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Abstract

Quantum Computing is an exciting alternative model to classical computation. In

short the theory of quantum computation and quantum information deals with the tasks

of computing and information processing that can be accomplished using small systems

which follow the fundamental laws of quantum mechanics. The field has received con-

siderable interests after Shor’s polynomial time quantum algorithm for factorization of

numbers [S97], a problem which still has no polynomial algorithm in the classical model

and is strongly believed not to belong to the class P of polynomial time solvable algo-

rithms, and Grover’s quantum search algorithm which finds an element in an unsorted

array in O(
√
n) time, a task which cannot be done in better than O(n) time in the classi-

cal model, where n is the size of the array. One of the most difficult hurdles in quantum

computation and information is decoherence of the quantum mechanical systems which

makes the results obtained after processing erroneous. Since the quantum mechanical

systems are very small it is very difficult to remove decoherence completely out of the

system. Hence the task at hand is to develop schemes that guarantee results of satisfi-

able quality i. e, fault-tolerance. In this direction Shor proved the fault-tolerance the

for the circuit model of quantum computation. Circuit model for quantum computation

is analogous to the circuit model of classical computation. Our work here is on fault-

tolerance of other quantum computing models like that of quantum cellular automata

and adiabatic quantum computing both of which have been shown to be equivalent to

circuit model of quantum computing [DA, RR].

As already mentioned implementation is an important problem in Quantum Com-

putation. Which is why it will be very helpful if one can design a scheme that reduces

the complexity of the implementation. So the task at hand right now is to design an

architecture which is simple, computationally powerful and robust. Physical complexity

can be reduced considerably if there are symmetries in the design. Quantum cellular

automata (QCA) is computation model where the arrangements of the physical qubits

and the gate operation are translation invariant. It has been already shown that one-

dimensional QCA [JW95] can simulate any quantum computer. So quantum cellular

automata has most of above mentioned qualities except the fact that it is still not



known whether we can develop an fault tolerant scheme to implement quantum cellu-

lar automata without losing the topological symmetry of the qubits or the translation

invariant gate operations.

Consider a one-dimensional chain of N qubits initialized in the state |00..0〉 which is

applied with the transition function

T = (
N−1⊗
i=1

Λ(Z)i,i+1)(
N⊗
i=1

Hi). (1)

That is in each elementary step we first apply first Hadamard gate to each qubits and

then conditional Z to each neighboring qubits. And in between each transition operation

one may apply transition invariant unitary transformation of the form

UA(α) =
N⊗
j=1

exp(i
α

2
Aj) (2)

where j = {X,Y, Z} and j implies the bit at which the gate is applied. It has been

shown by Robert in [?] that one can implement one-dimensional QCA using these oper-

ation. In this thesis I implemented this one-dimensional scheme of QCA using surface

codes [Kitaev03]. The physical qubits are arranged in the lattice edges and they satisfy

stabilizer operation [NC], i. e they remain unchanged on application of some operations

SX(v) =
⊗
e∈v

Xe, SZ(f) =
⊗
e∈f

Ze (3)

where v and f are the sites and the faces of the lattice and e corresponds to the edges of

the faces and sites. This is an important property of surface codes which will be helpful

in the fault-tolerance. The logical qubits and logical gate operations are encoded in some

form in the surface code and physical gate operations respectively. All the operation

that will be done on the qubits of the lattice edges will be translation invariant in the

physical layer of the lattice. The scheme that we have developed will have both error

detection and correction properties.

The paper entitled “Quantum Computation by Adiabatic Evolution” by Farhi et al.

[EJSM] is a seminal work in the area of quantum computation. The quantum adiabatic

theorem [M76] can be used to develop algorithm to solve the 3-SAT problem, , 2-SAT on

a ring and the Grover Problem as shown in [EJSM]. For the 3-SAT problem the running

time for the algorithm is not known but for the 2-SAT on a ring problem the running
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time is O(n3), where n is the size of the input. Aharonov et al. in there paper [DA]

showed that adiabatic quantum computer is polynomially equivalent to the standard

quantum circuit model of computing. This equivalence is an important step which will

help in designing new quantum algorithms for problems that till now have no known

efficient algorithm in the standard quantum circuit model and also help in constructing

fault tolerant quantum computers. Since I was working on the fault-tolerance adiabatic

quantum computing and error correcting codes are an important technique used in

circuit model to make robust systems hence I started studying the paper named “Error

Correcting Codes for Adiabatic Quantum Computation” by Jordan et al. [JFS]. In

this paper it was show how addition of a constant energy gap is possible using error

correcting codes that protects against 1− and 2−local noises. Stabilizer codes are used

to add the constant energy gap to the adiabatic evolution.

Since it has been shown 2-local Hamiltonians can simulate a quantum computer [DA]

it is very important to investigate few examples of 2-local Hamiltonians under adiabatic

evolution. One very good example is the Ising Model in a transverse magnetic field

which solves a very simple problem of finding a n-bit number where all the bits are

same. The Ising Hamiltonian is given by the equation

H(t) = −t
N∑
i=1

Xi − (1− t)
N∑
i=1

ZiZi+1, 0 ≤ t ≤ 1 (4)

I have studied the Ising model [SS] in transverse magnetic field and have worked out

the details of the diagonalization of the Ising model with using Jordan-Wigner and Bo-

goliubov transformations [SS] for the cases n = 2, 3 and checked the results with the

numerical simulations. In addition to the above I numerically plotted the eigenvalues

w.r.t time for the Ising model for n = 4, 5, 6 qubits. I have plotted the eigenvalues

vs time for the encoded Ising model n = 2, 3 logical bits case and checked with the

eigenvalues obtained from the analytical calculations done previously. I used 4-qubit

encoding from [JFS] that protects against 1-local noises. For this work I had to learn

Canonical Commutation Relations (CCRs) for Fermions, consequences of the fremionic

CCRs, diagonalization of Fermi quadratic Hamiltonian and Jordan-Wigner and Bogoli-

ubov transformations. I followed [SS] and [Nielsen] for this part of the work.

I worked on JFS [JFS] encoding for adiabatic quantum computing. For a given

Hamiltonian I calculated explicitly the eigenvalues . Worked out the details of how to add

a constant energy gap using the stabilizer formalism [NC]. I have explicitly calculated
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the eigenvalues for the encoded Hamiltonian for JFS codes that protect against 1 - local

errors and then extended it for 2-local errors. For calculating the eigenvalues for the

encoded case techniques used were of stabilizer formalism.

I have studied the error model used in [JFS] and [CFP02] . The evolution equation

is of Lindblad [CFP02] form and stems from the coupling of each qubit in the adiabatic

quantum computer to an harmonic oscillator bath. The master equation for the evolution

is
dρ

dt
= −i[HS, ρ]−

∑
a,b

Mabεab(ρ) (5)

where Mab is a scalar,

εab(ρ) = |a〉〈a|ρ+ ρ|a〉〈a| − 2|b〉〈a|ρ|a〉〈b| (6)

is an operator and a, b are the eigenstates of H(S). Under the following model is I have

numerically simulated the adiabatic passage through the point of smallest gap in the

presence of a bath of local harmonic oscillators.
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Chapter 1

Introduction and Preliminaries

1.1 Elements of Quantum Information

Information can be identified as the most general thing which must propagate from a

cause to an effect. It therefore has a fundamentally important role in physics however,

the mathematical treatment of information, especially information processing, is quite

recent, dating from the mid-twentieth century. This has meant that the full significance

of information as a basic concept in physics is only now being discovered. This is espe-

cially true in quantum mechanics. The theory of quantum information and computing

puts this significance on a firm footing, and has lead to some profound and exciting new

insights into the natural world. Among these are the use of quantum states to permit the

secure transmission of classical information quantum cryptography, the use of quantum

entanglement to permit reliable transmission of quantum states teleportation, the pos-

sibility of preserving quantum coherence in the presence of irreversible noise processes

quantum error correction, and the use of controlled quantum evolution for efficient com-

putation (quantum computation). The common theme of all these insights is the use of

quantum entanglement as a computational resourIt turns out that information theory

and quantum mechanics fit together very well. It turns out that information theory

and quantum mechanics fit together very well. In order to explain their relationship,

this review begins with an introduction to classical information theory and computer

science, including Shannon theorem, error correcting codes, Turing machines and com-

putational complexity. The principles of quantum mechanics are then outlined, and the

EPR experiment described. The EPR-Bell correlations, and quantum entanglement in
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1.1. ELEMENTS OF QUANTUM INFORMATION

general, form the essential new ingredient which distinguishes quantum from classical

information theory, and, arguably, quantum from classical physics.

There are three very important features of quantum mechanics which provides us

the way to exploit such powerful processors:

1. A quantum particle can exist simultaneously in many incompatible states.

2. We can operate on a quantum particle while it is in a superimposed state and

affect all the states at once.

3. One quantum system can influence another far away quantum system instanta-

neously

This is the kind of parallelism inherent in quantum world and combined with the

present day information processing gives birth to exciting developments: Quantum com-

putation, quantum error correction, quantum entanglement and teleportation and quan-

tum cryptography. Quantum computers are able to solve some problems intractable to

conventional computation (problems like prime factorization and discrete logarithm).

Quantum error correcting techniques enable us to do quantum computation and commu-

nication in present of noise. Quantum cryptosystems provide guaranteed secure commu-

nication using no-cloning theorem and uncertainty principle and quantum teleportation

provides the way to do quantum communication in absence of a quantum channel using

prior quantum entanglement and classical communication.

1.1.1 Model of quantum Computation

Basic requirements that should be present in any model of computation are :

1. Scheme for information representation

2. Set of legal operations

3. Methods of extracting result after the operation

In the quantum mechanical model of information processing the information is math-

ematically represented by a unit vector in a Hilbert Space , operations are the unitary

operators in the space and result is the measurement of an observable described by a

hermitian operator in the space.

3



1.1. ELEMENTS OF QUANTUM INFORMATION

Qubits and quantum registers

The first postulate of quantum mechanics sets up the arena in which quantum mechanics

takes place. This area linear algebra,Hilbert space.

Postulate 1: Associated to any isolated physical system is a Hilbert space known as

the state space of the system. The system is completely described by its state vector,

which is a unit (ray) in the systems’s state space.

The simplest non-trivial Hilbert space is of dimension two and a state vector in the

state space of dimension two is called a qubit (stands for a quantum bit). Suppose |0〉
and |1〉 form an orthonormal basis for that state space. Then an arbitrary state vector

in the state space can be written

|ψ〉 = a|0〉+ b|1〉,
where a and b are complex numbers. The condition that |ψ〉 be a unit (ray),

〈ψ|ψ〉 = 1, is therefore equivalent to |a|2 + |b|2 = 1.

