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ABSTRACT 

 

In a wireless sensor network (WSN), reducing power consumption is of utmost importance. 

Battery operated sensor nodes need low-power components designed to prolong their lifetime 

in the field. This gives rise to a need for WSN specific hardware which is designed to prolong the 

life-time of the sensor nodes. 

We explore this aspect of hardware design by focusing on a node’s micro-controller / 

processor. In an attempt to develop a WSN specific micro-controller, we survey various 

commonly used micro-controllers and the characteristics of the typical WSN applications. 

We conclude with a design proposal and power simulations to compare our design with the 

commercial micro-controllers being used in sensor nodes today. 
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Chapter B  

INTRODUCTION 
 

A sensor network is a term referring, in general, to a collection of networked embedded 

systems. Each of the systems constituting the network is called a sensor node or just a node [1].  

 

 

 

 

 

 

 

 

Fig. A SENSOR NETWORK 

 

Each sensor node has the following basic functions:  

• Data Sampling  

o Gather data from the environment. 

• Data Processing  

o Process the data using the node’s processing capabilities. 

• Data Communication  

o Relay data to other nodes through the network. 

Although computer-based instrumentation has existed for a long time, the density of 

instrumentation made possible by a shift to mass-produced intelligent sensors and the use of 

pervasive networking technology gives sensor networks a new kind of scope that can be applied 

to a wide range of uses. These can be roughly differentiated into:  

• Monitoring space  

o Environmental monitoring.  
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STATION 
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o Precision Agriculture.  

o Alarm and Security Systems.  

o Climate control and surveillance.  

• Monitoring objects  

o Structural monitoring.  

o Motion detection.  

o Healthcare.  

o Automated Manufacturing.  

• Monitoring the interactions of objects with each other  

o Wildlife monitoring.  

o Homeland security.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. BASIC ARCHITECTURE OF A SENSOR NODE [1] 

Sensor nodes can use many communication media to relay information through the network, 

but there is an increasing trend towards the medium being wireless because for large networks, 

laying cables is a daunting task [2]. Thus, wireless sensors networks (WSNs) are becoming 

increasingly popular over wired sensor networks.  
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Fig. POWER CONSUMING COMPONENTS OF A SENSOR NODE [2] 

In this project we actually look at the processor part of a sensor node. Our basic objective is to 

propose an architecture that is better suited to sensor network applications than commonly 

available off-the-shelf micro-controllers [3] that are currently in use. 
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Chapter C 

MOTIVATION 

 

In their survey of processor choices for sensor networks [3], Lynch and O’ Reilly show us a 

handful of commercial processors that can be used today for sensor network applications. The 

paper shows a wide disparity in the features and instruction sets of these processors. It 

concludes by saying that the MSP430 is the best suited of the current commercial processors. 

The paper clearly shows the paucity of processors specifically targeted towards the sensor 

network domain, rather all the processors in use by sensor network deployment are general 

RISC processors that target a large variety of embedded systems. This in-turn causes their 

designs to be laced with too many generalities as can be seen from the wide variety and 

disparity of different processor’s features explored in [2] and [3]. These generalities in-effect 

make the design inefficient for specific sensor network applications. Generally, these 

processors have hardware which is not required by the sensor node at all and just wastes 

power. 

We instead try to take a different approach to processor design and attempt to come up with a 

micro-controller tailored to the common application needs of the sensor network domain, 

while stripping off useless features to increase efficiency. 

 There have been other forays into this area like the SNAP/LE [4]. The only problem with these 

designs is that they are asynchronous and remain theoretical with no hardware simulation or 

actual fabrication data is available to support their claims. These designs are promising but still 

in the future. 

We instead will follow a conventional synchronous design, not with the view of proposing a 

new design idea or paradigm but with the view of making conventional designs more tailored to 

sensor network applications. This approach will also give us the opportunity to fabricate and 

conduct hardware simulation of our micro-controller unit (MCU). 
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Fig. ADVANTAGE OF APPLICATION SPECIFIC MCUs 

To recapitulate, our motivations for this processor design are: 

• Application specific hardware leads to reduced power due to discard of excess features. 

