focused crawler retrieves the maximal set

of relevant pages while simultaneously traversing the minimal number of irrelevant documents

on the web. Focused crawlers therefore offer a potential solution to the currency problem by

allowing for standard exhaustive crawls to be supplemented by focused crawls for categories

where content changes quickly. Focused crawlers are also well suited to efficiently generate

indices for niche search engines maintained by portals and user groups [18], where limited

bandwidth and storage space are the norm. Finally, due to the limited resources used by a good

focused crawler, users are already using personal PC based implementations. Ultimately simple

focused crawlers could become the method of choice for users to perform comprehensive

searches of web-related materials.

2.3.2 Content from University Course pages

Out of the above mentioned sources, course websites of different Universities are the

richest source of learning content. The advantages of this content are:

1. Since this content is hosted on the University site, under the professor/teacher taking this

course, the content is deemed to be authenticated and correct.

2. Also this type of content is used in a real scenario the teach the students and hence is

most relevant to the students.

However, along with being the richest source of valid educational content this type of

content is most difficult to mine. This is due to the fact that this content is non-structured in

nature. There are following difficulties in mining this content:

• Every teacher has his/her own way of hosting the content. Some might be putting up the

whole content in a single page while others might be having a more structured

representation of content with different sections for assignments, lectures, etc.

• Every University has their own sitemap. A set of rules to reach the course pages starting

from University homepage, if designed for a particular university, might not work for

every case.

 One of the solutions to get the course pages from a particular university would be to

crawl the whole university and separate out the course pages from the set of all crawled pages.

The separation of course pages will be done by a binary classifier that will be trained on the prior

set of course pages that can be obtained with the help of a search engine. However crawling the

whole university for course pages would be inefficient both in terms of Time and Space required.

Hence we need a focused crawling [11] technique to efficiently mine relevant course pages

starting from the university homepage.

2.3.3 Possible approaches of mining course content from university homepages

One possible method of solving the problem is to train a classifier that can discriminate

the goal pages from the non-goal pages. Then, extract from the classifier the set of prominent

features to serve as keywords to a search engine that index all the websites of interest. By

restricting the domain to each given starting URL in turn, we issue a keyword search to get a set

of candidate pages. We further classify these pages to identify if these are goal pages or not.

However this method cannot provide high accuracy for the simple reason that the goal page itself

may not hold enough information to correctly identify it as the goal page. The path leading to the

goal page is important too.

Figure 9: Sequential mining of course pages starting from university

The major open problem in focused crawling is that of properly assigning credit to all

pages along a crawl route that yields a highly relevant document. In the absence of a reliable

credit assignment strategy, focused crawlers suffer from a limited ability to sacrifice short term

document retrieval gains in the interest of better overall crawl performance. In particular,

existing crawlers still fall short in learning strategies where topically relevant documents are

found by following off-topic pages.

The credit assignment for focused crawlers can be significantly improved by equipping

the crawler with the capability of modeling the context within which the topical materials is

usually found on the web [19]. Such a context model has to capture typical link hierarchies

within which valuable pages occur, as well as describe off-topic content that co-occurs in

documents that are frequently closely associated with relevant pages.

Figure 10: A context graph represents how a target document can be accessed from the web. In each node a web
document representation is stored. The graph is organized into layers: each node of layer i is connected to one (and
only one) node of the layer i-1 (except the single node in layer 0). There are no connections between nodes at the same
level. The seed document is stored in layer 0. A document is in layer i if at least i steps (link followings) are needed to
reach the target page starting from that document.

A Focused crawler must use information gleaned from previously crawled page

sequences to estimate the relevance of a newly seen URL. Therefore, good performance depends

on powerful modeling of context as well as the current observations. Probabilistic models, such

as Hidden Markov Models(HMMs)[20] and Conditional Random Fields(CRFs)[15], can

potentially capture both formatting and context.

Thus a second approach and the one that we use in Intinno is to treat crawling as a

sequential labeling problem where we use Hidden Markov Models (HMMs) and the Conditional

Random Fields to learn to recognize paths that lead to goal states. We then superimpose ideas

from Reinforcement Learning [16] to prioritize the order in which pages should be fetched to

reach the goal page. This provides an elegant and unified mechanism of modeling the path

learning and foraging problem.

