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Abstract 
The work describes the design of Intinno, an intelligent web based learning content management 

system. The system aims to circumvent certain drawbacks of existing learning management 

systems in terms of scarcity of content, lack of intelligent search and context sensitive 

personalization.  

The scarcity problem is solved by using web mining to crawl learning content from the web. Web 

mining is done by using a focused crawler that is trained to mine only educational content from 

the web. The mined content is then automatically archived in SCORM format for further reuse 

and exchange.  

The archived content used to develop concept maps that capture the various semantic relations 

among data. Automatic annotation using the concept maps is used to archive the crawled content 

into a digital library. Multi-parameter indexing and clustering is done to provide intelligent 

content based search. 

The semantic content from the digital library is used to develop intelligent learning applications. 

These applications focus on making the learning process for a student both efficient and 

effective.  Algorithms for learning applications like generation of memory maps and table of 

contents for a specific topic are proposed. Context sensitive and personalized recommendation 

on content is supported. The initial version of the system is available online at 

http://www.intinno.com 
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Chapter 1: Introduction 
 



1.1 Learning Management Systems 

 

1.1.1 Introduction 
 

A Learning Management System (or LMS) is a software tool designed to manage user 

learning processes .  LMSs go far beyond conventional training records management and 

reporting. The value-add for LMSs is the extensive range of complementary functionality they 

offer. Learner self-service (e.g. self-registration on instructor-led training), learning workflow 

(e.g. user notification, teacher approval, waitlist management), the provision of on-line learning, 

on-line assessment, management of continuous professional education, collaborative learning 

(e.g. application sharing, discussion threads), and training resource management (e.g. instructors, 

facilities, equipment), are some of the additional dimensions to leading learning management 

systems [1]. 

 

In addition to managing the administrative functions of online learning, some systems 

also provide tools to deliver and manage instructor-led synchronous and asynchronous online 

teaching based on learning object methodology. These systems are called Learning content 

management systems or LCMSs. An LCMS provides tools for authoring and re-using or re-

purposing content as well as virtual spaces for learner interaction (such as discussion forums and 

live chat rooms). The focus of an LCMS is on learning content. It gives authors, instructional 

designers, and subject matter experts the means to create and re-use e-learning content more 

efficiently [2].  

LCMSs provide instructors with the ability to perform the following tasks [3]:  

 

• Place course materials online. Most CMSs provide pre-programmed buttons for the 

course syllabus, course schedule, and course materials linked to specific lessons, such as 

copies of readings and PowerPoint slides from lectures.  

 



• Track student progress through assessment features, which enable instructors to give 

quizzes and tests online, and an online gradebook, where instructors can post student 

grades.  

 

• Discussion board, where instructors and students can discuss readings and continue class 

discussions between formal class sessions.   

 

• Other communications tools, which let instructors send announcements to classes and 

communicate individually with students. 

 

• Lock box for students, where students can store class materials in a safe place—either a 

presentation to give later in class or backing up class assignments in a safe place. 

 

• Course statistics, which provide information on the use of the course site, including who 

used the course site and when. 

 

LCMSs also have proven popular in managing asynchronous academic distance courses, too, 

because of their ability to manage discussions. In addition, given that LCMSs were already 

installed and in wide use only adds to their popularity. When using a LCMS to manage a 

distance course, instructors post a core lessons master script, of sorts, that guides students 

through readings, discussions, and learning activities instead of merely posting readings and 

PowerPoint slides for each lesson,. Instructors then use the discussion board to manage the 

course discussions, which are usually more extensive than those used in classroom courses. 

 

 

1.1.2 Problems faced by LCMS 
 

The current course management systems have a number of drawbacks which hinder their wide 

acceptance among teachers and students.  

• One of them being the problem of cold start. Instructors who begin to make up a course 

don't have the material to start up.  



 

• Seamless content reuse is often not possible. 

 

•  Materials presented may lack coverage of the subject area and thus fail to cater 

information needs of all students in a class.  

 

• Students while studying or reading a lecture have to waste a lot of their time in searching 

for relevant resources from the web.   

 

 

1.1.3 Advantages of LCMS 
 

The current course management systems have a number of advantages: 

• LCMSs enable instructors to easily create a course website by following a template and 

uploading existing documents in PowerPoint, Word, Excel, Acrobat and other popular 

formats without converting them to a web format (like HTML), they require few 

specialized skills.  

 

• LCMSs are easy to learn and were quickly adopted by instructors, even those who might 

claim to be luddites. 

 

• LCMSs allow active participation of students in learning activities even outside the 

physical boundaries of a classroom.   

 

• LCMSs help the instructors to create and archive of the course material and discussions 

which would be helpful to the students opting the course next year. 

 

 
 
 
 



1.1.4 LCMS + Web 2.0  = E-Learning2.0 

The changes in e-learning are being driven by two primary forces [4]. The first force is a 

steady increase in the pace information creation, boosted by the availability of easy to use 

LCMS. This has led to a shift in work, especially knowledge work, and an evolution in 

information needs. The second driver affecting workplace learning is the advent of Web 2.0.  

In its most basic form, Web 2.0 means that anyone should be able to easily create and contribute 

content on the Internet. This ranges from writing a blog, to providing video on YouTube, to 

putting pictures on Flickr, to contributing written content on wikis such as Wikipedia, as well as 

developing a social network on something like MySpace. The key components to Web 2.0 are 

the ease of using the tools and the collaboration/social interaction that naturally results. One of 

the interesting results from Web 2.0 is something called collective intelligence. For example, 

consider how Amazon's user ratings and comments influence buyer behavior. 