Nature is not so simple and a qubit is not sufficient to deal with its complexity. We

must be interested in composite system made of two (or more) distinct physical systems

and we must also have a mathematical way of playing around with them. In analogy

to the classical terminology, a composite quantum system i.e. a set of qubits is called a

quantum register. The following postulate describes how the state space of a composite

system (quantum register)is built up from the state spaces of the component systems

(the qubits).

Postulate 2: The state space of a composite physical system is the tensor product

of the state spaces of the component physical systems. Moreover, if we have systems

numbered 1 through n, and a number i is prepared in the state |ψi〉, then the joint state

of the total system is |ψ1〉
⊗
|ψ2〉

⊗
. . .
⊗
|ψn〉, where

⊗
denotes tensor product.

Quantum gates

Time evolution of a quantum state is unitary; it is generated by a self-adjoint (Hermitian)

operator, called the Hamiltonian of the system. In the Schrodinger picture of dynamics,

the vector describing the system moves in time as governed by the Schrodinger equantion

4



1.1. ELEMENTS OF QUANTUM INFORMATION

d
dt
|ψ(t)〉 = −iH|ψ(t)〉

where H is the Hamiltonian. We may express this equation, to first order in the

infinitesimal quantity dt, as

|ψ(t+ dt)〉 = (1− iHdt)|ψ(t)〉.
Clearly, the operator U(dt) ≡ 1− iHdt is unitary. Thus the time evolution over a

finite interval is unitary given by

|ψ(t)〉 = U(t)|ψ(0)〉.

Postulate 3: The evolution of a closed quantum system is described by a unitary

transformation. That is, the state |ψ〉 of the system at time t1 is related to the state

|ψ′〉 of the system at time t2 by a unitary operator U which depends only on the times

t1 and t2,

|ψ′〉 = U |ψ〉.
Now that a quantum system evolves according to a unitary operator which is always

invertible, quantum gates must be reversible. Infact, quantum gates are nothing but

these unitary operations. Following are some commonly used one qubit and two qubit

gates in terms of their unitary operations represented by matrices in the computational

basis.

Pauli’s Gates (Operators) :

σx ≡ ( |0〉 |1〉
|0〉 0 1

|1〉 1 0

)
σy ≡

( |0〉 |1〉
|0〉 0 −i
|1〉 i 0

)
σz ≡ ( |0〉 |1〉

|0〉 1 0

|1〉 0 −1

)
Hadamard Gate :
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1.1. ELEMENTS OF QUANTUM INFORMATION

H ≡ ( |0〉 |1〉
|0〉 1/

√
2 1/

√
2

|1〉 1/
√

2 −1/
√

2

)
Controlled- NOT (CNOT) Gate: A two qubit gate


|00〉 |01〉 |10〉 |11〉

|00〉 1 0 0 0

|01〉 0 1 0 0

|10〉 0 0 0 1

|11〉 0 0 1 0



The Postulate 3 requires that the system being described be closed. That is, it is not

interactive in any way with other systems. In reality, of course, all systems (except the

Universe as a whole) interact at least somewhat with the other systems. Nevertheless,

there are interesting systems which can be described by unitary evolution to some good

approximation. Furthermore, at least in principle every open system can be described

as part of a larger closed system (the Universe) which is undergoing unitary evolution.

Quantum measurement

An observable is a property of a physical system that in principle can be measured.

In quantum mechanics, an observable is a hermitian operator. We also know that a

hermitian operator in a Hilbert space H has a spectral decomposition- it’s eigenstates

form a complete orthonormal basis in H. We can express a hermitian operetor A as

A =
∑

n anPn .

Here each an is an eigen value of A, and Pn is the corresponding orthogonal projection

onto the space of eigenvectors with eigenvalues an. ( If an is non-degenerate, then

Pn = |n〉〈n|; it is the projection onto the corresponding eigenvector.) The Pn satisfy

PnPm = δn,mPn

P†
n = Pn.

Postulate 4: In quantum mechanics, the numerical outcome of a measurement of the

observable A is an eigenvalue of A; right after the measurement, the quantum state is

6



1.1. ELEMENTS OF QUANTUM INFORMATION

an eigenstate of A with the measured eigenvalue. If the quantum state just prior to the

measurement is |ψ〉, then the outcome an is obtained with the probability

Prob(an) = ‖ Pn|ψ〉 ‖2 = 〈ψ|Pn|ψ〉 ;

If the outcome attained is an, then the (normalized) quantum state becomes
Pn|ψ〉√

(〈ψ|Pn|ψ〉)
.

(Note that if the measurement is immediately repeated, then according to this rule

the same outcome is attained again, with probability one.)

1.1.2 Quantum entanglement

Quantum mechanics builds systems out of subsystems in a remarkable, holistic way.

The states of the subsystems do not determine the state of the system. Schrodinger,

commenting on the EPR paper[?] in 1935, the year it appeared, coined the term entan-

glement for this aspects of quantum mechanics.

Consider a system consisting of two subsystems. Quantum mechanics associates to

each subsystem a Hilbert space. Let HA and HB denote these two Hilbert spaces; let

|iA〉 (where i=1,2,...) represent a complete orthonormal basis for HA, and |iB〉 (where

i=1,2,...) represent a complete orthonormal basis for HB. Quantum mechanics asoci-

ates to the system-i.e. the two subsystem taken together-the Hilbert space HA

⊗
HB,

namely the Hilbert space spanned by the states |iA〉
⊗
|iB〉. In the following we will

drop the tensor product symbol
⊗

and write |iA〉
⊗
|iB〉 as |iA〉|iB〉.

Any linear combinations of the basis states |iA〉|iB〉 is a state of the system, any state

|ψ〉AB of the system can be written as

|ψ〉AB =
∑

i,j ci,j|iA〉|iB〉,
where the ci,j are complex coefficients, we take |ψ〉AB to be normalized, hence∑
i,j |ci,j|2 = 1.

A special case of the above state is a direct product state in which |ψ〉AB factors into

(a tensor product of) a normalized state |ψ(A)〉A =
∑

i c
(A)
i |i〉A in HA and a normalized

state |ψ(B)〉B =
∑

j c
(B)
j |j〉B in HB.

|ψ〉AB = |ψ(A)〉A|ψ(B)〉B = (
∑

i c
(A)
i |i〉A)(

∑
j c

(B)
j |j〉B)

7



1.1. ELEMENTS OF QUANTUM INFORMATION

Not every state in HA

⊗
HB is a product state. Take, for example, the state

(|1〉A|1〉B + |2〉A|2〉B)/
√

2; if we try to write it as a direct product of states of HA

and HB, we will find that we can not.

If |ψ〉AB is not a product state, we say that it is entangled.

Thus when two quantum subsystems are entangled, we may have a complete knowl-

edge of the composite system as a whole but not of the individual subsystems. Techni-

cally speaking, the system as a whole may be in a pure state while individual subsystems

still being in mixed states.

Entanglement is a key resource for quantum information processing and spatially

separated entangled pairs of particles have been used for numerous purposes like tele-

portation [?], superdense coding and cryptography based on Bell’s Theorem [?], to name

a few. We shall see some novel and interesting characterization and applications of en-

tanglement in this thesis.

1.1.3 The density operator

The density operator language provides a convenient means for describing quantum

systems whose state is not completely known. More precisely, suppose a quantum system

is in one of a number of states |ψi〉, where i is an index, with respective probabilities pi.

We shall call {pi, |ψi〉} an ensemble of pure states. The density operator for the system

is defined by the equation

ρ ≡
∑
i

pi|ψi〉〈ψi| (1.1)

Suppose, for example, that the evolution of a closed quantum system is described by

the unitary operator U . Then the evolution of the density operator is described by the

equation

ρ ≡
∑
i

pi|ψi〉〈ψi| −→U
∑
i

piU |ψi〉〈ψi|U † = UρU † (1.2)

where U † is the Hermitian adjoint of U . Measurements are also easily described in the

density operator language. Suppose we perform a measurement described by measure-

ment operators Mm. If the initial state was |ψi〉, then the probability of getting result

8



1.1. ELEMENTS OF QUANTUM INFORMATION

m is

p(m|i) = 〈ψi|M †
mMm|ψi〉

= tr
(
M †

mMm|ψi〉〈ψi|
)

(1.3)

By the law of total probability the probability of obtaining the result m is

p(m) =
∑
i

p(m|i)pi

=
∑
i

pitr
(
M †

mMm|ψi〉〈ψi|
)

= tr
(
M †

mMmρ
)
. (1.4)

Density operator of the system after obtaining the measurement result m is

ρm =
MmρM

†
m

tr
(
M †

mMmρ
) (1.5)

1.1.4 Shannon entropy

One of the most important concept of classical information theory is Shannon entropy.

For a given random variable X the Shannon entropy of X quantifies how much infor-

mation we gain, on average, when we learn the value of X. An alternative view is that

the entropy of X measures the amount of uncertainty about X before we learn its value.

These two views are complementary; we can view entropy either as a measure of our

uncertainty before we learn the value of X,or as a measure of how much information we

have gained after we learn the value of X.

The information content of a random variable should not depend on the labels at-

tached to the diffrent values that may be taken by the random variable. For example,

we expect that the random variable taking the values ′heads′ and ′tails′ with respective

probabilities 1/4 and 3/4 contains the same amount of information as a random variable

that take the values 0 and 1 with respective probabilities 1/4 and 3/4. For this reason,

the entropy of a random variable is defined to be a function of the probabilities of the

diffrent possible values the random variable takes, and is not influenced by the labels

used for those values. We often write the entropy as a function of a probability distrib-

ution, p1, . . . , pn. The Shannon entropy associated with this probability distribution is

9



1.1. ELEMENTS OF QUANTUM INFORMATION

defined by

H(X) ≡ H(p1, . . . , pn) ≡ −
∑
x

px log px (1.6)

1.1.5 Von Nuemann entropy

The Shannon entropy measure the uncertainty associated with a classical probability

distribution. Quantum states are described in a similar fashion, with density operators

replacing probability distributions. In this section we generalize the definition of the

Shannon entropy to quantum states.

Von Neumann defined the it entropy of a quantum state ρ by the formula

S(ρ) = −tr (ρ log ρ2) (1.7)

If λx are the eigenvalues of ρ then von Neumann’s definition can be re-expressed

S(ρ) = −
∑
x

λx log λx, (1.8)

where we define 0 log 0 ≡ 0.

