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Preface

The modern study of finite fields dates back to the seminal work of Evariste Galois in 1830 [33].
It is because of this finite fields are popularly known asGalois fields. After Galois’ untimely
death, many mathematicians have devoted their energy in unleashing the properties of finite
fields. At present the theory of finite fields is a vast and rich area of pure mathematics.

With the advent of error control coding theory in the early fifties of this century, finite fields
started playing an important role in engineering applications. E. R. Berlekampwas probably
the first who realized the need for a formal algorithmic treatment of finite fields[10]. He de-
veloped manymodernalgorithms for solving several computational problems associated with
finite fields. Almost a decade later (in 1976) Diffe and Hellman’s pioneering discovery [31]
gave birth to the technology of public-key cryptography, and the theory of finite fields found
yet another serious application that demanded further computational developments both for the
users of cryptographic protocols and for those who try to break them.

Quite expectedly, the last twenty years saw intense research activities all over the world
for designing faster algorithms for finite field problems. At present most ofthe computational
problems on finite fields are reasonably satisfactorily solved, in particular,with extensive ap-
plications of randomization techniques. Known deterministic complexities of many such prob-
lems are still poor (exponential in the bit-size of the field). In addition, there are problems (like
the well-knowndiscrete logarithm problem) for which even randomization does not help much,
and the best with which we have to be satisfied are the so-calledsubexponentialalgorithms.
Naturally enough, this area will continue to attract many engineers and applied theoreticians at
least for the next few decades.

In short this is the setting behind the conception of this thesis. We start with a survey of the
known algorithms for solving some important practical problems in finite field computations.
Then we talk about a computational library of functions written in C, developed as a part
of the research work. This library, known as theGalois Field Library (abbreviated GFL),
provides built-in routines for many of the computational problems discussed inthe survey just
mentioned. The rest of the thesis is devoted to a study of the discrete logarithmproblem over
finite fields of prime cardinality. We report our efficient implementation techniques, some
analytic estimates and certain heuristic improvements for some of the well-known algorithms
to compute discrete logarithms.

The material in the thesis draws upon many basic results from abstract algebra, elementary
number theory and the theory of finite fields. For abstract algebra, one may consult the book of
Herstein [53]. For elementary number theory, we refer the reader to the book by Niven, Zuck-
erman and Montgomery [135]. Lidl and Niederreiter’sbible [82] should be read by anybody
interested in finite fields. For this thesis, the first four chapters of this bookshould be sufficient.
Some knowledge of the programming language C is also strongly recommended.

The chapters of the thesis can be read more or less independently. The only sizable depen-
dency is that of Chapter 4 on Chapter 3. The motivation for Chapter 5 also comes from the
description of the cubic sieve method in Chapter 3. Apart from these no particular orders need
be strictly adhered to, though reading the material in the way presented hereis suggested.

Throughout the thesis we make some abuse of notations and terminology. Forexample,
in the thesis a field is afinite field, a prime field is afield with prime cardinality, and a field
extension is always analgebraicextension. Similarly, the term ‘cryptography’ refers topublic-
keycryptography. An index of notations follows this preface. We tried to be asconsistent as
possible regarding these notations across the different chapters. A few exceptions are allowed
with the hope that these do not lead to confusions.
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Abstract

Computation over finite fields (also calledGalois fields) is an active area of research in number
theory and algebra, and finds many applications in cryptography, errorcontrol coding and combi-
natorial design. In this thesis, we describe our computational experiencein this area. Our work
consists of two parts. In the first part, we build a comprehensive library for working over finite
fields. In the second part, we make a detailed study of the discrete logarithm problem (DLP) over
prime fields.

We have developed a computational library of functions written in C for a widerange of
problems that are of theoretical and practical interest in finite field computations. We call this
library the Galois Field Library or GFL for short. GFL provides routines for field arithmetic
and for manipulation of univariate polynomials and matrices over finite fields. It allows the user
to work on finite fields ofany characteristic andany cardinality. It is based on a set of routines
for doing arbitrary-precision integer arithmetic and is portable, fast and memory-efficient. We
have carried out extensive testing and benchmarking of GFL. We demonstrate the programming
techniques with GFL through some small and simple examples. We also provide an exhaustive
list of functions currently provided by GFL. We compare the performance of GFL with those of
three other libraries, namely, LiDIA, NTL and ZEN.

Computing discrete logarithms over a prime fieldFp is a very difficult problem for which no
polynomial time algorithms are known. The best algorithms known till date are based on the index
calculus method and take time subexponential inlog p. We concentrate on three variants of the in-
dex calculus method, namely the basic method, the linear sieve method and the cubicsieve method.

The sieve methods test a set of deterministically generated integers for smoothness over a pre-
determined set of small primes. The analysis of running times of these methods isbased on the
heuristic assumption that these deterministically generated integers behave asrandom integers.
We start our study of the DLP by showing that the actual distribution of theseintegers is not
random in the sense that these integers do not follow uniform distribution. To prove our claim we
find out the arithmetic mean and the cumulative statistical distribution of these integers. We find
that the average bit-length of these test integers is smaller than the expected bit-length of a sample
of integers chosen following the uniform distribution.

We then describe our implementation details and heuristic modification schemes forthe three
methods mentioned above. In the basic method, our heuristic scheme reducesthe number of dis-
crete exponentiations. We also make trial divisions faster by adopting two strategies: maintaining
a list of remainders and sieving. For the linear sieve method, our heuristic generates a set of inte-
gers smaller on an average than the integers checked for smoothness in theoriginal method. This
increases the chance of getting smooth integers, but decreases the ratio of the number of relations
to the number of elements in the factor base. Finally for the cubic sieve method, we increase the
sieving interval by a heuristic strategy. This allows us to build a larger factorbase without any
significant increase in the running time. We also describe efficient implementation techniques for
the sieve methods and establish the superiority of the cubic sieve method over the linear sieve
method for a special class of primes.

We conclude our study of the DLP by an analytic study of the congruenceX3 ≡ Y 2Z (mod p)
subject to the conditionX3 6= Y 2Z. This congruence plays an important role in the cubic sieve
method. We estimate that the total number of solutions of the congruence for a primep is Θ(p2).
We also show that under certain heuristic assumptions, the expected numberof solutions of the
congruence with1 6 X,Y, Z 6 pα for 1/3 6 α < 1/2 isΩ(p3α−1). Small scale experiments re-
veal that apart from constant factors our estimate tallies with the experimental values quite closely.
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Index of notations

General
N The set of natural numbers{1, 2, 3, . . .}
Z The set of integers{. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}
R The set of real numbers
#S The cardinality of the setS
|x| The absolute value of the real numberx
[a, b] The closed interval consisting of real numbersx satisfyinga 6 x 6 b
log x Logarithm of the positive real numberx to the base 10 (or to an unspecified base)
lnx Logarithm of the positive real numberx to the basee =

∑∞
n=0

1
n!

lg x Logarithm of the positive real numberx to the base 2
m|n The integerm divides the integern
m6 |n The integerm does not divide the integern
pe||n For a primep, a non-zero integern and a non-negative integere, pe|n butpe+16 |n
p A prime integer
q A prime or a prime power
qi Theith prime (q1 = 2, q2 = 3 and so on)
d(n) Number of (positive integral) divisors of the integern 6= 0
(m,n) The greatest common divisor (gcd) of the integersm andn
⌊x⌋ Largest integer less than equal to the realx (the floor ofx)
⌈x⌉ Smallest integer greater than equal to the realx (the ceiling ofx)
a ≡ b (mod m) The integersa andb are congruent modulo the integerm > 0, that is,m|(a− b)
ψ(x, y) The number of positive integers6 x all of whose prime factors are6 y
L〈p, ω, c〉 exp

(

(c+ o(1))(log p)ω(log log p)1−ω
)

L(p, c) L〈p, 1/2, c〉 = exp
(

(c+ o(1))
√
ln p ln ln p

)

L[c] L(p, c) whenp is understood from the context
L L[1]
γ The Euler constant= 0.57721566 . . .
ζ(s) The Riemann zeta function
κ The exponent of matrix multiplication:κ = 3 for the “classical” algorithm; for

the fastest known algorithm due to Coppersmith and Winograd [29], we cantake
κ = 2.376.

L(d) log d log log d
ERH The Extended Riemann Hypothesis
f(n) = O(g(n)) [The Big-O notation] There existn0 ∈ N and a constantc > 0 such that|f(n)| 6

c|g(n)| for all n > n0.
f(n) = Ω(g(n)) [The Big-Ω notation] There existn0 ∈ N and a constantc > 0 such that|f(n)| >

c|g(n)| for all n > n0.
f(n) = Θ(g(n)) [The Big-Θ notation]f(n) = O(g(n)) andf(n) = Ω(g(n)), that is, there exist

n0 ∈ N and constantsc1, c2 > 0 such thatc1|g(n)| 6 |f(n)| 6 c2|g(n)| for all
n > n0.

f(n) = O (̃g(n)) [The soft-O notation]f(n) = O(g(n)h(log n)) whereh(x) is a polynomial inx.
〈a〉 Ideal generated bya in a ring
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Finite fields
Fq Finite field of cardinalityq
Fq
∗ The multiplicative group ofFq

Fp Finite field of prime cardinalityp
a (a ∈ Fp) The representative ofa in the set{ 0, 1, . . . , p− 1 }
g A primitive element ofFp, that is, a generator of the cyclic groupFp

∗

char(K) Characteristic of a fieldK
TrE/K(a) Trace of an elementa ∈ E overK ⊆ E (K, E are fields)
TrE(a) Trace of an elementa ∈ E over the prime subfield ofE. The suffixE is dropped,

whenE is understood from the context.
NE/K(a) Norm of an elementa ∈ E overK ⊆ E (K, E are fields)
NE(a) Norm of an elementa ∈ E over the prime subfield ofE. The suffixE is dropped,

whenE is understood from the context.
[K : F ] Degree of the (algebraic) extension of the fieldK over the fieldF

Galois field library
R = 2b Radix for multi-precision integer arithmetic

Discrete logarithm
DLP The finite field discrete logarithm problem
indg(a) The discrete logarithm (or index) ofa with respect tog

Basic index calculus method
B The factor base ={ q1, q2, . . . , qt }
t The size of the factor base
gj A random power ofg
vi Remainder of division ofp by qi (Heuristic B1)

ρr,i Remainder of division ofgj + rp by qi (Heuristic B1)

L Approximate logarithm (to base 2) of the non-smooth part ofgj+rp (Heuristic B2)

Linear sieve method
t Number of small primes in the factor base
H ⌊√p⌋+ 1
J H2 − p
M The sieving interval is−M . . .M
A The array maintained for storing sums of (approximate) logarithms
T (c1, c2) J + (c1 + c2)H + c1c2
T The average of|T (c1, c2)| over all choices of(c1, c2)
Tmax The maximum value of|T (c1, c2)| over all choices of(c1, c2)
C(η) #{ (c1, c2) such that|T (c1, c2)| 6 ηTmax }
c(η) C(η)/C(1)
ξ Sieving tolerance for the approximate version of the linear sieve method is setat

ξ lg qt
µ The sieving interval is−µ . . . µ (Heuristics L1 and L2)
Hr ⌊√rp⌋+ 1 (Heuristics L1 and L2)
Jr H2

r − rp (Heuristics L1 and L2)
Tr(c1, c2) Jr + (c1 + c2)Hr + c1c2 (Heuristics L1 and L2)
T heu Average value of|Tr(c1, c2)| over all choices ofr, c1 andc2 (Heuristics L1 and L2)
r T heu/T (Heuristics L1 and L2)
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Cubic sieve method
t Number of small primes in the factor base
X,Y, Z A solution ofX3 ≡ Y 2Z (mod p), X3 6= Y 2Z
M The sieving interval is−M . . .M
A The array maintained for storing sums of (approximate) logarithms
R(A,B,C) Z + (AB +AC +BC)X + (ABC)Y
R The average of|R(A,B,C)| over all choices of(A,B,C)
Rmax The maximum value of|R(A,B,C)| over all choices of(A,B,C)
D(η) #{ (A,B,C) such that|R(A,B,C)| 6 ηRmax }
d(η) D(η)/D(1)
ξ Sieving tolerance for the approximate version of the cubic sieve method is setat

ξ lg qt
τ Total number of triples(A,B,C) satisfying−M 6 A 6 B 6 C 6 M , A+ B +

C = 0

ν Size of the factor base
λ For the heuristic variation,A > −λM (1 6 λ 6 2)
τλ Total number of triples(A,B,C) satisfying−λM 6 A 6 B 6 C 6M ,A+B+

C = 0 (Modified cubic sieve)
νλ Size of the factor base for the modified cubic sieve method
U 1 + t

M (Modified cubic sieve)
λ∗ Optimal value ofλ (equals−U +

√
U2 + 4U + 1) (Modified cubic sieve)

CSC The congruenceX3 ≡ Y 2Z (mod p)
S The solution set of CSC:{(X,Y, Z) | X3 ≡ Y 2Z (mod p), 1 6 X,Y, Z < p}
S= {(X,Y, Z) ∈ S | X3 = Y 2Z}
S6= {(X,Y, Z) ∈ S | X3 6= Y 2Z}
Sα {(X,Y, Z) ∈ S6= | 1 6 X,Y, Z 6 pα}
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1 Introduction

Computation over finite fields (also calledGalois fields) is an active area of research
in number theory and algebra, and finds many applications in cryptography, error
control coding and combinatorial design [85, 115]. In this thesis, we describe our
computational experience in this area. Our work consists of two parts. In the first
part, we build a comprehensive library for working over finite fields. In the second
part, we make a detailed study of the discrete logarithm problem over prime fields.

In Section 1.1, we provide a short survey of the algorithms for finite fields,
known until recently. In Section 1.2, we introduce our work that the rest of the
thesis deals with. We also summarize in this section the organization of the thesis.

1.1 Algorithms for finite fields
The theory of finite fields, originating from the seminal work of Galois [33],contin-
ues to be an important and active branch of mathematics. While theoreticians have
devoted their effort in extracting properties of finite fields, applied mathematicians
and engineers have found it immensely useful to apply these properties to many
practical problems – most notably in the areas of error control coding, cryptogra-
phy and combinatorial design. This has stimulated interest in various computational
problems associated with finite fields. In this section we survey some of the recent
results on algorithmic aspects of finite fields.

The first encyclopedic treatment of the theory of finite fields is the celebrated
book by Lidl and Niederreiter [82], that covers both theoretical and computational
results on finite fields, known till early eighties. More recent results can befound
in [85] and [115] – the former is a supplement to [82], whereas the latter provides
a thorough treatise on finite field algorithms. The recent paper [118] by Shparlin-
ski and Mullen lists many open problems in the areas of theoretical, combinatorial
and computational aspects of finite fields. Notwithstanding the usefulness, rather
indispensability, of these works, these do not cover the vast researchliterature of
the last few years. This survey aims at filling up this gap and, as expected,focuses
mostly on papers that appeared in this decade only. Some older papers arealso
referred, sometimes for the sake of completeness, sometimes to preserve continu-
ity and sometimes for mere beauty of the results. This survey, by itself, is neither
exhaustive nor complete. Also for the sake of brevity, we do not delve intothe
detailed aspects of the algorithms. We only mention the running times of the algo-
rithms and, whenever possible, some short descriptions of the same. This survey
is intended to provide many pointers, hints and references which interestedreaders
and researchers would find worth investigating.

1.1.1 Notations

In what follows, we shall assume, unless otherwise stated, that the following sym-
bols designate the entities as defined below. We shall often use several ofthese
symbols throughout this survey without specific mention of their meanings.
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Fq The finite field with cardinalityq
q = pm p a prime number andm a positive integer
Fq[x] The ring of univariate polynomials with coefficients fromFq

Fq[x1, . . . , xn] The ring of multivariate polynomials with coefficients fromFq

n The number of indeterminates (for multivariate polynomials)
f A polynomial inFq[x] or Fq[x1, . . . , xn]
d The (total) degree off
t A bound on the number of nonzero terms off
T A bound on the number of nonzero terms off or any of its

irreducible factors
O˜ The softO notation (i.e. order notation up to logarithmic fac-

tors)
κ The runtime for multiplying twor×rmatrices isO(rκ): κ = 3

for the “classical” algorithm; for the fastest known algorithm
due to Coppersmith and Winograd [29], we can takeκ = 2.376

L(d) log d log log d
ERH The Extended Riemann Hypothesis

1.1.2 Arithmetic over finite fields

• The effect of representation of elements ofFq on the basic operations (+,−,× etc.)
onFq is discussed in Section 6.1.2 of [90].

• If Fqs is represented asFq/〈f〉 wheref is an irreducible (overFq) polynomial of
degrees in Fq[x], then addition and subtraction inFqs can be performed usingO(s)
operations inFq, multiplications withO(sL(s)) operations inFq and divisions with
O(sL(s) log s) operations inFq.

• Use ofnormal basisfor representing elements ofFq is known to be very convenient
for computing the product of two elements ofFq. Low complexitynormal bases –
namely,optimalandnear-optimalnormal bases – deserve specific mention in this
respect. Chapter 5 of [85] is a good introduction to these topics and provides many
references to related works.

• Itoh and Tsujii [61] presented a configuration of parallel multipliers forF2m based
on polynomial basis. They useO(m2) AND gates andO(m2) XOR gates and
achieve an operation time of about(logm)T whereT is the delay time of an XOR
gate.

• Itoh and Tsujii [60] presented an algorithm for computing multiplicative inverses
in F2m using normal basis. The algorithm uses repeated squaring technique that
requires at most2⌈log2(m− 1)⌉ multiplications inF2m and(m− 1) cyclic shifts.

• Efficient sequential and parallel algorithms for exponentiation in a finite field using
normal basis are given by Stinson [124] forq = 2m and by von zur Gathen [37, 39]
for generalq. Von zur Gathen has also proved that his algorithms are optimal.

• Table of discrete logarithms with respect to a primitive element and Zech’s loga-
rithm tables [59, 85] speed up arithmetic insmall finite fields and their algebraic
extensions.

• The papers [3, 130] report various implementation issues for the basic operations
in finite fields of characteristic 2.

• Computation of traces and norms:LetFq = K ⊆ E = Fqs . Von zur Gathen and
Shoup’s “repeated doubling” algorithm [43] computes the traceTrE/K : E → K
of an element inE usingO(log s) additions inE andO(log s) powering operations

2



inE of the formβ 7→ βq
j
, whereβ ∈ E and1 ≤ j < s. The normNE/K : E → K

of an element inE, on the other hand, can be computed usingO(sL(s) log s)
operations inK, of which onlyO(s) are divisions [38, 111].

1.1.3 Polynomial arithmetic over finite fields

Here we list the (best-known) running times for the basic arithmetic operationson
univariate polynomials overFq.

• Evaluationof a polynomial inFq[x] of degree≤ d at a point inFq can be performed
usingO(d) operations (+,−,× only) in Fq (Horner’s rule).

• Evaluationof a polynomial inFq[x] of degree≤ d at a point inFqs can be per-
formed usingO(d(κ−1)/2s+ d1/2sL(s)) operations inFq [111] (assuming a poly-
nomial representation ofFqs overFq).

• Addition andsubtractionof two polynomials inFq[x] of degree≤ d can be per-
formed usingO(d) operations (+,− only) in Fq.

• Multiplication of two polynomials inFq[x] of degree≤ d can be performed using
O(dL(d)) operations (+,−,× only) in Fq.

A lower bound of2.5d − o(d) on the number of multiplications/divisions re-
quired to compute the product is shown in [17]. Averbuch et. al. [5] showed that if
d ≤ q, then any optimal algorithm for computing the polynomial product is based
on Chinese remainder theorem.

• Division with remainderinvolving two polynomials of degree at mostd can be done
with O(dL(d)) operations inFq.

• Letα1, . . . , αd ∈ Fq. Then thecoefficientsof (x−α1) . . . (x−αd) ∈ Fq[x] can be
computed usingO(dL(d) log d) operations (+,−,× only) in Fq.

• Let f andg be polynomials inFq[x] of degree≤ d, g 6= 0. Thenf (mod g) can
be computed usingO(dL(d)) operations inFq.

• Letf, g1, . . . , gk be polynomials inFq[x] s.t.deg f ≤ d anddeg g1+. . .+deg gk ≤
d. Thenf(mod g1), . . . , f(mod gk) can be computed usingO(dL(d) log k) oper-
ations inFq.

• Let f andg be polynomials inFq[x] of degree≤ d. Then the gcd off andg can be
computed usingO(dL(d) log d) operations inFq.

For the proof of most of these facts see [107].

1.1.4 Finding roots of univariate polynomials

If one factors a univariate polynomialf ∈ Fq[x] overFq, one can read off the roots
of f in Fq from the linear factors off . On the other hand, the problem of univariate
factorization reduces in polynomial time to the problem of root finding overFq (see
for example [131]).

• Berlekamp proposed a powerful randomized algorithm [11] which can beused
whenq = pm for any odd primep and any integerm ≥ 1. The expected run-
ning time isO(d2 log d log q) Fq operations. This algorithm is sometimes referred
to as theBerlekamp–Rabin algorithmfor root finding.

• Berlekamp trace algorithm[11] is another method for root finding that is useful
whenq is small andm is large.
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• Berlekamp, Rumsey and Solomon’s algorithm[12] computes the least affine mul-
tiple of f and then computes the roots of the affine multiple by solving a linear
system of equations.

• Oorschot and Vanstone’s algorithm[98] also uses the least affine multiple.

• Menezes et. al. [88] present a generalization of Moenck’s root finding algorithm
over Fq. The generalized algorithm is deterministic, given a primitive element
of Fq. If q − 1 is b-smooth, whereb = (log q)O(1), then the algorithm runs in
polynomial time.

See [85] and [87] for a description and comparison of these methods.

1.1.5 Sparse multivariate polynomial interpolation

The sparse multivariate interpolation problem can be stated as: To reconstruct
(i.e. interpolate) at-sparse polynomial (i.e. a polynomial with at mostt terms)
in n variables, given a black box which will produce the value of the polynomial
for any value of the arguments.

• Clausen et. al. [24] proved a lower bound ofΩ(nt) for interpolation over a fixed
finite field Fq when the black box can only evaluate points lying inFq

n. Conse-
quently, it is impossible to solve the problem efficiently without enabling the black
box to evaluate points over extension fields ofFq.

• The algorithm of Grigoriev et. al. [51] evaluatesf at points in a finite field of
cardinalityq⌈2 logq(nt)⌉+3. The parallel time for the algorithm isO(log3(nt)) on
O(n2t6 log2(nt)) number of processors.

• Roth and Benedek [103] proposed an algorithm for the special caseq = 2.

• The best known algorithm for multivariate interpolation is due to Huang and Rao
[57]. It is an effective adaptation of Ben-Or and Tiwari’s algorithm [9]to the case of
finite fields. The algorithm needs4t2d− 2td+2t evaluation points in an extension
field of cardinalityq⌈logq((8t−2)td2+1)⌉. The (parallel) running time for the algo-
rithm isO(log4(td) log2(tm)log4p) and the processor requirement is polynomial
in t, d,m, n andlog p.

1.1.6 Univariate polynomial factorization

A brief summary of the univariate factorization algorithms is given below. As par
our notations we letf ∈ Fq[x] be a polynomial of degreed which we want to
factorize.

• Berlekamp’sQ-matrix method [10] is the first modern deterministic algorithm for
univariate polynomial factorization over finite fields. The running time of this al-
gorithm isO(d3q).

• Camion proposed a randomized algorithm [20] for computing the primitive idem-
potents for improving the running time of Berlekamp’sQ-matrix algorithm.

• Zassenhaus [131] reduced the factorization problem to the problem of determining
roots of certain polynomials overFq.

• Camion [21] and Cantor and Zassenhaus [22] independently discovered another
randomizedalgorithm which does not rely on Berlekamp’s subalgebra. This algo-
rithm runs inO (̃d2 log q) operations.

• Shoup’sdeterministicalgorithm [107] completely factorsf inO(q1/2(log q)2d2+ǫ)
bit operations wheredǫ denotes a fixed but unspecified polynomial inlog d.
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• Shparlinski [115] showed that the running time bound of [107] can be improved to
O(q1/2(log q)d2+ǫ) bit operations. This is supposedly the best known running time
for adeterministicalgorithm for univariate factorization over finite fields.

• Niederreiter [95] proposed a new deterministic factorization algorithm for polyno-
mials over finite fields that is based on a new type of linearization of the factoriza-
tion problem. It uses differential equations in rational function fields and normal
bases of field extensions.

• Göttfert’s improvement [49] over [95] works for finite fields of characteristic 2.
The total cost of calculating allr monic irreducible factors off by this algorithm
isO(dm3 + dκmκ) arithmetic operations inF2 plusO(r2Mq(d) log d) arithmetic
operations inFq, whereκ is the exponent of fast matrix multiplication, andMq(d)
is the arithmetic complexity of multiplying two polynomials of degree≤ d in Fq[x].

• Niederreiter and G̈ottfert [96] propose another extension of [49] for arbitrary fi-
nite fields. It requiresO(qr2) polynomial gcd’s,O(qr2) polynomial multiplica-
tions/divisions andO(qr2d) arithmetic operations inFq. Herer is the number of
irreducible factors off .

• Von zur Gathen and Shoup [43] give a newprobabilistic univariate factorization
algorithm that usesO((d2 + d log q)(log d)2 log log d) arithmetic operations over
Fq. This algorithm is based on a new way of computing Frobenius maps.

• The best knownprobabilisticalgorithm for factorization of univariate polynomials
over finite fields is proposed in [66]. It uses theequal degree factorizationtech-
nique of [43] that requiresO(d1.688 + d1+o(1) log q) operations inFq. It solves
the distinct degree factorizationproblem by ababy step/giant stepstrategy using
O(d1.815 log q) operations inFq.

• If one assumes theERH, deterministic polynomial time univariate factorization
algorithms are known for certain special classes of polynomials. Some references
are [35, 55, 100, 101, 102, 109].

Open problems

1. For fixedq, the fastest known deterministic algorithm is [107] that runs in
timeO(d2+o(1)). It remains an open problem to find a subquadratic deter-
ministic algorithm.

2. It is not known whether there exists a deterministic algorithm for factoriza-
tion of univariate polynomials over finite fields that runs in time polynomial
in log q andd.

1.1.7 Multivariate polynomial factorization

• In [75] Lenstra gives a deterministic multivariate polynomial factorization algo-
rithm that makes use of a basis reduction strategy for lattices overFq[y]. Let f ∈
Fq[x1, . . . , xn] with degxi

f = di. LetDj =
∏n

i=j(di + 1). Then Lenstra’s algo-
rithm factorizesf completely overFq usingO

(

(2d1)
2nD2

2D
4
3 + (2d1)

3n−6D3
2pm

)

arithmetic operations inFq.

• Von zur Gathen [34] describes a polynomial-time probabilistic algorithm for multi-
variate factorization. It uses an effective version of Hilbert’s irreducibility theorem.

• Let f ∈ Fq[x1, . . . , xn] (n ≥ 3) of total degreed ≥ 2 with r irreducible factors
and such that the number of nonzero terms inf or any of its irreducible factors is at
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mostT . The algorithm in [40] correctly computes the irreducible factorization of
f with probability at least1 − 2−d and with an expected number of bit operations
O(k3(2d3T )r + k17T 3) wherek = max(d, n, log q).