2.3.4 Our Approach

There are two phases in our approach:

1. Training phase: where the user teaches the system by clicking through pages and

labeling a subset with a dynamically defined set of classes, one of them being the Goal

class. The classes assigned on intermittent pages along the path can be thought of as

“milestones” that capture the structural similarity across websites. At the end of this

process, we have a set of classes C and a set of training paths where a subset of the pages

in the path are labeled with a class from C. All unlabeled pages before a labeled page are

represented with a special prefix state for that label. The system trains a model using the

example paths, modeling each class in C as a milestone state.

2. Crawling phase: where the given list of websites is automatically navigated to find all

goal pages. The system uses the model parameters learnt in the training phase to

prioritize the download of links trying to optimize the ratio of the number of relevant

pages downloaded to the total number of pages downloaded.

Formally, we are given a website as a graph W(V,E) consisting of vertex set V and edge set E,

where a vertex is a webpage and an edge e = <u, v> is a hyperlink pointing from a webpage u to

a webpage v. The goal pages PG constitute a subset of pages in W reachable from starting seed

page PS. We have to navigate to them starting from PS visiting fewest possible additional pages.

Let P : P1, P2, . . . , Pn be one such path through W from the start page P1 = PS to a goal page Pn

 PG. The ratio of relevant pages visited to the total number of pages visited during the execution

is called the harvest rate. The objective function is to maximize the harvest rate.

This problem requires two solutions.

1. Recognizing a page as the goal page. This is a classification problem where given a

webpage we have to classify it as being a goal page or not. Often the page alone may not

hold enough information to help identify it as the goal page. We will need to consider

text around the entire path leading to the goal page in order to decide if it is relevant or

not. For example, if we want to get all course pages starting from a university root page,

then it is necessary to follow a path through departments’ homepages and then through

professors’ homepage. A course page on its own might be hard to classify.

2. Foraging for goal pages. This can be thought as a crawling exercise where, starting from

the entry point, we want to visit as few pages as possible in finding the goal pages. This

problem is different from the previous work on focused crawling [11] where the goal is to

find all web pages relevant to a particular broad topic from the entire web. In our case,

we are interested in finding course pages starting from a University homepage. We

exploit the regularity in the structures of University websites to build more powerful

models than is possible in the case of general-purpose focused crawlers.

2.4 Domain Knowledge Representation

2.4.1 Introduction

There are representation techniques such as frames, rules and semantic networks which

have originated from theories of human information processing. Since knowledge is used to

achieve intelligent behavior, the fundamental goal of knowledge representation is to represent

knowledge in a manner as to facilitate inferences (i.e. drawing conclusions) from knowledge.

Problem Solving can be simplified by an appropriate choice of knowledge representation (KR).

Representing knowledge in some ways makes certain problems easier to solve.

Figure 15: Applications of Knowledge Representaion

KR is most commonly used to refer to representations intended for processing by

computers, and in particular, for representations consisting of explicit objects (the class of all

humans, or Ram a certain individual), and of assertions or claims about them ('Ram is a human',

or 'all humans have one head'). Representing knowledge in such explicit form enables computers

to draw conclusions from knowledge already stored ('Ram has one head').

2.4.2 Why Knowledge Representation ?

The knowledge is crucially important in the development of an intelligent tutoring system

for e-learning. For this work, we assume that we have a repository of educational documents

mined from the web. The content described above can be mined from the following major

resources

(i) MIT Open Courseware, NPTEL India

(ii) .edu domain

(iii) Discussion Forums -Google Groups, Yahoo Answers

(iv) YouTube, Google Video and Metacafe

(v) Wikipedia, MathWorld

(vi) Company Websites for product related info and case studies

(vii) Domain specific websites for questions, tutorials etc.

Open repositories like Wikipedia and information pages authored as blogs etc:- by casual

users if used efficiently can be a very good resource for learning. All this knowledge needs to be

represented efficiently for use by e-learning systems.

The goal of this work is to explore approaches for representation of knowledge for

efficient use of resources for an intelligent learning system. We intend to find an approach which

can help in capturing the semantics of the crawled resources and efficiently implement a set of

learning applications. Hence the final goal is to have a knowledge representation technique

specially designed to support intelligent tutoring applications like automatic annotation of text

and construction of memory maps.

2.4.3 An Approach

The work by Hammouda and Kamel [25] presents an innovative approach for performing

data mining on documents, which serves as a basis for knowledge extraction in e-learning

environments. The approach is based on a radical model of text data that considers phrasal

features paramount in documents, and employs graph theory to facilitate phrase representation

and efficient matching. In the process of text mining, a grouping (clustering) approach is also

employed to identify groups of documents such that each group represents a different topic in the

underlying document collection. Document groups are tagged with topic labels through

unsupervised key phrase extraction from the document clusters.