Suppose ρ and σ are the density operator of two quantum states. Then relative

entropy of ρ to σ is defined by

S (ρ||σ) equiv tr (ρ log ρ)− tr (ρ log σ) . (1.9)

Basic properties of von Nuemann entropy:

1. Klein’s inequality:The quantum relative entropy is non-negative,

S (ρ||σ) ≥ 0, (1.10)

with equality if and only if ρ = σ.

2. The entropy is non-negative. The entropy is 0 if and only if the state is pure.

3. In the d-dimensional Hilbert space the entropy is at most log d.

10



1.2. ADIABATIC COMPUTATION

4. Suppose a composite system AB is pure state. Then S(A) = S(B).

5. Suppose pi are probabilities, and the states ρi on orthogonal subspaces. Then

S

(∑
i

piρi

)
= H(pi) +

∑
i

piS(ρi). (1.11)

6. Joint entropy theorem: Suppose pi are probabilities, |i〉 are orthogonal states for s

system A, and ρi is any set of density operators for another system, B. Then

S

(∑
i

pi|i〉〈i| ⊗ ρi

)
= H(pi) +

∑
i

piS(ρi). (1.12)

1.2 Adiabatic Computation

Since the paradigm of adiabatic quantum computation (AQC) was established by Farhi

[EJSM], there have been two successive “waves”. The first wave was initiated by the

inventor, the second wave by the paper of Aharonov et al. [DA] who showed that the

adiabatic and the circuit model for quantum computation are, in fact, equivalent in

power.

1.2.1 Adiabatic quantum computation, old style

According to the Adiabatic Theorem (explained later), a ground-state of a Hamiltonian

H(0) is prepared and then the Hamiltonian H(s) is slowly and continuously varied

through the interval 0 ≤ s ≤ 1,

H(t) = (1− s)Hi + sHf . (1.13)

The initial Hamiltonian Hi is chosen such that its ground state is easy to prepare

and the Hamiltonian Hf is chosen such that its ground state contains the answer to

a computational problem. The idea is that if the Hamiltonian is varied slowly enough

then the instantaneous ground state follows adiabatically. That is, the system remains

in its ground state throughout the evolution and, in particular, is found in the ground

state at s = 1.

11



1.2. ADIABATIC COMPUTATION

The question is: How slow is slow enough? The conditions for the adiabatic theorem

require that ṡ ≈ ∆(s−2) where ∆ is the ground state energy gap at s. Thus, the run-time

of the adiabatic algorithm depends critically on the minimum ground state energy gap,

and it is important to know how mins(∆(s)) scales with the problem size (= number of

qubits required).

To pin down this scaling is possible only in very special cases as it basically amounts

to diagonalizing a very large Hamiltonian (matrix). The scaling is known e.g. for an

adiabatic version of Grover search where it yields a quadratic speedup, comparable to

Grover’s original algorithm.

Now, what about fault-tolerance in this scenario? It has often been stated that

adiabatic quantum computation is inherently robust against noise because the ground

state energy gap ∆ is protecting it; See eg. Childs and Preskill [CFP02]. In more detail,

the argument is that, first, the adiabatic algorithm is robust against phase errors in the

instantaneous eigenbasis of H(s) because the system is in an energy eigenstate state.

Second, the the adiabatic algorithm is protected against excitations into higher energy

states of the instantaneous eigenbasis by the ground state energy gap.

Third, the adiabatic algorithm is robust against perturbations of the Hamiltonian

H(s) as long as these are sufficiently slowly varying with s and are small at s = 0 and

s = 1.

The problem is above item No. 2, protection by the ground state energy gap. For

all so far investigated cases, there is one point s0 in the adiabatic procedure where

∆(s0) becomes very small. Because of the adiabaticity condition ṡ ≈ ∆(s−2) this is

the point where the algorithm spends most of its time. This situation is disadvantages

from the viewpoint of fault-tolerance, because at s0 where the gap is small excitations

to higher-energy states are not suppressed by a favorable Bolzmann factor. Rather,

e−∆(s0)/kBT ≈ 1 for T > ∆(s0). So, excitations into higher energy eigenstates are not

energetic ally suppressed and all time on earth is available for them to happen. This is

like preserving a snowball in the center of the sun from the sun’s creation to the present.

1.2.2 Adiabatic quantum computation, new style

This line started with Kempe et al.’s work showing that the adiabatic and the circuit

model are computationally equivalent. Building on that framework, Shor et al. [JFS]

showed that a constant energy gap against local and near-local errors can be obtained.
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Now, a constant-size gap is no guarantee for error-correction. A prominent example

is the surface code. It protects reliably against error in the case of active error-correction

where the complete error syndrome is measured once every constant-time interval [D01].

To the contrary, in a passive error-correction scenario where the code space is the ground

state manifold of a suitably chosen Hamiltonian, protected by a constant-size gap, error-

correction breaks down [AL07].

1.3 Quantum Cellular Automata

Implementation of quantum systems for computing and information processing is one

of the most difficult hurdle in the field of Quantum Computing and Information. Sym-

metric designs of quantum systems reduce implementation complexity to great extent.

Recently great progress have been made in realization of optical lattices or arrays of

micro-lenses which for the time being have been important candidates for for implemen-

tation of qubits. All these objects possess a translation symmetry in arrangements of

qubits and their mutual interaction. Quantum Cellular Automata (QCA) represents a

suitable framework for studying the computational power of these physical systems as

they respect these symmetries (translation invariant).

So it becomes very important to know that computational strength of QCA and

it has been shown that 1-dimensional QCA cab efficiently simulate a quantum Turing

Machine [JW95]. Further more it has been shown that there exist a universal QCA that

can simulate any other automaton with linear slowdown [WVM96]. Question that still

remains open is that of fault tolerance. A quantum computation model should be fault

tolerant to have practical importance as all quantum systems are under the influence of

decoherence and neighborhood coupling. We will here propose a design QCA which will

be able to detect and correct errors.

1.4 Thesis Contribution and Organization

13



Chapter 2

Adiabatic Theorem and Adiabatic

Quantum Computing

2.1 Adiabatic Theorem

Every quantum system evolves according to the continuous time dependent Schroedinger

equation
d|φ(t)〉
dt

= iH(t)|φ(t)〉 (2.1)

with a continuous time-dependent Hamiltonian H(t), and the eigen states of (2.1) are

called the energy states of the Hamiltonian, with the respective eigen values as energies.

The adiabatic theorem [Messiah76] tells us how a quantum system evolves when the

time dependent Hamiltonian H(t) is slowing varying with time. Before we can state the

adiabatic theorem we need to define some terms that will be required for stating the

theorem.

Let us consider a smooth family of Hamiltonian ¯H(s) where 0 ≤ s ≤ 1, and take

H(t) = H̄(t/T ) (2.2)

so T controls the rate at which H(t) varies. The eigen states and eigen values of H̄(s

are given by

H̄(s)|l; s〉 = El(s)|l; s〉 (2.3)
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2.2. ADIABATIC QUANTUM COMPUTING

with

E0(s) ≤ E1(s) ≤ · · · ≤ EN1(s) (2.4)

where N is the dimension of the Hilbert space. Then according to the adiabatic theorem

if |φ(0)〉 = |l = 0; s = 0〉 i. e, if we start with the ground state of the initial Hamiltonian

H̄(0) and if the energy gap between the two lowest levels, E1(s)−E0(s), is nonzero for

all 0 ≤ s ≤ 1, then

lim
T→∞

|〈l = 0; s = 1|φ(T )| = 1. (2.5)

This implies that the existence of a nonzero gap will make sure that |φ(t)〉 of (2.1)

remains close to the instantaneous ground state of H(t) (2.2) if for all 0 ≤ t ≤ T if T is

large enough.

Though the above result look very impressive but it wont help much in developing

quantum algorithm as there is no bound on the size of T . We will here give a popular

version or folk theorem that is normally stated while developing adiabatic quantum

algorithm. For the exact statement refer to the appendix at the end of this chapter or

[AO06].

Theorem 2.1.1 [Adiabatic theorem, folk version]

Let H̄(s) be a time-dependent Hamiltonian and

gmin = min
0≤s≤1

(E1(s)− E0(s)) > 0, (2.6)

ε = max
0≤s≤1

|〈l = 1; s|dH̄(s)

ds
|l = 0; s〉| (2.7)

then by taking T � ε
g2min

we can make |〈l = 0; s = 1|φ(T )〉| ≈ 1.

Normally the adiabatic algorithm that will be discussed here are the ones where the

ε is of the order of eigen values of H hence not too large, so the size of T will depend

on the order of gmin.

2.2 Adiabatic Quantum Computing

Since adiabatic theorem has been stated now we are in a position to discuss quantum

algorithms using the principle of adiabatic evolution. Any adiabatic quantum algorithm

for a given problem consists of the following steps:
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2.3. EQUIVALENCE OF AQC TO STANDARD MODEL

1. An easily constructed initial state ψ which is the ground state of an Hamiltonian

Hi.

2. A time-dependent Hamiltonian H(s) (2.2), which can be constructed from an

problem instance. We also have to take care that the H(s) satisfies (2.6), H(0) =

Hi and the ground state of the final Hamiltonian H(1) encodes the solution of the

problem.

3. Apply the Hamiltonian to ψ for time T for long enough (as given in the Theorem

2.1.1) so that the final state is very close to the ground state of H(1).

4. Measurement of the state gives the result.

The main problem with adiabatic algorithm is to construct a continuous family of

Hamiltonian whose initial ground state encodes the problem instance and final ground

states encodes solution to the problem. To make the algorithm feasible for implemen-

tation and computationally interesting the size of T should be of the order of poly(n),

where n is the size of the input. One of the most important questions is that can adi-

abatic quantum computation solve a computationally difficult problem in polynomial

time. There are enough evidence to say that it wont be able to solve an NP -complete

problem in polynomial time [], but it will be very interesting to investigate for prob-

lems in the class NP − P which are not NP -complete. Now we will present adiabatic

algorithms [EJSM] for solving 3− SAT -problem and Grover search problem.

2.3 Equivalence of AQC to Standard Model

Aharonov et al. in there paper “Adiabatic Quantum Computation is Equivalent to

Standard Quantum Computation ” [DA] showed that Adiabatic Quantum Computation

is polynomially equivalent to the Circuit Model of quantum computation.

Theorem 2.3.1 [DA] the model of adiabatic computation is polynomially equivalent

to the standard model of quantum computation.