The term E-Learning 2.0 was coined by Stephen Downes, a Canadian researcher, and it 

derives from the overall e-learning trends stated above in combination with Web 2.0.  To begin 

to examine E-Learning 2.0, let’s consider an example:  

A small team of five practitioners in a corporate learning department has adopted e-

learning 2.0 tools as part of their daily work. They need to define their strategy around the use of 

"rapid e-learning" and present it to management as part of the annual budget process. Here are 

some of the ways the workgroup will take advantage of E-Learning 2.0 tools: 

 

• Search for useful web pages, then tag, add comments, and share them by using such 

social bookmarking tools as del.icio.us or Yahoo MyWeb. By using these tools, the team 

will keep a copy of each page; the page is full-text searchable; it can be accessed from 

any computer; and everyone on the team has access to the same links.  

 

• Create public blog posts (using a tool like Blogger) that will outline the team's current 

thinking about how rapid e-learning fits into its future strategic plans. The blog also will 

solicit feedback from everyone on the team, as well as the larger e-learning blog 

community.  



• Write or copy-and-paste notes into a wiki, which will become a shared resource that 

everyone on the team can edit.  

 

• Use an RSS reader (for example, Bloglines) to track updates to the wiki, social 

bookmarking tools, and the blog. This eliminates the need for email as the reader 

becomes the single place each team member visits to see whatâ€™s happened recently. 

E-Learning 2.0 is making an impact in formal learning settings, and they are particularly 

useful for collaborative formal learning. For example, wikis can be used as part of group 

projects; blogs can be used to submit written work and offer the opportunity for peers to provide 

feedback in a collaborative learning setting; and social bookmarking tools can be used as part of 

collaborative research. Again, the ease-of-use and collaborative nature of these tools make them 

a natural fit for learning. 

 

1.2 Intelligent tutoring Systems (ITS) 

 
1.2.1  Introduction 
 

Imagine that each learner in a classroom has a personal training assistant who pays 

attention to the participant's learning needs, assesses and diagnoses problems, and provides 

assistance as needed. The assistant could perform many of the routine instructional interventions 

and alert the instructor of learning problems that are too difficult for it. By taking on basic 

assistance tasks, the instructor would be free to concentrate on training issues that require greater 

expertise.  

Providing a personal training assistant for each learner is beyond the training budgets of 

most organizations. However, a virtual training assistant that captures the subject matter and 

teaching expertise of experienced trainers provides a captivating new option. The concept, 

known as intelligent tutoring systems (ITS) [5] or intelligent computer-aided instruction (ICAI), 

has been pursued for more than three decades by researchers in education, psychology, and 

artificial intelligence. Today, prototype and operational ITS systems provide practice-based 

instruction to support corporate training, schools and college education, and military training.  



The goal of ITS is to provide the benefits of one-on-one instruction automatically and 

cost effectively. Like training simulations, ITS enables participants to practice their skills by 

carrying out tasks within highly interactive learning environments. However, ITS goes beyond 

training simulations by answering user questions and providing individualized guidance. Unlike 

other computer-based training technologies, ITS systems assess each learner's actions within 

these interactive environments and develop a model of their knowledge, skills, and expertise. 

Based on the learner model, ITSs tailor instructional strategies, in terms of both the content and 

style, and provide explanations, hints, examples, demonstrations, and practice problems as 

needed.  

ITS systems typically rely on three types of knowledge, organized into separate software 

modules (as shown in Figure 1). The "expert model" represents subject matter expertise and 

provides the ITS with knowledge of what it's teaching. The "student model" represents what the 

user does and doesn't know, and what he or she does and doesn't have. This knowledge lets the 

ITS know who it's teaching. The "instructor model" enables the ITS to know how to teach, by 

encoding instructional strategies used via the tutoring system user interface. 
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Figure 1: Components of an intelligent Tutoring System 



1.2.2  Disadvantages of ITS 

ITS needs careful preparation in terms of describing the knowledge and possible 

behaviors of experts, students and tutors. This description needs to be done in a formal language 

in order that the ITS may process the information and draw inferences in order to generate 

feedback or instruction. Therefore a mere description is not enough, the knowledge contained in 

the models should be organized and linked to an inference engine. It is through the latter's 

interaction with the descriptive data that tutorial feedback is generated. All this is a substantial 

amount of work. This means that building an ITS is an option only in situations in which they, in 

spite of their relatively high development costs, still reduce the overall costs through reducing 

the need for human instructors or sufficiently boosting overall productivity. Such situations 

occur when large groups need to be tutored simultaneously or many replicated tutoring efforts 

are needed. Cases in point are technical training situations such as training of military recruits 

and high school mathematics. 

1.2.3  Advantages of ITS 
 

An ITS system has the following advantages: 

• They provide the benefits of one-on-one instruction automatically in a cost effective 

manner. 

• ITS-taught students generally learn faster and translate the learning into improved 

performance better than classroom-trained participants. 

• Provides direct feedback to the students without the intervention of human beings. 

 

1.3 Motivation 
LCMS and ITS systems are two ends of same rope. Both the systems have the basic goals 

of making the learning process efficient for the students and reducing the work required to be 

done by the teacher. However both the systems differ in the way they go about achieving the 

basic goals. LCMS provide a platform where it is easier for the teacher to upload content, 

students have a central place for all their learning materials and the discussion/questions are 

extended out from the physical boundaries of the classroom. LCMS systems are easier to build 



and such systems involve active participation from the student community. However LCMS 

suffer from the problem that they have no intelligence built into them. 

ITS systems are intelligent. They model how a teacher would teach in the class and also 

keep a track of the student’s performance. Such systems use the record of students performance 

to enhance their learning process. However these systems are expensive to build and model. 

They require much human expertise and are domain specific. Thus we see that neither LCMS nor 

ITS system is a one stop solution to making the learning process efficient. ITS systems are 

difficult to build and LCMS aren’t intelligent enough. An intelligent application would be the 

one that would combine the benefits of both the systems into one, i.e. it is as easy a CMS for the 

use of the teacher (eliminating the task of annotating the sources), involves high participation 

from the user and is also intelligent enough to make the user learning process easier and 

efficient.  