• Sensor network applications have been studied in detail and their characteristics are 

available. 

• Dearth of sensor network specific processors – most sensor nodes use off-the-shelf 

components like the ATMega128L [6]. 

• The remaining designs are theoretical and fabrication is way in the future due to use of 

unconventional design techniques. This causes a lack of actual fabrication or hardware 

simulation of the design. 

 

 

 

 

 

 

 

 



11 

 

Chapter D 

DESIGN BACKGROUND 

 

This section explores the various requirements and issues of general sensor node processors/ 

controllers. Studies of the basic features required by common sensor network applications are 

explored to give us a background for our design. 

Sensor network processors introduce an unprecedented level of compact and portable 

computing. These small processing systems reside in the environment which they monitor, 

combining sensing, computation, storage, communication, and power supplies into small form 

factors. Sensor processors have a wide variety of applications in medical monitoring, 

environmental sensing, industrial inspection, and military surveillance. Despite efforts to design 

suitable processors for these systems [4], there is no well-defined method to evaluate their 

performance and energy consumption. The historically used MIPS (millions of instructions per 

second) and EPI (energy per instruction) metrics cannot provide an accurate comparison 

because of their dependence on the nature of instructions, which differ across instruction set 

architectures. 

To properly evaluate architectures and get an idea of the kind of benchmark algorithms we 

must gear our design towards, we use the ideas on WiSeNBench [8] and SenseBench [9]. These 

benchmarks help us come with a basic level of requirements to help in design of our processor. 

This, along with a survey of commonly used features of current sensor network micro-

controllers, like the MSP430 [7] and ATMega128 [6], in sensor network applications forms the 

basis for our design features. 

We use conventional low-power micro-controller design techniques suited to the features 

which best fit the sensor network applications. This will help us come up with efficient, easily 

usable micro-controller that can be manufactured using the current fabrication technology. 
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D.1. DESIGN NEEDS 

The main findings from the test-benches, benchmarks and literature are summarized as follows: 

• Power is the key objective in sensor network processors i.e. low-power modes are 

useful. 

• RISC-based processors work best as complicated instructions like multiplication and DSP 

abilities are rarely required by sensor nodes applications which are meant to be 

lightweight [8]. 

• Sensor nodes are typically interrupt-driven systems and so need a good interrupt 

structure. 

D.2. TYPICAL MICRO-CONTROLLERS 

This section explores some of the most commonly used micro-controllers in sensor networks. 

Their relevant features are mentioned in the following sub-sections. 

D.2.1. PIC Series 

The PIC series of micro-controllers [5] is manufactured by Microchip. They are widely used in 

embedded systems today. The features of the micro-controller are as follows. 

• Context Switching Features: 

o The PIC has no special features that help context switching but instead uses the 

common approach of saving the context i.e. registers, flags etc. each time the 

context is switched. 

• Interrupt Structure: 

o Interrupt structure is simple but powerful. 

o Priority levels can be set for the interrupts (HIGH or LOW). 

o The robust interrupt structure is suited to real-time interrupt driven applications.  
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• ISA: 

o PIC instructions vary in number from about 35 instructions for the low-end PICs 

to about 70 instructions for the high-end PICs.  

o PIC instruction size varies from 12 bits in the PIC12 series to 30 bits in the PIC30 

series. All operands are 8 bit and so the PIC is called an 8-bit micro-controller. 

o Most instructions are single cycle execution (4 clock cycles), with single delay 

cycles upon branches and skips. 

o ISA is RISC-like but not exactly RISC as not all instructions are of fixed length and 

load-store architecture isn’t followed. 

• Memory Architecture: 

o The PIC micro-controllers follow the Harvard architecture i.e. separate code and 

data space. 

o PICs have a set of register files that function as general purpose RAM, special 

purpose control registers for on-chip hardware resources are also mapped into 

the data space.  

o The data memory is divided into banks. The current bank is accessed in one 

instruction; otherwise the bank must be switched. 

o The addressability of memory varies depending on device series, and all PIC 

devices have some banking mechanism to extend the addressing to additional 

memory. Later series of devices feature move instructions which can cover the 

whole addressable space, independent of the selected bank.  