Theorem 2.3.1 uses 3-local Hamiltonian that act on particles that may be arbitrarily

far apart. For a practical point of view, it is very difficult to create controlled interaction

between two particle that are far apart from each other. In addition, 3-local Hamiltonian
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2.4. ADIABATIC GROVER SEARCH

are very difficult to realize. On the other hand 2-local Hamiltonians with nearest neigh-

bor interaction have been implemented efficiently in the labs. In the paper [DA] also

proved that theorem for 2-local Hamiltonians with nearest neighbor interaction.

Theorem 2.3.2 [DA] Any quantum computation can be efficiently simulated by adi-

abatic computation with 2-local nearest neighbor Hamiltonians operating on 6-state

particles set on a two dimensional grid.

2.4 Adiabatic Grover Search

In this section we will consider the Grover problem [Grover97]. We have a single clause

hG, which depends on all n bits with a unique but unknown satisfying assignment w =

(w1, w2, . . . , wn). Classical we cannot do it better than O(2n) but Grover [Grover97]

showed that it can be done in O(2
n
2 ) using quantum computing model (circuit model)

and it has also been shown to be tight. Here we will present a adiabatic search algorithm

whose order is same as that of classical bound.

Corresponding problem to the hG we have the problem Hamiltonian

HP |z1z2 . . . zn〉 =

|z1z2 . . . zn〉 if |z1z2 . . . zn〉 6= |w1w2 . . . wn

1 if |z1z2 . . . zn〉 = |w1w2 . . . wn
(2.8)

= 1− |z = w〉〈z = w| (2.9)

We can write H̄(s) explicitly as

H̄(s) = H̄(s) = (1− s)
n∑
j=1

1

2
(1− σx)(j) + s(1− |z = w〉〈z = w|). (2.10)

Consider the transformation given by

|z1〉|z2〉 . . . |zn〉 −→ |z′1〉|z′2〉 . . . |z′n〉

z′j = z̄j , if wj = 1

z′j = zj , if wj = 0.
(2.11)

Under this transformation H̄(s) becomes

H̄(s) = H̄(s) = (1− s)
n∑
j=1

1

2
(1− σx)(j) + s(1− |z = w〉〈z = w|). (2.12)

17



2.4. ADIABATIC GROVER SEARCH

As the two Hamiltonians are unitarily equivalent they have the same spectra and ac-

cordingly the same gmin. Hence we will study the second one.

The ground state of H̄(0) is |x = 0〉, which is symmetric under the interchange of any

two bits. Also the Hamiltonian (2.12) is symmetric under the interchange of any two bits.

Instead of working in the 2n-dimensional space we can work in the (n+ 1)-dimensional

subspace of symmetrized states.

Define
−→
S = (Sx, Sy, Sz) by

Sa =
1

2

∑
j=1

nσ(j)
a (2.13)

for a = x, y, z. The symetrical states have
−→
S 2 equal to n

2
(n

2
+1), where

−→
S 2 = S2

x+S
2
y+S

2
z .

The states can be characterize as the states of Sx or Sz

Sx|mx = m〉 = m|mx = m〉 m = −n
2
,−n

2
+ 1, . . . ,m = −n

2
(2.14)

Sz|mz = m〉 = m|mz = m〉 m = −n
2
,−n

2
+ 1, . . . ,m = −n

2
(2.15)

where the total spin is suppressed as it remains constant. In terms of the z basis states

|mz =
n

2
− k〉 =

(
n

k

) ∑
z1+z2+···+zn=k

|z1〉|z2〉 . . . |zn〉 (2.16)

for k = 0, 1, 2, . . . , n. In particular

|mz =
n

2
〉 = |z = 0〉. (2.17)

One can rewritten as H̃(s) in (2.10) as

H̃(s) = (1− s)[
n

2
− Sx] + s[1− |mz =

n

2
〉〈mz =

n

2
]. (2.18)

Now the problem has been reduced to finding s of an (n + 1)-dimensional matrix H̃(s)

for which the gap between the two smallest eigen values is minimum.

Let the eigen vector corresponding to the eigen value E of the Hamiltonian H̃(s) be

ψ. Then we have

H̃(s) = Eψ, (2.19)

taking dot product on both side of (2.19) with |mx = n
2
− r〉 we get

[s+ (1− s)r]
〈
mx =

n

2
− r
∣∣ψ〉− s

〈
mx =

n

2
− r
∣∣mz =

n

2

〉
= E

〈
mx =

n

2
− r
∣∣ψ〉. (2.20)
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If E is replaced by the variable λ where E = s + (1 − s)λ, multiplying by 〈mz =
n
2
|mx = n

2
− r and sum over r to get

(1− s)

s
=

n∑
r=0

1

r − λ
Pr, where Pr = |〈mz =

n

2
|mx =

n

2
− r〉|2. (2.21)

Using (2.16) with k = 0 and also the identical formula with z replaced with x we have

Pr =
1

2n

(
n

r

)
. (2.22)

The left-hand side of (2.20) ranges over all positive values as s varies from 0 to 1. Take

s = s∗ such that
(1− s∗)

s∗
=

n∑
r=1

Pr
r
. (2.23)

Eigenvalue equation (??) at s = s∗ becomes

P0

λ
=

n∑
r=1

Pr
λ

r(r − λ)
. (2.24)

From (2.22) we know that P0 = 2−n. Define u by λ = 2−n/2u. Then (2.24) becomes

1

u
=

n∑
r=1

Pr
u

r(r − 2−n/2u)
≈

n∑
r=1

Pr
u

r2
(2.25)

hence

λ ≈ ±(
n∑
r=1

Pr
r2

)−
1
2 2

−n
2 (2.26)

, which implies

gmin = 2(1− s∗)(
n∑
r=1

Pr
r2

)−1/22−n/2. (2.27)

We know that
n∑
r=1

Pr
r2

=
4

n2
+O(

1

n3
). (2.28)

Using (2.28) and (2.27) we get

gmin ≈ 2.2−
n
2 . (2.29)

Since the running time is O( 1
g2min

) hence running time for the adiabatic algorithm is

O(2n).
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2.5 3-SAT Problem

An instance of 3-SAT satisfiability problem is a boolean formula

C1 ∧ C2 ∧ · · · ∧ Cm (2.30)

where Cr = xi∨xj∨xk and xi, xj, xk are literals of the boolean formula. The Hamiltonian

for the 3-SAT problem takes the form

H(t) = HC1(t) +HC2(t) + · · ·+HCn(t) (2.31)

where each HCi
depends only on the clause Ci and acts on the bits corresponding to the

literals of Ci. The initial state is the ground state of H(0) and for each i, the ground

state of HCi
(T ) encodes the satisfying assignments of the clause Ci hence ground state

of H(T ) encodes the satisfying assignment for the boolean formula if there is one.

An n bit instance of 3-SAT boolean formula (2.30) is specified by a collection of

clauses and each clauses contain 3 of the n bits. The three bits associated with the

clause C are marked as iC , jC , kC and for each clause there is an energy function

[EJSM]

hC(ziC , zjC , zkC
) =

0 if (ziC , zjC , zkC
) satisfies the clause C;

1 if (ziC , zjC , zkC
) does not satisfy the clause C;

(2.32)

where zi denotes the bits that can take values 0 or 1 and i runs from 1 to n. Then the

total energy function h is defined as

h =
∑
C

hC . (2.33)

Total energy function h ≥ 0 and h(z1, z2, . . . , zn) = 0 if and only if (z1, z2, . . . , zn) satisfies

the 3-SAT formula. Thus finding the minimum energy level of h will tell us if the 3-SAT

formula is satisfiable or not.

Having given the brief idea we are now in a position to give the details of the adiabatic

algorithm to [EJSM] solve 3-SAT problem.

Problem Hamiltonian

When we make a transition from classical to quantum computation we have already seen

that we replace the classical bit zi by a spin-1
2

qubit labeled by |zi〉 where zi = 0, 1. the
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states |zi〉 are eigen states of the z component of the the ith spin,

1

2
(1− σ(i)

z )|zi〉 = zi|zi〉. (2.34)

The Hilbert space for the quantum computation is a complex vector space spanned by

N = 2n basis vectors |z1〉|z2〉 . . . |zn〉. Each clause C of the 3-SAT boolean formula is

associated with the operator HP,C .

HP,C(|z1〉|z2〉 . . . |zn〉) = hC(ziC , zjC , zkC
)|z1〉|z2〉 . . . |zn〉 (2.35)

where hC is the energy function defined previously. The Hamiltonian associated with

the problem is

HP =
∑
C

HP,C . (2.36)

HP by construction is a positive-semidefinite matrix i.e, 〈φ|HP |φ〉 ≥ 0 ∀ |φ〉 and HP |φ〉 =

0 if and only if φ is the superposition of states |z1〉|z2〉 . . . |zn〉 where z1, z2, . . . , zn satisfy

all the clauses hence the problem instance. So solving the 3-SAT is equivalent is equal

to finding the ground state of the Hamiltonian HP .

Initial Hamiltonian

Now we will construct HamiltonianHB which will be easy to construct and whose ground

state is simple to find. Let H
(i)
B be the Hamiltonian acting on the i-th bit

H
(i)
B =

1

2
(1− σ(i)

x ) (2.37)

so

H
(i)
B |xi = x〉 = x|xi = x〉 (2.38)

where

|xi = 0〉 =
|0〉+ |1〉√

2
and |xi = 1〉 =

|0〉 − |1〉√
2

. (2.39)

For each clause associated with the bits iC , jC , and kC we have

HB,C = H
(iC)
B +H

(jC)
B +H

(kC)
B (2.40)

and

HB =
∑
C

HB,C . (2.41)

The ground state of HB is |x1 = 0〉|x2 = 0〉 . . . |xn = 0〉. The important feature of the

ground state is that it is a equal superposition of all 2n basis vectors |z1〉|z2〉 . . . |zn〉
which is easy to construct.
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Adiabatic Evolution

We will now go from the known ground state of HB to the unknown ground state of HP .

Consider

H(t) = (1− t/T )HB + (t/T )HP , (2.42)

so prepare the system so that it begins at t = 0 in the ground state of H(0) = HB. And

the Adiabatic theorem will ensure that if gmin is non zero and T is large enough then

the final ground state φ(T ) will be very close to the ground state of HP , which is the

solution of the 3-SAT problem.

2.6 Illustration of instances of 3-SAT problem.

We will here work out the details of the 3-SAT problem for the particular case

P (x1, x2, x3) = (x1 + x2 + x3)(x̄1 + x̄2 + x3). (2.43)

Lets take

C1 = (x1 + x2 + x3) and

C2 = (x̄1 + x̄2 + x3).