 

1.4 Proposed Approach 
 

1.4.1  Introduction 
 

We propose a LMS, Intinno, motivated from the above discussion. Intinno being an LMS 

would be easy to build and would have all the benefits of an LCMS. To make Intinno intelligent 

we propose the addition of intelligent applications to the system. These applications would be 

directly integrated in the LCMS and would use Data-mining techniques [6] to make the learning 

process efficient.  Till date there has been no work on integrating intelligent application into an 

LCMS that enhance the students learning process. However there have been several attempts to 

develop stand alone intelligent applications.  

The work in [7] focuses on helping a teacher moderate a classroom of students using e-

discussion tools in which the students comprise multiple discussion groups. Generally a teacher 

can bring to bear his or her experience and moderation expertise to steer the discussions when 

problems occur and provide encouragement when discussions are productive. However when 

multiple e-discussions occur simultaneously, a single teacher may struggle to follow all of the 

discussions. To direct the teacher’s attention to the ‘hot spots,’ this paper proposes software tools 

that pre-process, aggregate, and summarize the incoming flood of data. [8] proposes Information 



Retrieval techniques to detect conflicts within the same exam.  A Conflict exists in an exam if at 

least two questions within that exam are redundant in content, and/or if at least one question 

reveals the answer to another question within the same exam. However none of these mentioned 

application aim to enhance the student’s learning process.  

 

1.4.2  Useful Applications 
 

From the student’s point of view, an application that abstracts the learning material and 

presents it in way that is easier to grasp would be highly useful. Such an application would help 

the student to learn the whole concept by learning small related set of concepts. Proposed set of 

such applications are: 

 

• Memory Maps: This application would extract a set of keywords from the document and 

present a graph of these keywords connected by a set of associations. It would be similar 

to making an automatic memory map of the concept to be learned. 

 

• Presentation Module: This module would abstract a given page in the form of a power 

point presentation. This application would help the users to grasp a few important aspects 

of the concepts to be learned. It would also prove as the starting for preparing 

presentations from a given piece of content. 

 

With the explosion of Web2.0 the content on the web has increased manifold. This has 

provided the user with treasures of information. However there is a catch here. Since the number 

of sources that present the same content to the user is large, a large portion of the user’s time is 

spent in searching for appropriate material on the web. The same logic applies to students. Also 

there exist no educational search engines that focus only on educational content. Applications 

that can be developed to cater to the above problems: 

 

• Recommendation Engine: This engine would implicitly help the user in getting similar 

content. When a student is reading a lecture then similar content would be automatically 

recommended to him. The recommendation would be content diversified, i.e. if the 



person is currently studying Lectures then he/she will be recommended 

questions/quizzes/Assignments. however on the other hand if the person is bust doing 

Assignments or solving questions then he/she will be recommended lectures/tutorials on 

that particular subject from the digital library.  Recommendation will be personalized i.e 

it will be based on the courses that the user has done and also on his/her level of 

understanding which can be judged from his courses list. 

 

• Educational Search Engine: This will provide two additional capabilities in addition to 

keyword based search, namely (i) Content based search for similar courses, and (ii) 

Intelligent search for course materials (i.e. if a search is given for material on 

biochemistry course then materials from molecular biology course should also turn up in 

the results.       

 

 

Until now the applications mentioned above have focused only on improving the efficiency 

of learning from the student’s point of view. However an intelligent LCMS should minimize the 

efforts required from an instructor. Thus the following applications are proposed: 

 

• Automatic Evaluator for Coding Assignments: In large number of courses the 

assignments given to students require a coded solution. The final answer is same for 

every student. This evaluator will automatically check the answers minimizing the efforts 

required from the instructors. 

 

• Automatic Question Answering: One of the major advantages of LCMS is the discussion 

forums. However it may so happen that a question/query asked by a particular student 

may have been answered before in some other course. This module will seek out such 

answers and will present them to the users, automatically. 

 

• Duplicate Detection in Assignments: This application would detect duplication in 

submitted assignments by the use of text matching algorithms. The instructor would be 

provided of the percentage match between any two submitted assignments. 



The current LCMSs have the drawback of non availability of free content. LMS’s assume 

that the content will be put up by users i.e. teachers and students. This leads to the cold start 

problem. Instructors who begin to make up a course don't have the material to start up.  Our 

system solves the above problem to a large extent. The web interfaced educational digital library 

will solve the cold start problem faced by instructors. While putting up new course, assignment 

or a lecture, similar resources would be available from the digital library either by search or by 

recommendations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2: Architecture of Intinno 
 

2.1  Introduction 
The functionalities provided by the system include, web mining, learning content 

management, semantic representation of mined knowledge, search and recommendation. 

Accordingly, Intinno has the following major components: 

1. Focused Web Miner for Learning Content 

2. SCORM module  

3. Knowledge Representation Module 

4. Intelligent Application Builder 

 

A block diagram of Intinno system is shown in Figure 2. The system tasks may be mainly 

classified into the following major steps:  

1. Building up of digital library from the content crawled from the web. The subtasks of this 

step are  

a. Collection of resources from the web 

b. Automatic Tagging of collected data for indexing, i.e. converting the downloaded 

data into SCORM compatible format. 

c. Extraction of semantic knowledge from the SCORM compatible content and 

representing it in the form of ontology. 

 

2. Application Builder Module:  

a. This module uses the knowledge stored in the digital library for developing 

intelligent applications. 

 

3. User Interaction:  

a. User mainly interacts with the Intinno system through the Applications developed 

and the LCMS Module. The user interactions are recorded for further use by the 

applications to enhance user’s learning process. 

 



 
 
 
 
2.2  Learning Resources on Web 
 

Web being a rich repository of learning content, we attempt to collect high volume of 

learning material from web using a web miner [10]. The type of content required for the digital 

library would include. 