• Von zur Gathen and Kaltofen[41] present a probabilistic algorithm that finds the
irreducible factors of a bivariate polynomial overFq in timeO(d11 log d log q).

• Wan’s bivariate factorization algorithm [126] is probabilistic and has running time
O(d4.89 log2 d log q).

• Shparlinski [116] shows that forp > d3 there exists a deterministic algorithm that
factors all except possiblyO(p(d+1)(d+2)/2(log log p)−2) polynomialsf(x, y) ∈
Fp[x, y] of total degreed, inO(d3.7 logǫ p+ d2+ǫ log2 p) operations inFp.

• Huang and Rao [57] showed that their sparse multivariate interpolation algorithm
can be combined with the black box Berlekamp algorithm of [67] to give a prob-
abilistic parallel multivariate factorization algorithm with expected running time
of O

(

log2 d log2(dM) log4 p+ log2(kd) log2(kM log k) log k log4 p
)

wherek =

max(T, d), FpM is a “suitable” extension ofFq. (Other notations are as in the third
algorithm [40] of this section.) Ifδ is a given bound on the probability of failure,
then the algorithm runs in expected time which is polylog ind, k, m, n, log 1

δ and
p and the number of processors used is a polynomial ink, d,m, n andlog p.

1.1.8 Irreducibility testing

Factoring a univariate or multivariate polynomial allows one to conclude whether
the given polynomial is irreducible. This is however not an efficient methodfor
testing irreducibility of a polynomial. In fact, polynomial time deterministic algo-
rithms exist for both univariate and multivariate irreducibility testing.

• Univariate polynomials: It is easy to check if a polynomialf is square-free
by checking ifgcd(f, f ′) = 1. For a square-free polynomialf the first stage
of Berlekamp’sQ-matrix method [10] gives the number of irreducible factors of
f . This procedure requires a total number ofO(d3 + d2 log q) operations inFq

[90]. For another deterministic check in polynomial time see [85, Theorem 3.28].
Shoup [111] summarizes some more efficient methods for irreducibility testing.
These references are tabulated below:

Author Reference Complexity
Butler [19] O (̃dκ + d log q)
Rabin [99] O (̃d2 log q)
Ben-Or [8] worst-case:O (̃d2 log q)

average:O (̃d log q)

Gathen and Shoup [43] O (̃d(κ+1)/2 + d log q)

• Multivariate polynomials: Kaltofen [63, 64] shows that for polynomials in
Fq[x1, . . . , xn] both irreducibility overFq and absolute irreducibility can be tested
deterministically in polynomial time. This algorithm seemingly takesO (̃d8 log q)
operations inFq for the bivariate case (n = 2).

1.1.9 Construction of irreducible polynomials

Consider the following problem: If a finite fieldFq and a positive integerd are
given, how can one efficiently construct an irreducible polynomial of degreed over
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Fq? There is presently no deterministic polynomial time algorithm known to solve
this problem.

• The construction of irreducible polynomials for many special cases (for example,
for special values ofq, d etc.) can be found in Sections 3.3 and 3.5 of [82] and in
Sections 3.2 through 3.5 of [85].

• Rabin’s randomized algorithm [99] is based on the fact that the probability that a
random monic polynomial of degreed in Fq[x] is irreducible, is nearly1d . (See
Exercise 3.3 of [85].)

• Shoup [108] gives a deterministic algorithm for prime fieldsFp[x]. This algo-

rithm takesO(
√
p(log p)3d3+ǫ + (log p)2d4+ǫ) that is,O (̃d3p

1
2 + d4 log2 p) Fp

operations. If one assumes theERH, the same can be done in deterministic time
O (̃log2 p + d4 log p). The problem of constructing an irreducible polynomial has
been shown to be deterministically reducible in time polynomial ind and log p
to the problem of factoring polynomials overFp. This algorithm can be modi-
fied to work for arbitraryFq in which case the running time is

√
p(d log q)O(1).

Shoup also shows that for any constant0 < c < 1
4 , there exists a randomized al-

gorithm (depending onc) with the following properties: It uses⌈d log p⌉ random
bits, halts in time polynomial ind andlog p, and upon termination, it either outputs
an irreducible polynomial of degreed overFp or reports failure. Furthermore, the
probability that it fails is no more than1/pcd.

• The probabilistic algorithm proposed by Shoup [111] usesO
(

(d2 log d+ d log q)
log d log log d) Fq operations.

• The best known probabilistic algorithm is due to Shoup [112] that uses an expected
number ofO (̃d2 + log q) arithmetic operations inFq.

• Shparlinski [117] gives a survey on many results associated with the construction
of irreducible polynomials over finite fields.

• Minimal polynomials: Given an extensionFqs of degrees overFq and an element
α ∈ Fqs , it is possible to compute the minimal polynomialg of α overFq deter-
ministically usingO(s(κ+1)/2) operations inFq. Moreover, if a boundd on the
degree ofg is given to the algorithm, then it uses onlyO(d(κ−1)/2s + d1/2sL(s))
operations inFq [111].

Open problems

1. Does a probabilisticO (̃dk + d log q) algorithm exist fork < 2 for the con-
struction of an irreducible polynomial of degreed overFq?

2. Does anO (̃d2) algorithm exist that solves the problem deterministically for
q = 2? (Shoup [111] suggests aO (̃d3) algorithm.)

1.1.10 Construction of primitive polynomials and primitive elements

There are no known polynomial time algorithms for constructing a primitive root
(or a primitive polynomial), or even for testing whether a given element is a prim-
itive element. (Note that a primitive polynomial is the minimal polynomial of a
primitive element, also called a primitive root.)

• A test forf ∈ Fq[x] to be primitive is given in [82, Theorem 3.18].

• Since the product of all primitive polynomials overFq of degreed is equal to the
cyclotomic polynomialQe, with e = qd − 1, factorization ofQe gives all primitive
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polynomials overFq of degreed. This fact and another method that is based on
the construction of a primitive element ofFqd are discussed in Section 3.3 of [82].
Also see Section 6.1.3 of [90].

• Shoup [110] considers the problem of deterministically generating in polynomial
time a subset ofFpm that contains a primitive root. A solution to this problem is
given for smallp, i.e., forp = mO(1). This problem is also solved for largep and
m = 2 under the assumption ofERH.

• Buchmann and Shoup [18] proposed a deterministic polynomial time algorithm for
constructing primitive roots inFpm assuming theERH and assuming availability
of factorization ofpm − 1.

• Von zur Gathen and Shparlinski [44] present an algorithm for computingGauss
periodsof a specific type in polynomial time. These Gauss periods have been
shown to have exponentially large multiplicative orders.

• Shparlinski [117] provides a survey on the construction of primitive roots over
Fq and on some related problems. In particular, the paper states that for a field

Fq, a primitive root can be found deterministically in timeO (̃q
1
4 ) and in time

O (̃q
1
5 ) under theERH. This paper also mentions a probabilistic algorithm to find

a primitive root ofFq in the expected timeexp
(

(1 + o(1))(log q log log q)
1
2

)

.

• Extensive tables of primitive polynomials over prime fields can be found in [52],
[133] and [134].

• Primitive normal element: Lenstra and Schoof [79] showed thatFqm always con-
tains a primitive element that generates a normal basis ofFqm overFq. Stepanov
and Shparlinski [123] showed that ifθ is a primitive element ofFqm then for

N ≥ max
(

exp exp(c1 ln
2(m)), c2m ln(q)

)

there is at least one element in the set

{θ, θ2, . . . , θN} which generates a primitive normal basis. Morgan and Mullen [92]
provide extensive tables for primitive normal polynomials over prime fields.

1.1.11 Construction of nonresidues

Buchmann and Shoup [18] considered the problem of constructing akth power
nonresidue inFpm , i.e. an element that is not a perfectkth power of any element in
Fpm , wherek is a prime divisor ofpm − 1. Givenα ∈ Fpm , testing ifα is akth
power nonresidue has a trivial solution: just test ifα(pm−1)/k 6= 1. Probabilistically,
the problem of constructing nonresidues also has a trivial solution: just chooseα ∈
Fpm at random and test if it is akth power nonresidue. However, the deterministic
complexity of constructing nonresidues is currently unknown, even under theERH.
Buchmann and Shoup [18] shows that for anyfixedm, this problem can be solved
in deterministic polynomial time assuming theERH. The research problem 3.2 of
[85] states a related problem on computing nonresidues.

1.1.12 Counting number of zeros

In this section we shall consider effective procedures for counting thenumber of
solutions off ∈ Fq[x1, . . . , xn] overFq

n.

• For a treatment of earlier results see Chapter 6 of [82] and the book of Small [122].

• Karpinski and Luby [68] gave anO(nt3 log(1δ )/ǫ
2) algorithm for counting the

number of zeros off ∈ F2[x1, . . . , xn] with relative error at mostǫ and with prob-
ability at least1− δ, wheret is the number of nonzero terms off .
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• Grigoriev and Karpinski [50] generalized the algorithm of [68] for arbitrary q. The
generalized algorithm has the running time

O

(

nt(t+ 1)(q−1)(1+log q)q log q P (q) log

(

1

δ

)

/ǫ2
)

wheret is the number of terms off andP (q) is the bit cost for multiplication and
powering inFq (which isO(log2 q log log q log log log q)). This paper also gives
an (ǫ-δ)–approximation algorithm for estimating the number of nonzeros off over
Fq whose complexity isO(ntlog q+2P (q) log(1δ )/ǫ

2).

• Huang and Ierardi [56] consider the problem of counting the number ofpoints on a
plane curve given by a homogeneous polynomialf ∈ Fp[x, y, z] which is rational
over the ground fieldFp.

• Some deterministic and probabilistic methods are presented in [42] for counting
and estimating the number of points on curves over finite fields and on their projec-
tions. Letf ∈ Fq[x, y] have degreed, C = { f = 0 } ⊆ F

2
ql

and letA ⊆ Fqm ⊆ Fql .
This algorithm computes the number of points ofC overA inO (̃#A·m·(d log q+
d1.7 log l)) operations inFq (where#A denotes the cardinality ofA).

See the papers [45, 58] for some related algorithms.

1.1.13 Solution of linear systems

• Kaltofen and Pan [65] showed that the solution set of a system ofn linear equations
in n unknowns can be computed in parallel with randomization simultaneously in
poly-logarithmic time inn and with only as many processors as are necessary to
multiply two n× n matrices.

• Coppersmith [27] proposes a method for solving large sparse systems of homoge-
neous linear equations overF2. This algorithm is a modification of an algorithm
due to Wiedemann [129].

• See [74] for practical implementation issues regarding solutions of large sparse
linear systems over finite fields.

1.1.14 Permutation polynomials and functions

• A polynomialf ∈ Fq[x] is called apermutation polynomialif the mappingFq →
Fq given bya 7→ f(a) is bijective. Von zur Gathen [36, 38] gives probabilistic algo-
rithms for checking permutation polynomials in timeO(d log q) (and exceptional
polynomials in timeO(log q · dO(1))).

• Let f = g/h ∈ Fq[x] with gcd(g, h) = 1. Thenf induces a partial mapping
Fq → Fq by a 7→ f(a) ∀a ∈ Fq with h(a) 6= 0. If f is total and bijective, then
f is called apermutation functionoverFq. (In particular, ifh = 1, thenf = g
is a permutation polynomial.) Ma and von zur Gathen [83] consider the problem
of deciding whetherf is a permutation function overFq. They have shown that
this problem is deterministic polynomial time reducible to the problem of factoring
univariate polynomials over finite fields. A deterministic test is described that uses
O(qM(d) log d) operations inFq if q < 64d4 andO(q1/2d2M(d) log q) opera-
tions if q ≥ 64d4 (whered = max(deg g, deg h) andM(d) is the cost of multipli-
cation inFq). The algorithm assumes thatd ≤ charFq. A simple probabilistic test
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is also described for the caseq ≥ 64d4, which usesO(dM(d) log q log ǫ−1) oper-
ations inFq and⌈2d log ǫ−1⌉ random choices whereǫ is the probability of failure
(when the answer is NO).

• The articles [80, 81] by Lidl and Mullen describe a series of open problems related
to permutation polynomials over finite fields. Also see [93, 94, 118, 125] forfurther
open problems and more up-to-date surveys on permutation polynomials.

1.1.15 The discrete logarithm problem

• The old methods, like Shank’s baby-step-giant-step method and Pollard’s rho heu-
ristic, for the computation of discrete logarithms overFq take worst-case expected
running timeO(

√
q) [85]. The Pohlig-Hellman method solves the problem in time

O(
√
p log p), wherep is the largest prime factor ofq− 1. In particular, ifq− 1 has

only small factors, the Pohlig-Hellman method is quite efficient. However in the
worst casep = O(q) and hence this method gives a fully exponential algorithm.

• The index calculus method [85] is currently the best known method for comput-
ing discrete logarithms over finite fields. It takes an expected running time of
L〈q, ω, c〉 = O(exp((c + o(1))(log q)ω(log log q)1−ω) which issubexponentialin
log q, wherec and0 < ω < 1 are constants. Various variants of the index calculus
method are used in practice.

• Coppersmith, Odlyzko and Schroeppel [28] describe three variants ofthe index
calculus method for prime fieldsFp. These methods are called the linear sieve
method, the residue list sieve method and the Gaussian integer method. Each of
these takes timeL〈p, 1/2, 1〉. The same paper also proposes a cubic sieve method
that can solve the problem in timeL〈p, 1/2,

√

α/2〉 for some1/3 6 α < 1/2.
Also see [77] for a note on the cubic sieve method. LaMacchia and Odlyzko[73]
describe an implementation of the linear sieve and the Gaussian integer methods.
Also look at the survey article by McCurley [84].

• Gordon [47] uses number field sieves for computing discrete logarithms over prime
fields. This algorithm has a heuristic expected running time ofL〈p, 1/3, c〉. See
[78] for a good introduction to number field sieves. Weber et. al. [105, 127, 128]
have implemented and proved the practicality of the number field sieve method.
Also see Schirokauer’s paper [104].

• Odlyzko [97] surveys the algorithms for the fieldsF2m . The best algorithm for these
fields is Coppersmith’s algorithm [26]. This takes timeL〈q, 1/3, c〉. No analog of
this algorithm is known for prime fields. Gordon and McCurley [48] successfully
used Coppersmith’s algorithm for the computation of discrete logarithms inF2401

andF2503 .

1.1.16 Elliptic curves over finite fields

• For elliptic curve group law of addition, see [71, 72, 85, 86].

• Schoof [106] gives an algorithm for counting the number of points on ellipticcurves
over finite fields.

• Elliptic curve discrete logarithm problem: Computation of discrete logarithms
in elliptic curves over finite fields seems to be a very difficult problem. A direct
adaptation of the index calculus method for computing elliptic curve discrete log-
arithms is expected to lead to a running timeworsethan that of brute-force search
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[120]. Logarithms in a singular elliptic curve defined overFq with a cusp can be
computed in polynomial time. The discrete logarithm problem for a general el-
liptic curve overFq can be reduced to the discrete logarithm problem in the field
Fqk for a suitablek. However, thisk is quite large in general and the reduction
takes time exponential inlog q [7]. For supersingular elliptic curves, this reduction
can be done in probabilistic polynomial time. Recently, Joseph H. Silverman has
proposed a new method, called thexedni calculus method[119], which, though
originally devised for computing elliptic curve discrete logarithms, can be applied
to finite fields. However, this method has been experimentally and heuristically
shown to be impractical [62]. Koblitz [70] and Miller [91] pointed out that elliptic
curves can be used to build cryptosystems. See the books by Koblitz [71, 72] and
Menezes [85, 86] for good surveys on the elliptic curve discrete logarithm problem
and its application to cryptography.

1.2 About this thesis

In this section, we outline the work reported in this thesis. Our work can be clas-
sified into two major tracks outlined below. We also describe the conventions and
organization of the thesis.

1.2.1 Galois Field Library

We have developed a computational library of functions for a wide range of prob-
lems that are of theoretical and practical interest in finite field computations. We
call this library the Galois Field Library or GFL for short. GFL provides routines
for field arithmetic and for manipulation of univariate polynomials and matrices
over finite fields. It encompasses most of the topics described in the survey of the
last section. To the best of our knowledge, GFL provides the largest variety of
built-in routines among the existing symbolic computation packages (like LiDIA,
NTL and ZEN) that support computations over finite fields. It allows the user to
work on finite fields ofany characteristic andany cardinality. It is based on a
set of routines for doing arbitrary-precision integer arithmetic and is portable, fast
and memory-efficient. We have carried out extensive testing and benchmarking of
GFL. We have used it in our studies of the discrete logarithm problem described
next. We have also used it for testing various cryptographic applications.

1.2.2 Study of the discrete logarithm problem

The security of many cryptographic protocols depends on the difficulty ofsolv-
ing the discrete logarithm problem (DLP) over finite fields [28, 70, 73, 84,97]. We
study the DLP over prime fields and report our implementation results and heuristic
modification schemes for some methods for solving the DLP. We provide some an-
alytic estimates on certain parameters that arise in connection with these methods.

We concentrate our study on three popular methods for solving the DLP. These
are the basic index calculus method, the linear sieve method and the cubic sieve
method. We propose heuristic variants of each of these methods. For the basic
method, these variants lead to speedup factors between 1.5 and 3. For the sieve
methods, our heuristic schemes help us build larger factor bases. The sieve methods
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generate a set of integers deterministically and check these integers for smoothness
over a set of small primes. The analysis of the methods is based on the heuristic as-
sumption that these integers, though generated deterministically, behave as random
integers. We show that this behavior is not random in the sense that these integers
do not follow uniform distribution. We derive the average and maximum of these
integers and plot the distribution of them. Our study shows that the actual behavior
of these integers isbetterthan that of a sample of integers chosen following the uni-
form distribution. We also study the effects of our heuristic modification schemes
on these average values and distributions. Finally, we find estimates of the number
of solutions of a certain congruence that arises in connection with the cubicsieve
method.

1.2.3 The organization of the thesis

The rest of the thesis is organized as follows. In Chapter 2, we describethe basic
conventions and programming paradigms of GFL. We demonstrate the working
of the library through some small examples. Running times of many basic GFL
routines are also provided and compared with those of analogous routinesin some
other existing libraries, namely LiDIA, NTL and ZEN.

Chapter 3 starts with a description of the three methods mentioned above for
solving the DLP. We then calculate expressions for maximum and average values
of the integers checked for smoothness in the sieve methods. We also derive the
formulas for the distribution of these numbers.

Chapter 4 is devoted to a description of the implementation details and heuris-
tic modification schemes for the three methods. In the basic method, our heuristic
scheme reduces the number of discrete exponentiations. We also make trial divi-
sions faster by adopting two strategies: maintaining a list of remainders and sieving.
For the linear sieve method, our heuristic generates a set of integers smalleron an
average than the integers checked for smoothness in the original method. This in-
creases the chance of getting smooth integers, but decreases the ratio ofthe number
of relations to the number of elements in the factor base. Finally for the cubic sieve
method, we increase the sieving interval by a heuristic strategy. This allows us
to build a larger factor base without any significant increase in the runningtime.
In this chapter, we also describe efficient implementation techniques for the sieve
methods and establish the superiority of the cubic sieve method over the linear sieve
method for a special class of primes.

The congruenceX3 ≡ Y 2Z (mod p) plays a major role in the cubic sieve
method. In Chapter 5, we estimate that the total number of solutions of the con-
gruence for a primep subject to the conditionX3 6= Y 2Z is Θ(p2). We also show
that under certain heuristic assumptions, the expected number of solutions of the
congruence with1 6 X,Y, Z 6 pα for 1/3 6 α < 1/2 is Ω(p3α−1). Small scale
experiments reveal that apart from a constant factor our estimate tallies withthe
experimental values quite closely.

In Chapter 6 we conclude the thesis with a summary of the work done and
suggesting the scope for further research in this area.

Each chapter (like this) starts with an introductory note stating the basic theme
discussed in that chapter. The main results are also highlighted there. Some of
the chapters contain appendix sections after the regular sections. We elaborate the
details of certain calculations in these appendices. A quick reference forGFL also
appears in the appendix of Chapter 2.
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2 Galois Field Library

Galois Field Library (GFL) is a portable general-purpose computational library of
functions written in C for working over finite fields. The library provides a compre-
hensive treatment of operations in prime fields and their arbitrary finite extensions.
This chapter illustrates the main features of this library. Running times of many
basic GFL routines are also provided. This library should be useful to application
programmers for developing programs in the areas of public-key cryptography, er-
ror control coding and combinatorial design.

The basic goal for the design of GFL has been to build and make available an
easy-to-use and comprehensive library for computer scientists and mathematicians.
While implementing the library routines, we have put emphasis on generality and
uniform representation of fields and field elements, which most of the other existing
libraries are lacking. At the same time we did not want to sacrifice performance
at the cost of generality. Unfortunately these two goals are sometimes conflicting.
We have tried to make a reasonable trade-off between them. We claim that in spite
of the generality and uniformity of GFL library calls, the performance of GFL is
comparable to (and, in some cases, better than) that of the other existing libraries.

In Section 2.1, we introduce GFL and highlight the salient features of the li-
brary. In Section 2.2, we explain how one can represent various algebraic entities
(integers, fields, polynomials, matrices and so on) in GFL. In Section 2.3, we il-
lustrate by two examples the programming techniques with GFL library calls. The
first example is a toy one that explains manipulation of multi-precision integers,
polynomials and matrices using GFL library calls. In the second example we write
three procedures that implement the ElGamal public-key encryption scheme [32].
A high-level listing of the functions currently provided by GFL appears in Sec-
tion 2.4. In Section 2.5, we tabulate typical timing results for basic field operations
and polynomial arithmetic using GFL. We also compare the timings of the GFL
routines with those of the corresponding routines provided by some other sym-
bolic computation libraries that support working over finite fields. We conclude
this chapter by an appendix that provides a detailed description of the prototypes
of GFL library calls.

2.1 Introduction

Galois Field Library (GFL) is a portable general-purpose computational library of
functions written in C for working over finite fields (also calledGalois fields). GFL
provides routines for field arithmetic and for manipulation of univariate polynomi-
als and matrices over finite fields. The salient features of GFL are as follows.

1. Generality: GFL works on finite fields of any characteristic and any car-
dinality. It allows one to work both on prime fields and on their finite al-
gebraic extensions obtained by adjoining an arbitrary number of (algebraic)
elements. That is, one first creates prime fields and then defines extensions
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of these prime fields, extensions of these extensions, and so on. GFL does
not impose any restriction on the characteristic and extension degree of fi-
nite fields, as long as the computer system can provide sufficient memory for
storing the relevant data.

2. Extensiveness:GFL provides extensive tools for a wide range of problems
that are of computational importance in the theory of finite fields. To the best
of our knowledge, GFL provides the largest number of built-in functions for
working over Galois fields among all the symbolic computation packages.

3. Performance:Use of suitable data structures, fine tuning of basic arithmetic
operations, and use of several implementation tricks such as table look-up
and modularity make GFL a fast and efficient tool.

4. Efficient memory management:GFL uses dynamic arrays for representing
many algebraic data (for example, polynomials, matrices and even multi-
precision integers). The built-in routines of GFL allocate and deallocate
memory associated with these arrays as and when needed. This practice leads
to an efficient management of system memory and relieves the operating
system of garbage collection overheads.

5. Multi-precision support:The field arithmetic of GFL is based on a set of
routines for carrying out arbitrary precision integer arithmetic. However, the
use of these multi-precision routines are much slower compared to the single-
precision routines for fields where both types of routines can be used. To
alleviate this difficulty, GFL routines have been designed to use the single-
precision integer arithmetic routines whenever possible. In particular, for
fields of characteristic 2, GFL provides routines that make extensive use of
bit operations instead of integer arithmetic operations.

6. Portability: GFL can be used on any workstation that has an ANSI C com-
piler. It is totally self-contained in the sense that it is not built as a library
over existing packages. GFL has been built as an easy-to-use tool.

In what follows, we describe the basic conventions and features provided by
GFL. We also demonstrate through some examples the basic paradigms that users
should follow, when they use GFL routines in their programs. This chapter is by
no means a complete reference to GFL. It is intended to give the reader a flavor
of the programming techniques using GFL. For a complete reference manual of
GFL, we refer the reader to [30]. We do not go into the implementation details of
GFL routines (though we sometimes outline the strategy behind them). Nor do we
make an attempt to define algebraic terms and concepts that are well-known and
can be found in text books on algebra [53], linear algebra [54] or finitefields [82,
85, 90, 115]. We define and/or explain terms that we introduce during the course
of the discussion, i.e. those that are specific to GFL. Similarly we assume that the
reader is familiar with the programming language C. In what follows we present
pertinent material in a manner so as to hold the interest of both mathematicians and
computer scientists.

Randomized algorithms play a very important role in computations over finite
fields. This is because for many of the common problems, deterministic polynomial
time algorithms are not known. (By a polynomial time algorithm, we mean one
that runs in time polynomially bounded by the logarithm of the cardinality of the
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field.) In many cases, even if deterministic algorithms are known, they cannot
normally compete in speed with their probabilistic counterparts. GFL implements
the probabilistic versions of the algorithms whenever applicable or useful.

Finite field algorithms find immense applications in the areas of public-key
cryptography, error control coding, combinatorial designs and so on. We expect
that this library would be useful to programmers who develop application packages
in these areas. We plan to distribute GFL as afreewarefor academic and research
purposes.

2.2 Basic data structures

In this section, we describe how GFL represents various algebraic entities neces-
sary for computations over finite fields. We explain only the most important data
types. The appendix at the end of this chapter gives a complete list of thesedata
structures and the library calls. The reference manual [30] provides all the details
left out here.

2.2.1 Multi-precision integers

In typical applications involving finite fields, one uses integers much larger than
the maximum integer representable by along int. For example, along int typically
contains 32 bits in small work-stations or 64 bits in large machines and thus is not
sufficient for storing elements ofFp with p of length 400 bits. A floating point
number (say,double), on the other hand, can represent numbers in this range, but
not to the full precision. (Typically a 64-bitdouble has 52 bits precision.) We,
therefore, need an alternative representation of large integers. The multi-precision
integer library of GFL is designed for this purpose. Multi-precision integers are
special data structures that can store an integer value across severallong ints. We
use dynamic arrays for holding the individual words of a multi-precision integer.

data typempint

typedef struct { /* Multi-precision integer */
char sign; /* ’+’ for positive integers, ’–’ for negative integers, ’ ’ for zero */
int size; /* Number of longs needed to represent the integer */
long *word; /* link to the array of longs holding the integer */

} mpint;

Thus anmpint defines a representation ofsignedintegers ofarbitrary length. The
first field of thestruct indicates the sign of the integer:‘+’, ‘–’ or ‘ ’ (space) accord-
ing as whether the integer it holds is positive, negative or zero. The second field
(size) is the exact number oflong ints necessary to hold the multi-precision integer
and the third field (word) is a pointer to a dynamic array oflong int holding the
fragments of the (absolute value of the) integer.