Then

HP,C1 =



1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


(2.44)

and
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HP,C2 =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0


. (2.45)

So the problem Hamiltonian HP = HP,C1 +HP,C2

HP =



1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0


. (2.46)

And the initial Hamiltonian

HB = (1− σ1
x) + (1− σ2

x) + (1− σ3
x)

HB =



1.5 −0.5 −0.5 0 −0.5 0 0 0

−0.5 1.5 0 −0.5 0 −0.5 0 0

−0.5 0 1.5 −0.5 0 0 −0.5 0

0 −0.5 −0.5 1.5 0 0 0 −0.5

−0.5 0 0 0 1.5 −0.5 −0.5 0

0 −0.5 0 0 −0.5 1.5 0 −0.5

0 0 −0.5 0 −0.5 0 1.5 −0.5

0 0 0 −0.5 0 −0.5 −0.5 1.5


(2.47)

The plot of the eigenvalues shows that 6 eigenvalues converge 0 at t = 1, which

should be the case as the number of solutions of the instance of 3-SAT is 6 in this case.
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Figure 2.6.1: Plot of Eigenvalues of H(T ) vs Time.
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Appendix A.

Theorem 2.6.1 [AO06]

Let H(s), 0 ≤ 1 be a time dependent Hamiltonian, let E(s) be one of its eigenstates,

and let e(s) be the corresponding eigenvalue. Assume that for any s ∈ [0, 1], there is no

eigenvalues of H(s) lying between [e(s)− λ, e(s) + λ]. Consider the adiabatic evolution

given H and φ applied for time T . Then, the following condition is enough to guarantee

that the final state is at distance at most δ from φ(1):

T ≥ 105

δ2
.max

(
||H ′||3

λ4
,
||H ′||.||H ′′||

λ3

)
.
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Chapter 3

Quantum Error Correcting codes

This chapter develops a general framework for studying quantum error-correction, in-

cluding quantum error-corrections and conditions which must be satisfied if quantum

error correction is possible.

Quantum states are encoded by a unitary operation into a quantum error-correcting

code which is a subspace C of a larger Hilbert space. The projector onto the code space

is denoted by P . After the encoding is done the system is subjected to noise which

is followed by a sequence of measurements which are called syndrome measurements.

This is done to know the kind of errors that have occurred and it is called the error

syndrome. Once the error sequence is obtained a recovery operation is done to return

the quantum system to the original state. Different error syndrome takes the state to

different subspace of the Hilbert and the subspace so that the syndrome measurements

wont be able to distinguish between the different errors. Furthermoe, the different

subspaces must be undeformed versions of the original code space, in the sense that the

errors mapping to the different subspaces must take the codewords to orthogonal states,

in order to be able to recover from errors.

The quantum error-correction conditions are a set of conditions which must be sat-

isfied by a error-correcting code to protect against particular type of errors E . These

conditions has been used to construct different types of error correcting codes, and also

to investigate general properties of error correcting codes.

Theorem 3.0.2 (Quantum error-correction conditions [NC]) Let C be a quantum

code, and let P be the projector onto C. Suppose E is a quantum operation with

operational elements Ei. A necessary and sufficient version condition for the existence
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3.1. DISCRETIZATION OF ERRORS

of an error-correction operation R correcting E on C is that

PE†
iEjP = αijP, (3.1)

for some Hermitian matrix α of complex numbers.

3.1 Discretization of errors

The previous Theorem 3.0.2 gives the required conditions for protection against specific

noises (errors). In general, one does not know exactly what noise is acting on a quantum

system. It would be useful if a specific code C and error-correction operation R could

be used to protect against an entire class of noises. The next theorem will give a more

detail account on the conditions that needs to be satisfied to make this possible.

Theorem 3.1.1 [NC] Suppose C is a quantum code and R is the error-correction oper-

ation of the Theorem 3.0.2. to recover from a noise process E with operational elements

Ei. Suppose F is a quantum operation with operational elements Fj which are linear

combinations of Ei i. e, Fj =
∑

imiEi where mi are complex numbers. Then the

error-correction operation R also corrects for effects of the noise process F on the code

C.

3.2 Quantum error-correction without measurement

Normally quantum error-correction is a two stage process: error detection step which

is done by using quantum measurement and recovery step after the detection which is

effected by conditioned unitary operations. It is also possible to perform quantum error-

correction using only unitary operations and ancilla systems prepared in the standard

states. This is important experimentally because it is easier to perform unitary operation

than measurements.

Suppose that syndrome measurement on the principal system which is being error-

corrected by the measurement operators Mi, and the corresponding conditional unitary

operation is Ui. Introduce an ancilla system with basis states |i〉 corresponding to the

possible error syndromes. The ancilla starts in a standard pure state |0〉 before error
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3.3. STABILIZER CODE

correction. An unitary operator U is defined on the principal system plus ancilla by

U |φ〉|0〉 =
∑
i

(UiMi|φ〉)|i〉. (3.2)

This can be extended to a unitary operator acting on the whole space since

〈φ|〈0|U †U |ψ〉|0〉 =
∑
ij

〈φ|M †
iMj|ψ〉δij (3.3)

=
∑
i

〈φ|M †
iMi|ψ〉 (3.4)

= 〈φ|ψ〉. (3.5)

This shows that U preserves inner products, and can be extended to a unitary opera-

tor on the entire state space. The effect of U is to effect the transformation R(σ) =∑
〉 U〉M〉σM†

〉U
†
〉 on the space being error corrected, exactly the same quantum oper-

ation as described in the main text for the performance of quantum error-correction.

Note that in order for this error-correction procedure to work it is necessary to use new

ancilla each time error-correction is performed.

3.3 Stabilizer code

Stabilizer codes [NC] are important class of quantum error correcting codes whose con-

struction is analogous to classical linear codes. Before we introduce stabilizer codes let us

explain the idea of stabilizer formalism. Group theory is an important technique used in

the development stabilizer formalism. The group of principal interest is the Pauli Group

Gn on n qubits. G1 is defined as follows

G1 ≡ ±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ. (3.6)

The group of matrices G1 forms a group under the operation of matrix multiplication.

Therefore Gn is defined as a recursively

Gn = Gn−1 ⊗G1. (3.7)

Now we are in a position to define stabilizer. Suppose S be a Abelian subgroup of

Gn and we define VS as the those set of n-qubit states which are fixed by every element
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3.3. STABILIZER CODE

of S, and S is said to be the stabilizer of the space VS. And in other word VS is said to

be the stabilizer code for the subgroup S.

Property of the Stabilizer formalism.

1. Every linear combination of the elements of VS is also in VS. VS is a vector space.

2. Suppose S is a subgroup of Gn with generators g1, . . . , gn then S is abelian iff gi

and gj commute for each pair of i, j.

3. Let S =
〈
g1, . . . , gn−k

〉
be generated by n−k independent and commuting elements

from Gn, and such that −I /∈ S. Then vS is a 2k-dimensional vector space.

Unitary Gates and the Stabilizer formalism

Suppose we apply a unitary operation U to a vector space VS stabilized by the group

S ⊂ Gn. Let φ be any element of VS. Then for any element of g of S,

U |φ〉 = Ug|φ〉 = UgU †U |φ〉 (3.8)

thus the state U |φ〉 is stabilized by UgU †, so we can deduce that the vector space

USU † ≡ UgU †|g ∈ S. If the generators S were g1, . . . , gk then the generators of the

USU † are Ug1U
†, . . . , UgkU

†. Clifford Group Cn on n-qubits is defined as

Cn = U |UgU † ∈ Gn where g ∈ Gn. (3.9)

Clifford group also plays an important part in fault tolerance of quantum systems.

The Gottesman-Knill Theorem

The results to describe unitary gates and measurements using stabilizer code can the

summarized in the Gottesman-Knill theorem:

Theorem 3.3.1 (Gottesman-Knill Theorem) [NC] Suppose a quantum computa-

tion is performed which involves only the following elements: state preparations in the

computational basis, Hadamard gates, phase gates, controlled-NOT gates, Pauli gates,

and measurements of observables in the Pauli group (which includes measurements in

the computational basis as a special case), together with the possibility of classical con-

trol conditioned on the outcome of such measurements. Such a computation may be

efficiently simulated on a classical computer.

29



Chapter 4

Error Correcting code for AQC and

Error Model Analysis

In this chapter we will discuss the work done on error-correcting codes for Adiabatic

Quantum Computation (AQC) [JFS] and will use the results to show how we can add

energy gap to a given Hamiltonian. We will also explicitly calculate the new eigenvalues

of the encoded Hamiltonian in Section 4.1. We will also present a brief description of

the Ising Hamiltonian and its diagonalisation using Jordan-Wigner transformations in

Section . Error Model, it analytic analysis for the encoded case and numerical analysis

of the error model for the unencoded case using Ising Hamiltonian has been done in

Section 4.3. Before we start with the error model analysis we give a brief introduction

to Stabilizer code for AQC.

4.1 Stabilizer Code for AQC

Adiabatic quantum computing has an inherently fault-tolerant because of the energy gap

provides to some extent resistance to noise caused by stray coupling to the environment.

A system goes to an excited state from the ground state if kbT is less than the energy

gap where T is the temperature of the system. Most of the known adiabatic quantum

algorithm has the energy gap scaling as an inverse polynomial of the problem size. This

energy gap would provide protection if the temperature shrinks in the same way but

that may be hard to achieve experimentally.

To make sure that an adiabatic evolution has at least a constant energy gap against
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4.1. STABILIZER CODE FOR AQC

1-local noises, Jordan et al. [JFS] had come up with an encoding scheme to tackle

this problem using stabilizer codes that protects against 1-local noises. By 1-local noises

means Pauli operators acting on individual qubits. To do this they have used a quantum

error correcting code such that any one local noise will send the code word out of the

codespace. The main goal here is to add energy penalty for the states lying outside the

codespace. So the error correcting code is not actually an error correcting code but an

error detecting code.

The 4-qubit code stabilizer code that protects against 1-local noises is

|0L〉 =
1

2
(|0000〉+ i|0011〉+ i|1100〉+ |1111〉),

|1L〉 =
1

2
(|0101〉+ i|0110〉+ i|1001〉+ |1010〉). (4.1)

(4.2)

This satisfies the error detection requirements

〈0L|σ|0L〉 = 〈1L|σ|1L〉 = 〈0L|σ|1L〉 = 0 (4.3)

where σ is any of the three pauli operators acting on one qubit. The 4-qubit code will

be used to encode each qubit of the original Hamiltonian.