• I/O Features: 

o The PIC series of devices have I/O ports which can be used for transceiver and 

transducer/ADC interfacing. 
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o Some of the PIC devices even have on-chip ADCs that can be used to directly 

sample analog data from the transducers. 

o The PIC series also have a UART though these aren’t required in the basic sensor 

node architecture, they can be used to interface to a PC’s serial port on the 

nodes which behave as wired “base stations”. 

o The PIC18 also has hardware which can carry out I2C or SPI. 

• Applicability of Low-power Techniques: 

o The PIC micro-controllers can operate over a wide frequency and voltage range 

which makes frequency scaling possible. 

o The PIC12 and PIC16 series don’t explicitly support frequency scaling but 

external hardware can be used for this purpose. 

o The PIC18 series and above explicitly allows for frequency scaling by providing an 

internal RC oscillator that can be used as the clock. The RC oscillator’s frequency 

can be scaled.  

o The PIC18 series also allows switching between external clock and the internal 

oscillator. Clock switching takes time and results in a delay of two old clock cycles 

and three new clock cycles. 

• Low-power sleep modes: 

o The sleep modes in the PIC series are extremely simplistic compared to some of 

the other processors (like TI’s MSP430). As a matter of fact, the lower end PICs 

don’t even provide sleep modes. 

o The PIC16 series has only one sleep mode wherein the processor core and all 

other peripherals except the asynchronous timer is shut-off. 

o The PIC18 series has two sleep modes, one in which only the core is shut-off and 

all clocks to peripherals keep running and the other in which all peripherals and 

the core is shut-off. 
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• Pipelining: 

o PIC instructions generally take one machine/instruction cycle to execute i.e. 4 

clock cycles.  

o The execution of an instruction takes place in two phases: 1) Fetch and 2) 

Execute. This allows the PIC architecture to be pipelined. 

o The pipeline is a two stage pipeline. 

• Shortcomings: 

o PIC microcontrollers have a very small set of instructions, leading some to 

consider them RISC devices. However, the PIC architecture does not reflect many 

of the advantages of RISC design. For example: 

§ PIC does not have a load-store architecture, as memory is directly 

referenced in arithmetic and logic operations  

§ it has a single working register, while RISC designs typically include 16 or 

more general purpose registers  

§ its addressing modes are not orthogonal, since some instructions can 

address RAM or immediate data, while others can only use the working 

register  

§ bank switching is required to access the entire RAM of many PIC devices, 

making the development of libraries of position-independent code 

complex and inefficient  

§ a stack cannot be implemented efficiently, so it is difficult to generate 

reentrant code  

 

D.2.2. AVR Series 

The AVR series of micro-controllers [6] follows a Harvard architecture single with an 8-bit RISC 

core running single cycle instructions. Particularly, the ATMEGA128L is a widely used 
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microcontroller in sensor nodes and is featured by several motes, including Berkeley Motes and 

Mica2/MicaZ [11].  

• Broad Device Classification: 

o tinyAVRs (e.g. all the ATTiny series) 

§ 1-8 KB program memory 

§ 8-20 pin package 

§ Limited peripheral set 

o megaAVRs (e.g. all the ATmega series, including ATmega128L) 

§ 4-256 KB program memory 

§ 28-100 pin package 

§ Extended instruction set (instructions for multiply and handling larger 

program memory) 

§ Extensive peripheral set 

o Application Specific AVRs 

§ AVRs with special features like LCD/USB controller, etc. 

• Interrupt Structure: 

o Powerful interrupt structure. 

o The interrupt execution response for all the enabled AVR interrupts is four clock 

cycles minimum. After four clock cycles, the program vector address for the 

actual interrupt handling routine -is executed. 