The model presented by Hammouda and Kamel [25] for document representation is

called the Document Index Graph (DIG). This model indexes the documents while maintaining

the sentence structure in the original documents. This allows use of more informative phrase

matching rather than individual words matching. Moreover, DIG also captures the different

levels of significance of the original sentences, thus allowing us to make use of sentence

significance. Suffix trees are the closest structure to the proposed model, but they suffer from

huge redundancy [26].

Figure 16: Example of the Document Index Graph

The DIG is built incrementally by processing one document at a time. When a new

document is introduced, it is scanned in sequential fashion, and the graph is updated with the

new sentence information as necessary. New words are added to the graph as necessary and

connected with other nodes to reflect the sentence structure.

Upon introducing a new document, finding matching phrases from previously seen

documents becomes an easy task using DIG. This is done by incremental graph building and

phrase matching. The approach serves in solving some of the difficult problems in e-learning

where the volume of data could be overwhelming for the learner; such as automatically

organizing documents and articles based on topics, and providing summaries for documents and

groups of documents.

2.4.4 Our Approach – The Motivation

The archived content crawled by the focused crawler is used to develop concept maps

that capture the various semantic relations among data. The semantic content from the digital

library is then used to develop intelligent learning applications. These applications focus on

making the learning process for a student both efficient and effective.

 The knowledge representation is crucially important in the development of an intelligent

learning system for e-learning. In order to use the document corpus effectively and efficiently,

not only the contents but also the representation of contained knowledge is important. The

effectiveness of the learning applications like memory maps will depend significantly on the

knowledge representation architecture. The content mined from the web can be divided into two

categories in terms of its usability for an e-learning system.

(i) Structured content (courses)

(ii) Non-Structured educational content.

Structured course content crawled in section 3 is annotated before it is archived in the

digital library. We identify a set of tags which are required to represent the course in SCORM

standard. We extract information from the structured courses to convert them into (semi-)

SCORM format. In addition to the above tags we also store some entity specific meta-tags that

are important from the point of view of indexing and parameterized search. For both the above

category of tags hand crafted wrappers are used for information extraction [27]. Adding the

search keywords in the meta-tags ensures that information about related course/course material is

added in the tags of the entity. This will ensure that if the search is made in the name of the

course then related material also turns up in the results.

Non-Structured content is available in abundance on the web. Open repositories like

Wikipedia and information pages authored as blogs etc:- by casual users if used efficiently can

be a very good resource for learning. All this knowledge needs to be represented efficiently for

use by e-learning systems. In our work, we report the existing approaches. We also propose a

new approach for automatic construction of concept maps from the content mined from the web.

Our knowledge representation technique is specially designed to support intelligent tutoring

applications like automatic annotation of text and construction of memory maps. We have

designed and implemented a heuristic based algorithm to extract the headings from web

documents.

2.1.5 Our Design

The document representation module consists of the three main modules namely:

 Tree Building Phase 1

 Tree Building Phase 2

 Key-phrase Resolution

Tree Builder

Phase 1 H12

H12 H12

H11

H11 H11

H1
R

R R RR

R

Figure 17: Document representation process

Tree Builder

Phase 2

Heading Extraction

Text Resolution

- Key-phrase
 extraction

Relationship

Resolution

- NLP Rule Based

H11

H11 H11

H1

H12

H12 H12

H11

H11 H11

H1

H12

H12 H12

Chapter 3: Intelligent Applications for Intinno

3.1 Introduction

Section 1.3 discusses that neither ITS not LCMS are one stop solutions for enhancing the

learning process. LCMS provide a platform where it is easier for the teacher to upload content,

students have a central place for all their learning materials and the discussion/questions are

extended out from the physical boundaries of the classroom. LCMS systems are easier to build

and such systems involve active participation from the student community. However LCMS

suffer from the problem that they have no intelligence built into them.

ITS systems are intelligent. They model how a teacher would teach in the class and also keep a

track of the student’s performance. Such systems use the record of student’s performance to

enhance their learning process. However these systems are expensive to build and model. They

require much human expertise and are domain specific.

The proposed solution to this problem was to build an intelligent LCMS application

which is composed of two parts: 1) Content Management System and 2) Intelligent applications.

Intelligent applications are the features that are directly integrated into the content management

system. These applications take advantage of the semantic knowledge contained in the data and

the user behavior recorded during the interactions with the content management system, to make

the learning process efficient for both teachers and students.