The logical Pauli operators X, Y, Z acting on the code space are,

XL = Y ⊗ I ⊗ Y ⊗ I,

YL = −I ⊗X ⊗X ⊗ I,

ZL = Z ⊗ Z ⊗ I ⊗ I. (4.4)

That is,

XL|0L〉 = |1L〉, XL|1L〉 = |0L〉
YL|0L〉 = i|1L〉, YL|1L〉 = −i|0L〉
ZL|0L〉 = |0L〉, XL|1L〉 = −|1L〉. (4.5)

The generators of the stabilizer group or the code given in (4.1) are

g1 = X ⊗X ⊗X ⊗X

g1 = Z ⊗ Z ⊗ Z ⊗ Z

g1 = X ⊗ Y ⊗ Z ⊗ I (4.6)
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We already know that 2-local Hamiltonian is universal for quantum computation

[DA]. So starting with a 2-local Hamiltonian acting on N qubits we get a new fault

tolerant 4-local Hamiltonian acting on 4N qubits. Since any 2-local Hamiltonian H

is sum of tensor product of pairs of Pauli matrices acting on different qubits. We use

following transformations

X → XL, Y → YL, Z → ZL (4.7)

on the old 2-local Hamiltonian H to obtain the new 4-local Hamiltonian HSL acting on

4N qubits. The total Hamiltonian HS is given by

HS = HSL +HSP (4.8)

where HSP is the sum of energy penalty term acting on each qubit. The energy penalty

for each qubit is at least EP for going out of the codespace.

Adding on eterm of the form

HP = −EP (g1 + g2 + g3) (4.9)

to the encoded qubit will ensure an energy penalty of at least EP for states out of the

codespace.

If the ground space of H is spanne by |ψ(1)rangle . . . |ψ(1)〉 then the ground state of

HSL is spanned by the states |ψ(1)
L rangle . . . |ψ(1)

L 〉. Since HSL and HSP commute thus

they share a set of simultaneous eigenstates.

Theorem 4.1.1 Given an Hamiltonian H with eigenvalues λj then the eigenvalues of

HS are of the form

λj − EP ∗
N∑
i=1

(±1± 1± 1) (4.10)

where EP is the energy penalty for going out of the codespace and N is number of qubits.

Proof. Let the initial Hamiltonian be H acting on N qubnits, then the fault tolerant

Hamiltonian HS is given by

HS = HSL +HSP (4.11)
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where HSL is obtained by replacement of the Pauli matrices of the original Hamiltonian

by

X → XL,

Y → YL,

Z → ZL (4.12)

and

HSP =
N∑
i=1

H
(i)
P

=
N∑
i=1

−EP (S1,i + S2,i + S3,i). (4.13)

In (4.13) gk,l denotes the stabilizer generator acting on the qubit l.

The basis of the encoded space is {|̄i〉 = |λz, s1, s2, s3} where

ZL|̄i〉 = λz |̄i〉,
Sk = sk |̄i〉, for k = 1, 2, 3.

si, λz ∈ {1,−1} (4.14)

Here ZL is the logical Z of the encoded logical qubits. Thus, in particular,

|0L〉 = |+ 1,+1,+1,+1〉, and (4.15)

|1L〉 = | − 1,+1,+1,+1〉 (4.16)

are the logical |0〉 and |1〉 respectively.

Using the stabilizer as introduced in Section 3.3 the encoded basis state for 4N -qubits

is given by

|ī1 . . . |īN〉 = |ī1〉 ⊗ · · · ⊗ |īN〉. (4.17)
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Lets take the special case when |īk〉, |j̄l〉 ∈ {|0̄〉, |1̄〉}, then

〈j̄1 . . . j̄N |HS|ī1 . . . īN〉 = 〈j̄1 . . . j̄N |HSL|ī1 . . . īN〉
−〈j̄1 . . . j̄N |HSP |ī1 . . . īN〉

= 〈j̄1 . . . j̄N |HSL|ī1 . . . īN〉

−〈j̄1 . . . j̄N |
( N∑
k=1

Sik

)
|ī1 . . . īN〉

= eij(H)− 3N ∗ EP 〈j̄1 . . . j̄N |ī1 . . . īN〉
= eij(H)− 3N ∗ EP ∗ δij (4.18)

where i = i1 . . . iN , j = j1 . . . jN , Sk = S1,k + S2,k + S3,k.

Now for the general case, let the new basis be defined under the stabilizer formalism

as |̄i〉 ∈ {|λz, S̄i〉 : S̄i = (S1,i, S2,i, S3,i)} where Si,j = ±1 and Sk = S1,i+S2,i+S3,i. Using

the above notation we have,

〈j̄1 . . . j̄N |HS|ī1 . . . īN〉 = 〈j̄1 . . . j̄N |HSL|ī1 . . . īN〉
−〈j̄1 . . . j̄N |HSP |ī1 . . . īN〉

= 〈j̄1 . . . j̄N |HSL|ī1 . . . īN〉

−〈j̄1 . . . j̄N |(
N∑
k=1

Sik)|ī1 . . . īN〉

= eij(H)−
( N∑
k=1

Sik

)
〈j̄1 . . . j̄N |ī1 . . . īN〉

= eij(H)−
( N∑
k=1

Sik

)
∗ EP ∗ δij. (4.19)

Hence the Hamiltonian HS in the new basis transforms into

HS = H ⊗ I23N − I2N ⊗ E23N , (4.20)

where H, I2N act on the first qubit and I23N , E23N act on the last three bits of each

encoded qubit of the new basis. E23N is a diagonal matrix with E23N (SS) =
∑N

i=1 Sik
where S = Si1 . . . SiN . Hence the diagonal entries of E23N are of the form

∑
i = 1N(±1±

1± 1).
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Let U diagonalizes H then take Ū = U ⊗ I23N . So,

Ū †HSŪ = Ū †H ⊗ I23N Ū − Ū †I23N ⊗ E23N Ū

= U †HU ⊗ I23N − U †I23NU ⊗ E23N

= U †HU ⊗ I23N − I23N ⊗ E23N (4.21)

Therefore Ū diagonalizes HS. Hence the eigen values of HS are of the form

λj − EP ∗
N∑
i=1

(±1± 1± 1), where λ is an eigenvalue of H. (4.22)

We have presented 4-qubit stabilizer code [JFS] which adds constant energy gap

against 1-local noise. Now we present a 5-qubit stabilizer code [JFS] that protect against

2-local errors and also adds a constant energy gap to the Hamiltonian. The 5-qubit code

stabilizer code that protects against 2-local noise is

|0L〉 =
1

4
[|00000〉+ |10010〉+ |01001〉+ |10100〉

+|01010〉 − |11011〉 − |00110〉 − |11000〉
−|11101〉 − |00011〉 − |11110〉 − |01111〉
−|10001〉 − |01100〉 − |10111〉+ |00101〉] (4.23)

|1L〉 =
1

4
[|11111〉+ |01101〉+ |10110〉+ |01011〉

+|10101〉 − |00100〉 − |11001〉 − |00111〉
−|00010〉 − |11100〉 − |00001〉 − |10000〉
−|01110〉 − |10011〉 − |01000〉+ |11010〉]. (4.24)

(4.25)

The encoded Pauli operators are for the code are

XL = −X ⊗ I ⊗ Y ⊗ Y ⊗ I,

YL = −Z ⊗ Z ⊗ I ⊗ Y ⊗ I,

ZL = −Y ⊗ Z ⊗ Y ⊗ I ⊗ . (4.26)
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The generators of the stabilizer group for code are

g1 = X ⊗ Z ⊗ Z ⊗X ⊗ I,

g2 = I ⊗X ⊗ Z ⊗ Z ⊗X,

g3 = X ⊗ I ⊗X ⊗ Z ⊗ Z,

g4 = Z ⊗X ⊗ I ⊗X ⊗ Z. (4.27)

4.2 Ising Hamiltonian

Transverse Ising model is given by the equation

H(t) = −t
n∑
i=1

σix − (1− t)
n∑
i=1

σizσ
i+1
z (4.28)

where σt, t = x, y, z are the Pauli matrices and, σn+1
z = σ1

z . Transverse Ising model can

be considered as a adiabatic quantum algorithm, even though the problem that it solves

is the problem of finding numbers with all the bits same. It will be shown later in the

section that the energy gap between two lowest eigenvalues is non-zero so it is a case of

adiabatic evolution.

4.2.1 Diagonalisation of Ising Hamiltonian

For diagonalisation of the of Ising Hamiltonian we use Jordan-Wigner transformation

[SS] to replace σix and σiz by Fermi oprators (1 − 2c†ici) and −Πj<i(1 − 2c†ici)(ci + c†i ),

where

ci =
(
Πj<iσ

j
z

)(
σix + iσiy

)
/2 and

c†i =
(
Πj<iσ

j
z

)(
σix − iσiy

)
/2. (4.29)

Substituting the values in (4.28) we get the Ising Hamiltonian in the quadratic in the

Fermi operators:

H(t) = −(1− t)
∑
i

(
c†ici+1 + c†i+1ci + c†ic

†
i+1 + cici+1 − 2

t

1− t
c†ici −

t

1− t

)
(4.30)

Using the the momentum eigenstates

ck =
1√
M

∑
j

cje
−ikj , (4.31)

36



4.3. ERROR MODEL AND ANALYSIS

where M is the number of sites, to get

H(t) = (1− t)
∑
k

(
2[

t

1− t
− cos(ka)]c†kck − isin(ka)[c†−kc

†
k + c−kck]−

t

1− t

)
. (4.32)

Next using Bogoliubov transformation [SS] we map to a new set of fermionic operators

(γk). These new operators are defined by a unitary transformation on the pair ck, c
†
k:

γk = ukck − ivkc
†
k, (4.33)

where uk = cos(θk/2) and uk = sin(θk/2) and

tanθk =
sin(ka)

cos(ka)− t
1−t

. (4.34)

The final form of the diagonalized Hamiltonian is

εk = 2(1− t)
(
1 +

t2

(1− t)2
− 2

t

1− t
cosk

)1/2

. (4.35)

4.2.2 Numerical Stimulation of Ising model

Figure 4.2.1: Plot of Energy gap between two lowest eigenvalues for N = 2.