• ISA: 

o The AVR ISA is more compact than most other 8-bit microcontrollers. The 

ATmega128 offers 133 powerful instructions 

o Each instruction takes one or two 16-bit words 

o Arithmetic operations work on registers R0-R31, but not directly on the RAM and 

take one clock cycle, excepting multiplication and word-wide addition which take 

two cycles 
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o RAM and I/O space can be accessed only by copying to or from registers. Indirect 

access (including optional post-increment, pre-decrement or constant 

displacement) is possible through registers X, Y, and Z (pointer registers).  

o All accesses to RAM takes two clock cycles. Moving between registers and I/O is 

one cycle. Moving eight-bit or sixteen-between registers or constant to register 

is also one cycle. Reading program memory (LPM) takes three cycles. 

o A few AVR microcontrollers lack certain non-basic instructions like multiplication, 

extended loads/jumps/calls, long jumps and power control.  

• Memory Architecture: 

o The AVR is Harvard architecture based with programs and data stored separately 

for performance and parallelism. 

o Flash, EEPROM and SRAM are all integrated on single chip, removing need for 

external memory 

o The non-volatile Self-Programmable instruction flash memory (up to 256K) is 

used predominantly for storing program. 

o The data address space consists of the register file, I/O registers and the SRAM 

(up to 8K). The AVRs have 32 single-byte registers 

o The AVR has memory-mapped I/O registers. The working registers occupy the 

first 32 memory addresses (000016 – 001F16) followed by 64 I/O registers (002016 

– 005F16). Actual SRAM for data storage starts after the register section. 

• I/O Features: 

o Bi-directional General Purpose I/O ports. 

o The AVRs have a built-in ADC and Analog Comparators 

o On chip debugging (OCD) support through JTAG or debugWIRE on most devices. 

JTAG signals are multiplexed on GPIOs 

o Serial Peripheral Interface and a Two-Wire Serial Interface for flexible 

communication 

o Analog Comparators  

o 10-Bit A/D Converters, with multiplex of up to 16 channels 
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• Applicability of Low Power Techniques: 

o Low-voltage Devices Operating Down to 1.8V i.e. variable operating voltage. 

o Software Selectable Clock Frequency i.e. frequency scaling possible. 

• Low Power Sleep Modes 

o Six Power-Saving Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-

down, Standby, and Extended Standby. User can tailor power consumption to 

application’s requirement 

• Pipelining: 

o Each instruction takes one or two cycles and consists of the Fetch and the 

Execute cycles. 

o Amtel’s AVRs have a single level pipeline design, i.e. next instruction is fetched as 

current one is executing 

• A Comparison between AVR and PIC 

o AVRs have non-banked access to data memory, whereas PICs require setting 

bank registers to access beyond 256 bytes of memory. Also, some AVRs support 

hooking up external SRAM in a way that allows the MCU to use it natively (rather 

than going through a series of port accesses). 

o AVRs have 32 general purpose registers, the PIC only has one. 

o In AVRs that have SRAM (most of them), the stack is contained within SRAM 

instead of being limited to a built-in hardware stack. Conversely, with PIC, this is 

one less thing to worry about. 

o The ATmega and PIC18F have hardware multipliers, ATTiny and PIC16F do not. 

o The AVRs support a more generalized interrupt system, as opposed to the PIC 

high/low priority interrupt vectors. 

o Although PIC's clock speeds appear higher, the clock speed is divided by four to 

give the actual instruction rate. 
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D.2.3. MSP430 Series 

The MSP430 micro-controller [7] by Texas Instruments is one of lowest power consuming 

processors on the market currently. It is ideal for wireless applications and embedded systems. 

We illustrate the features and design of this micro-controller in the following sections. 

• Context Switching Features: 

o Dedicated stack and stack instructions are present for saving context and fast 

context switching in case of interrupts and other context changes. 

o A variety of addressing modes are available even for the stack operations. 

• Interrupt Structure: 

o The MSP430 provides two timers and a watchdog timer. 

o Powerful interrupt structure with ability to mask interrupts. 

o Lack of ability to set interrupt priorities but the interrupts have a fixed priority 

decided by ordering (daisy chaining). 