The usual arithmetic operations (+, –, *, /, % etc.) forlong int can no longer be
applied tompint. GFL provides routinesintSum, intDiff and so on to do arithmetic
with mpint. For efficient implementation of these routines, we use a 25 bits per
long packing (assuming that along consists of 32 bits and adouble has 52 bit
precision). That is, each word of anmpint is adigit in radixR = 225 = 33554432.
Thus the integer
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11223344556677889900998877665544332211

= 8853657R4 + 25051344R3 + 6227312R2 + 31737219R+ 17261491

has the following representation as anmpint (n, say).

n.sign = ’+’;
n.size = 5;
n.word[0] = 17261491;
n.word[1] = 31737219;
n.word[2] = 6227312;
n.word[3] = 25051344;
n.word[4] = 8853657;

The negative of this integer has the same representation except that

n.sign = ’–’;

Finally thempint n representing the special integer 0 (zero) has the following val-
ues for itsstruct components:

Representation of0
n.sign = ’ ’;
n.size = 1;
n.word[0] = 0;

For efficient memory management, GFL routines neverreturn an mpint. An as-
signment is effected by passing to a routine a pointer to thempint where we want
to store the desired result. For example, the call

GFprod(&c, a, b, K);

stores inc thempint obtained by multiplyingmpintsa andb over the fieldK.

2.2.2 Fields

GFL maintains afield descriptorfor every finite field created. This descriptor is of
the data typeGF d (which is essentially ashort int). All references to the fields
created can be done through these descriptors. GFL allows one to work with at
mostMAX FIELDS field descriptors.1

A finite field of prime cardinalityp is represented as an algebraic system where
all arithmetic operations are integer operations modulop. A non-prime field, on the
other hand, cannot exist as a stand-alone field. It has to be defined asan algebraic
extension of an existing field (which might be a prime field or another non–prime
field that has been already defined). Each such algebraic extension is defined by an
irreducible polynomial of given degree over the field being extended. Arithmetic in
the extension field is carried out as polynomial arithmetic in the subfield modulo the
defining irreducible polynomial. In other words, GFL always uses the polynomial
basis representations of field extensions.

1The header filefield.h defines the macroMAX FIELDS as 64.
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There is no limit (other thanMAX FIELDS) on the length of the chain of field
extensionsF1 ⊆ F2 ⊆ F3 ⊆ . . . that one can create using GFL. In addition, it is
possible to define extensions ofFi other thanFi+1, extensions of these extensions,
and so on. It is also admissible to define more than one prime field. In short, GFL
allows one to work with an arbitrarydirected forestof fields.

2.2.3 Field elements

Elements of a finite fieldFq of cardinalityq are represented asintegersbetween0
andq−1. For fields of prime cardinality, this is an obvious representation. For fields
of prime power cardinality, this has the following interpretation. First let us assume
thatFq is an extension of the prime fieldFp defined by a polynomialf(x) ∈ Fp[x]
of degrees (so thatq = ps). Letα be a root off(x) in Fq[x]. Then an elementc ∈
Fq can be uniquely represented asc = cs−1α

s−1+cs−2α
s−2+· · ·+c1α+c0, where

cs−1, cs−2, · · · , c1, c0 ∈ Fp. We may viewc as ans-digit integercs−1cs−2 · · · c1c0
in basep. Thenc is an integer between0 andq − 1. Note that1, α, α2, . . . , αs−1

constitute the polynomial basis ofFq over Fp. Viewed as integers, these basis
elements are respectively1, p, p2, . . . , ps−1.

Next let us extendFq by g(x) ∈ Fq[x] of degreet to get the fieldFqt =
Fq[x]/〈g〉, where〈g〉 represents the ideal inFq[x] generated byg(x). If β is a
root of g(x) in Fqt , then an elementc ∈ Fqt has the unique representationc =
ct−1β

t−1+ ct−2β
t−2+ · · ·+ c1β+ c0, wherect−1, ct−2, · · · , c1, c0 ∈ Fq. We may,

therefore, representc as thet-digit integerct−1ct−2 · · · c1c0 in baseq = ps. Each
ci, on the other hand, can be represented as ans-digit integerci,s−1ci,s−2 · · · ci,1ci,0
in basep, so that

c = (ct−1,s−1α
s−1 + ct−1,s−2α

s−2 + · · ·+ ct−1,1α+ ct−1,0)β
t−1

+ (ct−2,s−1α
s−1 + ct−2,s−2α

s−2 + · · ·+ ct−2,1α+ ct−2,0)β
t−2

+ · · ·
+ (c1,s−1α

s−1 + c1,s−2α
s−2 + · · ·+ c1,1α+ c1,0)β

+ (c0,s−1α
s−1 + c0,s−2α

s−2 + · · ·+ c0,1α+ c0,0)

Hence we may viewc also as thest-digit integerct−1,s−1ct−1,s−2 · · · ct−1,1ct−1,0

ct−2,s−1ct−2,s−2 · · · ct−2,1ct−1,0 · · · c0,s−1c0,s−2 · · · c0,1c0,0 in basep. Thus,c is an
integer between0 andpst−1. Here1, β, β2, . . . , βt−1 form the polynomial basis of
Fqt overFq. GFL represents these basis elements as the integers1, q, q2, . . . , qt−1.
Note also that the elements

1, α, . . . , αs−1, β, βα, . . . , βαs−1, . . . , βt−1, βt−1α, . . . , βt−1αs−1

form a basis ofFpst overFp. This is, in general, not a polynomial basis. We call
it a composed basisof Fpst overFp. GFL represents these basis elements as the
integers1, p, p2, . . . , pst−1 respectively.

It is clear that this representation of finite field elements by integers can be simi-
larly extended to extensions ofFqt , to extensions of these extensions, and so on. To
sum up, for anyq the elements ofFq are represented as integers between0 andq−1
irrespective of the definition ofFq. The interpretation of the integers is, however,
dependent on the definition ofFq. We call this representation of finite field elements
thepacked representationas contrasted with theunpacked representationin which
elements are represented as tuples or polynomials. Before we proceed further, let
us highlight the relative merits and demerits of the packed representation.
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1. The packed representation needs less memory than its unpacked counterpart.

2. The packed representation is a uniform representation of a finite field ele-
ment irrespective of the field to which the element belongs. This means that
if an extensionK of F is defined wherecard(F ) = q, an elementc ∈ K
with 0 6 c 6 q − 1 is automatically an element ofF and has thesamein-
terpretation in bothK andF . For example, the integer0 (resp.1) represents
the additive (resp. multiplicative) identity in any field. There is no overhead
of typecasting elements of one field to those of another. This saves time.

3. Indexing arrays etc. by finite field elements or letting a loop variable run over
finite field elements become easier with this representation of the elements
as integers. This too speeds up computation.

4. Almost all arithmetic operations over finite fields require the individual ele-
ments of the unpacked representation. This means that for every such opera-
tion the operands should first be unpacked and after the operation the result
should be packed and returned. This adds to the cost of arithmetic. This over-
head is negligible during computation of products and powers, whereas for
sums and differences, we cannot neglect the effect of packing and unpacking.
GFL is designed to keep this overhead at a bare minimum.

5. When we are working over fields of characteristic 2, the individual bitsof
the unpacked representation remain “visible” in the sense that packing and
unpacking can be done using only bit operations which are very fast. Inad-
dition, the procedure that implements sum (and difference) over these fields
need not separate the individual bits of the operands. An XOR operationon
a full word processes all the bits in the word simultaneously.

GFL defines the data typeGFelement to represent elements of a finite field.
As we have seen aGFelement should hold an integer value. Indeed, the multi-
precision integer data type defined in the first subsection has beentypedef-ed as
GFelement.

data typeGFelement typedef mpint GFelement;

2.2.4 Polynomials

GFL represents a polynomial as a structure of two elements. The first element is
theexact degreeof the polynomial and the second a pointer to the coefficient array.
The coefficients are of typeGFelement.

data typepoly

typedef struct { /* Data structure for polynomial */
int degree; /* The exact degree */
GFelement *coeff; /* Pointer to the array of coefficients */

} poly;

That is, if f is a variable of typepoly andf.degree = d (d > 0), the coefficient
of xi of f can be accessed asf.coeff[i] for 0 6 i 6 d. In particular,f.coeff[f.degree]
is theleading coefficientof f. Thezero polynomialhas the following representation

The zero polynomial f.degree = MINUS INFINITY; f.coeff = NULL;
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As in the case ofGFelements, the definition of a polynomial does not mention
a field to which the polynomial is intended to belong. When one calls a routine that
does arithmetic on polynomials, one must specify the field (GF d) over which the
coefficient arithmetic should take place.

2.2.5 Vectors and matrices

The following two data structures define the data types for matrices and vectors
over finite fields. As with polynomials, the elements of a matrix or a vector are
dynamically managed by pointers. Similarly, the definitions avoid committing to
particular fields.

data typevector

typedef struct { /* Data structure vector */
int size; /* Vector size */
GFelement *element; /* Pointer to the array of vector elements */

} vector;

data typematrix

typedef struct { /* Data structure matrix */
int row; /* Number of rows */
int col; /* Number of columns */
GFelement **element; /* Pointer to 2-dimensional array of elements */

} matrix;

A vector in this paradigm is neither a row vector nor a column vector. It is just
an array ofGFelement. It is up to the users how they would like to view it. In
some cases one may usevector as an ordered list (tuple) or even as an unordered
set. There are certain routines, however, where GFL assumes specific structure on
their vector arguments. Most notably, the linear equation solving routines assume
that avector is a column vector. At any rate, we encourage GFL users to treat a
vector as acolumn vector.

Note that GFL uses dynamic arrays for representing various algebraic data
(mpint, poly, vector andmatrix and many other which we do not mention here).
The advantage of this representation over the representation by static arrays is that
in the former representation passing data to subroutines is much faster than that in
the latter. This is because with dynamic arrays only a pointer to the coefficientarray
need to be passed instead of the entire array. Moreover, use of dynamicarrays leads
to more efficient use of memory, since the pointers can be allocated only as much
memory as is needed to hold the array. On the other hand, this representationmakes
programming a little difficult. One has to be careful while allocating and freeing
memory associated with such data, in particular, inside one’s own subroutines.

2.3 Programming paradigms

In the last section we have seen how we can represent various algebraic entities
using GFL. We now demonstrate how we can write programs that use these data
structures. We explain the major steps that the programmer should follow while
developing his/her own application programs using GFL. We explain the program-
ming process by means of two examples. Before we do so, we make a few general
remarks about GFL library calls.

19



1. Names of the GFL built-in functions have been chosen carefully to make
them self-explanatory. For example, we will later see that the GFL routine
findRandomIrrPoly finds a random irreducible polynomial of a given degree
over a given field.

2. In all GFL functions a uniform convention for sequencing input and output
parameters has been adopted. GFL routines often return scalar values like
long or char. They never return structures with dynamic arrays.2 For ex-
ample,findRandomIrrPoly should compute apoly. Since this data structure
contains a dynamic array, it is not returned by the routine. Instead one has to
pass a pointer to apoly as thefirst argument to store the irreducible polyno-
mial. In general, the pointers to the data that we need to compute are passed
at the beginning of the argument list. Next come the operands followed by
relevant field descriptors. Certain flags are sometimes passed at the end of
the parameter list. Here is an example. The routine

polyDiv(&q, &r, f, g, K);

performs polynomial division off by g over the fieldK. The quotient poly-
nomial is stored inq and the remainder inr. If one is interested in only
one of the output polynomials (say, the remainder), one is allowed to pass
the NULL pointer as the other argument. Most other routines do not allow
NULL pointers as arguments.

3. In many functions a choice of algorithms is made possible through an input
argument. We will see an example later: the routinefindRoot finds the roots
of a polynomial. The algorithm that it selects is dependent on an input pa-
rameter. Certain values of the parameter allow GFL to take the decision by
itself.

4. Many GFL routines need a source of random integers. These integers are
obtained using the built-in random number generator provided in the C li-
brary. In most of the cases, the user is given an option to seed the random
number generator. Special flags should be supplied to the routines to effect
this. Typical choices of seeding are: do not seed, use current time as seed,
or use the value of a specific pre-defined variable. We leave the choice tothe
programmer as to what is desirable: repeatability or randomness.

5. Every GFL function does automatic memory management. That is, when-
ever a dynamic array is to be reallocated memory, the routine first frees the
memory (if any) allocated to the dynamic array and then reassigns memory
to the array. The user need not bother about it. But when one writes one’s
own subroutines, we encourage one to follow the same strategy. This prac-
tice allows GFL programs to hold just the amount of memory they need for
the computation, and thereby reduces garbage collection overheads of the
operating system.

2.3.1 Example 1

We start with the following example: computation of the characteristic roots of a
matrix with proper multiplicities. We develop the detailed program step by step.

2The initialization routines are an exception whereNULL pointers are returned.
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Include header files

One should first include GFL header files to tell the C compiler about the new data
structures and external procedure declarations defined in GFL. One may choose
only the individual GFL header files that are needed for the particular program. In
that case the user should know which data structures and functions are defined in
which files. The GFL reference manual [30] describes these in details. At any rate,
the easier way to include the necessary files is to include all the files – both the ones
we need in our program and the ones that we do not.

Include all header files #include <stdio.h> /* C standard io header file */
#include <GFL/all.h> /* Include all GFL header files */

Initialize GFL

This is a very important step. Any program that uses GFL must do this before
doing anything else. This step carries out certain book-keeping tasks and sets up
some tables for later use. If the library is not initialized, one would get bizarre
results like unwelcome halts, nasty segmentation faults and so on. Initialization of
the GFL kit is rather easy. One should just call

The initialization routine GFLinitialize();

Declare variables

We first decide what data we need to represent. We then declare them using the
user-defined data types introduced in the last section. In our example, weneed a
few field descriptors (of typeGF d) for referring to various fields, amatrix whose
characteristic roots will be calculated, apoly to hold the characteristic polynomial
of this matrix, avector to store the roots of this polynomial, and some other auxil-
iary variables of typelong.

Variable declarations

GF d F, K, L; /* The field descriptors */
poly f; /* Polynomials */
matrix M; /* Matrices */
vector v; /* Vectors */
mpint p; /* Integers */
long i, n; /* Auxiliary variables */

Initialize variables

Any GFL structure that has dynamic arrays must first be initialized before it can be
used. In this example, the variablesf, M, v, p contain dynamic arrays. These arrays
are initialized toNULL as follows:

Variable initialization f = newPoly(); M = newMatrix(); v = newVector(); p = newInt();

Alternatively one may explicitly make the pointers in these structuresNULL as
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Explicit initialization f.coeff = NULL; M.element = NULL; v.element = NULL; p.word = NULL;

It is to be noted that this explicit initialization is a little bit more efficient than call-
ing the initialization routines likenewInt, newPoly etc. At any rate, this is not
really an important issue for the user to ponder too much. Instead we emphasize
that whenever a new variable with dynamic arrays is declared (as global variables,
inside procedures or loops, or even inside another variable, e.g. in a structure con-
taining polynomials or matrices etc.), it is mandatory to initialize the variable be-
fore anything is done with it. Many GFL routines free the memory associated with
dynamic arrays (unless they areNULL) before they are assigned new memory. An
uninitialized non-NULL value can, therefore, lead to run-time hazards.

Create fields

Let’s say that we want to compute the characteristic values of a matrix overF34 in
the extension fieldF312 . To this end, we first create the prime field of characteristic
3. Then we find a random irreducible polynomial of degree 4 overF3 and attach
a root of this polynomial toF3 in order to get the extension fieldF34 . In a similar
fashion we extendF34 by an irreducible polynomial of degree3 overF34 . This
gives usF312 . All these can be done very simply by a few library calls.

Create fields

longToInt(&p, 3); /* Characteristic of the fields */
F = createPrimeGF(p); /* Create the prime field of characteristic 3 */
findRandomIrrPoly(&f, F, 4, 1);

/* Find a random irreducible polynomial of degree 4 over F */
K = createExtGF(F, f); /* Extend F by f */
findRandomIrrPoly(&f, K, 3, 1);

/* Find a random irreducible polynomial of degree 3 over K */
L = createExtGF(K, f); /* Extend K by f */

Each call tocreatePrimeGF or createExtGF returns a field descriptor (GF d)
that we shall use for all future references to the respective fields. The last argument
of findRandomIrrPoly is a directive to the random irreducible polynomial genera-
tor routine on how to seed the random number generator – 0 means “don’t seed”, 1
means “use current time as seed” and 2 means “read the value ofIRR SEED VAL
as seed”. The routinefindRandomIrrPoly returns a value (of data typeint) that we
choose to ignore here. In factfindRandomIrrPoly generates random monic poly-
nomials of the given degree one after another and checks them for irreducibility.
As soon as it finds one irreducible polynomial, it returns the total number of poly-
nomials checked before and including this irreducible polynomial. The irreducible
polynomial is stored for future use in thepoly pointed to by the first argument.

Do computations

We are now ready to carry out the actual computations. First we have to assign a
matrix to the variableM. There are many ways in which this can be done. For the
time being, we read it fromstdin in an interactive fashion.

readMatrix(&M);
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This asks the user for the numbers of rows and columns ofM and then the elements
in the row-major order. We intend to letM store a matrix overK, i.e., F34 . As
explained in the previous section, the elements ofF34 are represented as integers
between0 and34− 1 = 80 (both inclusive). So we must input a value in this range
for every element ofM. SincereadMatrix does not know in advance how we are
going to interpret these values, it does not complain if we supply element values not
in the above range. The responsibility of entering meaningful values is, therefore,
on the user.

In the next step we compute the characteristic polynomial ofM. This is also
easy. GFL provides the built-in procedurecharPoly to do this.

charPoly(&f, M, K);

We then find all the roots off in the extensionL. We call another built-in routine
findRoot to do this.

n = findRoot(&v, f, L, 0);

The roots are stored as elements in the vectorv. The number of roots can be found
from v.size or the value returned byfindRoot (assigned ton above). The last
argument tofindRoot tells findRoot which algorithm to use: (1) the exhaustive
search algorithm or (2) the Berlekamp-Rabin algorithm [11] or (3) Berlekamp’s
trace algorithm [11]. Any other value passed as this argument (say, 0 asin our case)
will allow findRoot to take the decision itself. The decision criterion goes like this:
If the cardinality ofL is less thanSMALL Q BOUND3, call the exhaustive search
algorithm, else if the characteristic ofL is 2, call Berlekamp’s trace algorithm, else
call the Berlekamp-Rabin algorithm. One may call these routines explicitly as well
(findRootES, findRootBR andfindRootBT). We won’t go into further details of
the syntax of these individual calls.

Now we have all the characteristic roots ofM in the extension fieldL. What is
left is to compute the multiplicities of these characteristic roots. One can do it in
several ways. For example, instead of computing the roots off, we can factorizef
and read the multiplicities from those of the linear factors off. Another possibility
is to dividef successively byx− a for each characteristic roota of f till a non-zero
remainder is found. We follow the second approach, because it illustrateshow one
can do arithmetic on polynomials. We need three auxiliary polynomialsg, rem and
quot.

3SMALL Q BOUND is a macro defined inroot.h, that has the default value 100.
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poly g, rem, quot;
mpint pmo;

/* Initialize new variables */
g.coeff = rem.coeff = quot.coeff = NULL; pmo.word = NULL;

/* set pmo to p− 1 */
copyInt(&pmo, p); intMM(&pmo);

/* set g to be a polynomial of degree 1 */
g.degree = 1;
g.coeff = (GFelement *)malloc(2 * sizeof(GFelement));
g.coeff[0].word = g.coeff[1].word = NULL;
longToInt(&g.coeff[1], 1);

/* loop for each characteristic root of f */
for (i=0; i<n; i++) {

int mul;

/* Set the constant term of g to –a, where a is the ith characteristic root of f */
/* Note that −a = (−1)a, and −1 has the representation p− 1 in F, K and L */

GFprod(&g.coeff[0], v.element[i], pmo, L);
/* GFprod returns in the first argument the product of its second and

third arguments considered as elements of the field supplied as the
fourth argument */

mul = 0; /* Initialize multiplicity to 0 */

do {
polyDiv(&quot, &rem, f, g, L);
/* Divide f by g and store the quotient in quot and remainder in rem */
/* L is the field where the coefficient arithmetic takes place */

if (zeroPoly(rem)) {
/* If the remainder is zero, that is,

if (rem.degree == MINUS INFINITY) */
mul++; /* Increase multiplicity by 1 */
copyPoly(&f, quot); /* Store the quotient in f */

}

} while (zeroPoly(rem));

printf(”Multiplicity of ”); writeInt(v.element[i], stdout); printf(” is %d\n”, mul);
}

The above example clearly illustrates how easy it is to do the desired task by
simple library calls. Before we go to the next topic, we mention that an assignment
of the form

f = quot;

should always be avoided, because such an assignment does not makea verbatim
copy of the coefficient array ofquot to that off. Instead, it copies thecoeff pointer
of quot to that off. This means that after the execution of the statement, thecoeff
pointers of bothquot and f point to the same memory location, so that ifquot
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coefficients are changed (or ifquot.coeff is free’d), that change will be reflected in
f also (and vice versa). This is undesirable. Moreover, such assignments might lead
to fatal run-time errors. We ask the users to use the copying routines (copyPoly for
polynomials,copyMatrix for matrices, and so on) in such cases.

Wind up

Now that our program has printed the characteristic roots of the input matrixto-
gether with their multiplicities, we may choose to exit from the program. A better
approach is first to free the memory allocated to thecoeff arrays ofpoly, theele-
ment arrays ofmatrix andvector and so on. These can be done by explicit calls to
free. Alternatively, the following routines can be used.

Free memory
destroyPoly(&f); destroyPoly(&g); destroyPoly(&quot); destroyPoly(&rem);
destroyMatrix(&M); destroyVector(&v); destroyInt(&p); destroyInt(&pmo);

In general, it is always a good practice to free the memory allocated to dynamic
arrays whenever the contents of the memory are no longer needed. This need not
be done only at the very end of the programs. In our example, we might call
destroyMatrix(&M) immediately after the characteristic polynomial ofM is calcu-
lated. We don’t need the elements ofM after this step.

2.3.2 Example 2

In the second example, we illustrate how the user can write his/her own subroutines
using GFL library calls. We develop a finite field cryptosystem proposed by ElGa-
mal [32]. We implement three basic subroutines for the cryptosystem using GFL
calls. Suppose that A (Alice) wants to send a message to B (Bob) over a channel
where a third party C (Carol) may intercept A’s messages and read the secret infor-
mation meant for B only. To befool C, A and B choose a large finite fieldK (F2401

or F2503 , for example) and compute a primitive elementg in that field.4 B then
selects a random integerb and computesl = gb. B publishes the public keyl and
keeps the private keyb a secret. This process of key generation can be implemented
as follows.

Generate key

void makekey ( GFelement *b , GFelement *l , GFelement g , GF d K ) {
mpint qmo;

qmo = newInt(); /* Initialize qmo */
cardinality(&qmo, K); /* Store in qmo the cardinality of K */
intMM(&qmo); /* qmo – – */
randRes(b, qmo); /* Store at *b a random non-negative integer less

than qmo */
GFexp(l, g, *b, K); /* Calculate l = gb in K */
destroyInt(&qmo); /* Return to system the memory held by qmo */

}

4A random primitive element in a finite field can be obtained by the call

findPrimElement(&g, K, 0);

where the last argument is similar to that infindRandomIrrPoly, i.e. it tellsfindPrimElement how
to seed the random number generator.
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The call ofrandRes in the above procedure setsb to a random nonnegative integer
less than the cardinality of the fieldK minus 1. At the next step the powergb is
computed and saved in*l by the callGFexp. Note that in an actual implementation,
one should discard trivial values ofb, say 0 or 1. We do not indicate this step here
for the sake of simplicity. Note also how the temporarympint qmo is initialized,
used and then destroyed in the routine. After B calls this subroutine as

makekey(&b, &l, g, K);

thempint b holds B’s private key and thempint l holds his public key.

Now A wants to send an elementm ∈ K to B. She carries out the following
three steps to encrypt her message.

1. choose a random integert and computese1 = gt, where0 < t < q − 1, q =
the cardinality ofK.

2. read B’s public key (l) and computese2 = mlt.

3. send the pair(e1, e2) to B.

A can use the following subroutine for the purpose of encryption.

Encryption routine

void encrypt ( GFelement *e1 , GFelement *e2 , GFelement g , GFelement m ,
GFelement l , GF d K ) {

GFelement t, qmo;

t = newInt(); qmo = newInt(); /* Initialize mpint */
cardinality(&qmo, K); intMM(&qmo); /* Set qmo to q – 1 */
do randRes(&t, qmo); while (zeroInt(t));

/* Generate a random integer between 1 and q − 2 */
GFexp(e1, g, t, K); /* First part e1(= gt) of encrypted message */
GFexp(e2, l, t, K); /* Compute lt */
GFprod(e2, *e2, m, K); /* Second part e2(= mlt) of encrypted message */
destroyInt(&t); /* Free memory */
destroyInt(&qmo); /* Free memory */

}

A now sendse1 ande2 to B. B recovers the messagem from these values using his
private keyb in the following way. We havee1 = gt ande2 = mlt = mgbt, so that
m = e2 · g−bt = e2 · e−b

1 . The subroutine for decryption is, thus:

Decryption routine

void decrypt ( GFelement *m , GFelement e1 , GFelement e2 , GFelement b ,
GF d K ) {

GFexp(m, e1, b, K); /* Compute eb
1

*/
GFinv(m, e1, K); /* Compute (eb

1
)−1 = e−b

1
*/

GFprod(m, *m, e2, K); /* Compute e2 · e−b
1

*/
}

Sinceeq−1
1 = 1 in K if e1 6= 0, we can calculatee−b

1 also ase−b
1 = eq−1−b

1 . We
leave out the details of the implementation.

Now let’s talk about C. She has knowledge ofK, g andl, but not ofb. Suppose
C getse1 ande2 and wants to decipher the original messagem. She must first
calculateb which is the discrete logarithm ofl in K with respect tog. If she goes
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through the GFL manual carefully, she will be happy to see that GFL provides
built-in routines for the computation of discrete logs in finite fields. Similar to the
above procedures, it is very easy to write a routine for Carol, that usesthese GFL
library calls. But the bad news for Carol is that this algorithm does not runin time
polynomially bounded by the size ofK. Indeed it issub-exponential, so that if
K is sufficiently large (say,F2503), C cannot compute discrete logarithms inK in
feasible time. But C must not blame the designers of GFL – at present no better
algorithms are known for computing discrete logs in finite fields. And this is why
ElGamal’s scheme of encryption is secure.

2.4 Functions provided

In this section we briefly describe what functions are provided by GFL. We also
mention the algorithms implemented for these functions. The details of the syn-
taxes of the library calls will be listed in Appendix A.

2.4.1 Integer functions

We have demonstrated how GFL represents signed arbitrary-precision integers.
We also stated that there are built-in procedures to do arithmetic with these multi-
precision integers. Multiplying or dividing a multi-precision integer by anothercan
be coded very efficiently when the second operand is a power of 2. Special GFL
routines take care of these situations. These routines find extensive usefor fields
of characteristic 2. In addition, these functions can be used for doing left and right
shift operations on multi-precision integers. Separate (and a tiny bit more efficient)
routines are also provided for (in-place) shift operations.

Other integer functions include checking and generating prime numbers, com-
puting integer factorization, integer square root, integer gcd, modular exponentia-
tion etc.