 

1. Courses 

2. Assignments 

3. Lectures and Tutorials 

4. Animation and Videos 

5. Case Studies 

Figure 2: Block Diagram of the Intinno LCMS 



6. Questions and Quizzes 

7. Information of relevant technologies from the industry. 

 

The content described above can be mined from the following major resources: 

 

(a) Websites hosting standardized, reviewed and open source course material like MIT Open 

Courseware [12], NPTEL [13] India. 

(b) Course websites of large international universities. We have considered US universities 

currently. 

(c) Discussion Forums - Google Groups, Yahoo Answers 

(d) Websites for animations/videos - Youtube, Google Video and metacafe 

(e) Websites for general content - Wikipedia, Mathworld 

(f) Company Websites for product related info and case studies 

(g) Domain specific websites for questions, tutorials etc. 

 

 
 

 

 

Strategies for crawling the above resources are mentioned below. 

 

 

Figure 3: Pictorial description of sources on the web to be mined for 



2.2.1  Open source and reviewed course pages 
 

A general purpose crawler to crawl all the courses from MIT OCW and NPTEL is 

employed. Content is structured and thus is easier to crawl. Also it provides us a list of basic 

courses to include in the digital library. Courses from MIT OCW can be downloaded directly and 

the download data is arranged into folders. The content from NPTEL is ad hoc and cannot be 

downloaded directly. Hence, data downloaded from NPTEL will have to be catalogued. 

 

2.2.2  Content from University course pages 
 

Full crawl is not possible in this case and we opt for focused crawling [14]. Focused 

crawling is possible due to the following observations in most universities page structures. 

 

• Every University page has a page listing all its schools and departments 

• Every Dept will have a page listing all its faculty members 

• Every faculty member will have links of the courses on his home page.    

 

The above structure is utilized to tune the focused crawler. Crawling the above pages is 

modeled as a problem of sequence learning. CRF [15] techniques are used to learn the model 

parameters of the sequence learning problem and Reinforcement learning [16] is used to 

prioritize the download of links. A detailed description of the crawling technique is presented in 

Chapter 3. 

 

Other than using the complex approach of focused crawling, we also tried our hands at 

another simpler approach. We attempted direct search on Google for university course material. 

Using Google search keywords of the form: <name of course> course page syllabus returns 

course pages. However this approach has the following problems: 

• We need a pre defined, exhaustive list of courses in order to find them through a search 

engine, which is always not possible. 

•  Relying on a search engine for Data Mining is not a feasible option as the number of 

automatic queries that can be issued per day are limited. 



• It is difficult to quantify the recall of this method. 

 

Another issue involved for such course pages is that of extraction of learning content from 

courses on the web. The data downloaded from a course on the web, may be arranged in various 

ways and needs to be processed to extract the relevant information. The data is represented in 

SCORM format to enable easier exchange and reuse. Here we propose a simplistic algorithm for 

doing it in each of the following two cases: 

            

Case 1: All the data of a particular course lies on one page. In this case, different kinds of data 

will we be under corresponding headings. For example all the assignments of a particular course 

will be under the assignments headings and all the questions will be under the questions heading. 

To extract data from such a course, we detect the headings on a particular page and we 

hypothesize that all the data under a heading is of that type. The algorithm for the detection of 

headings has about 65\% accuracy. 

 

Case 2:  The course page has separate links for separate kind of data i.e. the assignments are on 

one page and the questions on another. We assume that these separate pages have such an anchor 

text that indicates the type of content on the page. For example the main course has links to 

Assignments / Lectures and Quizzes. To extract data from such a course we assume that type of 

content on each page to be given by the anchor text on the hyperlink. 

 

 
 Figure 4: Sources of course material on the 



 

 

 

 

 

 

2.2.3  Unstructured data: Discussion forums and animation videos 
    

Full Crawl is irrelevant and is also not possible. Focused crawling is the approach 

adopted to get related content. From the courses already stored in the digital library now extract a 

set of keywords: 

• Terms from the name of the course 

• Terms from the syllabus of the course 

• Terms from assignment heading/name, Lecture heading/name.               

 

Next we search for discussions/Animations/Videos from the web which match the above 

list of keywords and index the results obtained above with the keywords with which they were 

found and the content of the entity obtained. 

 

 

 

Figure 5: Type of contents available from course 



2.2.4  General purpose collections like WikiPedia 
    

Full Crawl of Wikipedia is possible and can be obtained as a single XML document. 

However, full crawl/download may not be necessary and may in fact weaken precision of the 

search on digital library. We use a keyword based focused approach described above to limit the 

pages being indexed in wikipedia. Each wikipedia article can be characterized a lectures or 

tutorials. While indexing the articles of Wiki more importance should is given to the headings 

and the sub headings on the page. 

 

 
 

 

 

 
 

 

 

Figure 6: Sources of Animations and Videos on the 

Figure 7: Sources of Discussions/Questions on the 



 

 

 

2.2.5  Websites of industrial corporations 
 

Websites in these categories will have to handpicked and will be few in number. 

Examples of company websites includes whitepapers, manuals, tutorials obtained from research 

lab of companies like IBM, Google, Microsoft, GE. Handpicked websites of popular corporate 

training resources like those offering questions/quizzes on C and those offering tutorials like 

How Stuff Works. 

 

 

2.3  Mining Resources from the web 

 
2.3.1  Why a focused Crawler? 
 

The size of the publicly index able world-wide-web has provably surpassed one billion 

documents [17] and as yet growth shows no sign of leveling off. Dynamic content on the web is 

also growing as time-sensitive materials, such as news, financial data, entertainment and 

schedules become widely disseminated via the web. Search engines are therefore increasingly 

challenged when trying to maintain current indices using exhaustive crawling. Even using 

state of the art systems such as Google, which reportedly crawls millions of pages per day, an 

exhaustive crawl of the web can take weeks. Exhaustive crawls also consume vast storage and 

bandwidth resources, some of which are not under the control of the search engine. 