• ISA: 

o The MSP430 is a 16 bit RISC processor and has most of the RISC features in its 

ISA. 

o There are 27 core instructions and 7 addressing modes available. Instructions are 

16 bits, followed by up to two 16-bit extension words. 

o There are three core instruction formats: 1 operand, 2 operands or a jump. 

o Instructions generally take 1 cycle per word fetched or stored, so instruction 

times range from 1 cycle for a simple register-register instruction to 6 cycles for 

an instruction with both source and destination indexed. 

o Rich ISA with Boolean and arithmetic instructions; dedicated multiplication 

hardware.  
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o Dedicated stack and stack instructions are available. 

• Memory Architecture: 

o The micro-controller uses the Von Neumann architecture i.e. same space for 

code and data. 

o A single 16-bit pointer is used to address the whole ROM and RAM space. 

Memory is byte-addressed, and pairs of bytes are combined little-endian to 

make 16-bit words. 

o The processor contains 16 16-bit registers. R0 is the program counter, R1 is the 

stack pointer, R2 is the status register, and R3 is a special register called the 

constant generator, providing access to 6 commonly used constant values 

without requiring an additional operand. R4 through R15 are available for 

general use. 

• I/O Features: 

o The MSP430 has a host of I/O features built in it. 

o First and foremost it has 10 I/O ports for interfacing devices like radio and 

transducers. 

o Some models also come with in-built ADC which is useful in sampling analog 

transducer data. 

o Full UART and SPI support is available on all the models. 

• Applicability of Low Power Techniques: 

o The MSP430 is ideal for low-power applications and as such is built with this in 

mind. 

o It has the ability to sample input voltage using its “supply voltage supervisor” 

and set a flag each time it falls below a software programmable threshold. This 

can be used for battery-aware scheduling. 
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o Other features are the variable operating voltage and scalable clock frequency. 

o The clock system is designed specifically for battery-powered applications. A low-

frequency auxiliary clock (ACLK) is driven directly from a common 32-kHz watch 

crystal. The ACLK can be used for a background real-time clock self wake-up 

function. An integrated high-speed digitally controlled oscillator (DCO) can 

source the master clock (MCLK) used by the CPU and high-speed peripherals. By 

design, the DCO is active and stable in less than 6 μs. MSP430-based solutions 

effectively use the high-performance 16-bit RISC CPU in very short bursts. 

§ Low-frequency auxiliary clock = Ultralow-power stand-by mode 

§ High-speed master clock = High performance processing 

• Low Power Sleep Modes: 

o The MSP430 has six different power modes, ranging from fully active, to not 

clocking the core, to keeping the digital oscillator running to generate the clock 

but disabling the loop control to save power to fully powered down (with 

peripherals separately enabled or disabled). 

o Due to the use of the digital oscillator, wakeup time can be as low as 6μs. 

• Pipelining: 

o The MSP340 is not a pipelined architecture. 

o Due to variable number of cycles in the instructions (1 to 6) there is no 

pipelining, but most instructions run in just one cycle so this doesn’t slow the 

processor down much. 

o But because of the lack of pipelining and division of the instruction cycle into 

smaller cycles, the maximum clock frequency (8Mhz) is slower than other similar 

processors but gets the job done as the instructions are just one cycle. 
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Chapter E 

CHARACTERISTICS OF WSN APPLICATIONS 

 

Wireless sensor network (WSN) applications have certain common characteristics as is explored 

in this chapter. We look at all the application characteristics from a processor point-of-view as 

they’ll impact our initial design proposal. 

From a node’s processor’s perspective the applications can be divided into: 

• Data Sampling 

• Data Processing 

• Data Communication 

Each of these applications together forms the full functionality in which a node’s processor 

must be involved. The diagram below summarizes the characteristics of a typical sensor node: 

 

Fig. TYPICAL WSN NODE’S APPLICATION 
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E.1. DATA SAMPLING 

The following table summarizes the list of typical periodic data sources in WSN applications [8]: 

Phenomenon  Sampling  (Hz)  Resolution (bits)  

Atmospheric temperature  0.017 - 1  8  

Barometric pressure  0.017 - 1  8  

Body temperature  0.1 - 1  8  

Seismic vibration  0.2 - 100 8 - 12  

Blood pressure  50 - 100 8 - 10  

Engine temp / pressure  100 - 150  8 - 10  

ECG (electro-cardiogram)  100 - 250 8 - 16  

 

For non-periodic events, like detection and notification, the events are interrupt-triggered. 