4.3 Error Model and Analysis

We describe here a model of decoherence from [JFS, CFP02] and show that how 4-qubit

stabilizer code [JFS] protects against 1-local errors. The evolution equation is of Lindbald
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Figure 4.2.2: Plot of Eigenvalues of Ising Hamiltonian for N = 3.
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Figure 4.2.3: Plot of Energy gap between two lowest eigenvalues for N = 3.
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Figure 4.2.4: Plot of Eigenvalues of Ising Hamiltonian for N = 3.

form and stems from coupling of each qubit in the adiabatic quantum computer to an

Harmonic oscillator. Let ρ be the density natrix of the N -qubit quantum state and HS

be the Hamiltonian acting on the system, then

dρ

dt
= −i[HS, ρ]−

∑
a,b

MabEab(ρ) (4.36)

where

Mab =
∑
i

[
Nba|gba|2〈a|σ(i)

− |b〉〈b|σ
(i)
+ |a〉

+(Nab + 1)|gab|2〈b|σ(i)
− |a〉〈a|σ

(i)
+ |b〉

]
is a scalar,

Eab(ρ) = |a〉〈a|ρ+ ρ|a〉〈a| − 2|b〉〈a|ρ|a〉〈b| (4.37)

is an operator, |a〉 is the instantaneous eigenstate of HS with energy ωa,

Nba =
1

exp [β(ωb − ωa)]− 1
(4.38)

is the Bose-Einstein distribution at temperature 1/β, and

gba =

{
λg(ωb − ωa), ωb > ωa,

0, ωb ≤ ωa.
(4.39)
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4.3.1 Analysis for the Encoded case

Suppose that we encode the original N -qubit Hamiltonian as a 4N -qubit Hamiltonian as

described above. As stated in equation ??, the total spin Hamiltonian HS on 4N spins

consists of the encoded version HSL of the original Hamiltonian HS plus the penalty

terms HSP .

Most adiabatic quantum computations use an initial Hamiltonian with an eigenvalue

gap of order unity, independent of problem size. In such cases, a nearly pure initial state

can be achieved at constant temperature. Therefore, we’ll make the approximation that

the spins start in the pure ground state of the initial Hamiltonian, which we’ll denote

|0〉. Then we can use equation 4.36 to examine ρ/t at t = 0. Since the initial state is

ρ = |0〉 〈0|, Eab(ρ) is zero unless |a〉 = |0〉. The master equation at t = 0 is therefore

dρ

dt

∣∣∣
t=0

= −i[HS, ρ]−
∑
b

M0bE0b(ρ). (4.40)

HSP is given by a sum of terms of the form ??, and it commutes with HSL. Thus,

HS and HSP share a complete set of simultaneous eigenstates. The eigenstates of HS

can thus be separated into those which are in the codespace C (i. e, the ground space

of HSP ) and those which are in the orthogonal space C⊥. The ground state |0〉 is in the

codespace. M0b will be zero unless |b〉 ∈ C⊥, because σ± = (X ± iY )/2, and any Pauli

operator applied to a single bit takes us from C to C⊥. Equation 4.40 therefore becomes

dρ

dt

∣∣∣
t=0

= −i[HS, ρ] +
∑
b∈C⊥

M0bE0b(ρ) (4.41)

Since |0〉 is the ground state, ωb ≥ ω0, thus equation 4.53 shows that the terms in

M0b proportional to |g0b|2 will vanish, leaving only

M0b =
∑
i

Nb0|gb0|2〈0|σ(i)
− |b〉〈b|σ

(i)
+ |0〉. (4.42)

Now let’s examine Nb0.

ωb − ω0 = 〈b|(HSL +HSP )|b〉 − 〈0|(HSL +HSP )|0〉. (4.43)

|0〉 is in the ground space of HSL, thus

〈b|HSL|b〉 − 〈0|HSL|0〉 ≥ 0, (4.44)
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and so

ωb − ω0 ≥ 〈b|HSP |b〉 − 〈0|HSP |0〉. (4.45)

Since |b〉 ∈ C⊥ and |0〉 ∈ C,

〈b|HSP |b〉 − 〈0|HSP |0〉 = Ep, (4.46)

thus ωb − ω0 ≥ Ep.

A sufficiently large βEp will make Nba small enough that the term
∑

b∈C⊥M0bE(ρ)

can be neglected from the master equation, leaving

dρ

dt

∣∣∣
t=0

≈ −i[HS, ρ] (4.47)

which is just Schrödinger’s equation with a Hamiltonian equal toHS and no decoherence.

4.3.2 Numerical Error Analysis for Unencoded Case

In this section we will numerically simulate the passage of Ising Hamiltonian for the case

N = 2 in presence of harmonic oscillator bath.

We here again state the master equation for evolution, where ρ is the density matrix

of the quantum system
dρ

dt
= −i[HS, ρ]−

∑
a,b

MabEab(ρ) (4.48)

where

Mab =
∑
i

[
Nba|gba|2〈a|σ(i)

− |b〉〈b|σ
(i)
+ |a〉 (4.49)

+(Nab + 1)|gab|2〈b|σ(i)
− |a〉〈a|σ

(i)
+ |b〉

]
(4.50)

is a scalar,

Eab(ρ) = |a〉〈a|ρ+ ρ|a〉〈a| − 2|b〉〈a|ρ|a〉〈b| (4.51)

is an operator, |a〉 is the instantaneous eigenstate of HS with energy ωa,

Nba =
1

exp [β(ωb − ωa)]− 1
(4.52)

is the Bose-Einstein distribution at temperature 1/β, and

gba =

{
λg(ωb − ωa), ωb > ωa,

0, ωb ≤ ωa.
(4.53)
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HS for our case is the Ising Hamiltonian for 2-qubits

HI(t) = −(1− t)(X1 +X2)− tZ1Z2. (4.54)

We take λ = .0001 and β = 1 for our numerical simulation. We will do the simulation

for the initial state i. e, t = 0 and for point of smallest gap i. e, t = 0.6.

Evolution equation at t = 0.6

Eigenvalues of HI(0.6) are −1,−0.6, 0.6, 1 and the respective eigen vectors are

|v1〉 = −0.6325|00〉 − 0.3162|01〉 − 0.3162|10〉 − 0.6325|11〉
|v2〉 = −0.7071|00〉 − 0.7071|11〉
|v3〉 = −0.7071|01〉 − 0.7071|10〉
|v4〉 = 0.3162|00〉 − 0.6325|01〉 − 0.6325|10〉+ 0.3162|11〉 (4.55)

Using (4.49) we get

Mv1v2 = 2.032× 10−7

Mv1v3 = 1.4354× 10−7

Mv1v4 = 1.0847× 10−7

Mv2v1 = −2.032× 10−7

Mv2v3 = 1.8932× 10−7

Mv2v4 = 1.7839× 10−7

Mv3v3 = −1.4354× 10−7

Mv3v2 = −1.8932× 10−7

Mv3v4 = 2.0537× 10−7

Mv4v1 = −1.0847× 10−7

Mv4v2 = −1.7839× 10−7

Mv4v3 = 2.0537× 10−7 (4.56)

This set of equation shows that as λ is decreased in value we get closer and closer to

the Schrödinger equation.
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Chapter 5

Fault-Tolerant Quantum Cellular

Automaton.

We are trying to implement fault tolerant quantum cellular automaton on the 2-dimensional

surface codes [Kitaev03]. The qubits on the lattice edges will be the physical bits and

the logical bits will be encoded in some way inside the surface code. The translation

invariant operation will be on the physical layer to get the desired gates in the logical

qubits. The operation that we are considering will be translation invariant in space only

and not time.

5.1 Surface Code

We will first review some basic definitions of surface codes. In case of surface codes

[Kitaev03] the physical qubits stay on the edges of the 2-dimensional lattice. To cause

logical error on the encoded qubits (encoding of the logical qubits will be described

later) the physical error should stretch a constant portion of the lattice. The topological

structure will provides us with some sort fault-tolerance that will also be explained later.

The stabilizer elements of the code are associated with the faces f and the vertices

or sites v of the lattice,

SX(v) =
⊗

e| v∈{∂e}

Xe, SZ(f) =
⊗
e∈{∂f}

Ze. (5.1)
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Here, ∂ is the boundary operator of the cell complex. The number of logical qubits that

can be stored in a surface codes depends on the boundary conditions, if the surface is

a torus i. e, it has got a periodic boundary conditions (‘toric code’) then it can store

two qubits, on the other hand if the surface has got ‘rough edges’ [KB], then they can

store one logical qubits. For our case at least for now we do not enforce any boundary

conditions, we will assume that the lattice lies in R2.

Now we will define two types of defects on the surface code each encoding two different

types of qubits called electric and magnetic qubits. A electric and magnetic qubits are

formed from the a pair of electric and magnetic holes. A magnetic hole is a plaquette

f where the stabilizer SZ(f) = SZ(f) =
⊗

e∈{∂f} Ze = Z(∂f) associated with it is

not enforced on the code space, while the electric hole is a site s where the associated

stabilizer SX(s) =
⊗

e| s∈{∂e}Xe = X(∂s) is not enforced on the code space. Here s

denotes the dual transformation on the dual lattice obtained by taking the sites as the

faces of the original lattice. For a pair of magnetic holes f, f ′ the encoded σx operator

is X
m

= X(c1), with ∂c1 = {f, f ′}, and the encoded phase flip operator is Z
m

= Z(c1),

with c1 ∼= ∂f or c1 = ∂f ′ and

Z(∂f + ∂f ′) ∈ S. (5.2)

Similarly for pair of electric holes s, s′ we have X
e
= X(c1

′), with c1
′ ∼= ∂s, Z

e
= Z(c1),

with ∂c1 = {s, s′}, and

X(∂s+ ∂s′) ∈ S. (5.3)

Now with the encoding of the logical qubits fixed we can check if we can have the

universal set of gates for quantum computation.

5.2 Universal set of gates

From the previous section we have already seen that have got encoded X,Z for both

magnetic and electric qubits. The operation ‘Move’ defined in Appendix 5.4, will be used

to move magnetic hole on the surface code. If one of the magnetic holes of a magnetic

qubit is moved around a electric hole of an electric qubit, then we get a CNOT gate

with the magnetic qubit as the control and electric qubit as the target [Kitaev03]. The

problem with this gate is that these gates are abelian.

Figure 5.2.1 shows alternative circuit for the CNOT gates, where the control and

target are both electric qubits and ancilla(3) is magnetic and ancilla(1) is electric. So
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Figure 5.2.1: Equivalent circuit of CNOT as given in [RJK] page6.

now we can do CNOT with qubit of the same kind, and we obtain a non-abelian set of

unitary gates.