The list of such applications that can be developed are a) Memory Maps, b) PPT

Summarization Module, c) Recommendations, d) Educational Search Engine e) Automatic

Evaluator for coding Assignments, f) Duplicate Detection Module and g) Automatic Question

Answering system. Figure 11 shows the applications to be developed and the motivations for

each of them. In the next sections we present related works that can be used to develop some of

the above mentioned applications.

]

Memory

Presentation

Concept to

be learned

Concept abstracted in

a few important points
Applications that can be

Recommendation

Educational Search

Lot content is available on

web, and thus time is wasted

Automatically present to the

user the most relevant

Applications that can be

Duplicate Detection

Automatic

Automatic Question

Instructors are

expected to perform

a lot of tasks like

checking of

submitted

Automate the tasks

that instructor are

required to perform,

thus involving

Applications that can be

Figure 11: Intelligent applications for the Intinno LCMS, along with their

3.2 Memory Maps

3.2.1 Need for Memory Maps

Memory maps provide a general, powerful, and user-oriented way to navigating the

information resources under consideration in any specific domain. A topic map provides a

uniform framework that not only identifies important subjects from an entity of information

resources and specifies the information resources that are semantically related to a subject, but

also explores the relations among these subjects. When a user needs to find some specific

information on a pool of information resources, he only needs to examine the topic maps of this

pool, selects the topic he thought interesting, and the topic maps will show him the information

resources that are related to this topic as well as its related topics. He will also recognize the

relationships among these topics and the roles the topics play in such relationships. With the help

of the topic maps, we no longer have to browse through a set of hyperlinked documents and hope

they may eventually reach the information we need in a finite amount of time even when we

know nothing about where we should start. We also don’t have to gather some words and hope

that they may perfectly symbolize the idea we interest and are conceived well by a search engine

to obtain reasonable result. Topic maps provide us a way to navigate and organize information,

as well as to create and maintain knowledge in an info glut.

Topic Maps provide an external meta-structure (a knowledge navigation layer) in the form of a

dynamic, semantically based hypertext. As a result, TM-based courseware can offer the

following benefits:

• For learners: efficient context-based retrieval of learning resources; better awareness in

subject-domain browsing; information visualization; customized views, adaptive

guidance, and context-based feedback.

• For instructors: effective management and maintenance of knowledge and information;

personalized courseware presentations; distributed courseware development; reuse and

exchange of learning materials, collaborative authoring.

To construct a topic map for a set of information resources, human intervention is

unavoidable in present time. We need human effort in tasks such as selecting topics, identifying

their occurrences, and revealing their associations. Such need is acceptable only when the topic

maps are used merely for navigation purpose and the volume of the information resource is

considerably small. However, a topic map should not only be a ’topic navigation map’. Besides,

the volume of information resource under consideration is generally large enough to prevent

manual construction of topic maps.

To expand the applicability of topic maps, some kind of automatic process should involve

during the construction of topic maps. The degree of automation in such construction process

may differ for different users with different needs. One may only need a friendly interface to

automate the topic map authoring process, and another one may try to automatically identify

every components of a topic map for a set of information resources from the ground up.

Figure 12: Example of a memory

Possible approaches for building Memory Maps:

3.2.2 Approach 1

This approach is inspired from the study described in [21], which looked at the feasibility

of using HTML tags as proxies for semantic content as well. Three Web page elements have

been studied: Link (anchor) text, Heading text, and Comment text. Using the scale ‘no help’,

‘little help’, ‘helpful’, and ‘very helpful’, the human experts involved in the study evaluated that

61% of web page link text was ‘helpful’ or ‘very helpful’ in indicating semantic contents. Taking

this as encouraging (especially because the pages have been arbitrarily chosen), this approach

explores the possibility of extracting semantic information by parsing the web pages in a web

site specified by the user.

This approach defines a set of heuristics to construct a topic map by parsing an HTML

document. The heuristics are as follows:

1. A new topic is created in the topic tree for each web page visited by the crawler.

2. All the topics created in the process of parsing aspecific web page are sub-topics of the

“page” topic for that page.

3. Naming of “page” topics:

a. The “root” topic provided by the user in the Extractor interface is considered as

corresponding to the webpage, which is the “entry point” for the crawler (withthe

specified URL).

b. All other “page” topics are named using the text provided in the body of the

corresponding anchor element.

4. Heading represents a topic that is more general that the topics extracted from the text

below it (if any).