Here we mention the multiplication algorithm we have used. We have stated
previously that our 25 bits/long packing of multi-precision integers is motivated
by efficiency considerations. We now explain how this helps us write the multi-
plication routine very efficiently. Let us assume that we are working withlong of
size 32 bits anddouble of size 64 bits. We also assume that the data typedouble
has 52 bit precision for the mantissa. These are the default values on a wide range
of (small) work-stations available nowadays. For large machines (with say 64 bit
long) our strategy has to be modified.

We have seen that eachlong in the word array of anmpint stores (at most)
25 bits of a multi-precision integer. For the multiplication routine one needs to
compute the word-by-word product of theselong values. The result can be at most
50 bits long and hence does not fit in a singlelong. Routines at the assembly-
language level can take care of the carry. Our implementation does not usethis
strategy, because the assembler macros are very much machine-dependent. So the
best strategy is to usedouble multiplication.5 Since ourdouble has 52 bit pre-
cision, multiplying two 25-bitlong values (after typecasting todouble) does not
lead to an overflow in the mantissa. Note that with our assumption ofdouble, we

5We have also tried using the data structurelong long, which is 64-bit long, butdouble multipli-
cation seems faster and leads to more efficient codes.
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could have opted for 26 bits/long packing. But as we will see now, such a packing
renders our multiplication routine erroneous.

Let’s say that we want to multiplya = am−1R
m−1 + . . . + a1R + a0 with

b = bn−1R
n−1 + . . .+ b1R + b0 (whereR = 225 is the radix). The result is to be

stored inc = cr−1R
r−1 + . . .+ c1R+ c0, wherer = m+ n orm+ n− 1. In the

following code snippet, we denoteR by RADIX, R2 = 250 by RADIX SQR and
R−1 = 2−25 asRADIX INV. Note that ourdouble can store each of these three
quantities with full precision. For simplicity, we denoteai by a[i] (rather than by
a.word[i]). We assume thata andb are arrays oflong, whereasc is an array of
double. The variablecarry is of data typelong.

GFL’s multiplication

/* Initialize c to 0 */
for (i=0; i<m+n; i++) c[i] = 0;

/* Multiplication loop */
for (i=0; i<m; i++) {

for (j=0; j<n; j++) {
c[i+j] += (double)(a[i]) * (double)(b[j]);
if (c[i+j] >= RADIX SQR) {

c[i+j] −= RADIX SQR;
c[i+j+2] += 1;

}
}

}

/* Normalize the intermediate result */
carry = 0;
for (i=0; i<m+n; i++) {

c[i] += (double)(carry);
carry = (long)(c[i] * RADIX INV);
c[i] −= (double)(carry) * (double)RADIX;

}

In the multiplication loop of the above code, eachci+j is kept at a value6 R2.
With this trick, each word-by-word multiplication is associated with adouble mul-
tiplication, adouble addition and possibly one moredouble addition and one more
double subtraction. We note that if we had 26 bits/long packing, the instruction

c[i+j] += (double)(a[i]) * (double)(b[j]);

might lead to overflow in the 52-bit mantissa ofc[i+j]. On the other hand, our 25
bits/long packing leads to no such situation.

Now let’s discuss the usual method of multiplication, where one keepsci+j

normalized at values6 R. In that case, each word-by-word multiplication would
require onelong and twodouble multiplications and several additions and sub-
tractions as shown in the next code snippet. Here all variables used are of data type
long (including the array elementsc[i]). In the code, we make the assumption that
when the product of twolong values exceeds the range oflong, the carry is ne-
glected and the outputlong holds the lowest 32 bits of the product. This behavior
is true in most modern machines, but there may be exceptions. The operator& used
in the code stands for the bitwise ‘AND’ operation.

It is clear how GFL’s strategy speeds up the multiplication loop. But the GFL
routine has the additional overhead of normalizing the elements of the arrayc to

28



Usual multiplication

/* Multiplication loop */
for (i=0; i<m; i++) {

for (j=0; j<n; j++) {
low = (a[i] * b[j]) & (RADIX − 1);
high = (long)(0.25 + RADIX INV * ((double)(a[i]) * (double)(b[j])

− (double)(low)));
c[i+j] += low;
if (c[i+j] >= RADIX) {

c[i+j] &= (RADIX − 1);
c[i+j+1]++;

}
c[i+j+1] += high;
if (c[i+j+1] >= RADIX) {

c[i+j+1] &= (RADIX − 1);
c[i+j+2]++;

}
}

}

the digits in radixR, after the word-wise multiplications are done. This, however,
can be neglected, since this normalization process takes timeO(m + n) which
is smaller (both theoretically and practically) than theO(mn) time taken by the
multiplication loop.

GFL’s multiplication routine as presented so far can be further optimized. For
example, the typecasting (todouble) of a[i] andb[j] can be done outside the loop.
This saves some time. In addition, we can use three multiplications for computing
the four products ofai andai+1 with bj andbj+1 for eveni andj. This can be done
using Karatsuba’s strategy by computingai+1bj+1, aibj andaibj+1 + ai+1bj =
ai+1bj+1 + aibj − (ai+1 − ai)(bj+1 − bj). The detailed code is shown in the next
page, where it is assumed thatm andn are even.

We finally note that GFL’s multiplication routine with the Karatsuba improve-
ment can be appliedmutatis mutandisto squaring. The only difference is that for
squaring the variablemid can be calculated more efficiently as:

mid = (double)(a[i] << 1) * (double)(a[j]);

Here<< denotes left shift. Note that in the case of squaringb = a. The actual
implementation of the squaring routine in GFL uses further optimizations. We
leave out the details here.

In order to see that our multiplication algorithm is efficient, we here mention
the timings of the multiplication of a 2000-bit integer with a 1000-bit one using our
routine and using A. K. Lenstra’s long integer package LIP [76] (Version 1.1). On
a 200 MHz Pentium processor running Linux, our routine takes about 500 µs for
the above product, whereas LIP takes about 650µs. Note that LIP uses Karatsuba
multiplication (on the entire integer) which is known to be faster than the quadratic
algorithm described above (at least theoretically). We get faster resultswith the
quadratic algorithm at a size of the order of 1000 bits.

For multi-precision division we have implemented the algorithm described in
Knuth’s book [69, Section 4.3]. GFL provides routines for both ordinary gcd
(i.e. gcd by successive division) and binary gcd. It has been observed that for
integers of length around 1000 bits, the binary gcd is faster by a factor ofaround
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Karatsuba improvement

/* Multiplication loop */
for (i=0; i<m; i+=2) {

for (j=0; j<n; j+=2) {
high = (double)(a[i+1]) * (double)(b[j+1]);
low = (double)(a[i]) * (double)(b[j]);
mid = high + low − (double)(a[i+1] − a[i]) * (double)(b[j+1] − b[j]);
c[i+j] += low;
if (c[i+j] >= RADIX SQR) {

c[i+j] −= RADIX SQR;
c[i+j+2] += 1;

}
if (mid >= RADIX SQR) {

mid −= RADIX SQR;
c[i+j+3] += 1;

}
c[i+j+1] += mid;
if (c[i+j+1] >= RADIX SQR) {

c[i+j+1] −= RADIX SQR;
c[i+j+3] += 1;

}
c[i+j+2] += high;
if (c[i+j+2] >= RADIX SQR) {

c[i+j+2] −= RADIX SQR;
c[i+j+4] += 1;

}
}

}

6 compared to the other variant. Routines for extended gcd calculations arealso
provided. For integer square root we have used the algorithm described in Cohen’s
book [25, Chapter 1]. Miller-Rabin’s improved test is implemented for primality
testing and the quadratic sieve algorithm is used for integer factorization.

Since we have mentioned A. K. Lenstra’s long integer package in connection
with the multiplication algorithm, it is worthwhile to compare the performance
of GFL routines with that of the LIP routines for other integer operations too.
Table 2.1 provides the relevant details. We used the same operands (a random 2000
bit integer and a random 1000 bit integer) as discussed before. In the table ‘Add’,
‘Sub’, ‘Mul’, ‘Sqr’, ‘Div’, ‘Lsh’, ‘Rsh’ and ‘GCD’ respectively stand for addition,
subtraction, multiplication, squaring, division (with remainder), left shift (by 1000
bits), right shift (by 1000 bits) and binary gcd. The operations Sqr, Lsh and Rsh are
applied on the 2000 bit integer.

We note that though our multiplication is faster than that in LIP, all other rou-
tines are slower in GFL compared to LIP. This is partly because LIP uses a 30
bits/long packing, whereas GFL packs at 25 bits/long. We are unable to apply the
strategy we used for ‘Mul’ to the other routines (except ‘Sqr’). This accounts for a
slowing down factor of30/25 = 1.2 for additive routines and of(30/25)2 = 1.44
for multiplicative routines.

2.4.2 Field functions

We have seen examples of creating and representing finite fields of arbitrarily large
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Table 2.1: Timings (inµs) of basic multi-precision integer operations
Operation Add Sub Mul Sqr∗ Div Lsh∗ Rsh∗ GCD
GFL 18 23 490 690 815 18 11 5,004
LIP 7.5 6.7 645 590 440 12 6.8 3,775

∗ for the 2000 bit integer

cardinalities. We have also seen examples of arithmetic routines for computing
sum, difference, product, inverse, power etc. in finite fields. At present, Karatsuba
or FFT-based techniques are not employed for field multiplication. The use of
logarithm tables to speed up field arithmetic is implemented and is discussed in
detail in Section 2.4.5.

In addition to the field arithmetic, GFL provides routines for the following
operations on field elements.

1. Computing traces and norms:The repeated doubling algorithms proposed
by von zur Gathen and Shoup [43] have been implemented.

2. Computing and checking normal elements:In order to check ifα ∈ Fqs

generates a normal basis overFq, we compute the gcd of the polynomials
αqs−1

xs−1 + . . . + αqx + α andxs − 1. The elementα is normal over
Fq if and only if the above gcd is 1 (See [85, Theorem 4.5]). In order to
construct (random) normal elements inFqs overFq, three algorithms have
been implemented. The first algorithm generatesα ∈ Fqs randomly and
checks ifα is normal overFq. The second algorithm is also a randomized one
and is based on a lemma due to Artin [85, Theorem 4.23]. This algorithm is
effective, ifq > 2s(s−1). The last algorithm implemented is Bach, Driscoll
and Shallit’s deterministic factor refinement algorithm [6].

3. Computing and checking primitive elements:In order to check if an element
α ∈ Fq

∗ is primitive, we use factorization of the integerq − 1. If q − 1 is
prime, thenα is primitive. Otherwise, letq − 1 = pβ1

1 . . . pβr
r be the prime

factorization ofq − 1. Thenα is primitive, if and only ifα
q−1
pi 6= 1 for all

i = 1, . . . , r. In order to find a primitive element ofFq
∗, we generate elements

of Fq
∗ randomly and check them for primitivity.

4. Computing transformation matrices between different bases of finite fields:
Let α0, . . . , αs−1 constitute a basis ofFqs overFq. We first express theαi

in the polynomial (or composed) basis ofFqs overFq. We then use linear
algebra techniques to compute the transformation matrix.

5. Computing isomorphism between two fields of the same cardinality (and of
different representation):Let K1 andK2 be two representations of the fi-
nite field of cardinalityps. In order to compute the matrix that transforms
coordinates of an element ofα ∈ K1 in the composed basis ofFps overFp

to those of an isomorphic image ofα in K2, we find out a polynomial basis
of K1 overFp and then compute the transformation matrices between this
polynomial basis and the composed bases ofK1 andK2 overFp.

6. Computing discrete logarithms with respect to primitive elements:Currently
only the basic index calculus method [85] has been fully implemented. For
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prime fields, heuristic B1 (discussed in Chapter 4) is employed. For fields
F2s , the improvement due to Blake et. al. [14] has been incorporated. The
linear and cubic sieve methods [28] for prime fields have been partially im-
plemented.

2.4.3 Polynomial functions

GFL’s polynomial arithmetic is based on the standard high-school techniques.
Karatsuba and FFT-based techniques are not yet incorporated. Apart from stan-
dard arithmetic functions, GFL provides many utilities for univariate polynomials
over finite fields. These include

1. Computing minimal polynomials:We compute the minimal polynomial of
α ∈ Fqs overFq as(x − α)(x − αq) . . . (x − αqd−1

), whered is the least
positive integer for whichαqd = α. (Note thatd|s.)

2. Computing irreducible polynomials and checking polynomials for irredu-
cibility: The check of [85, Theorem 3.28] is used for testing irreducibility
of polynomials. In order to compute random irreducible polynomials over
a finite fieldFq, we generate monic polynomials with coefficients randomly
chosen fromFq and check if these polynomials are irreducible overFq.

3. Computing characteristic polynomials of matrices, companion matrices of
polynomials, resultants and discriminants of polynomials:Standard tech-
niques from linear algebra are used. (See, for example, [25, Chapters 2,3].)

4. Factorizing polynomials:The well-known route comprising of square-free
factorization, distinct-degree factorization, equal-degree factorizationin suc-
cession is followed as in [43]. However, the latest development in this area,
namely Kaltofen and Shoup’s range decomposition strategy [66], has not
been implemented.

5. Finding roots of polynomials:Three algorithms are implemented for finding
roots of a polynomialf(x) over a finite fieldFq. The exhaustive search algo-
rithm computesf(α) for eachα ∈ Fq and returns those values ofα for which
f(α) = 0. This is a reasonable strategy, ifq is small. The Berlekamp-Rabin
algorithm (applicable for fields of odd characteristics only) and Berlekamp’s
trace algorithm are two powerful randomized algorithms [11] for root finding
and have been incorporated in GFL.

6. Checking permutation polynomials:The von zur Gathen test for permutation
polynomials [36, 38] is applied.

7. Computing affine multiples of polynomials:The coefficients of the least
affine multiple of a polynomial are calculated by solving a homogeneous
over-specified system of linear equations [85, Section 2.9].

2.4.4 Linear algebra functions

GFL provides all basic arithmetic routines on matrices and vectors over finite
fields. In addition it provides routines for computing ranks, determinants and
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LUP decompositions of square matrices. Routines for solving systems of linear
equations (including cases of over- and under-specified systems) arealso avail-
able. Well-known algorithms of linear algebra have been implemented. Fast matrix
multiplication techniques are not used. Special routines for solving sparselinear
systems [74] have also not been implemented yet.

2.4.5 Speeding up field arithmetic

Primitive elements are very useful for speeding up arithmetic in finite fields. To
see how let’s assume that the fieldsFp = F ⊆ K = Fps are defined. Letg be
a primitive element ofK. For arbitrary elementsa, b ∈ K, a, b 6= 0, let u andv
be the discrete logarithms ofa andb respectively with respect tog, that isa = gu

andb = gv. Thenu andv are integers unique modulops − 1. Then the product
a · b ∈ K is gw wherew ≡ u + v (mod ps − 1). Now let’s assume thatv > u.
Thena+ b = gu(1 + gv−u). If we know the discrete logarithm of1 + gv−u = gv

′

(say), then we can calculatea+ b = gw
′
wherew′ ≡ u+ v′ (mod ps − 1).

In general, it is computationally very difficult to find discrete logarithms in a
finite field. Though GFL provides routines for computing discrete logarithms in
finite fields, use of these routines does not speed up finite field arithmetic. Instead
GFL provides facilities for creating and using tables of powers of a primitive el-
ement and discrete logs with respect to the same primitive element. These tables
are used for computing products and inverses inK. If one wants to use primitive
elements to accelerate sums (and differences) too, one needs another table called
Zech’s logarithm table[59] that stores for eachu the discrete log of1 + gu (with
respect tog, of course).

Each of these three tables must reside in the main memory and therefore their
sizes are limited by the amount of RAM provided by the system. With current-
day technology it is possible even with small personal computers to store tables
for fields as large as216. For a larger field that has a subfield ofsmallcardinality,
we recommend the following strategy. Suppose we want to work overF3100 . We
create the tower of field extensionsF ⊆ K ⊆ L, whereF = F3, K = F310 and
L = F3100 . We then create primitive power, discrete log and Zech logarithm tables
for the intermediate fieldK = F310 . This speeds up arithmetic considerably in both
K andL.

2.4.6 Fields of small characteristics

It is observed that the built-in arithmetic routines of C for single-precision integers
are much faster than the multi-precision routines for the same integers. Therefore,
when the characteristic of the field (over which we are working) is small, it is
preferable to use the single-precision routines to the multi-precision ones. This
may lead to speed-ups of the order of as high as 10. Special GFL routines have
been written to exploit this phenomenon. In addition to this, GFL provides routines
for certain field operations, that work nicely forFps (p odd), ifs(p−1)2 is less than
the largest positive integer representable by asigned long. If, on the other hand,
s(p − 1)2 is larger than this value, the routines might causelong overflow. Hence
these routines are termedunsafe. When unsafe routines apply, they are reasonably
faster than theirsafecounterparts. The user should turn on a flag in order to invoke
the unsafe routines. Otherwise the safe routines are called by default.
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Fields of characteristic 2 deserve specific mention in this subsection. These
fields are probably the ones that are most useful in practice. Almost all basic oper-
ations on elements of fields of characteristic 2 can be performed using bit operations
only, whereas those for fields of odd characteristic require integer arithmetic. Since
bit operations are much faster than integer arithmetic operations, GFL uses special
routines for fields of characteristic 2.

In spite of the existence of different sets of routines for fields of different char-
acteristics, the user need not bother about them and call the appropriateroutines
explicitly. The GFL routines at the outermost level make suitable branchings de-
pending on the characteristic of the underlying field.

2.5 Performance measure

In this section we tabulate the timings for basic integer, field and polynomial op-
erations as achieved by GFL routines. We obtained these figures on a 200 MHz
Pentium machine running Linux version 2.0.34. GNU’s C compiler version 2.7
was used. We use the tricks of speeding up finite field arithmetic by maintaining
multiplication and Zech tables whenever possible.

2.5.1 Multi-precision integer arithmetic

In Table 2.1 we have listed typical timing figures for arithmetic operations on two
multi-precision integer operands. The first one is a random 2000 bit integer and the
second one a random 1000 bit integer. Squaring and shift operations are applied on
the 2000 bit integer.

2.5.2 Field arithmetic

In Table 2.2 we give timings for operations in the fields:F2400 , F2401 , F3250 and
F3251 . We maintain multiplication and Zech’s logarithm tables forF216 (a subfield
of F2400) andF310 (a subfield ofF3250). This strategy does not work for the other
two fields, since 401 and 251 are primes. We also show timing results forF2400+181

which is a prime field. Note that the cardinalities of these five fields are of nearly
equal sizes (nearly 400 bits or 120 digits).

Table 2.2: Times (inµs) for basic field operations
Operation Field

F2400 F2401 F3250 F3251 F2400+181

Addition 5.0 4.7 803 7,710 9.6
Subtraction 5.2 5.0 805 7,720 13.8
Multiplication 880 960 2,610 19,700 218
Inverse 900 1,400 2,520 26,000 2,620

It is evident that the routines for fields of characteristic 2 are two to three or-
ders of magnitude more efficient than those of odd characteristics. This table also
illustrates the speedup due to multiplication tables and Zech’s logarithm table. For
characteristic 2 fields, use of multiplication tables speed up multiplication and in-
verse by a small factor. This behavior tallies closely with the observations reported
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in [130]. For fields of odd characteristic, the speedup obtained using lookup tables
is of the order of 10. For the fieldF3251 , we have used the unsafe mode of mul-
tiplication, since251 · (3 − 1)2 = 1004 is much less than the capacity of along.
With the safe multiplication, computing product and inverse in this field takes time
37,700µs and 38,300µs respectively. These figures clearly illustrate the benefit of
using unsafe multiplication mode when it applies.

2.5.3 Polynomial arithmetic

We choose two random polynomials of degrees 200 and 100 respectivelyover each
of the five fields of Table 2.2. We tabulate in Table 2.3 the time taken by GFL rou-
tines for doing arithmetic on these two polynomials. We maintained multiplication
and Zech’s tables for the fieldsF216 andF310 to accelerate computations inF2400

andF3250 respectively.

Table 2.3: Times (in seconds) for basic polynomial operations
Operation Field

F2400 F2401 F3250 F3251 F2400+181

Addition 0.0015 0.0014 0.087 0.774 0.0020
Subtraction 0.0015 0.0014 0.085 0.772 0.0022
Multiplication 6.79 20.0 41.12 243.9 4.49
Division 3.59 10.1 20.93 124.3 2.39

For polynomial arithmetic we see similar patterns in the timings as we de-
scribed in connection with the field operations. We point out an important obser-
vation here for characteristic 2 fields. Though the field multiplication (and inverse)
become nominally faster with multiplication tables, the polynomial multiplication
and division routines run about 3 times faster when these tables are maintained.
For polynomials overF3251 , we once again used the unsafe multiplication mode.
In the safe mode, the above multiplication and division take time 594.3 and 302.3
seconds respectively.

2.5.4 Comparison with other libraries

Here we list a set of symbolic computation libraries other than GFL, that support
computation over finite fields.

LiDIA A C++ library for Computational Number Theory, The LiDIA Group, TU Darm-
stadt [13]

NTL A C++ Library for doing Number Theory, V. Shoup [113]

ZEN A toolbox for computations in finite extensions of finite rings, F. Chabaud and
R. Lercier [23]

(MAGMA [15] and SIMATH [132] are two computer algebrasystemsthat provide
routines for finite field computations.)

In this subsection, we compare the timings of the GFL routines for field arith-
metic with the analogous routines provided by the above libraries. The timings
are listed in Table 2.4. We used same compilers (gcc and g++) for building the
libraries and for compiling the test programs on the same machine (a 200 MHz
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Table 2.4: Comparison of timings of basic field operations in various
symbolic computation packages

Field Operation Time (in µs)
GFL LiDIA NTL ZEN

F2400+181 Addition 9.6 4 3.2 1.9
Subtraction 13.8 5 3.6 2.5
Multiplication 218 68 101 57
Inverse 2,620 17,510 820 378

F2401 Addition 4.7 1.3 1.1 1.6
Subtraction 5.0 1.4 1.2 1.7
Multiplication 960 1,240 230 434
Inverse 1,400 13,840 960 5,740

F3251 Addition 7,710 447 37 56
Subtraction 7,720 385 35 33
Multiplication 19,700 18,060 8,920 46,920
Inverse 26,000 214,800 48,000 82,000

Pentium-based Linux PC mentioned before). As a result, these timing data are di-
rectly comparable (at least for the Pentium architecture). We used Version 1.3.1 of
LiDIA, Version 3.0e of NTL and Version 1.0b of ZEN. GFL is yet to be released
publicly (and thus get a version number).

Each library uses the polynomial basis representation for extension fields. We
used thesameirreducible polynomials for definingF2401 andF3251 . We intended to
work in a general situation and therefore we chosedenseirreducible polynomials
for extending the respective prime fields.

The most obvious conclusion from the above table is that ZEN is the fastest
library for prime fields and NTL is the fastest one for extension fields. GFL and
LiDIA are slower in general than NTL and ZEN.

The packed representation of field elements in GFL (Section 2.2.3) adds to the
running time for additive routines over extension fields. For characteristic2 fields
the overhead is minimal, whereas for fields of odd characteristics, the overhead is
significant. GFL’s multiplication is slower by a factor of around 5 compared to
the best timing tabulated. Our implementation of field inverse is relatively slow
for prime fields, but quite close to the best for extension fields. Indeed, for F3251 ,
GFL’s inverse routine is the fastest.

There are several other issues that lead to slower performance of GFL. First
of all, GFL is very generalin the sense that it provides a uniform treatment of all
fields, irrespective of whether the characteristic is small (i.e. 2) or large,whether
the field is a prime field or a simply or multiply represented extension etc. The
outermost routines call appropriate lower level routines depending on thefields.
Thus a user’s program written for characteristic 2 fields will work equallywell for
a field of characteristic 3 or 101 or2400 + 181, only if the value of the argument in
createPrimeGF is changed. No other library discussed here achieves this general-
ity. Indeed a user has to write separate (albeit similar) programs for doing the same
thing over fields of different characteristics. Most notably, the other libraries pro-
vide a set of routines for fields of characteristic 2, a set for fields of single-precision
characteristics and yet another set for fields of multi-precision characteristics. In
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addition, most of these libraries other than GFL do not provide facility to work
with multiply represented extension fields or with more than one prime or exten-
sion fields simultaneously. GFL allows one to create and work with as many fields
as one wants. In spite of that, the outer prototype of a call is same for all fields. It is
apparent that maintaining different data structures and using differentsets of library
calls for fields of differenttypesof characteristics speeds up individual operations.
We mentioned that the other libraries do this. We did not, because we did not want
to sacrifice generality.

GFL uses dynamic memory for storing data whose sizes are not knowna priori.
Some test implementations carried out by us show that the same routines built with
static arrays can speed up the running time by 10 to 20%. However, the use of
dynamic arrays appears better to us because of efficient memory management.

The packing overhead for addition and subtraction can be minimized by the
following strategy. First define a prime fieldFp and then an extensionFpn =
Fp[x]/〈f(x)〉. Then an elementa ∈ Fpn has the representationa = a0 + a1x +
. . . + an−1x

n−1, ai ∈ Fp. GFL substitutesp for x and representsa as a non-
negative integer. A packed representation would still be possible if one substitutes
b for x, whereb is a power of 2 andb > p. This strategy is, however, somewhat less
memory efficient and counterintuitive. It also increases the running time of some
other operations like generation of random elements of a field. So we did notopt
for this.

We finally note that in spite of the packing overhead, generality and dynamic
memory management schemes of GFL, it can be made faster by further tuning in
the codes and using and/or devising better algorithms for various operations. For
example, Karatsuba or FFT-based multiplication techniques can be applied for
fields of high extension degree. It is also useful to define field extensions bysparse
irreducible polynomials. Last but not the least, we have seen in Section 2.4 that for
other operations on field elements, polynomials and matrices, it is possible to im-
plement some of thepractically betteralgorithms. We plan to enhance continually
both the capability and the performance of GFL.
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Appendix A Reference manual for Galois Field Library

In this section, we provide a detailed listing of all data structures and prototypes of
all library calls provided by GFL at present.