The universal set of gates can be completed by adding exp(iπ
8
Z), exp(iπ

4
Z), exp(iπ

8
X).

Fault tolerant realization of these gates require ancilla sates |Y 〉 = (|0〉 + i|1〉)/
√

2 and

|A〉 = (|0〉+ ei
π
4 |1〉)/

√
2. These states are first created in a errornious fashion then dis-

tilled using variant of magic state distillation details of which are given in [KB05, RJK]

and Appendix 5.5. The distilled ancillas will be used in implementation of the gates

exp(iπ
8
Z), exp(iπ

4
Z), exp(iπ

8
X) [KB05].

5.3 Translation Invariant Gates and Measurements

After completing the universal set of gates for quantum computation the next problem is

the arrangements of qubits on the surface code, implementation of the gates in a trans-

lation invariant manner and measurement of the error syndrome. The arrangements of

the qubits on the surface and implementation of the gates in a translation invariant way

are related problem. On the other hand syndrome measurement can be done irrespective

of the way the above things are implemented.

5.3.1 Syndrome Measurements and correction

Measuring the plaquette operators: For measuring the plaquette operator we have

a set of ancillas, there is one ancilla corresponding to each plaquette of the surface code.
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Each ancilla a corresponding to the plaquette p are prepared in the state |+〉, then we

do the following operation

⊗
i∈∂p

Λ(Z)a,i. (5.4)

After that we do X measurement on the ancilla. If we get +1 then it is not an error

syndrome if −1 then it is an error syndrome.

Measuring the site operators: For measuring the site operator we have a set of

ancillas, there is one ancilla corresponding to each site of the surface code. Each ancilla

b corresponding to the site s are prepared in the state |+〉, then we do the following

operation

⊗
j∈∂p

Λ(X)b,j. (5.5)

After that we do X measurement on the ancilla. If we get +1 then it is not an error

syndrome if −1 then it is an error syndrome.So we can see that syndrome measurements

can be done in translation invariant way.

Error syndromes are processed classically using minimum weight chain matching

algorithm [JED] for error correction.

5.3.2 Model 1: Simulation of one-dimensional cellular automa-

ton on surface code

In this model we will try to simulate a one dimensional quantum cellular automaton on

the surface code with specific properties. By specific properties we mean that number

of plaquette in one column depends on the number of qubits in the input and the axis

perpendicular to it will be fixed for time. In this construction the toric codes will have

magic states |H〉 = (|0〉+eiπ/4|1〉)
2√2

and |S〉 = (|0〉)+i|1〉
2√2

placed periodically. The dual lattice

of the code surface is shown in the Figure 5.3.2 where the logical qubit is encoded by

pair of blue plaquettes, ancilla |H〉 is encoded by a pair of green plaquettes and |S〉 is

encoded by pair of grey plaquette in the Figure 5.3.2.) are used for the implementation

of the gates exp (iπ
8
Z), exp (iπ

4
Z) and exp (iπ

8
X). Together with X, Z and CNOT this

completes the universal set of gates for quantum computation. These operation will be

called basic operations. The period of A in the vertical axis and B in the horizontal axis
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Figure 5.3.2:
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in the Figire 5.3.2. is chosen in such a way that the basic operation can be done on

the qubits in a translation invariant way in the horizontal axis and the modified qubits

will be placed in the next column location, as shown in the Figure 5.3.2. the qubits

are initially in the ColumnA location and after the operation they will be shifted to

location ColumnB. Operations will be translation invariant on each column of the dual

lattice and the logical qubits will be encoded in the form of electric qubits. Since this

is a cellular automaton, the operations will be translation invariance with a particular

period and the period will not depend of the size of the input.

The lattice diagram that is shown in the figure 5.3.2 is the dual lattice. Each pair of

consecutive blue plaquette corresponds to a qubit each of which will be initially prepared

in |0〉 state, consecutive green and grey pair of plaquette corresponds to the state |H〉
and |S〉 which are arranged periodically on code surface.

Figure 5.3.3: Equivalent circuit for Λ(Z)1,2. Here C = exp(−iπ
2
Z), B = exp(iπ

4
Z),

A = exp(iπ
4
Z) and D = exp(−iπ

4
) exp(−iπ

4
Z).

In this construction we will try to simulate the one-dimensional quantum cellular

automaton described in [RR]. So the qubits encoded by the blue plaquette pairs cor-

responds to qubits present in the one-dimensional chain of [RR]. The operations that

is done on the chain will be done to these qubits using the universal set of gates con-

structed earlier. The states |A〉 and |Y 〉 are required to implement the gates exp (iπ
8
Z),

exp (iπ
4
Z),exp (iπ

8
X).

The one-dimensional chain with N qubits in [RR] are initialized in the state |00 . . . 0〉
and are repeatedly operated with the transition function

T =

(
N−1⊗
i=1

Λ(Z)i,i+1

)(
N⊗
i=1

Hi

)
. (5.6)
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In between the transitions one may apply translation invariant operations of the form

UA(α) =
N⊗
i=1

exp
(
i
α

2
Ai

)
, (5.7)

with A ∈ {X,Y, Z}. Each of the individual gates can be implemented with the universal

set of gates that we have described earlier. For example Λ(Z)1,2 that is used in the

transition function T can be implemented using an alternative circuit given in Figure

5.3.3.

5.3.3 Fault Tolerance with Toric Code

Figure 5.3.4: 2-dimensional quantum cellular automaton using surface codes.In this

figure all the four edges AB, BC, CD, DA of surface code are rough edges.

Equivalent circuit for Λ(Z)1,2. Here C = exp(−iπ
2
Z), B = exp(iπ

4
Z), A = exp(iπ

4
Z)

and D = exp(−iπ
4
) exp(−iπ

4
Z).

Using the transition function defined in [RR] we will now build a cellular automaton

on toric code. The code surface is divided in three types of cells, namely the logical cell,

distillation1 cell , distillation2 cell , connecting cell and computation cell. The distillation

cell 1 and 2 are used for the distillation of the states |H〉 and |S〉. In each distillation
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5.3. TRANSLATION INVARIANT GATES AND MEASUREMENTS

cell two copies of |H〉 and |S〉 are distilled. The magic states formed in distillation1 cell

are used for the computations and the ones produced in distillation1 cell will be used up

for concatenation in the distillation1 cell. Connecting cells is a part of the surface code

of same size size as the other cell with no surface defects, it is used for moving the magic

states during distillation or for implementation of unitary gates on the logical bits. The

logical cell is where the the logical qubits are placed, each cell contains one logical bit.

The details of how the cells are arranged are shown in the Figure 5.3.4 and Figure 5.3.5.

Figure 5.3.5: Diagram of the computational cell which is made up of two distillation2

cell (green), one distillation1 cell (pink), four connecting cells (white) and two unit cells

(blue).

As in subsection ?? logical bits are encoded using a pair of electric defects. From

the Figure 5.3.4 we can see that the computational cells are arranged in the diagonally

on the surface code. The computational cell is big enough so that unitary gates can be

applied to the logical qubits placed in the unit subcells using the magic states distilled

from the distillation1 subcell of the computational cell. The reset operation is used to

reset the structure of the unit as well as the distillation cells after an operations. The

transition function and the transition invariant operations that is used is same as the

ones that is used in [RR]. Those operation are implemented using CNOT, prepara-

tion/measurement X- and Z- eigen basis, exp (iπ
8
Z), exp (iπ

4
Z), exp (iπ

4
X). The later

three can be implemented using the states |H〉 and |S〉.
Regarding the magic state distillation procedure: We here use procedures develop in

[RJK] for the distillation of |H〉, |S〉 states. In each computational cell (Figure 5.3.5.)

we see that there are two subcells of distillation2 type and one of distillation1 type. The

scheme for concatenation of the distilled state for the next level of distillation is shown

in Figure ??. But the final distilled states are stored in distillation1 subcells which are

used for the implementation of the unitary gates. After distillation is done the reset
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operation is used to reset the cells other than the unit cells.

The appendix explains the Move operation and details of the implementation of

magic state distillation.

5.4 Appendix A: Move operation

The Figure 5.4.6. shows the circuit to move the plaquette P1 to P3, where the two

magnetic holes P1 and P2 encode a magnetic qubit. Here Z(P3) belongs to the stabilizer

set of the surface code.

Figure 5.4.6: The circuit for moving magnetic holes on the code surface. The circuit

will move the magnetic hole P1 to P3.

5.5 Appendix B: Universal computation by magic

states

The theory of universal computation based on magic state distillation [KB05] assumes

the fact that clifford gates , preparation of the state |0〉 and measuring eigenvalue of

a Pauli operator on all the qubits can be implemented exactly. It can be shown that

Clifford gates are sufficient for universal quantum computation if magic states (defined

later) are also available. Lets consider a state

|Aθ〉 = 2−1/2(|0〉+ eiθ|1〉) (5.8)

and suppose that θ is not a multiple of π/2. We now describe a procedure that imple-

ments the phase shift gate Λ(eiθ) by using Clifford gates and several copies of |Aθ〉.
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Figure 5.4.7: The circuit for moving electric holes on the dual code surface. The circuit

will move the electric hole S1 to S3.
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Let |φ〉 = a|0〉 + b|1〉 be a state which must be acted upon by Λ(eiθ). Prepare the

state |φ0〉 = |φ〉⊗ |Aθ〉 and measure the stabilizer S1 = Z⊗Z. Note that both outcomes

of this measurement come with probability 1/2. If the outcomes is ’+1’, we are left with

the state

|φ+
1 〉 = (a|00〉+ beiθ|11〉).

In the case of ’−1’ outcomes, the resulting state is

|φ−1 〉 = (a|01〉+ beiθ|10〉).

Let us apply CNOT gate ( Λ(X) ) by making the first qubit as the control and the

second as the target. The result is

|φ+
2 〉 = Λ(X)1,2|φ+

1 〉 = (a|0〉+ bee
iθ |1〉)⊗ |0〉,

|φ−2 〉 = Λ(X)1,2|φ+
1 〉 = (aeiθ|0〉+ b|1〉)⊗ |0〉.

Figure 5.5.8: (a) Circuit for realization of exp (iπ
8
Z), exp (iπ

4
Z) gates using the sates

|H〉, |S〉. (b) Circuit for the realization of exp (iπ
4
X) using |S〉.

The second qubit can be discarded to get the state a|0〉 + be±iθ|1〉, depending on

the measuring outcome. Applying the procedure repeatedly the we will get the unitary

operations Λ(eip1θ),Λ(eip2θ, . . . for integers p1, p2, . . . which obey the random walk sta-

tistics. It is known that such random walks visits each integers with probability 1 and

hence will visit 1. And the desired operator will be realized.
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So now if we have a

|H〉 =
(|0〉+ eiπ/4|1〉√

2
= |A−π/4〉

then one can realized the operator Λ(e−iπ/4).

The above idea of universal computation is used in [RJK] to get the gates exp (iπ
8
Z),

exp (iπ
4
Z), exp (iπ

4
X) using the states |H〉 and |S〉.
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