 

Figure 8: Types of Data available by mining Company 



Focused crawlers [10, 11, 14] aim to search and retrieve only the subset of the world-wide web 

that pertains to a specific topic of relevance. The ideal focused crawler retrieves the maximal set 

of relevant pages while simultaneously traversing the minimal number of irrelevant documents 

on the web. Focused crawlers therefore offer a potential solution to the currency problem by 

allowing for standard exhaustive crawls to be supplemented by focused crawls for categories 

where content changes quickly. Focused crawlers are also well suited to efficiently generate 

indices for niche search engines maintained by portals and user groups [18], where limited 

bandwidth and storage space are the norm. Finally, due to the limited resources used by a good 

focused crawler, users are already using personal PC based implementations. Ultimately simple 

focused crawlers could become the method of choice for users to perform comprehensive 

searches of web-related materials. 

 
2.3.2  Content from University Course pages 
 

Out of the above mentioned sources, course websites of different Universities are the 

richest source of learning content. The advantages of this content are: 

1.  Since this content is hosted on the University site, under the professor/teacher taking this 

course, the content is deemed to be authenticated and correct.  

2. Also this type of content is used in a real scenario the teach the students and hence is 

most relevant to the students. 

 

However, along with being the richest source of valid educational content this type of 

content is most difficult to mine. This is due to the fact that this content is non-structured in 

nature. There are following difficulties in mining this content: 

• Every teacher has his/her own way of hosting the content.  Some might be putting up the 

whole content in a single page while others might be having a more structured 

representation of content with different sections for assignments, lectures, etc.  

• Every University has their own sitemap. A set of rules to reach the course pages starting 

from University homepage, if designed for a particular university, might not work for 

every case. 

 



  One of the solutions to get the course pages from a particular university would be to 

crawl the whole university and separate out the course pages from the set of all crawled pages. 

The separation of course pages will be done by a binary classifier that will be trained on the prior 

set of course pages that can be obtained with the help of a search engine. However crawling the 

whole university for course pages would be inefficient both in terms of Time and Space required. 

Hence we need a focused crawling [11] technique to efficiently mine relevant course pages 

starting from the university homepage. 

 

 
 

 

 

2.3.3  Possible approaches of mining course content from university homepages 
 

One possible method of solving the problem is to train a classifier that can discriminate 

the goal pages from the non-goal pages. Then, extract from the classifier the set of prominent 

features to serve as keywords to a search engine that index all the websites of interest. By 

restricting the domain to each given starting URL in turn, we issue a keyword search to get a set 

of candidate pages. We further classify these pages to identify if these are goal pages or not. 

However this method cannot provide high accuracy for the simple reason that the goal page itself 

may not hold enough information to correctly identify it as the goal page. The path leading to the 

goal page is important too. 

 

Figure 9: Sequential mining of course pages starting from university 



The major open problem in focused crawling is that of properly assigning credit to all 

pages along a crawl route that yields a highly relevant document. In the absence of a reliable 

credit assignment strategy, focused crawlers suffer from a limited ability to sacrifice short term 

document retrieval gains in the interest of better overall crawl performance. In particular, 

existing crawlers still fall short in learning strategies where topically relevant documents are 

found by following off-topic pages.  

 

The credit assignment for focused crawlers can be significantly improved by equipping 

the crawler with the capability of modeling the context within which the topical materials is 

usually found on the web [19]. Such a context model has to capture typical link hierarchies 

within which valuable pages occur, as well as describe off-topic content that co-occurs in 

documents that are frequently closely associated with relevant pages. 

 

 
 
 
 
 
 

Figure 10: A context graph represents how a target document can be accessed from the web. In each node a web 
document representation is stored. The graph is organized into layers: each node of layer i is connected to one (and 
only one) node of the layer i-1 (except the single node in layer 0). There are no connections between nodes at the same 
level. The seed document is stored in layer 0. A document is in layer i if at least i steps (link followings) are needed to 
reach the target page starting from that document. 



A Focused crawler must use information gleaned from previously crawled page 

sequences to estimate the relevance of a newly seen URL. Therefore, good performance depends 

on powerful modeling of context as well as the current observations. Probabilistic models, such 

as Hidden Markov Models( HMMs)[20] and Conditional Random Fields(CRFs)[15], can 

potentially capture both formatting and context.  

 

Thus a second approach and the one that we use in Intinno is to treat crawling as a 

sequential labeling problem where we use Hidden Markov Models (HMMs) and the Conditional 

Random Fields to learn to recognize paths that lead to goal states. We then superimpose ideas 

from Reinforcement Learning [16] to prioritize the order in which pages should be fetched to 

reach the goal page. This provides an elegant and unified mechanism of modeling the path 

learning and foraging problem. 

 
2.3.4  Our Approach 
 

There are two phases in our approach:  

1. Training phase: where the user teaches the system by clicking through pages and 

labeling a subset with a dynamically defined set of classes, one of them being the Goal 

class. The classes assigned on intermittent pages along the path can be thought of as 

“milestones” that capture the structural similarity across websites. At the end of this 

process, we have a set of classes C and a set of training paths where a subset of the pages 

in the path are labeled with a class from C. All unlabeled pages before a labeled page are 

represented with a special prefix state for that label. The system trains a model using the 

example paths, modeling each class in C as a milestone state.  

 

2. Crawling phase: where the given list of websites is automatically navigated to find all 

goal pages. The system uses the model parameters learnt in the training phase to 

prioritize the download of links trying to optimize the ratio of the number of relevant 

pages downloaded to the total number of pages downloaded. 