A.1 Include and compile directives

Include header file #include <GFL/all.h>
Compile option -lGFL

A.2 Data Structures

Many of the data structures provided by GFL have already been discussed. For the
sake of completeness, we repeat those definitions here.

typedef struct { /* Multi-precision integer */
char sign; /* ‘+’ for positive numbers, ‘-’ for negative numbers, ‘ ’ for zero */
int size; /* Number of longs needed to represent the number */
long *word; /* link to the array of longs holding the integer */

} mpint;

typedef struct { /* Data structure to store complete or partial factorization of an integer */
int nf; /* Number of factors */
int *multiplicity; /* Pointer to the array holding the multiplicities of the factors */
mpint *factor; /* Pointer to the array of factors */

} intFactor;

typedef mpint GFelement; /* Element of a Galois field */

typedef short GF d; /* Galois field descriptor */

struct {
GFelement p; /* characteristic */
GFelement q; /* cardinality */
int extlev; /* Extension level */
GF d extof; /* Extension of */
long extdeg; /* Extension degree (over immediate subfield) */
long totextdeg; /* Total extension degree (over prime subfield) */
GFelement *defpoly; /* Pointer to coefficients of defining polynomial */
long *primpower; /* Table of powers of a primitive element */
long *disclog; /* Table of discrete logs with respect to a primitive element */
long *zechlt; /* Zech’s logarithm table */

} GF info[MAX FIELDS];

typedef struct { /* The data structure poly */
long degree; /* The exact degree */
GFelement *coeff; /* Pointer to the array of coefficients */

} poly;

typedef struct { /* Data structure matrix */
int row; /* Number of rows */
int col; /* Number of columns */
GFelement **element; /* Pointer to 2-dimensional array of matrix elements */
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} matrix;

typedef struct { /* Data structure vector */
int size; /* Vector size */
GFelement *element; /* Pointer to the array of vector elements */

} vector;

typedef struct { /* Structure holding the partial or complete factorization of a polynomial */
long nf; /* Number of factors */
long *multiplicity; /* Pointer to the array holding the multiplicities of the factors */
poly *factor; /* Pointer to the array of factors */

} polyFactor;

/* Factor base for prime fields */
typedef struct {

GFelement p; /* Characteristic of the field in which discrete log is taken */
GFelement gen; /* Base to which discrete log is taken */
int fbsize; /* Number of primes in the factor base */
long *base; /* Elements of factor base */
GFelement *baselog; /* Discrete logs of factor base elements */

} factorBase1;

/* Factor base for non-prime fields of extension level = 1 */
typedef struct {

GFelement p; /* Characteristic of the field in which discrete log is taken */
GFelement gen; /* Base to which discrete log is taken */
int maxdeg; /* Maximum degree of irreducible polynomials in the factor base */
int fbsize; /* Number of elements in the factor base */
int nprime; /* Number of primes between 2 and p-1 */
long *base; /* Elements of factor base */
GFelement *baselog; /* Discrete logs of factor base elements */

} factorBase2;

/* Factor base for non-prime fields of extension level > 1 */
typedef struct {

GFelement p; /* Characteristic of the field in which discrete log is taken */
matrix ctop; /* Matrix for composed-to-polynomial basis transformation */
GFelement gen; /* Base to which discrete log is taken */
int maxdeg; /* Maximum degree of irreducible polynomials in the factor base */
int fbsize; /* Number of elements in the factor base */
int nprime; /* Number of primes between 2 and p-1 */
long *base; /* Elements of factor base */
GFelement *baselog; /* Discrete logs of factor base elements */

} factorBase3;

A.3 Built-in routines

Initialization routines

void GFLinitialize()
This routine initializes the GFL library and must be called at the very
beginning of any program that involves GFL library calls.

void readSmallPrimes(int n) Read the firstn (6 106) primes from database and store them in the
arraySMALL PRIME. The array elementSMALL PRIME[i− 1] holds
theith prime fori> 1.

Multiprecision integer arithmetic

mpint newInt() Initialize an mpint before use
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void assignInt(mpint *n, char c[]) Convert a numeric character stringc to thempint n.

void longToInt(mpint *n, long m) Convert thelong m to thempint format and store it inn.

long intToLong(mpint a) Return the value of thempint a aslong. No error check for overflow.

void readInt(mpint *n, char *msg) Read thempint n from stdin. msg is the prompt to display for the input.

int writeInt(mpint n, FILE *fp) Print thempint n as a decimal integer to the file pointerfp. If fp is NULL,
output is directed tostdout. Returns the number of characters printed.

int showInt(mpint n, FILE *fp) Print the words of thempint n to the file pointerfp. If fp is NULL, output
is directed tostdout. Returns the number of characters printed.

void destroyInt (mpint *n) Free memory currently allocated to thempint n.

void copyInt(mpint *n, mpint m) Copy the contents ofm to n.

int compInt(mpint n, mpint m) Return 1, 0 or –1 depending on whethern > m, n = m andn < m
respectively.

int zeroInt(mpint n) Check ifn = 0

int positiveInt(mpint n) Check ifn > 0

int negativeInt(mpint n) Check ifn < 0

int unityInt(mpint n) Check ifn =1

int negUnityInt(mpint n) Check ifn = −1

int intTwo(mpint n) Check ifn = 2

void twoPowerToInt(mpint *n, long e) n = 2e

long logTwo(mpint n) Return⌊log2(n)⌋
void intMinus(mpint *n, mpint m) Assignn = −m

void intSum(mpint *t, mpint n, mpint m) t = n+m

void intDiff(mpint *t, mpint n, mpint m) t = n−m

void intProd(mpint *t, mpint n, mpint m) t = nm

void intProdTwo(mpint *t, mpint n, long e) t = n · 2e

void intSqr(mpint *t, mpint n) t = n2

void intExp (mpint *t, mpint n, mpint e) t = ne

void intExpTwo(mpint *t, mpint n, long e) t = n2e

void intDiv(mpint *t, mpint *s, mpint n, mpint m) t = n/m (quotient),s = n%m (remainder). If only one oft ands is
needed, theNULL pointer can be passed as the other output argument.

void intDivTwo(mpint *t, mpint *s, mpint n, long e) t = n/2e (quotient),s = n%2e (remainder). If only one oft ands is
needed, theNULL pointer can be passed as the other output argument.

void intModProd(mpint *t, mpint n, mpint m, mpint r) t = nm % r (Modular product).

void intModExp(mpint *t, mpint n, mpint e, mpint r) t = ne % r (Modular exponentiation).

void modpInv(GFelement *t, GFelement n, GFelement
m)

t = n−1 (mod m) (Modular inverse). This routine assumes(n,m) =
1.

void intPP(mpint *n) n++

void intMM(mpint *n) n––

void intInc(mpint *n, long a) n += a (Incrementn by thelong a)

void intDec(mpint *n, long a) n –= a (Decrementn by thelong a)

void intOR(mpint *t, mpint n, mpint m) t is assigned the bitwise OR ofn andm.

void intAND(mpint *t, mpint n, mpint m) t is assigned the bitwise AND ofn andm.

void intXOR(mpint *t, mpint n, mpint m) t is assigned the bitwise XOR ofn andm.

void intLeftShift (mpint *n, long e) Left shiftn by e bits.

void intRightShift (mpint *n, long e) Right shiftn by e bits.

void randInt(mpint *n, int len, short seedInfo) Assign ton a random integer of bit lengthlen. The third argument
specifies how to seed the random number generator. Admissible val-
ues are: 0 (don’t seed), 1 (current time), 2 (use the value ofunsigned int
INT SEED VAL as seed).

void randRes (mpint *n, mpint m) Assign ton a random number between 0 and|m| − 1.

int prime(mpint n) Check ifn is prime.

int randPrime(mpint *n, int len, short seedInfo) Setn to a random prime of bit lengthlen. The third argument has the
same interpretation as inrandInt. randPrime returns the number of it-
erations that was necessary to get the first random prime number.

void nextPrime(mpint *n, mpint m) Assign ton the smallest odd prime larger than or equal tom.
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void intSqrt(mpint *n, mpint m) n = ⌊√m⌋ (m must not be negative)

void intGCD(mpint *n, mpint a, mpint b) n = gcd(a, b)

void intBGCD(mpint *n, mpint a, mpint b) n = gcd(a, b) (The binary GCD algorithm)

void intEGCD(mpint *n, mpint *u, mpint *v, mpint a,
mpint b)

n = gcd(a, b) = au+ bv (The extended GCD algorithm)

intFactor newIntFactor() Initialize anintFactor

void destroyIntFactor(intFactor *ff) Free memory associated with theintFactor ff

int printIntFactors(intFactor ff, FILE *fp) Print the factorization stored in theintFactor ff to the file pointerfp. If
fp is NULL, output goes tostdout.

void factorizeInt(intFactor *ff, mpint n) Assign toff the complete factorization ofn.

Galois fields

GF d createPrimeGF(mpint p) Create a Galois field of prime characteristicp. The field descriptor (of
typeGF d) returned can be used for all later references to this field. The
value ofp must be prime.

GF d createExtGF(GF d K, poly f) Create an algebraic extension of the existing fieldK by attaching a root
of the polynomialf . The GF d returned is to be used to access the
extension field created. The irreducibility off is not checked.

GF d primeSubGF(GF d K) Return the field descriptor of the prime subfield ofK.

GF d subGF(GF d K) Return the field descriptor of the field of whichK is represented as an
extension. –1 is returned ifK is a prime field.

void defPoly(GF d K, poly *f) Assign tof the defining polynomial ofK.

void characteristic(mpint *p, GF d K) Assign top the characteristic ofK.

void cardinality(mpint *q, GF d K) Assign toq the cardinality ofK.

long extDeg (GF d K, GF d F) Return the extension degree ofK overF .

long totExtDeg (GF d K) Return the extension degree ofK over its prime subfield.

int extLevel(GF d K) Level of extension ofK over its prime subfield, i.e. number of polyno-
mials attached to the prime subfield to have a representation ofK.

void printGFInfo(GF d K) Print tostdout information on the Galois fieldK.

Galois field arithmetic

void GFsum(GFelement *t, GFelement a, GFelement b,
GF d K)

t = a+ b (overK)

void GFdiff(GFelement *t, GFelement a, GFelement b,
GF d K)

t = a− b (overK)

void GFprod(GFelement *t, GFelement a, GFelement b,
GF d K)

t = a · b (overK)

void GFinv(GFelement *t, GFelement a, GF d K) t = a−1 (overK)

void GFqt(GFelement *t, GFelement a, GFelement b,
GF d K)

t = a · b−1 (overK)

void GFexp(GFelement *t, GFelement a, mpint e, GF d
K)

t = ae (overK)

void trace(GFelement *t, GFelement a, GF d K, GF d F) t = TrK|F (a) (Trace)

void absTrace(GFelement *t, GFelement a, GF d K) t = TrK|F (a) (absolute trace) whereF is the prime subfield ofK

void norm(GFelement *t, GFelement a, GF d K, GF d F) t = NK|F (a) (Norm)

void absNorm(GFelement *t, GFelement a, GF d K) t = NK|F (a) (absolute norm) whereF is the prime subfield ofK

int printGFElement(GFelement a, GF d K, FILE *fp,
short flag)

Printa as an element ofK to the file pointerfp (stdout if fp is NULL).
Theflag specifies the format of printing. The admissible values and the
corresponding formats are: 0 (Single integer), 1 (Vector over its immedi-
ate subfield), 2 (Vector of vectors of ... over prime subfield),3 (Flattened
form of 2), 4 (Same as 3 except without parentheses), 5 (Polynomial in
last extending element), 6 (Polynomial in extending elements [default]).
printGFElement returns the number of characters printed.

Arithmetic of polynomials over finite fields

poly newPoly() Initialize a data structurepoly before use

void destroyPoly(poly *f) Free memory associated with thepoly f

void readPoly(poly *f) Read the polynomialf interactively fromstdin

void readPolyFromArray(poly *f, long d, GFelement *ca) Read the coefficients of a polynomialf of degreed from the arrayca.
ca[i] should store the coefficient ofxi in f(x) for i = 0, . . . , d.
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int writePoly(poly f, GF d K, FILE *fp, short flag) Print the polynomialf(x) as a polynomial overK. The output goes to
the file pointerfp (or to stdout if fp == NULL). Theflag specifies the
format for printing the coefficients. SeeprintGFElement above for a
meaning of this.writePoly returns the number of characters printed.

void copyPoly(poly *f, poly g) Assignf(x) = g(x)

void lc(GFelement *a, poly f) Assign toa the leading coefficient off(x).

int monic(poly f) Check iff(x) is a monic polynomial.

int zeroPoly(poly f) Check iff(x) is the zero polynomial.

int equalPoly(poly f, poly g) Check iff(x) = g(x) (as polynomials).

void evalPoly(GFelement *b, poly f, GFelement a, GF d
K)

Setb = f(a). The field arithmetic is that ofK.

void monicize(poly *f, GF d K) Monicize a polynomialf by multiplying it with the inverse of its leading
coefficient. (over fieldK)

void polySum(poly *h, poly f, poly g, GF d K) h(x) = f(x) + g(x) (in K[x])

void polyDiff(poly *h, poly f, poly g, GF d K) h(x) = f(x)− g(x) (in K[x])

void polyProd(poly *h, poly f, poly g, GF d K) h(x) = f(x) · g(x) (in K[x])

void polyDiv(poly *h, poly *r, poly f, poly g, GF d K) Perform polynomial division:h(x) = f(x)/g(x) (quotient),r(x) =
f(x)% g(x) (remainder) (inK[x]). One ofh or r can beNULL.

void polyExp(poly *h, poly f, mpint e, GF d K) h(x) = f(x)e (in K[x])

void polyModProd(poly *h, poly f, poly g, poly m, GF d K) h(x) = (f(x) · g(x)) % m(x) (in K[x])

void polyModExp(poly *h, poly f, poly m, mpint e, GF d
K)

h(x) = f(x)e % m(x) (in K[x])

void polyGcd(poly *h, poly f, poly g, GF d K) h(x) = gcd(f(x), g(x)) (in K[x])

void polyDerivative(poly *h, poly f, GF d K) Assign toh the formal derivative off(x) ∈ K[x].

void minimalPoly(poly *f, GFelement a, GF d K, GF d F) Assign tof the minimal polynomial ofa ∈ K overF , whereF ⊆ K
are fields.

void FrobeniusOrder(poly *f, GFelement a, GF d K,
GF d F)

Store inf the order ofa ∈ K with respect to the Frobenius automorphism
of K overF .

void charPoly(poly *f, matrix A, GF d K) Assign tof the characteristic polynomial of the matrixA (with elements
fromK).

void compMatrix(matrix *M, poly f, GF d K) Assign toM the companion matrix off(x) ∈ K[x].

void polyRes(GFelement *a, poly f, poly g, GF d K) Assign toa the resultant of the polynomialsf(x) andg(x) in K[x].

void polyDisc(GFelement *a, poly f, GF d K) Assign toa the discriminant off(x) ∈ K[x].

Matrices and vectors over finite fields

matrix newMatrix() Initialize a data of typematrix.

matrix newVector() Initialize a data of typevector.

void destroyMatrix(matrix *M) Free memory associated with thematrix M.

void destroyVector(vector *v) Free memory associated with thevector v.

void readMatrix(matrix *M) Read matrixM interactively fromstdin.

void readMatrixFromArray(matrix *M, int row, int col,
GFelement **src)

Read a matrixM with row rows andcol columns from a 2-dimensional
arraysrc.

void readVector(vector *v) Read vectorv interactively fromstdin.

void readVectorFromArray(vector *v, int size, GFelement
*src)

Read a vectorv of dimensionsize from an arraysrc.

void writeMatrix(matrix M, GF d K, FILE *fp, short flag) Print a matrixM to a file pointerfp (TheNULL value offp implies output
to stdout). The elements ofM are formatted as elements ofK depending
upon the value offlag (seeprintGFElement).

void writeVector(vector v, GF d K, FILE *fp, short flag) The analogous output routine for vectors.

void setZeroMatrix(matrix *M, int n, int m) SetM to then×m null matrix.

void setIdentityMatrix(matrix *M, int n) SetM to then× n identity matrix.

void setZeroVector(vector *v, int n) Setv to the zero vector of dimensionn.

void copyMatrix(matrix *M, matrix A) AssignM = A.

void copyVector(vector *v, vector u) Assignv = u.

void mtocv(vector *v, matrix M) Copy an× 1 matrix M to a vectorv.

void mtorv(vector *v, matrix M) Copy a1× n matrix M to a vectorv.

void mctov(vector *v, matrix M, int j) Store inv thejth column ofM.
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void mrtov(vector *v, matrix M, int i) Store inv theith row ofM.

void cvtom(matrix *M, vector v) Store inM a vectorv of dimensionn as an× 1 matrix.

void rvtom(matrix *M, vector v) Store inM a vectorv of dimensionn as a1× n matrix.

void vtomc(matrix M, vector v, int j) Set thejth column ofM to the vectorv.

void vtomr(matrix M, vector v, int i) Set theith row ofM to the vectorv.

int equalMatrix(matrix A, matrix B) Check ifA = B.

int equalVector(vector v, vector u) Check ifv = u.

int zeroMatrix(matrix A) Check ifA is a null matrix.

int zeroVector(vector v) Check ifv is a null vector.

int identityMatrix(matrix A) Check ifA is an identity matrix.

int symmetricMatrix(matrix A) Check ifA is a symmetric matrix.

void matrixTranspose(matrix *M, matrix A) AssignM = At.

void matrixSum(matrix *M, matrix A, matrix B, GF d K) M = A+B (using arithmetic of the fieldK)

void vectorSum(vector *w, vector v, vector u, GF d K) w = v + u (using arithmetic of the fieldK)

void matrixDiff(matrix *M, matrix A, matrix B, GF d K) M = A−B (using arithmetic of the fieldK)

void vectorDiff(vector *w, vector v, vector u, GF d K) w = v − u (using arithmetic of the fieldK)

void matrixProd(matrix *M, matrix A, matrix B, GF d K) M = A ·B (using arithmetic of the fieldK)

void matrixVectorProd(vector *w, matrix M, vector v,
GF d K)

w = Mv wherev is treated as a column vector (over the fieldK)

void vectorMatrixProd(vector *w , vector v, matrix M,
GF d K )

w = vM wherev is treated as a row vector (over the fieldK)

void scalarMatrixProd(matrix *M, GFelement c, matrix A,
GF d K)

Scalar multiplicationM = cA (arithmetic in fieldK)

void scalarVectorProd(vector *w, GFelement c, vector v,
GF d K)

Scalar multiplicationw = cv (arithmetic in fieldK)

void matrixExp(matrix *M, matrix A, mpint e, GF d K) M = Ae (using arithmetic of the fieldK). Negative values ofe are
allowed, ifA is invertible.

void matrixDet(GFelement *a, matrix A, GF d K) Assign toa the determinant of the square matrixA (arithmetic in field
K).

int singular(matrix A, GF d K) Check ifA is a singular matrix overK.

void matrixInv(matrix *M, matrix A, GF d K) SetM = A−1 (using arithmetic of the fieldK).

int matrixRank(matrix A, GF d K) Returns the rank of the square matrixA overK.

int linIndep(vector *va, int n, GF d K) Check if then vectors (overK) stored in the arrayva are linearly inde-
pendent.

int linIndepRows(vector *v, matrix A, GF d K) Compute a maximal set of linearly independent rows of the matrixA.
The rank (say,r) is returned and the firstr entries of the vectorv hold
the indices of a set of linearly independent rows ofA.

int linIndepCols(vector *v, matrix A, GF d K) Compute a maximal set of linearly independent columns of the matrix
A. The rank (say,r) is returned and the firstr entries of the vectorv hold
the indices of a set of linearly independent columns ofA.

int LUPD(matrix *M, vector *v, matrix A, GF d K) Compute the LUP decomposition of the invertible matrixA. LetPA =
LU whereP is a permutation matrix,L a lower-triangular matrix with
1’s at the diagonal, andU an upper-triangular matrix. After the call the
entries inM that are above and on the main diagonal are elements of
U whereas those below the diagonal are elements ofL. The (i, j)-th
element inP is 1 if and only ifk = i andvk = j for somek.

void linSysSolve(vector *w, matrix A, vector v, GF d K) Solve the linear systemAw = v. A is assumed invertible. (arithmetic
overK)

void overspLinSysSolve(vector *w, matrix A, vector v,
GF d K)

Solve the overspecified linear systemAw = v. HereA is ann × m
matrix withn ≥ m. The routine assumes that the rank ofA is m.

void underspLinSysSolve(matrix *M, vector *w, vector
*u, matrix A, vector v, GF d K)

Solve an underspecified system of linear equations. Here thecoefficient
matrixA is ann × m matrix withn ≤ m and rankn. For details see
the GFL reference manual.

int sqLinSysSolve(matrix *M, vector *w, vector *u, matrix
A, vector v, GF d K)

Solve a square linear system. Here the coefficient matrixA is ann × n
matrix whose rank is (possibly) less thann. For details see the GFL
reference manual.

Irreducible polynomials

int irreducible(poly f, GF d K) Check iff(x) is irreducible over the fieldK.
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int findRandomIrrPoly(poly *f, GF d K, long d, short
seedInfo)

Assign tof a random polynomial of degreed irreducible overK. The
flagseedInfo specifies how to seed the random number generator. It can
take the following values: 0 (don’t seed), 1 (use local time asseed), 2
(use the value ofunsigned int SEED VAL as seed). The function re-
turns the number of random polynomials checked to find the irreducible
polynomial.

void findFirstIrrPoly(poly *f, GF d K, long d) Assign tof the lexicographically first irreducible polynomial of degreed
overK.

void listAllIrrPoly(GFelement *count, GF d K, long d,
FILE *fp, short flag)

List all irreducible polynomials of degreed over K. The file pointer
fp should be supplied for directing the output (NULL meansstdout).
Theflag specifies the formatting option (SeewritePoly andprintGFEle-
ment). After the routine returns,count holds the total number of irre-
ducible polynomials found.

Roots of polynomials

int findRootES(vector *v, poly f, GF d K) Find roots off(x) in K and return the roots as elements of the vector
v. The routine returns the number of roots found. The exhaustive search
algorithm is used.

int findRootBR(vector *v, poly f, GF d K) Find roots off(x) in K and return the roots as elements of the vector
v. The routine returns the number of roots found. Berlekamp-Rabin
algorithm is used. It applies only to fields of odd characteristic.

int findRootBT(vector *v, poly f ,GF d K, GF d F) Find roots off(x) in K and return the roots as elements of the vector
v. The routine returns the number of roots found. Berlekamp’s trace
algorithm is used. This requires a sub-fieldF of K. Typically F is
the prime sub-field ofK. This algorithm is suitable whenF has small
cardinality.

int findRoot(vector *v, poly f, GF d K, short flag) This routine calls one of the above routines depending on thelast argu-
ment (flag). The actions corresponding to the different values are: 1 –
(Call findRootES), 2 – (CallfindRootBR), 3 – (callfindRootBT with
F = the prime sub-field ofK), anything else – (if cardinality ofK is
< SMALL Q BOUND call findRootES, else if characteristic ofK is 2,
call findRootBT, else callfindRootBR).

Polynomial factorization

polyFactor newPolyFactor() Initialize a data of typepolyFactor.

void destroyPolyFactor(polyFactor *pf) Free memory associated withpf.

long printFactors(polyFactor pf, GF d K, FILE *fp, short
flag)

Print the factorization stored inpf to the file pointerfp (NULL implies
stdout). flag specifies how to format the coefficients (as elements of the
field K); seewritePoly andprintGFElement for details. The routine
printFactors returns the total number of characters printed.

void squareFreeFactorization(polyFactor *pf, poly f,
GF d K)

Store inpf the square-free factorization off(x) over the fieldK.

void distinctDegreeFactorization(polyFactor *pf, poly f,
GF d K)

This routine takes as input a square-free polynomialf(x) and computes
the distinct degree factorization off(x) overK and stores this factoriza-
tion in pf.

void equalDegreeFactorization(polyFactor *pf, poly f, int
d, GF d K)

The polynomialf(x) input to the routine must be a square-free poly-
nomial of which all the irreducible factors are of degreed. The equal
degree factorization off(x) over the fieldK is computed and stored in
pf.

void factorizePoly(polyFactor *pf, poly f, GF d K) This routine factorizes a polynomialf(x) over the fieldK and stores
this factorization inpf. This routine in turn calls the square-free, distinct-
degree and equal-degree factorization routines describedabove.

Permutation polynomials

int permPoly(poly f, GF d K) Check iff is a permutation polynomial overK

Primitive elements

int primitive(GFelement a, GF d K) Check ifa is a primitive element ofK.

int primitive2(GFelement a, GF d K, intFactor ff) Same asprimitive except that the integer factorization ofq−1 is supplied
throughff, whereq is the cardinality ofK.

void findPrimElement(GFelement *a, GF d K, short
seedInfo)

Assign toa a random primitive element inK. The last argument (seed-
Info) specifies how to seed the random number generator: 0 means ‘don’t
seed’, 1 means ‘use current time as seed’, and 2 means use the value of
theunsigned int PRIMITIVE SEED VAL as seed.

void findPrimElement2(GFelement *a, GF d K, intFactor
ff, short seedInfo)

Same asfindPrimElement except that the integer factorization ofq − 1
is supplied throughff, whereq is the cardinality ofK.
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void createPrimTable(GFelement g, GF d K) Create tables of powers of the primitive elementg ∈ K. Maintaining this
table speeds up computation (products and inverse) overK. However,
the cardinality ofK should not be large so that these tables can reside in
main memory.

void destroyPrimTable(GF d K) Free memory associated with the primitive power tables

void savePrimTable(GF d K, char *fname) Save primitive power tables of the fieldK in hard disk filefname.

void readPrimTable(GF d K, char *fname) Read primitive power tables for the fieldK from hard disk filefname.

void createZechTable(GF d K) Create Zech’s logarithm table for the fieldK. This table speeds up ad-
dition and subtraction inK. Before this function is called, the primitive
power and discrete logarithm tables must be created. Zech’s logarithm
table resides in main memory, so the cardinality ofK should be small if
this table is to be maintained.

void destroyZechTable(GF d K) Free memory associated with the Zech’s logarithm table for thefield K.

void saveZechTable(GF d K, char *fname) Save Zech’s logarithm table of the fieldK in hard disk filefname.

void readZechTable(GF d K, char *fname) Read Zech’s logarithm table for the fieldK from hard disk filefname.

Normal elements

int normal(GFelement a, GF d K, GF d F) Check ifa is a normal element for the extensionK|F .

int NPoly(poly f, GF d F) Check iff(x) ∈ F [x] is an N-polynomial for the extensionK|F where
K = F [x]/<f(x)>.

void listAllNormalElements(GF d K, GF d F, FILE *fp,
short flag)

List all normal elements for the extensionK|F to the file pointerfp (or
to stdout if fp is NULL). Theflag specifies the output format of elements
in K (seeprintGFElement).

void listAllNPolys(GF d F, long d, FILE *fp, short flag) List all N-polynomials inF [x] of degreed. fp andflag has the same
significance as inlistAllNormalElements.

void findNormalElementR(GFelement *a, GF d K, GF d
F, short seedInfo)

Find a random normal element for the extensionK|F and store it ina.
The flagseedInfo is a directive to seed the random number generator: 0
means ‘don’t seed’, 1 means ‘use current time as seed’ and 2 means ‘use
the value of theunsigned int NORMAL SEED VAL as seed.

void findNormalElementA(GFelement *a, GF d K, GF d
F, short seedInfo)

Find a normal element for the extensionK|F and store it ina. This
uses the algorithm that follows from Artin’s lemma [85, Theorem 4.23].
seedInfo has same meaning as in the routinefindNormalElementR.

void findNormalElementBDS(GFelement *a, GF d K,
GF d F)

Find a normal element for the extensionK|F and store it ina. This
routine uses Bach, Driscoll and Shallit’s factor refinement algorithm [6].

void findNormalElement(GFelement *a, GF d K, GF d F,
short flag)

Find a normal element for the extensionK|F and store it ina. It calls
one of the above routines depending on the value offlag. For the values
1, 2 and 3 offlag, the routinesfindNormalElementR, findNormalEle-
mentA andfindNormalElementBDS are called respectively. For any
other value offlag, findNormalElementA is called ifq > 2s(s − 1),
otherwisefindNormalElementBDS is called (whereq is the cardinality
of F ands is the degree of the extensionK|F ).