5. The topics extracted from HTML headings of different types can be organized

hierarchically so as to correspond to the HTML headings “weights” (1, 2, etc.). Thus the

topic extracted from an <h2> tag will be a sub-topic of the topic extracted from the <h1>

tag, etc.

6. Heading tags on a referenced web page (through an‘anchor’ element, see 2.3.2) will be

seen as relating to the topic representing that page.

7. The topics extracted from the cells of one column in a table are related since they can be

considered as values of the same attribute (represented by the column header).

8. The topics extracted from the cells of one column in a table are subtopics of the topic

corresponding to the column header.

9. Group the topics extracted from the same HTML element together since this grouping

indicates some kind of relatedness of the topics.

The problem with the above approach is that it only offers a way to construct the draft topic map

and the real power comes by the involvement of the user. Also it uses links/anchor text to

construct one of the features of the memory maps. However this might not work in the case when

we need a memory map from a single document itself.

3.2.3 Approach 2

This work [22] presents a novel approach for semi-automatic topic map construction. The

approach starts from applying a text mining process on a set of information resources. Two

feature maps, namely the document cluster map and the word cluster map, are created after the

text mining process. It then applies a category hierarchy development process to reveal the

hierarchical structure of the document clusters. Some topics are also identified by such process to

indicate the general subjects of those clusters located in the hierarchy. It then creates topic maps

according to the two maps and the developed hierarchy automatically. Although this method may

not identify all kinds of components that should construct a topic map, this approach seems

promising since the text mining process achieves satisfactory result in revealing implicit topics

and their relationships.

To reveal the relationships between documents, the popular self-organizing map (SOM)

[23] algorithm is applied to the corpus to cluster documents. It adopts the vector space model to

transform each document in the corpus into a binary vector. These document vectors are used

as input to train the map. It then applies two kinds of labeling process to the trained map and

obtained two feature maps, namely the document cluster map (DCM) and the word cluster map

(WCM). In the document cluster map each neuron represents a document cluster that contains

several similar documents with high word co-occurrence. In the word cluster map each neuron

represents a cluster of words that reveal the general concept of the corresponding document

cluster associated with the same neuron in the document cluster map. The text mining process

described above provides us a way to reveal the relationships between the topics of the

documents.

The method to identify topics arranges them in a hierarchical manner according to their

relationships. A neuron in the DCM represents a cluster of documents that contain words that

often co-occurred in these documents. Besides, documents that associate with neighboring

neurons contain similar set of words. Thus it constructs a super-cluster by combining

neighboring neurons by the following algorithm:

• Find the neuron with the largest supporting cluster similarity. Selecting this neuron as

dominating neuron.

• Eliminate its neighbor neurons so that they will not be considered as dominating neurons.

• If there is no neuron left or the number of dominating neurons exceeds a predetermined

value, stop. Otherwise go to Step 1.

A dominating neuron may be considered as the centroid of a super-cluster, which

contains several clusters. It then assigns every cluster to some super-clusters using a method

similar to K-Means clustering. A super-cluster may be thought as a category that contains several

subcategories. The category topics are selected from those words that associate with these

neurons in the WCM. This scheme selects the word that is the most important to a super-cluster.

The topics that are selected by the above mechanism form the top layer of the category

hierarchy. To find the descendants of these topics in the hierarchy, it applies the above process to

each super-cluster and obtains a set of sub-categories. These sub-categories form the new super-

clusters that are on the second layer of the hierarchy. The category structure can then be revealed

by recursively applying the same category generation process to each new-found super-cluster.

This approach also identifies the topic types by the constructed hierarchy. A topic on

higher layers of the hierarchy represents a more important concept than those on lower layers.

For a parent-child relationship between two concepts on two adjacent layers, the parent topic

should represent a important concept of its child topic. Therefore, it uses the parent topic as the

type of its child topics. Such usage also fulfills the requirement of the topic map standard that a

topic type is also a topic.

Both the above approaches are contrasting in the sense that the first one uses heuristics and the

second one uses pure data-mining approach to build the topic case. Our final approach will

utilize the advantages of both the approaches for making the topic maps.

Figure 13: An example of Memory Maps. Picture 1 shoes the concept to be

grasped/learned. Picture 2 shows the automatic extraction of keywords from the document.

Chapter 4: Implementation and Results

4.1 Implementation of CMS
The content management portion of Intinno [24] has been completed and is already under

production at http://www.intinno.com under the name of Learning Groups. Intinno system is

currently under use in 50 courses of IIT Kharagpur.