 



Formally, we are given a website as a graph W(V,E) consisting of vertex set V and edge set E, 

where a vertex is a webpage and an edge e = <u, v> is a hyperlink pointing from a webpage u to 

a webpage v. The goal pages PG constitute a subset of pages in W reachable from starting seed 

page PS. We have to navigate to them starting from PS visiting fewest possible additional pages. 

Let P : P1, P2, . . . , Pn be one such path through W from the start page P1 = PS to a goal page Pn 

 PG. The ratio of relevant pages visited to the total number of pages visited during the execution 

is called the harvest rate. The objective function is to maximize the harvest rate. 

 

This problem requires two solutions. 

 

1. Recognizing a page as the goal page. This is a classification problem where given a 

webpage we have to classify it as being a goal page or not. Often the page alone may not 

hold enough information to help identify it as the goal page. We will need to consider 

text around the entire path leading to the goal page in order to decide if it is relevant or 

not. For example, if we want to get all course pages starting from a university root page, 

then it is necessary to follow a path through departments’ homepages and then through 

professors’ homepage. A course page on its own might be hard to classify. 

 

2. Foraging for goal pages. This can be thought as a crawling exercise where, starting from 

the entry point, we want to visit as few pages as possible in finding the goal pages. This 

problem is different from the previous work on focused crawling [11] where the goal is to 

find all web pages relevant to a particular broad topic from the entire web. In our case, 

we are interested in finding course pages starting from a University homepage. We 

exploit the regularity in the structures of University websites to build more powerful 

models than is possible in the case of general-purpose focused crawlers. 

 
 
 
 
 
 
2.4  Domain Knowledge Representation 



2.4.1 Introduction 
 

There are representation techniques such as frames, rules and semantic networks which 

have originated from theories of human information processing. Since knowledge is used to 

achieve intelligent behavior, the fundamental goal of knowledge representation is to represent 

knowledge in a manner as to facilitate inferences (i.e. drawing conclusions) from knowledge. 

Problem Solving can be simplified by an appropriate choice of knowledge representation (KR). 

Representing knowledge in some ways makes certain problems easier to solve.  

 

 

 

 
 

Figure 15: Applications of Knowledge Representaion 

 

KR is most commonly used to refer to representations intended for processing by 

computers, and in particular, for representations consisting of explicit objects (the class of all 

humans, or Ram a certain individual), and of assertions or claims about them ('Ram is a human', 

or 'all humans have one head'). Representing knowledge in such explicit form enables computers 

to draw conclusions from knowledge already stored ('Ram has one head'). 



 
2.4.2 Why Knowledge Representation ? 

 

The knowledge is crucially important in the development of an intelligent tutoring system 

for e-learning. For this work, we assume that we have a repository of educational documents 

mined from the web. The content described above can be mined from the following major 

resources  

(i) MIT Open Courseware, NPTEL India  

(ii) .edu domain  

(iii) Discussion Forums -Google Groups, Yahoo Answers  

(iv) YouTube, Google Video and Metacafe  

(v) Wikipedia, MathWorld  

(vi) Company Websites for product related info and case studies  

(vii) Domain specific websites for questions, tutorials etc.  

 

Open repositories like Wikipedia and information pages authored as blogs etc:- by casual 

users if used efficiently can be a very good resource for learning. All this knowledge needs to be 

represented efficiently for use by e-learning systems.  

 

The goal of this work is to explore approaches for representation of knowledge for 

efficient use of resources for an intelligent learning system. We intend to find an approach which 

can help in capturing the semantics of the crawled resources and efficiently implement a set of 

learning applications. Hence the final goal is to have a knowledge representation technique 

specially designed to support intelligent tutoring applications like automatic annotation of text 

and construction of memory maps.   

 
 

 

 

2.4.3 An Approach 
 



The work by Hammouda and Kamel [25] presents an innovative approach for performing 

data mining on documents, which serves as a basis for knowledge extraction in e-learning 

environments. The approach is based on a radical model of text data that considers phrasal 

features paramount in documents, and employs graph theory to facilitate phrase representation 

and efficient matching. In the process of text mining, a grouping (clustering) approach is also 

employed to identify groups of documents such that each group represents a different topic in the 

underlying document collection. Document groups are tagged with topic labels through 

unsupervised key phrase extraction from the document clusters.  

 

The model presented by Hammouda and Kamel [25] for document representation is 

called the Document Index Graph (DIG). This model indexes the documents while maintaining 

the sentence structure in the original documents. This allows use of more informative phrase 

matching rather than individual words matching. Moreover, DIG also captures the different 

levels of significance of the original sentences, thus allowing us to make use of sentence 

significance. Suffix trees are the closest structure to the proposed model, but they suffer from 

huge redundancy [26].  

 

 

 
 



Figure 16: Example of the Document Index Graph 

 

 

The DIG is built incrementally by processing one document at a time. When a new 

document is introduced, it is scanned in sequential fashion, and the graph is updated with the 

new sentence information as necessary. New words are added to the graph as necessary and 

connected with other nodes to reflect the sentence structure.  

 

Upon introducing a new document, finding matching phrases from previously seen 

documents becomes an easy task using DIG. This is done by incremental graph building and 

phrase matching.  The approach serves in solving some of the difficult problems in e-learning 

where the volume of data could be overwhelming for the learner; such as automatically 

organizing documents and articles based on topics, and providing summaries for documents and 

groups of documents. 

2.4.4 Our Approach – The Motivation 
 

The archived content crawled by the focused crawler is used to develop concept maps 

that capture the various semantic relations among data. The semantic content from the digital 

library is then used to develop intelligent learning applications. These applications focus on 

making the learning process for a student both efficient and effective.  

 

 The knowledge representation is crucially important in the development of an intelligent 

learning system for e-learning. In order to use the document corpus effectively and efficiently, 

not only the contents but also the representation of contained knowledge is important. The 

effectiveness of the learning applications like memory maps will depend significantly on the 

knowledge representation architecture. The content mined from the web can be divided into two 

categories in terms of its usability for an e-learning system.  