Basis utilities

int basis(vector v, GF d K, GF d F) Check if the elements of the vectorv form a basis ofK overF .

void gtopTransMatrix(matrix *M, vector v, GF d K) Assign toM the transformation matrix from a general basis to the polyno-
mial basis ofK over its immediate subfield. The elements of the general
basis are those ofv.

void ptogTransMatrix(matrix *M, vector v, GF d K) Assign toM the transformation matrix from the polynomial basis to a
general basis ofK over its immediate subfield. The elements of the
general basis are those ofv.

void gtogTransMatrix(matrix *M, vector u, vector v, GF d
K)

Assign toM the transformation matrix from a general basis (defined by
u) to another general basis (defined byv) of K over its immediate sub-
field.

void ntopTransMatrix(matrix *M, GFelement a, GF d K) Assign toM the transformation matrix from the normal basisa, aq , · · · ,
aq

s−1

to the polynomial basis ofK over its immediate subfieldF where
|F | = q and[K : F ] = s.

void ptonTransMatrix(matrix *M, GFelement a, GF d K) Assign to M the transformation matrix from the polynomial basis to

the normal basisa, aq , · · · , aqs−1

of K over its immediate subfieldF
where|F | = q and[K : F ] = s.

void polyBasis(vector *v, poly *f, GF d K, GF d F, short
seedInfo)

This routine assigns tov a polynomial basis of the fieldK over a subfield
F (not necessarily immediate). That is, suppose that the tower of exten-
sionsF = F0 ⊆ F1 · · · ⊆ Ft = K is represented. The default basis
of K overF that GFL works with, is called thecomposed basis. This
is not, in general, a polynomial basis ofK overF . polyBasis returns a
polynomial basis for the extensionK|F .
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void gtocTransMatrix(matrix *M, vector v, GF d K, GF d
F)

Assign toM the transformation matrix from a general basis to the com-
posed basis ofK over a subfieldF . The elements of the general basis
are those ofv.

void ctogTransMatrix(matrix *M, vector v, GF d K, GF d
F)

Assign toM the transformation matrix from the composed basis to a
general basis ofK over a subfieldF . The elements of the general basis
are those ofv.

void gtogTransMatrix2(matrix *M, vector u, vector v,
GF d d K, GF F)

Assign toM the transformation matrix from a general basis (defined by
u) to another general basis (defined byv) of K over a subfieldF .

void ntocTransMatrix(matrix *M, GFelement a, GF d K,
GF d F)

Assign toM the transformation matrix from the normal basisa, aq , · · · ,
aq

s−1

to the composed basis ofK over a subfieldF where|F | = q and
[K : F ] = s.

void ctonTransMatrix(matrix *M, GFelement a, GF d K,
GF d F)

Assign toM the transformation matrix from the composed basis to the

normal basisa, aq , · · · , aqs−1

of K over a subfieldF where|F | = q
and[K : F ] = s.

Isomorphism between finite fields

void findIsoMatrix(matrix *M, GF d K1, GF d K2) This routine computes the transformation matrixM between two fields
K1 andK2 of the same cardinality. Suppose thatF is the prime subfield
of K1 andK2 with [K1 : F ] = [K2 : F ] = s. Let c1 ∈ K1 have the
isomorphic imagec2 ∈ K2. If the coordinates ofc1 in the composed
basis ofK1 overF are(a0, · · · , as−1) and those ofc2 in the composed
basis ofK2 overF are(b0, · · · , bs−1), then the relation between theai
andbj is given by(b0, · · · , bs−1)t = M(a0, · · · , as−1)t.

Discrete logarithms

Discrete logarithms in finite fields can be computed with respect to primitive
elements using the index calculus method. In the first stage one should compute
logarithms of elements in a factor base. At the second stage one computes indi-
vidual logarithms with the help of the factor base. At present only the basic index
calculus method has been implemented. Sieve methods will come up shortly.

The data type for the storage of factor bases and the corresponding routines
are dependent on the type of the field over which one intends to calculate discrete
logarithms. They have generic names. One has to append 1, 2 or 3 to these names
depending on whether the field is a prime field, a simply represented extensionof
a prime field or an extension field of representation level more than 1. Thus for
a fieldK represented asK = IFp[x]/<f(x)>= IFpd (wheredeg(f(x)) = d
andp a prime), one should use the data typefactorBase2 and the routinesnew-
FactorBase2, destroyFactorBase2, createFactorBase2, saveFactorBase2,
readFactorBase2 anddlog2.

In what follows, we explain the generic description of these routines.

factorBase newFactorBase() Initialize afactorBase

void destroyFactorBase(factorBase *fb) Free memory associated with afactorBase

void saveFactorBase(factorBase fb, char *fname) Save contents of afactorBase in hard disk filefname

void readFactorBase(factorBase *fb, char *fname) ReadfactorBase from a hard disk filefname

void createFactorBase(factorBase *fb, GF d K,
GFelement g, long or int N)

Create a factor base for the fieldK with respect to the primitive element
g and store the data infb. The last argument (N) is of typelong for Type
1 factor bases (it signifies a bound on the value of the primes inthe factor
base) and of typeint for Type 2 and Type 3 factor bases (here it signifies
the maximum degree of an irreducible polynomial in the factor base).

void dlog(GFelement *l, GFelement a, GF d K,
factorBase fb)

Assign to l the discrete logarithm ofa ∈ K using the data stored in
factorBase fb. The primitive element with respect to which the discrete
logarithm is taken is stored infb; one doesn’t have to specify it as input
to the routine.
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3 Algorithms for computing
discrete logarithms over prime fields

Computation of discrete logarithms over a finite fieldFq is a difficult problem. No
algorithms are known to solve the problem in time bounded by a polynomial in
log q. For practical applications, one typically uses prime fields or fields of charac-
teristic 2. In this chapter, we concentrate on prime fields only. We describe three
variants of the index calculus method for the computation of discrete logarithms
over finite fields of prime cardinality. The first one called the basic method is not a
practical method for discrete logarithm computation. It can be applied only to fields
of smallcardinality. The other two methods known as the linear sieve method and
the cubic sieve method are practical methods for medium-sized primes.

In Section 3.1 we formally define the discrete logarithm problem (DLP) and
provide a generic description of the index calculus method to solve DLP. In Sec-
tion 3.2, we describe the three methods mentioned above for solving DLP. The
analysis of the sieve methods [28] are based on the heuristic assumption thatthe
integers checked for smoothness over a set of primes are randomly distributed.
In Section 3.3, we prove that this behavior is not random in the sense that these
integers do not follow uniform distribution. Indeed we establish that from the con-
sideration of bit-size, the actual distribution isbetterthan the uniform distribution
for both the linear sieve and the cubic sieve methods. We give the details of the
calculations of Section 3.3 in the appendix at the end of this chapter.

3.1 The discrete logarithm problem

LetFp be a prime field of cardinalityp. For an elementa ∈ Fp, we denote bya the
representative ofa in the set{ 0, 1, . . . , p− 1 }. Let g be a primitive element ofFp

(i.e. a generator of the cyclic multiplicative groupFp
∗). Given an elementa ∈ Fp

∗,
there exists a unique integer0 6 x 6 p− 2 such thata = gx in Fp. This integerx
is called thediscrete logarithmor indexof a in Fp with respect tog and is denoted
by indg(a). The determination ofx from the knowledge ofp, g anda is referred to
as thediscrete logarithm problem(DLP).

In general, one need not assumeg to be a primitive element and one is supposed
to computex from a and g, if such anx exists (i.e. ifa belongs to the cyclic
subgroup ofFp

∗ generated byg). In this article, we always assume for simplicity
thatg is a primitive element ofFp

∗.

We note that the DLP is the inverse of discrete exponentiation. Discrete expo-
nentiation iseasyto compute in the sense that there exist algorithms to solve this
problem in time bounded by a polynomial inlog p. The DLP, on the other hand, is a
difficult computational problem. No algorithms are known to solve the DLP in time
bounded by a polynomial inlog p. The intractability of the DLP is exploited for de-
signing various public-key cryptosystems, for example, the ElGamal scheme[32].
It is, therefore, of great interest to obtain practical performance improvements and
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rigorous analysis of algorithms for the DLP, typically for primes of size6 1000
bits.

The older methods for solving the DLP, namely, Shank’s Baby-Step Giant-Step
method, Pollard’s rho method and Pohlig-Hellman method [85, Sections 6.4, 6.5],
have worst-case running times exponential inlog p and hence cannot be used ex-
cept forsmall fields. They, however, have the advantage that they work for any
arbitrary cyclic group. The index calculus method [28, 73, 84, 85, 97] iscurrently
the best known method for solving DLP over fields of both prime and prime-power
cardinalities and has asub-exponentialexpected running time. It, however, does
not apply to any arbitrary group. For example, a direct adaptation of the index cal-
culus method for computing discrete logarithms in elliptic curves over finite fields
is expected to lead to a running timeworsethan that of brute-force search [120].
Recently, Joseph H. Silverman has proposed a new algorithm, called thexedni cal-
culus method[119], which, though originally devised for computing elliptic curve
discrete logarithms, can be applied to finite fields. However, this algorithm has
been experimentally and heuristically shown to be impractical [62].

3.1.1 The index calculus method

Suppose that we want to computeindg(a) in Fp
∗. In the index calculus method,

we start by choosing afactor baseB which is asuitablesubset ofFp
∗ of small

cardinality. Let us denoteB = {b1, b2, . . . , bs}. We then search forrelationsof the
form

gαaβ
s
∏

i=1

bγii ≡
s
∏

i=1

bδii (mod p)

This gives us a linear congruence

α+ β indg a+
s
∑

i=1

γi indg bi ≡
s
∑

i=1

δi indg bi (mod p− 1)

The index calculus method proceeds in two stages. In the first stage, we search for
relations withβ = 0. When sufficiently many relations are available, the resulting
system of linear congruences is solved modp− 1 for the unknownsindg bi. In the
second stage, a single relation involving(β, p − 1) = 1 is found. Substituting the
precomputedvalues ofindg bi yieldsindg a.

The running time of the index-calculus method is of the form

L〈p, ω, c〉 = exp
(

(c+ o(1))(log p)ω(log log p)1−ω
)

(3.1)

for some positive constantc and for some real number0 < ω < 1. By an abuse of
notation, we denote byL(p, c) any quantity that satisfies

L(p, c) = exp
(

(c+ o(1))
√

ln p ln ln p
)

This corresponds toω = 1
2 in Eqn. 3.1. Whenp is understood from the context, we

writeL[c] for L(p, c). In particular,L[1] is denoted simply byL.

The basic index calculus method [85, Section 6.6.2] for the computation of
discrete logarithms over prime fields and the adaptations of this method take time
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L[c] for c between 1.5 and 2 and are not useful in practice for prime fieldsFp with
p > 2100. Coppersmith, Odlyzko and Schroeppel [28] proposed three variantsof
the index calculus method that run in timeL[1] and are practical forp 6 2250. A
subsequent paper [73] by LaMacchia and Odlyzko reports implementationof two
of these three variants, namely the linear sieve method and the Gaussian integer
method. They were able to compute discrete logarithms inFp with p of about 200
bits.

The paper [28] also describes a cubic sieve method due to Reyneri for thecom-
putation of discrete logarithms over prime fields. The cubic sieve method has a
heuristic running time ofL[

√
2α] for some1

3 6 α < 1
2 and is, therefore, asymp-

totically faster than the linear sieve method (and the otherL[1] methods described
in [28]). However, the authors of [28] conjectured that the theoreticalasymptotics
do not appear to take over forp in the range of practical interest (a few hundred
bits). A second problem associated with the cubic sieve method is that it requires a
solution of a certain Diophantine equation. It is not known how to find a solution
of this Diophantine equation in the general case. For certain special primesp a
solution arises naturally, for example, whenp is closeto a whole cube.

Recently, a new variant of the index calculus method based on general number
field sieves has been proposed and has a conjectured heuristic run time of

L〈p, 1/3, c〉 = exp
(

(c+ o(1))(log p)
1
3 (log log p)

2
3

)

(See [78] for a good reference on this topic). Weber et. al. [105, 127, 128] have
implemented and proved the practicality of this method.

3.2 Three variants of the index calculus method for DLP

In this section, we describe the details of the basic method, the linear sieve method
and the cubic sieve method. They differ in the choice of the factor base andin the
way the relations are generated. We concentrate on the first stage only. (This is
typically the more time-consuming stage.) The description of the second stage is
similar and can be found in [28, 84, 85].

3.2.1 The basic method

For this method, the factor base isB = {q1, q2, . . . , qt}, whereqi is theith prime
(q1 = 2, q2 = 3 and so on). With a harmless abuse of convention, we call an integer
n to beB-smooth, if all the prime factors ofn are inB, that is, if n factorizes
completely over the factor baseB. The first stage of the method computes the
discrete logarithms of the elements ofB (with respect tog). In order to do that, one
raisesg to a random powerj, 2 6 j 6 p − 2 and checks ifgj factorizes smoothly
over the factor baseB as an integer. Thus, ifgj =

∏t
i=1 q

αi
i , then

j ≡
t
∑

i=1

αidi (mod p− 1)

wheredi is the discrete logarithm ofqi. This gives us a linear congruence in the
unknownsdi. After t such linearly independent relations are found, the resulting
system is solved modulop − 1. Every search step for a relation involves the fol-
lowing two computations:
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1. Computation of the discrete exponentiationgj .
2. A check ifgj factorizes completely overB.

The second step is carried out by trial divisions by the elements ofB.

3.2.2 The linear sieve method

LetH = ⌊√p⌋+1 andJ = H2−p. ThenJ 6 2
√
p. Let’s consider the congruence

(H + c1)(H + c2) ≡ J + (c1 + c2)H + c1c2 (mod p) (3.2)

Forsmallintegersc1, c2, the right side of the above congruence, henceforth denoted
as

T (c1, c2) = J + (c1 + c2)H + c1c2 (3.3)

is of the order of
√
p. If the integerT (c1, c2) is smooth with respect to the firstt

primesq1, q2, . . . , qt, that is, if we have a factorization likeJ+(c1+c2)H+c1c2 =
∏t

i=1 q
αi
i , then we have a relation

indg(H + c1) + indg(H + c2) =
t
∑

i=1

αi indg(qi)

For the linear sieve method, the factor base comprises of primes less thanL[1/2] (so
thatt ≈ L[1/2]/ ln(L[1/2]) by the prime number theorem) and integersH + c for
−M 6 c 6M . The boundM onc is chosen such that2M ≈ L[1/2+ ǫ] for some
small positive realǫ. Once we check the factorization ofT (c1, c2) for all values of
c1 andc2 in the indicated range, we expect to getL[1/2 + 3ǫ] relations like (3.2)
involving the unknown indices of the factor base elements. If we further assume
that the primitive elementg is a small prime which itself is in the factor base, then
we get a relationindg(g) = 1. The resulting system with asymptotically more
equations than unknowns is expected to be of full rank and is solved to compute
the discrete logarithms of elements in the factor base.

In order to check for the smoothness of the integersT (c1, c2) for c1, c2 in the
range−M, . . . ,M , sieving techniques are used. First one fixes ac1 and initializes
to zero an arrayA indexed−M, . . . ,M . One then computes for each prime power
qh (q is a small prime in the factor base andh is a small positive exponent), a
solution forc2 of the congruence(H + c1)c2 + (J + c1H) ≡ 0 (mod qh). If the
gcd(H + c1, q) = 1, i.e. ifH + c1 is not a multiple ofq, then the solution is given
by d ≡ −(J + c1H)(H + c1)

−1 (mod qh). The inverse in the last equation can
be calculated by running the extended gcd algorithm onH + c1 andqh. Then for
each value ofc2 (−M 6 c2 6M ) that is congruent tod (mod qh), lg q is added1

to the array locationAc2 . On the other hand, ifqh1 ||(H + c1) with h1 > 0, we
computeh2 > 0 such thatqh2 ||(J + c1H). If h1 > h2, then for each value ofc2,
the expressionT (c1, c2) is divisible byqh2 and by no higher powers ofq. So we
add the quantityh2 ln q toAc2 for all −M 6 c2 6M . Finally, if h1 6 h2, then we
addh1 ln q to Ac2 for all −M 6 c2 6 M and forh > h1 solve the congruence as

d ≡ −
(

J+c1H
qh1

) (

H+c1
qh1

)−1
(mod qh−h1).

1More precisely, some approximate value oflg q, say, for example, the integer⌊1000 lg q⌋.
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Once the above procedure is carried out for each small primeq in the factor
base and for each small exponenth,2 we check for which values ofc2, the entry
of A at indexc2 is sufficiently closeto the valuelg (T (c1, c2)). These are precisely
the values ofc2 such that for the givenc1, the integerT (c1, c2) factorizes smoothly
over the small primes in the factor base.

In an actual implementation, one might choose to varyc1 in the sequence
−M,−M + 1,−M + 2, . . . and, for eachc1, consider only the values ofc2 in
the rangec1 6 c2 6 M . The criterion for ‘sufficient closeness’ of the array ele-
mentAc2 andlg (T (c1, c2)) goes like this. IfT (c1, c2) factorizes smoothly over the
small primes in the factor base, then it should differ fromAc2 by a small positive
or negative value. On the other hand, if the former is not smooth, it would have a
factor at least as small aspt+1, and hence the difference betweenlg (T (c1, c2)) and
Ac2 would not be less thanlg pt+1. In other words, this means that the values of the
differencelg (T (c1, c2)) − Ac2 for smooth values ofT (c1, c2) are well-separated
from those for non-smooth values and one might choose for the criterion acheck
whether the absolute value of the above difference is less than 1.

This completes the description of the equation collecting phase of the first stage
of the linear sieve method. This is followed by the solution of the linear system
modulop− 1.

3.2.3 The cubic sieve method

Let us assume that we know a solution of the Diophantine equation

X3 ≡ Y 2Z (mod p) (3.4)

X3 6= Y 2Z

withX,Y, Z of the order ofpα for some1
3 6 α < 1

2 . Then we have the congruence

(X +AY )(X +BY )(X + CY ) ≡ (3.5)

Y 2
[

Z + (AB +AC +BC)X + (ABC)Y

]

(mod p)

for all triples(A,B,C) with A + B + C = 0. If the bracketed expression on the
right side of the above congruence, namely,

R(A,B,C) =

[

Z + (AB +AC +BC)X + (ABC)Y

]

(3.6)

is smooth with respect to the firstt primesq1, q2, . . . , qt, that is, if we have a fac-
torizationR(A,B,C) =

∏t
i=1 q

βi
i , then we have a relation like

indg(X +AY ) + indg(X +BY ) + indg(X + CY ) ≡

indg(Y
2) +

t
∑

i=1

βi indg(qi) (mod p− 1)

If A, B, C aresmall integers, thenR(A,B,C) is of the order ofpα, since each of
X, Y andZ is of the same order. This means that we are now checking integers

2The exponenth can be chosen in the sequence1, 2, 3, . . . until one finds anh for which none of
the integers between−M andM is congruent tod.
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smaller thanO(p
1
2 ) for smoothness over firstt primes. As a result, we expect to

get relations like (3.5) moreeasily than relations like (3.2) as in the linear sieve
method.

This observation leads to the formulation of the cubic sieve method as follows.
The factor base comprises of primes less thanL[

√

α/2] (so that by prime number

theoremt ≈ L[
√

α/2]/ ln
(

L[
√

α/2]
)

), the integerY 2 and the integersX + AY

for 0 6 |A| 6M , whereM is of the order ofL[
√

α/2]. The integerR(A,B,C) is,
therefore, of the order ofpαL[

√

3α/2] and hence the probability that it is smooth
over the firstt primes selected as above, is aboutL[−

√

α/2]. As we check the
smoothness forL[

√
2α] triples (A,B,C) (with A + B + C = 0), we expect to

obtainL[
√

α/2] relations like (3.5).

In order to check for the smoothness ofR(A,B,C) = Z + (AB + AC +
BC)X + (ABC)Y over the firstt primes, sieving techniques are employed. We
maintain an arrayA indexed−M . . . +M as in the linear sieve method. At the
beginning of each sieving step, we fixC, initialize the arrayA to zero and letB
vary. The relationA + B + C = 0 allows us to eliminateA from R(A,B,C) as
R(A,B,C) = −B(B + C)(X + CY ) + (Z − C2X). For a fixedC, we try to
solve the congruence

−B(B + C)(X + CY ) + (Z − C2X) ≡ 0 (mod qh) (3.7)

whereq is a small prime in the factor base andh is a small positive exponent. This
is a quadratic congruence inB. If X +CY is invertible moduloqh (i.e. moduloq),
then the solution forB is given by

B ≡ −C
2
+

√

(X + CY )−1(Z − C2X) +
C2

4
(mod qh) (3.8)

where the square root is moduloqh. If the expression inside the radical is a
quadratic residue moduloqh, then for each solutiond of B in (3.8),lg q is added to
those indices ofA which are congruent tod moduloqh. On the other hand, if the
expression under the radical is a quadratic non-residue moduloqh, we have no so-
lutions forB in (3.7). Finally, ifX + CY is non-invertible moduloq, we compute
h1 > 0 andh2 > 0 such thatqh1 ||(X + CY ) andqh2 ||(Z − C2X). If h1 > h2,
thenR(A,B,C) is divisible byqh2 and by no higher powers ofq for each value of
B (and for the fixedC). We addh2 lg q toAi for each−M 6 i 6M . On the other
hand, ifh1 6 h2, we addh1 lg q to Ai for each−M 6 i 6 M and try to solve the
congruence−B(B + C)

(

X+CY
qh1

)

+
(

Z−C2X
qh1

)

≡ 0 (mod qh−h1) for h > h1.

SinceX+CY
qh1

is invertible moduloqh−h1 , this congruence can be solved similar to
(3.8).

Once the above procedure is carried out for each small primeq in the factor
base and for each small exponenth, we check for which values ofB, the entry ofA
at indexB is sufficiently closeto the valuelg(R(A,B,C)). These are precisely the
values ofB for whichR(A,B,C) is smooth over the firstt primes for the given
C. The criterion of ‘sufficient closeness’ ofAB andlg(R(A,B,C)) is the same as
described in connection with the linear sieve method.

In order to avoid duplication of effort, we should examine the smoothness of
R(A,B,C) for −M 6 A 6 B 6 C 6 M . The ranges over whichA, B andC
vary are described in Lemma 3.5.
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After sufficiently many relations are available, the resulting system is solved
modulop− 1 and the discrete logarithms of the factor base elements are stored for
computation of individual discrete logarithms.

Attractive as it looks, the cubic sieve method has several drawbacks which im-
pair its usability in practical situations.

1. It is currently not known how to solve the congruence (3.4) for a generalp.
And even when it is solvable, how large canα be? For practical purposesα
should be as close to13 as possible. No non-trivial results are known to the
authors, that can classify primesp according as the smallest possible values
of α they are associated with. (See Chapter 5 for some estimates of the
expected number of solutions of the congruence.)

2. Because of the quadratic and cubic expressions inA,B andC as coefficients
of X andY in R(A,B,C), the integersR(A,B,C) tend to be as large as
p

1
2 even whenα is equal to1/3. If we compare this scenario with that for
T (c1, c2) (See Equation 3.3), we see that the coefficient ofH is a linear func-
tion of c1 andc2 and as such, the integersT (c1, c2) are larger thanp

1
2 by a

small multiplicative factor. This shows that though the integersR(A,B,C)
are asymptotically smaller than the integersT (c1, c2), the formers are, in
practice, around104–106 times smaller than latter ones, even whenα as-
sumes the most favorable value (namely,1/3). In other words, when one
wants to use the cubic sieve method, one should use values oft (i.e. the num-
ber of small primes in the factor base) much larger than the values prescribed
by the asymptotic formula fort.

3. The second stage of the cubic sieve method, i.e. the stage that involves com-
putation of individual logarithms, is asymptotically as slow as the equation
collection stage. For the linear sieve method, on the other hand, individual
logarithms can be computed much faster than the equation collecting phase.

3.3 Average behavior and distribution ofT (c1, c2) andR(A,B,C)

Central to the running time analysis of the index calculus methods described in the
previous section is the concept of smoothness and probabilistic density expression
of smooth integers.

DEFINITION 3.1 An integerx is said to bey-smoothfor a positive integery, if all prime factors of
x are6 y. Wheny is understood from the context, we speak ofx beingsmooth.
We denote byψ(x, y) the number of positive integers6 x that arey-smooth.

The following theorem gives an asymptotic estimate forψ(x, y) [28, 77, 84].

THEOREM 3.2 If u = log x/ log y, then foru→ ∞ andy > log2 x,

ψ(x, y) = xu−u+o(u)

In particular, if we havex = pα andy = L[β] = exp(β
√
log p log log p), then

ψ(x, y)/x = L

[

− α

2β

]

.
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The quantityψ(x, y)/x measures the likelihood that an integer chosen ran-
domly between 1 andx is y-smooth. The analysis of the running times of the linear
and cubic sieve methods makes theheuristicassumption that the numbersT (c1, c2)
andR(A,B,C) are randomly distributed between 1 and a boundx. Therefore, the
expected number of relations obtained is governed by the probabilityψ(x, y)/x.

In this section, we prove that this assumption does not strictly hold. To this end,
we first define the following quantities:

DEFINITION 3.3 For the linear sieve method, we defineT to be the average value of|T (c1, c2)|
andTmax to be the maximum value of|T (c1, c2)|, asc1 andc2 range over all
permissible values, namely−M 6 c1 6 c2 6 M . For the cubic sieve method,
letR andRmax denote the average and maximum values of|R(A,B,C)| over
all triples(A,B,C) satisfying−M 6 A 6 B 6 C 6M ,A+B + C = 0.

If T (c1, c2) (resp.R(A,B,C)) were truly random, we expect thatT (resp.R)
would be close toTmax/2 (resp.Rmax/2). However, we calculate thatT andR
are significantly smaller thanTmax/2 andRmax/2 respectively. Though these dif-
ferences are asymptotically unimportant, they reveal that in practical situations the
sieve methods tend to produce more relations than predicted by the theoreticales-
timate.

3.3.1 Average value ofT (c1, c2)

From Eqn. 3.3, it is clear that for most of the values ofc1 andc2, the term(c1 +
c2)H dominates in the expression forT (c1, c2). In view of this, we can write the
approximate value ofT as

T ≈ H ·









M
∑

c1,c2=−M
c16c2

|c1 + c2|









/









M
∑

c1,c2=−M
c16c2

1









(3.9)

The denominator on the right side of this equation counts the number of pairs of
integers(c1, c2) subject to the condition−M 6 c1 6 c2 6 M , and can be shown
to have a value of(M + 1)(2M + 1) = 2M2 +O(M). The sum in the numerator

of (3.9) can be broken as
M
∑

c1,c2=−M
c16c2,c1+c2>0

(c1 + c2) +
M
∑

c1,c2=−M
c16c2,c1+c2<0

−(c1 + c2). It is easy to see

that these two sub-sums are identical. Therefore, evaluating the first sumgives the
value of the numerator of the right side of (3.9) to be(43M

3+O(M2))H. Thus we
get

T ≈ H

(

2

3
M +O(1)

)

(3.10)

Finally it is easy to see that the maximum value ofT (c1, c2) is attained approxi-
mately atc1 = c2 = ±M . To sum up, we have

RESULT 3.4 T ≈ H(23M +O(1)) andTmax ≈ 2MH, so thatT/Tmax ≈ 1/3.
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3.3.2 Average value ofR(A,B,C)

We first study the range over whichA,B andC can vary. The next lemma provides
the complete description of this.