They occur infrequently [1] but must be reported quickly and reliably. 

Thus, from the above data we can conclude that for data sampling we need: 

• Low-duty cycle (<1%) i.e. sleep capabilities needed. 

• Powerful interrupt structure to easily handle interrupt-driven events. 

• Long life-time necessary as the duty cycle is low and so infrequent events may be too 

few and too far in between. 
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E.2. DATA PROCESSING AND COMMUNICATION 

We’ve compiled a list of the typically used data processing and communication 

applications/algorithms in most WSN nodes from tinyOS [12], the most common OS for sensor 

nodes, and two test-benches, SenseBench [9] and WiSeNBench [8], which are the de-facto 

standard for evaluating WSN processors. 

• Crypto / Security: 

o CRC8 

o CRC16 

o Hash Algorithms 

o SPINS 

o RC5 

o TEA – Tiny encryption algorithm 

• Basic / Core: 

o Sorting 

o Fibonacci 

o Binary Search 

o Min-max finder 

o Sum-array 

o Majority 

o Top10 

• Compression: 

o RLE (run-length encoding) 

o Wavelet encoding 

o Compression with nibble differences 

• Routing: 

o Ad-hoc routing. 

o Multi-hop routing. 
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o Level-hop routing. 

o EnergyEff routing. 

o SMAC (medium access control) 

• Radio: 

o Manchester Encoding. 

o NRZI Encoding. 

E.2.1. Results From Literature 

Results for the above applications/algorithms for common architectures ATMega128, PIC16 and 

MSP430 were compiled from literature [3, 5-9]: 

• Code size 

§ Most algorithms have code sizes under 500 bytes for 16-bit architectures. 

§ For the 8-bit RISC architectures, size was under 700 bytes. 

• Memory access 

§ All algorithms have 40 to 60% instructions as memory accesses for both 

the 8-bit and 16-bit architectures. 

• Frequent instructions 

§ Load, Store, Add, Sub, R-shift, L-Shift, Mov, Xor. All other instructions 

occur less than 1% of the time. 

The above requirement guidelines along with the literature survey of common MSP430 [7], 

ATMega128 [6] and PIC [5] series of micro-controllers help us propose our initial architecture, 

instruction set and basic I/O features. 
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Chapter F 

THE INITIAL ARCHITECTURE 

 

Using the requirement guidelines we give a summary of the initial architecture and instruction-

set in this section. This is just the initial architecture and will be tweaked for improvement once 

initial simulation results are presented. 

F.1. FEATURES 

Architectural Features 

• 8-bit synchronous accumulator-based processor  

– Harvard memory architecture 

– Data Memory of 256 Bytes and Program Memory of 4 KB. 

• Initially taken as register arrays – to be fixed through simulation results. 

– RISC-based Load-Store ISA 

• 1 or 2 byte instructions with 1 or 2 cycle execution. 

– 16 X 8-bit GPRs 

– Stack of 8 levels 

• Fast context-switching (jumps, calls, interrupts etc.) 

• Pipelining 

– Two-stage pipeline with Fetch-Execute. 

• I/O Features 

– 1 GPIO (8 bit) and UART (for PC interfacing). 

• Interrupt Structure 

– Two general purpose interrupts with priority levels and mask-able. 

• Timers 

– Watchdog timer and 16-bit timer. 

• Low-power Modes: Idle and Sleep. 
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F.2. DESIGN FLOW 

We follow the design flow given below to arrive at the needed simulation results for tweaking 

our initial architecture to make it efficient to WSN applications compared to current processors. 

 

The above design flow has the following details: 

• It is iterative and so allows progressive improvement of the Verilog [15] design. 

• The FPGA verification is done using the Altera Cyclone II FPGA kit [13]. 

• The national semiconductor 180nm CMOS library is used for synthesis. 

• Synopsys Design Vision [14] is used as the synthesis and simulation tool for power. 
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F.3. VERIFICATION 

After coding the design in Verilog HDL [15], functional verification of the design is done using 

two basic tools: 

1. Verilog Simulator [17]: 

a. Does functional simulation in software. 

b. Timing waveforms may be generated for proper synchronous design. 