 

(i) Structured content (courses)  

(ii) Non-Structured educational content. 

 



Structured course content crawled in section 3 is annotated before it is archived in the 

digital library. We identify a set of tags which are required to represent the course in SCORM 

standard. We extract information from the structured courses to convert them into (semi-) 

SCORM format. In addition to the above tags we also store some entity specific meta-tags that 

are important from the point of view of indexing and parameterized search. For both the above 

category of tags hand crafted wrappers are used for information extraction [27]. Adding the 

search keywords in the meta-tags ensures that information about related course/course material is 

added in the tags of the entity. This will ensure that if the search is made in the name of the 

course then related material also turns up in the results.  

 

Non-Structured content is available in abundance on the web. Open repositories like 

Wikipedia and information pages authored as blogs etc:- by casual users if used efficiently can 

be a very good resource for learning. All this knowledge needs to be represented efficiently for 

use by e-learning systems. In our work, we report the existing approaches. We also propose a 

new approach for automatic construction of concept maps from the content mined from the web. 

Our knowledge representation technique is specially designed to support intelligent tutoring 

applications like automatic annotation of text and construction of memory maps. We have 

designed and implemented a heuristic based algorithm to extract the headings from web 

documents. 

 

2.1.5 Our Design 
 

The document representation module consists of the three main modules namely: 

 Tree Building Phase 1 

 Tree Building Phase 2 

 Key-phrase Resolution 
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Figure 17: Document representation process 
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Chapter 3: Intelligent Applications for Intinno 
 

3.1  Introduction 
 

Section 1.3 discusses that neither ITS not LCMS are one stop solutions for enhancing the 

learning process. LCMS provide a platform where it is easier for the teacher to upload content, 

students have a central place for all their learning materials and the discussion/questions are 

extended out from the physical boundaries of the classroom. LCMS systems are easier to build 

and such systems involve active participation from the student community. However LCMS 

suffer from the problem that they have no intelligence built into them.  

ITS systems are intelligent. They model how a teacher would teach in the class and also keep a 

track of the student’s performance. Such systems use the record of student’s performance to 

enhance their learning process. However these systems are expensive to build and model. They 

require much human expertise and are domain specific.  

The proposed solution to this problem was to build an intelligent LCMS application 

which is composed of two parts: 1) Content Management System and 2) Intelligent applications.  

Intelligent applications are the features that are directly integrated into the content management 

system. These applications take advantage of the semantic knowledge contained in the data and 

the user behavior recorded during the interactions with the content management system, to make 

the learning process efficient for both teachers and students.  

The list of such applications that can be developed are a) Memory Maps, b) PPT 

Summarization Module, c) Recommendations, d) Educational Search Engine e) Automatic 

Evaluator for coding Assignments, f) Duplicate Detection Module and g) Automatic Question 

Answering system. Figure 11 shows the applications to be developed and the motivations for 

each of them. In the next sections we present related works that can be used to develop some of 

the above mentioned applications. 
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Figure 11: Intelligent applications for the Intinno LCMS, along with their 



3.2 Memory Maps 

 

3.2.1 Need for Memory Maps 
 

Memory maps provide a general, powerful, and user-oriented way to navigating the 

information resources under consideration in any specific domain. A topic map provides a 

uniform framework that not only identifies important subjects from an entity of information 

resources and specifies the information resources that are semantically related to a subject, but 

also explores the relations among these subjects. When a user needs to find some specific 

information on a pool of information resources, he only needs to examine the topic maps of this 

pool, selects the topic he thought interesting, and the topic maps will show him the information 

resources that are related to this topic as well as its related topics. He will also recognize the 

relationships among these topics and the roles the topics play in such relationships. With the help 

of the topic maps, we no longer have to browse through a set of hyperlinked documents and hope 

they may eventually reach the information we need in a finite amount of time even when we 

know nothing about where we should start. We also don’t have to gather some words and hope 

that they may perfectly symbolize the idea we interest and are conceived well by a search engine 

to obtain reasonable result. Topic maps provide us a way to navigate and organize information, 

as well as to create and maintain knowledge in an info glut. 

Topic Maps provide an external meta-structure (a knowledge navigation layer) in the form of a 

dynamic, semantically based hypertext. As a result, TM-based courseware can offer the 

following benefits:  

• For learners: efficient context-based retrieval of learning resources; better awareness in 

subject-domain browsing; information visualization; customized views, adaptive 

guidance, and context-based feedback. 

• For instructors: effective management and maintenance of knowledge and information; 

personalized courseware presentations; distributed courseware development; reuse and 

exchange of learning materials, collaborative authoring. 

 



 
 

 

To construct a topic map for a set of information resources, human intervention is 

unavoidable in present time. We need human effort in tasks such as selecting topics, identifying 

their occurrences, and revealing their associations. Such need is acceptable only when the topic 

maps are used merely for navigation purpose and the volume of the information resource is 

considerably small. However, a topic map should not only be a ’topic navigation map’. Besides, 

the volume of information resource under consideration is generally large enough to prevent 

manual construction of topic maps.  

 

To expand the applicability of topic maps, some kind of automatic process should involve 

during the construction of topic maps. The degree of automation in such construction process 

may differ for different users with different needs. One may only need a friendly interface to 

automate the topic map authoring process, and another one may try to automatically identify 

every components of a topic map for a set of information resources from the ground up. 

 

Figure 12: Example of a memory 



Possible approaches for building Memory Maps: 

 

3.2.2  Approach 1 
 

This approach is inspired from the study described in [21], which looked at the feasibility 

of using HTML tags as proxies for semantic content as well. Three Web page elements have 

been studied: Link (anchor) text, Heading text, and Comment text. Using the scale ‘no help’, 

‘little help’, ‘helpful’, and ‘very helpful’, the human experts involved in the study evaluated that 

61% of web page link text was ‘helpful’ or ‘very helpful’ in indicating semantic contents. Taking 

this as encouraging (especially because the pages have been arbitrarily chosen), this approach  

explores the possibility of extracting semantic information by parsing the web pages in a web 

site specified by the user. 