LEMMA 3.5 With the conditions−M 6 A 6 B 6 C 6M andA+B+C = 0 in the cubic
sieve method,
i) C varies from 0 toM . In particular,C is always positive.
ii) For a givenC,B varies from−C/2 tomin(C,M − C).
iii) For a givenC,A varies frommax(−2C,−M) to−C/2. In particular,A is
always negative.

Proof i) If C < 0 thenA+ B + C = 0 implies thatA+ B > 0 and hence at least one
of A andB is greater than 0. This contradicts the fact thatA 6 C andB 6 C.

ii) We have2B > A + B = −C, soB > −C/2. AgainB 6 C andB =
−A − C 6 M − C sinceA > −M . ThusB 6 min(C,M − C). It is easy to
see that all values ofB in the range−C/2 6 B 6 min(C,M − C) correspond to
some triple(A,B,C).

iii) 2A 6 A+B = −C,A > −M andA = −B − C > −2C, sinceB 6 C. �

In what follows we assume thatZ is small in the sense that it can be neglected in
the expression forR(A,B,C). We consider two cases. In the first case we assume
Y ≪ X/M . For example, we study a specific instance of this case withY = 1 in
the next chapter. It is evident from Eqn. 3.6 that in this case the term(AB+AC +
BC)X is the dominant one in the expression forR(A,B,C). Therefore, we can
write

R ≈ X ·







∑

−M6A6B6C6M
A+B+C=0

|AB +AC +BC|







/







∑

−M6A6B6C6M
A+B+C=0

1






(3.11)

The denominator is the number of triples(A,B,C) for which the smoothness of
R(A,B,C) is checked and evaluates to12M

2 + O(M). In order to evaluate the
numerator, we note thatAB + AC + BC = −(B2 + BC + C2) = −1

2 [(B +
C)2 + B2 + C2] 6 0 for all values ofB andC. Therefore, the lemma 3.5 allows

us to write the numerator asX ·∑M
C=0

∑min(C,M−C)
B=−C/2 (B2 +BC + C2). This sum

evaluates to3291536M
4 +O(M3). We thus get

RESULT 3.6 For Y ≪ X/M , R ≈ X(329768M
2 + O(M)) andRmax ≈ M2X, so that

R/Rmax ≈ 329/768 ≈ 0.43.

The value ofRmax in the last theorem can be calculated in the following way.
Since |R/X| ≈ B2 + BC + C2 = (B + C/2)2 + 3/4C2, then by lemma
3.5, R(A,B,C) increases monotonically for a fixedC in the range of admissi-
ble variation ofB. In particular, if for a particularC,RC denotes the maximum of
|R(A,B,C)/X|, then we have

RC =

{

3C2 for C 6M/2
(M − C)2 + (M − C)C + C2 =M2 −MC + C2 for C >M/2
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SinceM2 −MC +C2 = (C −M/2)2 +3/4M2 increases monotonically withC
for C > M/2, RC reaches maximum atC = M , the maximum value being equal
toM2.

Next we consider the more general case, namely, whenX andY are of the
same order of magnitude. In this caseMY ≫ X and hence the term involving
Y dominates in the expression forR(A,B,C). SinceA = −(B + C) is always
non-positive andC is always non-negative, (3.6) allows us to writeR as

R ≈ Y ·







∑

−M6A6B6C6M
A+B+C=0

|B|C(B + C)







/







∑

−M6A6B6C6M
A+B+C=0

1






(3.12)

The denominator is12M
2+O(M) as before. The numerator evaluates to31

960M
5+

O(M4). Finally, it is also easy to check that the maximum value of|R(A,B,C)|
is obtained atA = B = −M/2, C =M . Thus we have

RESULT 3.7 WhenMY ≫ X, R ≈ Y ( 31
480M

3 +O(M2)), Rmax ≈ YM3/4 and therefore,
R/Rmax ≈ 31/120 ≈ 0.26.

3.3.3 Distribution of T (c1, c2)

The average valueT does not portray a complete picture of the distribution of
T (c1, c2). In order to have a better insight of the integersT (c1, c2), we define the
following:

DEFINITION 3.8 For a real0 6 η 6 1, let us denoteC(η) = #{ (c1, c2) | −M 6 c1 6 c2 6

M, |T (c1, c2)| 6 ηTmax }. We also definec(η) = C(η)/C(1)

By the above definition,C(1) is the total number of pairs(c1, c2) for which
T (c1, c2) is checked for smoothness. We have calculatedC(1) = 2M2 + O(M).
In order to calculateC(η) for 0 6 η < 1, we proceed as follows. The inequality
|T (c1, c2)| 6 ηTmax implies −2ηM − c1 6 c2 6 2ηM − c1. We also have
c1 6 c2 6M . Therefore,

C(η) =
M
∑

c1=−M

max

(

0,min(M, 2ηM − c1)−max(c1,−2ηM − c1) + 1

)

The closed form expression forC(η) can be obtained by evaluating the sum on the
right side of the last equation and we getC(η) = 2η(2− η)M2 +O(M). Normal-
izing by C(1) givesc(η) ≈ η(2 − η). The variation ofc(η) is shown in Fig 3.1.
The dotted line corresponds to the variation ofc(η), if |T (c1, c2)| wereuniformly
distributed between 0 andTmax. The graphs show that for a given0 < η < 1, there
are more integers|T (c1, c2)| 6 ηTmax than for the uniform distribution. For exam-
ple,c(1/2) ≈ 3/4, that is, about 75% of the integersT (c1, c2) have absolute value
no larger than12Tmax. If the distribution were uniform, this percentage would be
50%. Since smaller integers have higher chance of being smooth, the resultshows
that the actual distribution of|T (c1, c2)| is better than the uniform distribution.
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Figure 3.1: Variation ofc(η) for the linear sieve method
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3.3.4 Distribution of R(A,B,C)

Similar to the case withT (c1, c2) we define the following analogous quantities for
the cubic sieve method:

DEFINITION 3.9 For a real0 6 η 6 1, let us denoteD(η) = #{ (A,B,C) | − M 6 A 6

B 6 C 6 M,A + B + C = 0, |R(A,B,C)| 6 ηRmax }. We also define
d(η) = D(η)/D(1)

For the cubic sieve method, we consider the two cases: (i)Y ≪ X/M and
(ii) Y ≫ X/M . As told before we assumeZ to besmall. In the former case,
we approximate|R(A,B,C)| ≈ (B2 +BC + C2)X. Therefore,|R(A,B,C)| 6
ηRmax leads to the inequalityB 6 −C/2 +

√

ηM2 − 3/4C2, if the quantity
inside the radical is positive. We also have from Lemma 3.5 that−C/2 6 B 6

min(C,M − C). Therefore,D(η) evaluates to the sum

D(η) ≈
min
(

M,
⌊

2M
√

η/3
⌋)

∑

C=0

[

1 + ⌊C/2⌋+min

(

C,M − C,

⌊

−C/2 +
√

ηM2 − 3C2/4

⌋)

]

Fig 3.2 shows the variation ofd(η) = D(η)/D(1) with η. Here also we see that
the curve ford(η) lies abovethe curve for the uniform distribution implying that
the situation with theR(A,B,C) is better than that with a uniformly distributed
sample of integers.

In the second caseY ≫ X/M and we approximateR(A,B,C) ≈ |B|C(B +
C)Y . In this case,D(η) can be computed from the sum

D(η) = 1 +
M
∑

C=1

[

1 + min

(

C,M − C,

⌊

−C/2 + 1

2

√

C2 + ηM3/C

⌋)]

+

⌊η1/3M⌋
∑

C=1

⌊C/2⌋+
M
∑

⌊η1/3M⌋+1

⌊

C/2− 1

2

√

C2 − ηM3/C

⌋
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The corresponding variation ofd(η) = D(η)/D(1) is also shown in Fig 3.2. In this
case, the distribution ofR(A,B,C) is even better than that in the previous case.

Figure 3.2: Variation ofd(η) for the cubic sieve method
Case 1:Y ≪ X/M , Case 2:Y ≫ X/M
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To sum up, we see that for both the linear sieve and the cubic sieve methods,
the numbersT (c1, c2) andR(A,B,C) do not behave exactly as a random sample
of integers between 0 andTmax orRmax.
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Appendix A Detailed calculations

In the last section, we have outlined the procedure to derive the expressions forT ,
Tmax, R, Rmax, C(η) andD(η). In this appendix, we provide complete details of
the calculations. Result 3.6 and the expression forD(η) for the caseY ≪ X/M
are not derived in this chapter. In the appendix of the next chapter, weprove them
in a more general setting.

A.1 Calculation of T

We recall from Eqn 3.9 thatT can be approximated as

T ≈ H ·









M
∑

c1,c2=−M
c16c2

|c1 + c2|









/









M
∑

c1,c2=−M
c16c2

1









The denominator is equal to the sum(2M + 1) + (2M) + . . . + 1 which equals
(2M + 1)(2M + 2)/2 = 2M2 +O(M). The sum in the numerator can be written
as

M
∑

c1,c2=−M
c16c2

|c1 + c2| =
M
∑

c1,c2=−M
c16c2

c1+c2>0

(c1 + c2) +
M
∑

c1,c2=−M
c16c2

c1+c2<0

−(c1 + c2)

The second subsum can be written as
M
∑

−c2,−c1=−M
−c26−c1

(−c2)+(−c1)>0

((−c2)+(−c1)) and is, therefore,

equal to the first subsum. Hence the sum in the numerator of Eqn 3.9 evaluates to

2
M
∑

c1,c2=−M
c16c2

c1+c2>0

(c1 + c2)

= 2





0
∑

c1=−M

M
∑

c2=−c1+1

(c1 + c2) +
M
∑

c1=1

M
∑

c2=c1

(c1 + c2)





= 2





0
∑

c1=−M

(1 + 2 + . . .+ (c1 +M)) +

M
∑

c1=1

(2c1 + (2c1 + 1) + . . .+ (c1 +M))





= 2





0
∑

c1=−M

(c1 +M)(c1 +M + 1)

2
+

M
∑

c1=1

(M − c1 + 1)(3c1 +M)

2





=
M(M + 1)(4M + 5)

3
≈ 4M3/3

Therefore,T ≈ H(23M +O(1)).
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A.2 Calculation of Tmax

SinceT ≈ |c1 + c2|H and−M 6 c1 6 c2 6 M , it is clear thatT (c1, c2) attains
the maximum value atc1 = c2 = ±M . This maximum value isTmax ≈ 2MH.

A.3 Calculation of C(η) and c(η)

The inequality|T (c1, c2)| 6 ηTmax ≈ 2ηMH implies−2ηM 6 c1 + c2 6 2ηM ,
that is,−2ηM − c1 6 c2 6 2ηM − c1. We also havec1 6 c2 6 M . Therefore,
for a given value ofc1, the values ofc2 corresponding to|T (c1, c2)| 6 ηTmax are

max(c1,−2ηM − c1) 6 c2 6 min(M, 2ηM − c1)

Summing over all values ofc1 gives

C(η) =
M
∑

c1=−M

max(0, 1 + min(M, 2ηM − c1)−max(c1,−2ηM − c1))

NowM 6 2ηM − c1 if and only if c1 6 (2η − 1)M , andc1 6 −2ηM − c1 if and
only if c1 6 −ηM . Finally,(2η−1)M 6 −ηM if and only if η 6 1/3. Therefore,
we consider two casesη 6 1/3 andη > 1/3. We derive the expression forC(η)
only for the former case; the derivation for the other case is very similar. Note that
in the former case, we have−M 6 (2η − 1)M 6 −ηM 6 M and thus the sum
for C(η) can be written as

C(η) =

⌊(2η−1)M⌋
∑

c1=−M

max(0,M + 2ηM + c1 + 1)

+

⌊−ηM⌋
∑

c1=⌊(2η−1)M⌋+1

max(0, 2ηM − c1 + 2ηM + c1 + 1) (3.13)

+
M
∑

c1=⌊−ηM⌋+1

max(0, 2ηM − c1 − c1 + 1)

SinceM + c1 > 0 and2ηM + 1 is a positive quantity, the first sum on the right
side of the last equation evaluates to

⌊(2η−1)M⌋
∑

c1=−M

(M + 2ηM + 1 + c1)

≈ 1

2
[(1 + 2η − 1)M + 1] [M + 2ηM + 1−M +M + 2ηM + 1 + 2ηM −M ]

= 6η2M2 +O(M)

The second sum on the right side of (3.13) is simply seen to be approximately equal
to

(4ηM + 1)(−ηM − (2η − 1)M) = 4η(1− 3η)M2 +O(M)

Finally note that2ηM − 2c1 + 1 > 0 if and only if c1 6 ηM − 1
2 . Therefore, the

third sum on the right side of (3.13) is

⌊ηM− 1
2
⌋

∑

c1=⌊−ηM⌋+1

(2ηM − 2c1 + 1)

≈ (2ηM + 1)2ηM +O(M)

= 4η2M2 +O(M)
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Summing up the values of these three subsums gives the valueC(η) ≈ 2η(2 −
η)M2. For the other case, namely,η > 1/3, C(η) evaluates to the same expression.
SinceC(1) ≈ 2M2, we havec(η) = C(η)/C(1) ≈ η(2− η).

This completes the derivation of the average and distribution of the integers
T (c1, c2) for the linear sieve method. We next concentrate on the behavior of
R(A,B,C) for the cubic sieve method. As told at the beginning of this appendix,
we concentrate only on the caseMY ≫ X. For the other case that we studied,
namelyY ≪ X/M , we refer the reader to the Appendix B of the next chapter.

A.4 Calculation of R

In the caseMY ≫ X, we approximate|R(A,B,C)| as|R(A,B,C)| ≈ |ABC|Y
= | − BC(B + C)|Y = |B|C(B + C)Y , since by Lemma 3.5,B + C = −A
is always non-negative. We also see from Lemma 3.5 that for a givenC, B varies
from−C/2 tomin(C,M − C). Consequently, we can writeR as

R ≈ Y ·




M
∑

C=0

min(C,M−C)
∑

B=⌈−C/2⌉
|B|C(B + C)





/





M
∑

C=0

min(C,M−C)
∑

B=⌈−C/2⌉
1



 (3.14)

Now C 6 M − C if and only if C 6 M/2. Therefore, the denominator of the
above equation is

M
∑

C=0

[

1 +

⌈

C

2

⌉

+min(C,M − C)

]

= M + 1 +

⌊M/2⌋
∑

C=0

[⌈

C

2

⌉

+ C

]

+
M
∑

C=⌊M/2⌋+1

[⌈

C

2

⌉

+M − C

]

≈ 1

4
M(2M + 5) = M2/2 +O(M)

The sum in the numerator can, on the other hand, be written as

M
∑

C=0

C

min(C,M−C)
∑

B=⌈−C/2⌉
|B|B +

M
∑

C=0

C2
min(C,M−C)

∑

B=⌈−C/2⌉
|B| (3.15)

The first subsum evaluates to

⌊M/2⌋
∑

C=0

C
C
∑

B=⌈−C/2⌉
|B|B +

M
∑

C=⌊M/2⌋+1

C
M−C
∑

B=⌈−C/2⌉
|B|B

=

⌊M/2⌋
∑

C=0

C[−⌊C/2⌋2 − . . .− 22 − 12 + 02 + 12 + 22 + . . .+ C2]

+
M
∑

C=⌊M/2⌋+1

C[−⌊C/2⌋2 − . . .− 22 − 12 + 02 + 12 + 22 + . . .+ (M − C)2]

≈ − 1

24

M
∑

C=0

C4 +
2

3

⌊M/2⌋
∑

C=0

C4 +O(M4)

≈ − 1

240
M5 +O(M4)
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and the second sum to

⌊M/2⌋
∑

C=0

C2
C
∑

B=⌈−C/2⌉
|B| +

M
∑

C=⌊M/2⌋+1

C2
M−C
∑

B=⌈−C/2⌉
|B|

=

⌊M/2⌋
∑

C=0

C2[⌊C/2⌋+ . . .+ 2 + 1 + 0 + 1 + 2 + . . .+ C]

+
M
∑

C=⌊M/2⌋+1

C2[⌊C/2⌋+ . . .+ 2 + 1 + 0 + 1 + 2 + . . .+M − C]

≈ 5

8

M
∑

C=0

C4 −M
M
∑

C=⌊M/2⌋+1

C3 +
1

2
M2

M
∑

C=⌊M/2⌋+1

C2 +O(M4)

≈ 7

192
M5 +O(M4)

Therefore, the numerator of (3.14) is approximately equal to((− 1
240 + 7

192)M
5 +

O(M4))Y = ( 31
960M

5 +O(M4))Y , so thatR ≈ ( 31
480M

3 +O(M2))Y .

A.5 Calculation of Rmax

In order to compute the value ofRmax, we consider the following cases separately.

Case 1:B 6 0

In this case,B varies from−⌊C/2⌋ to 0. Writing β = −B, we see that
|R(A,B,C)|/Y ≈ |B|C(B + C) = βC(C − β) = C(C2/4 − (C/2 − β)2).
For a givenC, this expression attains the maximum value atβ = C/2 and this
maximum value isC3/4 (neglecting the possible inequality of⌊C/2⌋ andC/2).
As C ranges over all possible values, the maximum of this maximum value be-
comesM3/4 attained whenC =M .

Case 2:B > 0

In this case,B varies from0 to min(C,M − C) and we have the approximation
|R(A,B,C)|/Y ≈ BC(B + C) = C((B + C/2)2 − C2/4), which increases
monotonically in the range of variation ofB and, therefore, reaches maximum at
B = min(C,M − C).

Case 2a:B > 0 and 0 6 C 6M/2

We havemin(C,M − C) = C and hence the maximum value of|R(A,B,C)|/Y
for a givenC is approximatelyC((C +C/2)2 −C2/4) = 2C3. This approximate
value is maximized atC =M/2, the maximum being equal toM3/4.

Case 2b:B > 0 andM/2 6 C 6M

Here min(C,M − C) = M − C and for a givenC, the maximum value of
|R(A,B,C)|/Y is approximatelyC((M−C+C/2)2−C2/4) =M(M2/4−(C−
M/2)2). The last expression attains the maximum value ofM3/4 for C =M/2.

Thus we see that in all the cases|R(A,B,C)|/Y has the approximate maxi-
mum value ofM3/4 and, therefore,Rmax ≈ YM3/4.
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A.6 Calculation of D(η) and d(η)

By definition,D(η) equals the number of triples(A,B,C) for which |R(A,B,C)|
6 ηRmax. This inequality, in turn, leads to the approximate condition

|B|C(B + C) 6 ηM3/4 (3.16)

ForC = 0, there is only one value ofB, namelyB = 0, that satisfies (3.16) and
Lemma 3.5 for all values ofη. ForC > 0, we consider two cases:

Case 1:B > 0

In this case (3.16) reduces to(B + C/2)2 6
ηM3

4C + C2

4 , or equivalently,B 6

−C/2 +
√

ηM3

4C + C2

4 . Since we also haveB 6 min(C,M − C), we see that for
a givenC, non-negative values ofB that satisfy (3.16) are

0 6 B 6 min



C,M − C,−C/2 +
√

ηM3

4C
+
C2

4





Case 2:B < 0

In this case, the condition (3.16) demands

(B + C/2)2 >
C2

4
− ηM3

4C
(3.17)

If the right side of this inequality is negative, that is, ifC < η1/3M , then the
inequality is satisfied by allB in the range−⌊C/2⌋ 6 B < 0. On the other hand,
for C > η1/3M , the right side of (3.17) is non-negative, and the negative values of
B that satisfy (3.16) are

−C/2 +
√

C2

4
− ηM3

4C
6 B < 0

This is certainly a more restrictive condition than−C/2 6 B < 0.

Considering the above two cases, we can write the approximate value ofD(η)
as

D(η) ≈ 1 +
M
∑

C=1



1 + min



C,M − C,−C/2 +
√

ηM3

4C
+
C2

4









+

⌊η1/3M⌋
∑

C=1

⌊C/2⌋+
M
∑

C=⌊η1/3M⌋+1







−C/2 +
√

C2

4
− ηM3

4C









We have plotted the value ofd(η) = D(η)/D(1) in Fig 3.2 forM = 1000.
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4 Heuristic modifications of discrete
logarithm algorithms

In the last chapter, we discussed three variants of the index calculus method for the
computation of discrete logarithms over finite fields of prime cardinality. In this
chapter, we propose some heuristic modifications of these methods.

In Section 4.1 we start with the description of two heuristic variants of the basic
method. These variants reduce the number of discrete exponentiations andmake the
trial division procedure more efficient. This leads to a speed-up of about 2 over the
basic method. In Section 4.2, we discuss efficient implementation schemes for the
linear and cubic sieve methods. A heuristic modification of the linear sieve method
follows in Section 4.3. This modification checks smaller numbers for smoothness
over the chosen factor base and is, thereby, expected to produce morerelations
than the original method. A heuristic improvement of the cubic sieve method is
described in Section 4.4. Our heuristic helps generate a larger factor base at almost
no extra cost. We also study the effect of the heuristic on the average, themaximum
and the distribution of the integers that are checked for smoothness.

In this chapter, we use terms and notations introduced in the previous chap-
ter – often without specific mention. All experiments reported in this chapter are
carried out using the Galois Field Library described in Chapter 2, on a 200MHz
Pentium machine running Linux version 2.0.34 and having 64 Mb RAM. The GNU
C Compiler version 2.7 is used. The timings correspond to an older (and somewhat
slower) version of GFL.

4.1 Heuristic modification of the basic method

We recall from Section 3.2.1 that in the basic method, a relation is set up by raising
g to a random power and by checking if that power factorizes completely over the
chosen factor base as an integer. This process involves two time-consuming oper-
ations: a discrete exponentiation in the field and a check whether the power of the
primitive element factorizes smoothly over the factor base. This check is usually
carried out by trial divisions by elements of the factor base. Here we propose some
heuristic variants of this basic method. These methods try to factorize severalin-
tegers which are identical as elements ofFp, before a new exponent is tried. This
decreases the total number of discrete exponentiations. In order to reduce the cost
of trial divisions we apply certain tricks that help us avoid all unnecessary trial di-
visions. We concentrate only on the first stage of the method. Our modificationcan
be applied directly to the second stage of the index calculus method as well.

4.1.1 The first heuristic

For all integersr, gj + rp = gj as elements ofFp. (In this section ‘+’ denotes
integer addition unless otherwise specified.) Therefore, if for some non-negative
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integerr, we have a factorizationgj + rp =
∏t

i=1 q
αi
i , we have a relation. On the

other hand, if for some negative integerr, we havegj + rp = −∏t
i=1 q

αi
i , then

j +
p− 1

2
≡

t
∑

i=1

αi indg qi (mod p− 1)

sinceg
p−1
2 = −1 in Fp (g being a primitive element ofFp). This motivates us to

reframe the search procedure for relations in the following way:

HEURISTIC B1 1. Choose a random integerj, 2 6 j 6 p− 2.

2. Check ifgj factorizes completely over the factor baseB. If yes, a relation
is found, store it and proceed to Step 1.

3. Check if gj + rp factorizes completely overB in succession forr =
1, 2, . . . If a relation is found for some value ofr, store it and proceed
to Step 1. Else ifr exceeds a predefined valuek (the choice ofk will be
explained later), proceed to Step 4.

4. Check if−
(

gj + rp
)

factorizes completely overB in succession forr =
−1,−2, . . . If a relation is found for some value ofr, store it and proceed
to Step 1. Else if|r| exceedsk, go to Step 1.

Note thatgj is a number with less than or equal to⌈lg p⌉ bits. On the other
hand,gj + rp is a number with at most⌈lg |rp|⌉ bits. The boundk of r in Steps 3
and 4 should be small enough so that the bit-length ofgj + rp is not too large com-
pared with⌈lg p⌉. This is because if this bit-length is large compared to⌈lg p⌉, the
probability thatgj + rp factorizes smoothly overB is sufficiently small compared
to the corresponding probability for an integer less thanp (See Theorem 3.2). As a
result, the search procedure loses effectiveness if large values ofr are chosen. Later
we discuss the variation of the performance of our heuristic for different values of
k for some small example problems.

Since we check the factorization ofgj + rp in succession forr = 0, 1, 2, . . .
in Step 3, we can make trial divisions more efficient in the following way. Let
vi be the integer between 0 andqi − 1, that is congruent top moduloqi. The t
integersv1, v2, . . . , vt can be pre-computed. Let us denote byρr,1, ρr,2, . . . , ρr,t
the remainders of divisions ofgj + rp by q1, q2, . . . , qt respectively. Aftergj

is computed for some randomj, ρ0,1, ρ0,2, . . . , ρ0,t are computed by perform-
ing actual divisions ofgj by the primesqi in the factor base. The remainders
ρ1,1, ρ1,2, . . . , ρ1,t are computed fromρ0,1, ρ0,2, . . . , ρ0,t and, in general, the re-
maindersρr+1,1, ρr+1,2, . . . , ρr+1,t are calculated fromρr,1, ρr,2, . . . , ρr,t using the
relationρr+1,i ≡ ρr,i + vi (mod qi) for all i = 1, 2, . . . , t. Now aqi ∈ B divides
gj+rp if and only if ρr,i = 0. Hence trial divisions ofgj+rp by qi is carried out if
and only ifρr,i = 0. Since in typical situations only a few ofρr,i are 0 irrespective
of whethergj + rp factorizes completely overB or not, we save many unnecessary
divisions ofgj + rp by qi.

In Step 4, the incremental procedure involves the following operations.p− gj

is computed by subtractinggj from p. Subsequently,(|r| + 1)p − gj is computed
by addingp to |r|p − gj . Here we designate byρ−|r|,i the remainder of division

of |r|p − gj by qi. The remaindersρ−1,1, ρ−1,2, . . . , ρ−1,t are obtained using the
relationsρ−1,i ≡ vi − ρ0,i (mod qi). For |r| > 1, we have the relationρ−|r|−1,i ≡
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vi+ρ−|r|,i (mod qi). Therefore, the incremental procedure in Step 4 is essentially
the same as in Step 3 (except for the caser = −1).

4.1.2 The second heuristic

As explained in the last section, we cannot take large values ofk (the bound of|r|
in gj + rp). In typical applications one should be satisfied withk 6 10. If we
want to use larger values ofk (say, values of the order of 100), we should have an
even faster method of checking integers forB-smoothness. Our second heuristic
achieves that by using sieving techniques similar to those used in connection with
the quadratic sieve method for factoring integers [16, 46]. This method callsfor
more additional storage than what is needed in the previous heuristic, and incurs a
costlier pre-computation stage. In this case, the basic steps are as follows:

HEURISTIC B2 1. Choose a random integerj, 2 6 j 6 p− 2.

2. For eachr = −k,−k+1, . . . ,−1, 0, 1, . . . , k, check if|gj+rp| factorizes
completely over the factor baseB. Store relations corresponding to allB-
smooth values ofgj + rp. Go to Step 1.