2. Altera Cyclone II FPGA [13]: 

a. Does functional simulation is hardware. 

b. Gives a more realistic view of design problems like clock skew. 

c. Can be interfaced to real hardware like PCs and ADCs. 

 

Fig. ALTERA CYCLONE II FPGA SETUP 



29 

 

We tested the following basic programs in the ROM to verify the features’ functionality: 

i. Fibonacci number generation – tests ALU, conditional jumps, registers and RAM’s 

operations. 

ii. Interrupt-based CRC8 of input on GPIO – checks ALU, interrupt and GPIO. 

iii. Recursive Quick-sorting – tests RAM’s operations, stack due to recursion and 

calls/jumps. 

iv. Periodic sleep-wakeup cycle and display count of cycles – tests GPIO, sleep modes and 

power-up timer. 

v. Interface to PC using UART – tests use of UART. 

vi. Periodic Sampling of ADC data – tests timer and GPIO. 

After verifying all the functionality and correcting any errors In the design, we moved on to 

synthesis and simulation of the design using Synopsys Design Vision [14] and the National 

Semiconductor 180nm library. 
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F.4. SIMULATION RESULTS 

This section summarizes the power simulation results obtained for the initial architecture 

compared to the other commonly used MCUs. 

1. Active Power (mW) 

 

 

 

 

 

 

 

 

 

 

We are performing better than all other MCUs as far as dynamic power is concerned, so 

our initial design features were a good start. As can be seen we have the lowest active 

power consumption in the 10Mhz (3.49mW) and the 1MHz (0.35mW). The only MCU 

even coming close is the MSP430 with 4mW at 10Mhz and 0.42mw at 1MHz. 
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2. Sleep Power (µW) 

 

 

 

 

 

 

 

 

 

 

 

 

It can be clearly seen that we are lagging to the MSP430 in this area. So what went 

wrong?  

Let’s look at the CMOS power dissipation sources [16]: 

• Dynamic and Short-circuit: 

o Mostly comes into play during active mode of operation i.e. during 

switching or clock operation. 

• Leakage: 

o Is a static source of power dissipation and becomes dominant in deep 

sub-micron technologies especially during sleep modes where clock 

frequency is reduced and so dynamic power has little bearing. 
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Fig. POWER DISSIPATION COMPONENTS IN CMOS 

After some survey we found that it was RAM and ROM that were creating too much 

leakage power (>25µW) which was causing us to use a lot of power in our sleep mode, 

even though dynamic power usage was negligible. This was because in our initial design 

we had used a simplistic memory model for RAM and ROM by modeling them as 

register files in Verliog. This was leading to too much leakage current. 

So, based on these simulation results, we tweaked our design to use 256B SRAM for our 

RAM and 4KB Flash for our ROM from the 180nm library we were using for our 

synthesis. The results of these tweaks and their simulation values are shown in the next 

chapter. 
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Chapter G 

THE FINAL ARCHITECTURE 

 

Using the initial architecture’s simulation results we propose our final tweaked architecture. 

G.1. FEATURES 

Architectural Features 

• 8-bit synchronous accumulator-based processor  

– Harvard memory architecture 

– Data Memory of 256 Bytes SRAM. 

–  Program Memory of 4 KB FLASH. 

– RISC-based Load-Store ISA 

• 1 or 2 byte instructions with 1 or 2 cycle execution. 

– 16 X 8-bit GPRs 

– Stack of 8 levels 

• Fast context-switching (jumps, calls, interrupts etc.) 

• Pipelining 

– Two-stage pipeline with Fetch-Execute. 

• I/O Features 

– 1 GPIO (8 bit) and UART (for PC interfacing). 

• Interrupt Structure 

– Two general purpose interrupts with priority levels and mask-able. 

• Timers 

– Watchdog timer, 16-bit timer and power-up timer. 

• Low-power Modes 

– Idle: reduce clock frequency to reduce dynamic power [8, 16] – faster wakeup. 