 

This approach defines a set of heuristics to construct a topic map by parsing an HTML 

document. The heuristics are as follows: 

1. A new topic is created in the topic tree for each web page visited by the crawler. 

2.  All the topics created in the process of parsing aspecific web page are sub-topics of the 

“page” topic for that page. 

3. Naming of “page” topics: 

a. The “root” topic provided by the user in the Extractor interface is considered as 

corresponding to the webpage, which is the “entry point” for the crawler (withthe 

specified URL). 

b. All other “page” topics are named using the text provided in the body of the 

corresponding anchor element. 

4. Heading represents a topic that is more general that the topics extracted from the text 

below it (if any). 

5. The topics extracted from HTML headings of different types can be organized 

hierarchically so as to correspond to the HTML headings “weights” (1, 2, etc.). Thus the 

topic extracted from an <h2> tag will be a sub-topic of the topic extracted from the <h1> 

tag, etc. 



6. Heading tags on a referenced web page (through an‘anchor’ element, see 2.3.2) will be 

seen as relating to the topic representing that page. 

7. The topics extracted from the cells of one column in a table are related since they can be 

considered as values of the same attribute (represented by the column header). 

8. The topics extracted from the cells of one column in a table are subtopics of the topic 

corresponding to the column header. 

9. Group the topics extracted from the same HTML element together since this grouping 

indicates some kind of relatedness of the topics. 

 

The problem with the above approach is that it only offers a way to construct the draft topic map 

and the real power comes by the involvement of the user. Also it uses links/anchor text to 

construct one of the features of the memory maps. However this might not work in the case when 

we need a memory map from a single document itself. 

 

3.2.3  Approach 2 
 

This work [22] presents a novel approach for semi-automatic topic map construction. The 

approach starts from applying a text mining process on a set of information resources. Two 

feature maps, namely the document cluster map and the word cluster map, are created after the 

text mining process. It then applies a category hierarchy development process to reveal the 

hierarchical structure of the document clusters. Some topics are also identified by such process to 

indicate the general subjects of those clusters located in the hierarchy. It  then creates topic maps 

according to the two maps and the developed hierarchy automatically. Although this method may 

not identify all kinds of components that should construct a topic map, this approach seems 

promising since the text mining process achieves satisfactory result in revealing implicit topics 

and their relationships. 

 

To reveal the relationships between documents, the popular self-organizing map (SOM) 

[23] algorithm is applied to the corpus to cluster documents. It adopts the vector space model to 

transform each document in the corpus into a binary vector. These document vectors are used 



as input to train the map. It then applies two kinds of labeling process to the trained map and 

obtained two feature maps, namely the document cluster map (DCM) and the word cluster map 

(WCM). In the document cluster map each neuron represents a document cluster that contains 

several similar documents with high word co-occurrence. In the word cluster map each neuron 

represents a cluster of words that reveal the general concept of the corresponding document 

cluster associated with the same neuron in the document cluster map. The text mining process 

described above provides us a way to reveal the relationships between the topics of the 

documents.  
 

The method to identify topics arranges them in a hierarchical manner according to their 

relationships. A neuron in the DCM represents a cluster of documents that contain words that 

often co-occurred in these documents. Besides, documents that associate with neighboring 

neurons contain similar set of words. Thus it constructs a super-cluster by combining 

neighboring neurons by the following algorithm: 

• Find the neuron with the largest supporting cluster similarity. Selecting this neuron as 

dominating neuron. 

• Eliminate its neighbor neurons so that they will not be considered as dominating neurons. 

• If there is no neuron left or the number of dominating neurons exceeds a predetermined 

value, stop. Otherwise go to Step 1. 

 

A dominating neuron may be considered as the centroid of a super-cluster, which 

contains several clusters. It then assigns every cluster to some super-clusters using a method 

similar to K-Means clustering. A super-cluster may be thought as a category that contains several 

subcategories. The category topics are selected from those words that associate with these 

neurons in the WCM. This scheme selects the word that is the most important to a super-cluster. 

The topics that are selected by the above mechanism form the top layer of the category 

hierarchy. To find the descendants of these topics in the hierarchy, it applies the above process to 

each super-cluster and obtains a set of sub-categories. These sub-categories form the new super-

clusters that are on the second layer of the hierarchy. The category structure can then be revealed 

by recursively applying the same category generation process to each new-found super-cluster.  

 



This approach also identifies the topic types by the constructed hierarchy. A topic on 

higher layers of the hierarchy represents a more important concept than those on lower layers. 

For a parent-child relationship between two concepts on two adjacent layers, the parent topic 

should represent a important concept of its child topic. Therefore, it uses the parent topic as the 

type of its child topics. Such usage also fulfills the requirement of the topic map standard that a 

topic type is also a topic. 

 

Both the above approaches are contrasting in the sense that the first one uses heuristics and the 

second one uses pure data-mining approach to build the topic case. Our final approach will 

utilize the advantages of both the approaches for making the topic maps. 

 

 
 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: An example of Memory Maps. Picture 1 shoes the concept to be 

grasped/learned. Picture 2 shows the automatic extraction of keywords from the document. 



Chapter 4: Implementation and Results 
 

 

4.1  Implementation of CMS 
The content management portion of Intinno [24] has been completed and is already under 

production at http://www.intinno.com under the name of Learning Groups. Intinno system is 

currently under use in 50 courses of IIT Kharagpur.  

 

 



 
 

 

 
 



 
 

 

 

Figure 14: Snapshots of the Intinno 
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