Figure 14: Snapshots of the Intinno

References
[1] J. Cole and H. Foster, Using Moodle: Teaching with the Popular Open Source Course

Management System (O'Reilly Media Inc., 2007).

[2] V. B. Devedzic, Key Issues in Next Generation Web Based Education, IEEE Trans. ystem

Man Cybernetic: Part C, Vol. 33, pp. 339 (2003).

[3] LCMS: http://www.learningcircuits.org/2005/nov2005/carliner.htm

[4] Understanding E-Learning 2.0: http://www.learningcircuits.org/2007/0707karrer.html

[5] Joseph Psotka, Sharon A. Mutter (1988). Intelligent Tutoring Systems: Lessons Learned.

Lawrence Erlbaum Associates.

[6] Hammouda, K. and Kamel, M., "Data Mining in e-Learning", in Samuel Pierre (ed.) "E-

Learning Networked Environments and Architectures: A Knowledge Processing perspective",

series: Advanced Information and Knowledge Processing, Springer Book Series, 2007.

[7] Scheuer, O. & McLaren, B.M. (2008). Helping Teachers Handle the Flood of Data in Online

Student Discussions. In the Proceedings of the 9th International Conference on Intelligent

Tutoring Systems.

[8] Hage, H.; Aimeru, E., "ICE: A System for Identification of Conflicts in Exams," Computer

Systems and Applications, 2006. IEEE International Conference on. , vol., no., pp. 980-987,

March 8, 2006

[9] SCORM: http://en.wikipedia.org/wiki/SCORM

[10] S. Chakrabarti, Mining the Web: Discovering Knowledge from Hypertext Data (Morgan-

Kauffman, 2002).

[11] S. Chakrabarti, M.H. Van den Berg, and B.E. Dom, "Focused Crawling: A New Approach

to Topic-Specific Web Resource Discovery," Computer Networks, vol. 31, nos. 11–16, pp.

1623–1640.

[12] MIT Open Courseware: http://ocw.mit.edu/OcwWeb/web/home/home/index.htm

[13] NPTEL India: http://nptel.iitm.ac.in

[14] V.G.Vinod Vydiswaran and Sunita Sarawagi, Learning to extract information from large

websites using sequential models(In COMAD, 2005. SIGKDD Explorations. Volume 6, Issue 2 -

Page 66)

[15] John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional Random Fields:

Probabilistic Models for Segmenting and Labeling Sequence Data. In Proceedings of the 18th

International Conference on Machine Learning (ICML-2001), pages 282–289. Morgan

Kaufmann, San Francisco, CA, 2001

[16] Tom Mitchell. Machine Learning. McGraw-Hill, 1997.

[17] “Web surpasses one billion documents: Inktomi/NEC press release.” available at

http://www.inktomi.com, Jan 18 2000.

[18] A. McCallum, K. Nigam, J. Rennie, and K. Seymore, “Building domain-specic search

engines with machine learning techniques,” in Proc. AAAI Spring Symposium on Intelligent

Agents in Cyberspace, 1999.

[19] M. Diligenti et al., "Focused Crawling Using Context Graphs," Proc. 26th Int'l Conf.

Very Large Data Bases (VLDB 2000), Morgan Kaufmann, 2000, pp. 527–534.

[20] Lawrence R. Rabiner. A tutorial on Hidden Markov Models and selected applications in

speech recognition. In Proceedings of the IEEE, volume 77(2), pages 257–286, February 1989.

[21] Hodgson, J. (2001). Do HTML Tags Flag Semantic Content? IEEE Internet Computing,

Vol(5), pp. 25.

[22] Hsin-Chang Yang, Chung-Hong Lee: Building Topic Maps Using a Text Mining Approach.

ISMIS 2003: 307-314.

[23] T. Kohonen. Self-Organizing Maps. Springer-Verlag, Berlin, 1997.

[24] Intinno: http://www.intinno.com

[25] Hammouda, K., & Kamel, M. (2006), “Data mining in e-learning”. In Samuel Pierre (Ed.),

E-learning networked environments and architectures: A knowledge processing perspective,

Springer Book Series: Advanced information and knowledge processing (pp. 1 – 28).

[26] K., S., “Reducing the space requirement of suffix trees.” Software — Practice and

Experience 29 (1999) 1149–1171

[27] N. Kushmerick, Gleaning the Web, IEEE Intelligent Systems, Vol. 14, 20 (1999).