– Sleep: shut-off clock to all components except interrupt controller through clock 

gating [8] – slower wakeup. 
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G.2. SIMULATION RESULTS 

This section summarizes the power simulation results obtained for the final architecture after 

the whole design flow in the previous chapter was followed. 

1. Active Power (mW) 

 

 

 

 

 

 

 

 

 

 

We are performing better than all other MCUs as far as dynamic power is concerned, so 

our initial design features were a good start. As can be seen we have the lowest active 

power consumption in the 10MHz (3.49mW) and the 1MHz (0.35mW). The only MCU 

even coming close is the MSP430 with 4mW at 10MHz and 0.42mw at 1MHz. 
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2. Sleep Power (µW) 

 

 

 

 

 

 

 

 

 

 

 

 

It can be clearly seen that we have beaten all other MCUs in sleep power also. The 

replacing of the register files with SRAM and Flash have considerably reduced leakage 

power (~5µW). This gives us an edge compared to all other MCUs with only MSP430 

coming close (~6µW). Sleep power is paramount in node design as most nodes have 

very low duty cycle (<1%) and are asleep most of the time [1]. Thus, to sum up our final 

architecture: 

• Beats all the MCUs in the market in terms of power consumption. 

• Doesn’t cause any major loss in functionality i.e. retains all necessary features. 

• Does retain programmability to help it run a multitude of WSN applications. 

• Uses only conventional synchronous design techniques making fabrication easy. 
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3. MIPS (Million-instructions-per-second) 

 

 

 

 

 

 

 

 

 

 

As can be seen we surpass all the other MCUs in the MIPS at both 10MHz and 1MHz 

clock frequencies, showing that we have a good speed of operation for our design. This 

is necessary as duty-cycle is low (<1%) and so the processor must wake-up and ‘quickly’ 

finish its processing and sleep to save dynamic power. 

The MIPS metric gives a reasonable gauge of speed of operation among similar 

architectures [8]. Varying instruction-sets cause trouble in using MIPS as a proper 

metric, but in our case all the processors in consideration are basically RISC-based. Even 

though our instruction-set is reduced compared to the others, we still have the same 

basic instructions and these are the ones that are frequently used. So, MIPS still gives a 

reasonable gauge of speed of operation. 
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4. Wake-up Time (µs) 

 

 

 

 

 

 

 

 

 

 

As the results how, our processor design has the lowest wake-up time among the given 

MCUs, with only the MSP430 coming close (~6µs). 

Wake-up time is also an important parameter in sensor node processor design. As 

stated earlier, sensor nodes have low duty-cycle and so need to sleep and wakeup – if 

we have high wakeup time, we will miss the events / data samples because the events 

are real-time in nature with hard deadlines [2]. Thus, low wakeup times in the processor 

are an advantage in helping application designers easily meet event monitoring / data 

sampling deadlines even though the node may be asleep most of the time. 
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G.3. INSTRUCTION-SET ARCHITECTURE 

 BIT NO. 

 

 Arithmetic Operations 

 

 And, Or, Xor & Not Boolean operations 

 

 Standard bit left or right shift thru carry 

 

 Register Move to/from Acc 

 

 Interrupt priority/mask operations 

  

 RAM 

Operations 

 

 For constant 

generation in Acc 

 

 Ind. Address/Jump 

 

 Return 

 

Timer Control 

 

Low-power Controls 

 

 

ADD, SUB 

AND, OR, XOR 

Register Address 

Register Address 

INT_CONTROL 

MOV TO/FROM Register Address 

LSHIFT, RSHIFT 

LOAD, STORE Data Memory Address 

CONST 8-bit Constant 

JMP Register / Program Memory Address 

RET 

TIMER CONT W 

COND 

SLEEP MODE 
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G.4. BLOCK DIAGRAM 

 

The above block diagram also sums up our high-level design of the processor. As can be seen, 

the design uses no unconventional patterns, but achieves superior efficiency through 

application specific features and use of common low-power techniques like clock gating for its 

sleep mode [8]. 

For more details or a soft-copy of the code, email me: digvijay.in@gmail.com 
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Chapter H 
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