The basic difference between heuristics B1 and B2 is that in B1, an exponent
j is discarded when a relation is found or when all values|r| 6 k are checked.
In B2, on the other hand, all values|r| 6 k are considered for a given exponent
irrespective of whether we get relations for some values ofr. This is justifiable
because we are checking a larger range of values ofr, so that we might expect to
get more than oner for which |gj + rp| is B-smooth for a givenj. The second
difference between B1 and B2 is the way in which the check forB-smoothness of
|gj + rp| is implemented. We now describe this check procedure for B2.

Before the search for relations is started, we precompute and store the following
quantities:

1. For eachi = 1, 2, . . . , t, the exponentβi such thatqβi
i < (k + 1)p 6 qβi+1

i .

2. The powersqli for all i = 1, 2, . . . , t and for alll = 1, 2, . . . , βi.

3. The approximate values of the logarithmslg qli for all i = 1, 2, . . . , t and
for all l = 1, 2, . . . , βi. For a multi-precision integern represented in base
R = 2b as

n = asR
s + as−1R

s−1 + . . .+ a1R+ a0

with as 6= 0, the approximate logarithm is set equal to thefloat log2(a0), if
s = 0, and to thefloat log2(asR+ as−1) + (s− 1)b, if s > 1.

4. The (positive) remainders of division of−p−1 by qli for all i = 1, 2, . . . , t

and for alll = 1, 2, . . . , βi. Note thatp−1 ≡ p qli−ql−1
i −1 (mod qli).

Our sieving procedure is little different from the traditional one used in the
quadratic sieve method for integer factorization. Before we discuss the modified
sieving procedure, let us introduce the following terminology. For a givenr, −k 6

r 6 k, the least integerr + u with u > 0 satisfying(gj + rp) + up ≡ 0 (mod qli)
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is defined to be thenext divisibility indexof qli at r. If r + u is less than or equal to
k, we say that the prime powerqli is activein the ranger, r + 1, . . . , k.

After a randomj is selected and the discrete exponentiationgj is carried out, we
first calculategj − kp. Then for eachi = 1, 2, . . . , t and for eachl = 1, 2, . . . , βi,
the next divisibility index forqli at−k is calculated. By definition, this is the small-
est integeru − k with u > 0 satisfying(gj − kp) + up ≡ 0 (mod qli), i.e.,
u ≡ (−p−1)(gj −kp) (mod qli). This is where we use the pre-computed values of
−p−1 moduloqli. We also calculate for eachi = 1, 2, . . . , t the valueδi such that
qδii is active in the range−k, . . . , k, butqδi+1

i is not. We haveδi 6 βi.

Now we repeat the following procedure in succession forr = −k,−k +
1, . . . ,−1, 0, 1, . . . , k. If the next divisibility index ofqi atr is equal tor itself, then
qi divides(gj + rp) and we calculate the largest integerǫi 6 δi such that the next
divisibility index of qǫii is r but that ofqǫi+1

i is greater thanr. Thenqǫii ||(gj + rp).
On the other hand, if the next divisibility index ofqi at r is greater thanr, we take
ǫi = 0. We then calculate the quantity

L = lg(gj + rp)−
t
∑

i=1

lg(qǫii ) (4.1)

If L is close to 0 or negative, then we have a relation.

Before, we proceed withr + 1, we compute the next divisibility indices forqli
at r + 1 in the following way (for all1 6 i 6 t and1 6 l 6 δi). If l > ǫi, the
next divisibility index ofqli at r + 1 is the same as that atr. If l 6 ǫi, then the next
divisibility index of qli at r + 1 is qli plus the next divisibility index ofqli at r.

This completes the description of the details of the heuristic B2. Before we
end this section, two further comments are in order. First we note that we can
implement the next divisibility indices as single-precision integers, though their
definition demands them to be multiple-precision ones. This is because, if someqli
is not active in the ranger, . . . , k, then this prime power divides none of the integers
gj + rp, . . . , gj + kp. Our heuristic never tries to check the integersgj + rp for
r > k and hence wheneverqli gets non-active, we may set its next divisibility index
to k + 1. Also note that instead of defining the next divisibility indices as integers
> −k, one can define them as integers> 0 by addingk to the values following
from the current definition.

Finally note that if the logarithms calculated areexact, then gj + rp is B-
smooth if and only ifL = 0. But in practical situations we work with approximate
logarithms and as such the smoothness criterion should be different from the check
L = 0. If gj + rp is B-smooth, thenL should be a small real number (positive
or negative). On the other hand, ifgj + rp is notB-smooth, it will have at least
one prime factor not inB and henceL must not be too less thanlg(qt+1), qt+1

being the smallest prime not inB. This implies that the values ofL for B-smooth
integers are well-separated from those for non-B-smooth integers and the selection
criterion might be taken to be the check whetherL < 1.

4.1.3 Performance analysis

In this section, we argue heuristically why our modifications should run faster than
the basic method. Suppose that multi-precision integers are represented in the com-
puter memory as an array of words in radix2b. Therefore the storage of anl-bit
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number needs⌈l/b⌉ words. In particular, each of the numbersg, p, j, gj , gj + rp
(for smallr) occupies nearlyw = ⌈ lg pb ⌉ words. The discrete exponentiationgj re-
quiresO(w3) multiplications and an equal number of additions of machine words.
A summation(gj + rp) + p to getgj + (r + 1)p from gj + rp, on the other hand,
needsO(w) additions of machine words. Trial divisions ofgj+rp by a prime ofB
takesO(w) multiplications, divisions, additions and subtractions of machine words
(sinceB consists only of single-precision primes in typical applications).

In the basic method, only a single integer is checked forB-smoothness after
every discrete exponentiation. In our heuristics, several other integers are checked
for B-smoothness, before the next exponentiation is carried out. These integers are
obtained by successively addingp and so the costs of obtaining these integers are
much less than those for obtaining integers by discrete exponentiation.

For the heuristic B1, computation ofρ0,i for all i = 1, 2, . . . , t requires
O(tw) operations (additions, subtractions, multiplications and divisions) of ma-
chine words. Subsequently,ρr,i for r 6= 0 and for alli = 1, 2, . . . , t can be com-
puted usingO(t) additions and subtractions of machine words (since they are ob-
tained by addingρr−1,i or ρr+1,i to vi each of which is a single-precision integer).
If s is the average number ofi for which ρr,i = 0, our procedure avoidsO(t − s)

unnecessary divisions of|gj + rp| by factor base primes at the cost ofO(t) single-
precision additions and subtractions mentioned above. Sinces is usually much
smaller compared tot, this leads to a significant decrease in the cost associated
with the trial division procedure.

For the other heuristic B2, trial divisions are completely dispensed with at the
cost of maintaining the next divisibility indices for factor base primes and forsuit-
able powers of them. LetT denote the total number of primes and prime pow-
ers monitored by the algorithm. Using the terminology of the previous section,
T = O(

∑t
i=1 βi), whereβi = ⌈logqi((k + 1)p)⌉. In particular,T = O(t lg(kp)).

If s primes ofB divide |gj + rp|, then we requireO(s lg(kp)) integer comparisons
to compute the exponentsǫi andO(s) floating-point subtractions to computeL in
Eqn 4.1. Subsequently we update the next divisibility indices of the primes and
the associated powers only for thoseO(s) primes that divide|gj + rp|. This re-
quiresO(s lg(kp)) single-precision additions. Once again, sinces is usually much
smaller thant, our heuristic speeds up the trial division procedure.

4.1.4 Experimental results

In this section, we compare typical timings for the first stage of the basic in-
dex calculus method with those of our modified methods. In the following ta-
bles, we list timing results forp = 19196459099, p = 781487259479 andp =
29438018625539. For each of these values ofp, p−1

2 is a prime. These primes are
obtained by searching random integers of given bit-lengths. The following nota-
tions are used in the tables:
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Table 4.1: Timings for heuristic B1 withp = 19196459099 (A 35-bit prime)

Basic method Heuristic B1
t t1 t2 t Tav k t1 t2 t Tav P0 P+ P−
50 0.348 0.122 0.471 41.043 1 0.138 0.076 0.214 16.796 42.8 39.3 17.7

2 0.111 0.083 0.194 15.346 34.8 38.2 26.9
3 0.091 0.084 0.175 12.836 25.7 45.0 29.2
4 0.090 0.100 0.191 16.015 24.2 41.1 34.5
5 0.082 0.106 0.189 17.005 22.8 44.8 32.2
7 0.064 0.106 0.171 14.439 15.9 47.4 36.5
10 0.066 0.143 0.21 13.569 15.9 41.3 42.7

60 0.239 0.099 0.338 34.973 1 0.096 0.062 0.159 19.631 41.5 37.9 20.5
2 0.082 0.070 0.153 16.862 32.9 38.9 28.0
3 0.067 0.073 0.140 19.039 25.4 45.0 29.4
4 0.062 0.080 0.143 15.841 23.3 39.3 37.2
5 0.056 0.083 0.139 14.562 19.6 40.9 39.4
7 0.047 0.088 0.136 18.421 17.5 42.0 40.3
10 0.048 0.115 0.164 19.574 16.6 38.6 44.7

75 0.164 0.083 0.247 45.911 1 0.074 0.057 0.132 25.713 40.4 37.6 21.8
2 0.058 0.061 0.120 21.566 30.4 38.4 31.0
3 0.046 0.060 0.106 20.692 26.1 42.1 31.7
4 0.045 0.067 0.112 18.113 26.1 39.3 34.4
5 0.036 0.066 0.102 19.017 19.9 42.6 37.4
7 0.027 0.064 0.092 18.632 14.1 45.6 40.1
10 0.029 0.086 0.116 19.229 14.2 37.9 47.8

t = Number of primes in the factor base
k = The bound on|r| such that the integersgj + rp are tested for

B-smoothness
t1 = Average time in seconds (per relation generated) taken for com-

puting integers for trial divisions (i.e. for the computation ofgj

and (in our heuristics)gj + rp)
t2 = Average time in seconds (per relation generated) taken by trial

divisions
t = Average time to generate a relation =t1 + t2
Tav = Average total time in seconds taken by the first stage of the index

calculus method
P0 = Percentage of the occurrences whengj isB-smooth
P+ = Percentage of the occurrences whengj + rp is B-smooth for

somer > 0

P− = Percentage of the occurrences whengj + rp is B-smooth for
somer < 0

These data are average ones obtained over a set of 10 random runs of the first stage
of the index calculus method corresponding to each set of values of the various
parameters (p, t andk).

The valuest1 andt2 represent the average times spent by exponentiations and
by trial divisions respectively for generating each relation. Their sum (t = t1 + t2)
is the total average time spent for generating a relation (dependent or independent).
This numbert seems to be the best metric to assess the effectiveness of our heuris-
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Table 4.2: Timings for heuristic B1 withp = 781487259479 (A 40-bit prime)

Basic method Heuristic B1
t t1 t2 t Tav k t1 t2 t Tav P0 P+ P−
50 2.308 0.710 3.018 216.32 1 0.952 0.419 1.371 95.811 43.4 38.9 17.6

2 0.859 0.515 1.374 102.35 33.6 41.0 25.3
3 0.675 0.509 1.184 85.367 26.0 43.7 30.1
4 0.650 0.591 1.241 90.977 26.0 41.8 32.0
5 0.523 0.555 1.079 63.85 20.2 44.7 35.0
7 0.482 0.650 1.132 67.252 18.4 49.0 32.5
10 0.476 0.829 1.305 81.419 17.7 38.6 43.6

60 1.475 0.535 2.011 173.40 1 0.644 0.332 0.976 85.133 40.4 38.7 20.7
2 0.550 0.382 0.932 83.47 35.7 36.3 27.9
3 0.448 0.391 0.839 74.695 27.8 41.3 30.7
4 0.386 0.403 0.790 57.112 24.5 38.7 36.6
5 0.341 0.419 0.761 58.729 22.0 43.8 34.1
7 0.280 0.439 0.720 61.04 19.1 47.9 32.8
10 0.311 0.620 0.932 89.156 17.7 37.7 44.5

75 0.921 0.410 1.332 199.92 1 0.388 0.238 0.627 71.707 42.0 38.2 19.7
2 0.331 0.277 0.609 83.923 32.6 38.7 28.5
3 0.247 0.260 0.507 67.547 26.6 42.1 31.1
4 0.219 0.278 0.498 61.649 23.1 42.5 34.2
5 0.198 0.288 0.486 59.805 20.1 42.6 37.2
7 0.163 0.301 0.464 53.713 15.8 45.3 38.7
10 0.159 0.383 0.542 74.955 15.7 38.4 45.7

tics as compared with the basic method.Tav represents the total time taken by each
execution of the first stage of the index calculus method. This includes the time
to do the necessary pre-computations, the time to generatet linearly independent
relations and the time to solve the resulting system modulop− 1. Tav depends on
t and also on the number of relations that need to be generated before a full-rank
system is obtained. This number of relations generated varies widely from run to
run (typically fromt to 3t). Only 10 random runs that we carried out for each set
of parameter values, seem insufficient to smooth out the variation. So we donot
takeTav as an effective measure of the performance of the algorithms, though this
quantity reflects the scenario on the whole.

The first three tables (Tables 4.1 through 4.3) correspond to the heuristicB1.
We have taken runs for some values ofk in the range1 . . . 10. It is evident from the
tables that for a givenp andt, the quantityt1 decreases with increasingk, whereas
t2 increases withk. Their sumt decreases with increasingk when k is small,
reaches a minimum at some optimal value ofk, and increases with increasingk for
values ofk larger than the optimal value. In our experiments, we get the optimal
value at aroundk = 7. The next three tables (4.4 through 4.6) represent average
data for the heuristic B2. In this case,t1, t2 andt vary ast does in case of B1. That
is, when we increasek, each of these three quantities decreases for small values
of k, reaches a minimum at some optimal value ofk and then increases withk.
The optimalt is obtained at aroundk = 75. Typical speed-ups obtained using
our modifications over the basic method range from 2.5 to 2.9 for the heuristic B1
and from 1.3 to 1.5 for B2. B1, therefore, seems to perform better than B2. It
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Table 4.3: Timings for heuristic B1 withp = 29438018625539 (A 45-bit prime)

Basic method Heuristic B1
t t1 t2 t Tav k t1 t2 t Tav P0 P+ P−
60 9.321 3.004 12.32 1042.0 1 4.165 1.864 6.030 464.41 39.7 41.5 18.7

2 3.312 1.986 5.298 370.84 30.9 41.0 27.9
3 2.684 2.045 4.729 388.66 27.8 42.3 29.7
4 2.451 2.235 4.687 395.35 24.9 40.7 34.2
5 2.312 2.478 4.790 349.30 23.6 41.3 35.0
7 1.967 2.683 4.650 355.27 15.7 48.1 36.0
10 2.130 3.749 5.880 461.11 17.9 38.8 43.1

75 5.123 2.042 7.165 712.14 1 2.077 1.132 3.210 392.66 39.0 40.9 19.9
2 1.752 1.275 3.027 377.06 36.1 37.5 26.2
3 1.486 1.364 2.850 309.73 28.0 42.4 29.5
4 1.376 1.502 2.879 317.24 24.2 40.4 35.3
5 1.143 1.463 2.607 334.16 19.7 45.2 34.9
7 0.997 1.593 2.590 258.53 15.3 47.6 36.9
10 0.969 2.041 3.010 315.68 17.9 34.6 47.3

90 3.121 1.472 4.593 695.79 1 1.396 0.890 2.287 318.05 37.9 42.3 19.6
2 1.238 1.043 2.282 337.74 31.7 39.9 28.2
3 0.912 0.970 1.883 273.60 26.0 41.9 31.9
4 0.870 1.109 1.979 315.42 25.6 38.5 35.8
5 0.734 1.086 1.821 254.70 19.4 44.7 35.7
7 0.570 1.080 1.651 216.39 15.0 48.8 36.1
10 0.641 1.565 2.206 323.70 16.2 38.6 45.1

remains undecided which heuristic yields better (i.e. faster) results when applied to
large-scale problems.

We now heuristically justify the behavior oft1 and t2 as functions ofk. t1
counts the average time (per relation) needed to generate integers for checking
B-smoothness. This involves discrete exponentiations (computations ofgj) and
multi-precision additions or subtractions (computations ofgj + rp for non-zero
r). Each such discrete exponentiation is much costlier than such an addition ora
subtraction. Ask is increased, the ratio of the number of discrete exponentiations
to the number of additions or subtractions decreases. This leads to smaller values
of t1 for larger values ofk. The other quantityt2 counts the cost of the following:
in case of B1,

(a) computation ofρ0,i
(b) updation of the remaindersρr,i for r 6= 0
(c) trial divisions byqi for whichρr,i = 0

and in case of B2,

(d) computation of next divisibility indices at−k
(e) computation ofL in Eqn 4.1
(f) updation of the next divisibility indices

For the heuristic B1, (a) is costlier compared to (b) and (c), whereas forB2, (d) is
costlier than (e) and (f). Ask is increased, the operation (a) (resp. (d)) is carried
out less frequently in comparison with the operations (b) and (c) (resp. (e) and
(f)). As a result, we expectt2 to decrease whenever we increasek. However, we
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Table 4.4: Timings for heuristic B2 withp = 19196459099 (A 35-bit prime)

Basic method Heuristic B2
t t1 t2 t Tav k t1 t2 t Tav P0 P+ P−
50 0.348 0.122 0.471 41.043 25 0.039 0.320 0.360 30.899 9.03 40.9 50

50 0.033 0.312 0.346 23.958 6.82 42.0 51.1
75 0.031 0.292 0.323 26.267 5.04 47.1 47.8
100 0.030 0.326 0.357 23.001 3.67 48.4 47.8
200 0.039 0.392 0.431 29.39 3.80 47.1 49.0
300 0.039 0.408 0.448 34.015 1.99 47.8 50.1
500 0.048 0.502 0.550 40.032 2.22 44.5 53.1

60 0.239 0.099 0.338 34.973 25 0.027 0.259 0.286 27.591 8.83 43.6 47.5
50 0.021 0.231 0.252 23.86 6.08 43.2 50.6
75 0.020 0.225 0.246 21.79 3.78 46.2 50
100 0.019 0.234 0.254 23.408 3.16 45.0 51.7
200 0.023 0.270 0.293 26.251 1.99 46.5 51.4
300 0.026 0.314 0.341 29.703 1.77 48.6 49.6
500 0.033 0.399 0.433 33.159 1.28 51.1 47.5

75 0.164 0.083 0.247 45.911 25 0.016 0.190 0.206 32.881 7.69 42.7 49.5
50 0.013 0.168 0.181 28.769 5.27 45.7 48.9
75 0.013 0.175 0.188 28.028 3.12 46.1 50.7
100 0.013 0.181 0.194 24.031 4.03 48.7 47.2
200 0.013 0.197 0.211 27.005 1.66 47.2 51.1
300 0.013 0.197 0.210 27.711 1.71 48.6 49.5
500 0.017 0.262 0.280 35.372 1.28 49.0 49.6

see a different pattern of variation oft2 in connection with both the heuristics. In
particular,t2 exhibits the expected pattern only in case of B2 and for small val-
ues ofk. The unexpected behavior oft2 can be accounted for from the following
consideration. As we increasek, the bit-size of the integersgj + rp (for |r| 6 k)
increases. This leads to a smaller probability of findingB-smooth integers among
the onesgj + rp. As a result more integers are checked to find a single relation.
Sincet2 measures the cost of trial divisions for generating a relation, this too in-
creases with the decrease in the above probability. The same argument holds for
t1 also and is corroborated by the behavior oft1 for large values ofk, typically
k > 300 (See the tables for B2). Another quantity that tallies with this decrease of
probability with increasing bit-size of the integersgj + rp is P0. If all integers in
the set{gj + rp | − k 6 r 6 k} had the same probability of beingB-smooth,P0

would be approximately100/(2k + 1). The tables show much larger values than
this.

At any rate, our heuristics are motivated by the need to decrease the number of
discrete exponentiations carried out during the generation of relations. This leads
to integers with absolute value larger thanp being subject to trial division. So we
adopted certain tricks to bring down the cost associated with trial divisions.Our
heuristics (in particular, B2) are useful when the cost of each discreteexponentia-
tion is comparable with or more than the cost of a trial division by all primes in the
factor base. This typically happens if the factor base sizet is 6 w2 lg p (which is
O(lg3 p)), wherew is the number of machine words needed to represent an integer
havinglg p bits.
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Table 4.5: Timings for heuristic B2 withp = 781487259479 (A 40-bit prime)

Basic method Heuristic B2
t t1 t2 t Tav k t1 t2 t Tav P0 P+ P−
50 2.308 0.710 3.018 216.32 25 0.277 2.239 2.517 153.70 8.36 40.8 50.8

50 0.244 2.112 2.357 159.17 6.55 42.6 50.7
75 0.248 2.246 2.495 156.10 6.10 48.1 45.7
100 0.231 2.165 2.396 151.83 3.92 45.8 50.2
200 0.260 2.561 2.821 172.12 4.61 47.5 47.8
300 0.283 2.873 3.157 184.45 1.61 47.7 50.6
500 0.321 3.302 3.624 218.25 3.31 48.2 48.4

60 1.475 0.535 2.011 173.40 25 0.169 1.553 1.723 140.25 8.19 44.6 47.1
50 0.127 1.281 1.409 126.42 6.24 42.5 51.2
75 0.132 1.359 1.492 137.80 4.50 44.5 50.9
100 0.140 1.540 1.681 124.39 2.94 43.9 53.0
200 0.144 1.696 1.841 138.70 2.91 48.8 48.1
300 0.156 1.815 1.971 160.40 2.19 49.7 48.0
500 0.195 2.364 2.559 180.78 1.92 48.1 49.9

75 0.921 0.410 1.332 199.92 25 0.093 1.030 1.123 137.61 7.67 43.9 48.3
50 0.079 0.955 1.035 114.44 6.74 43.9 49.2
75 0.072 0.905 0.977 115.53 4.11 46.7 49.1
100 0.073 0.962 1.035 110.61 4.16 48.2 47.5
200 0.081 1.118 1.199 159.71 2.46 48.8 48.6
300 0.084 1.205 1.290 129.6 2.84 50.9 46.2
500 0.093 1.381 1.475 150.13 1.03 48.2 50.6

4.1.5 Open questions

We have shown both heuristically and experimentally that our heuristic ideas speed
up the basic method considerably. Before we end, we raise some important theoret-
ical questions that, if answered, would give better explanation of the performance
of our modifications.

• Given thatgj does not factorize completely over the factor baseB, what is
the probability that at least one ofgj + rp for r = ±1,±2, . . . ,±k does for
some pre-determinedk?

• Can one find aj easily such that for a givenk, the set{gj + rp | r =
0,±1,±2, . . . ,±k} contains with a high probability at least one element that
factorizes smoothly over the factor base?

• Can one find an expression for the optimum value ofk for the heuristic meth-
ods B1 and B2 (i.e. the values ofk that minimize the running times of the
methods for givenp andt)?

If we assume that the integersgj + rp behave asrandomintegers of absolute value
O(p), and if the factor baseB comprises of primes less thanL[β], then Theorem 3.2
suggests that the probability of findingB-smooth integers amonggj + rp is of
the order ofL[−1/2β]. For practical situations, this probability is ratherlow and
demands values ofk higher than the optimal range found out experimentally.
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Table 4.6: Timings for heuristic B2 withp = 29438018625539 (A 45-bit prime)

Basic method Heuristic B2
t t1 t2 t Tav k t1 t2 t Tav P0 P+ P−
60 9.321 3.004 12.32 1042.0 25 1.097 10.12 11.22 825.36 9.64 38.4 51.9

50 0.950 9.651 10.60 724.68 6.85 43.5 49.6
75 0.865 9.089 9.954 819.64 4.96 47.4 47.5
100 0.854 9.423 10.27 783.33 7.13 42.7 50.0
200 0.933 10.59 11.52 776.69 3.52 45.6 50.8
300 0.987 11.50 12.49 884.44 2.33 43.8 53.8
500 1.242 14.65 15.89 1151.5 2.29 47.4 50.2

75 5.123 2.042 7.165 712.14 25 0.562 6.070 6.632 627.40 10.5 42.0 47.4
50 0.485 5.858 6.343 592.00 6.44 42.7 50.8
75 0.415 5.207 5.623 504.61 5.59 44.8 49.5
100 0.407 5.318 5.726 543.98 5.29 43.5 51.1
200 0.424 5.715 6.140 646.06 2.94 48.7 48.2
300 0.501 7.071 7.572 741.76 2.32 48.4 49.2
500 0.541 7.859 8.401 839.67 1.86 50.0 48.0

90 3.121 1.472 4.593 695.79 25 0.332 4.139 4.472 611.08 6.87 42.8 50.2
50 0.301 4.232 4.533 596.87 5.52 42.5 51.9
75 0.274 4.083 4.358 491.58 4.09 46.0 49.8
100 0.240 3.708 3.948 404.00 3.31 47.0 49.5
200 0.273 4.451 4.725 586.19 2.58 47.8 49.5
300 0.303 4.827 5.131 694.37 2.14 47.5 50.3
500 0.318 5.545 5.864 628.55 2.12 47.2 50.5

4.2 Efficient implementation of the linear and cubic sieve methods

In this section, we delve into the details of our implementation of the linear sieve
and the cubic sieve methods. The tricks that help us speed up the equation collect-
ing phase of the sieve methods are very similar to those employed in the quadratic
sieve method for integer factorization (See [16, 46, 121] for details).

4.2.1 Implementation of the linear sieve method

We start our discussion with the linear sieve method. We first recall from Sec-
tion 3.2.2 that at the beginning of each sieving step, we find a solution forc2 mod-
ulo qh in the congruenceT (c1, c2) ≡ 0 (mod qh) for every small primeq in the
factor base and for a set of small exponentsh. The costliest operation that need be
carried out for each such solution is the computation of a modular inverse (namely,
that ofH + c1 moduloqh). As described in [73] and as is evident from our ex-
periments too, calculations of these inverses take more than half of the CPU time
needed for the entire equation collecting stage. Any trick that reduces the number
of computations of the inverses, speeds up the algorithm.

One way to achieve this is to solve the congruence every time only forh = 1
and ignore all higher powers ofq. That is, for everyq (andc1), we check which
of the integersT (c1, c2) are divisible byq and then addlg q to the corresponding
indices of the arrayA. If someT (c1, c2) is divisible by a higher power ofq, this
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strategy fails to addlg q the required number of times. As a result, thisT (c1, c2),
even if smooth, may fail to pass the ‘closeness criterion’ described in Section 3.2.2.
This is, however, not a serious problem, because we may increase the cut-off from
a value smaller thanlg qt to a valueξ lg qt for someξ > 1. This means that some
non-smoothT (c1, c2) will pass through the selection criterion in addition to some
smooth ones that could not, otherwise, be detected. This is reasonable, because the
non-smooth ones can be later filtered out from the smooth ones and one mightuse
even trial divisions to do so. For primesp of less than200 bits, values ofξ 6 2.5
work quite well in practice [16, 121].

The reason why this strategy performs well in practice is as follows. Ifq is
small, for exampleq = 2, we should addonly 1 to Ac2 for every power of2
dividing T (c1, c2). On the other hand, ifq is much larger, sayq = 1299709 (the
105th prime), thenlg q ≈ 20.31 is large. But T (c1, c2) would not be, in general,
divisible by ahigh power of thisq. The approximate calculation of logarithm of
the smooth part ofT (c1, c2), therefore, leads to a situation where the probability
that a smoothT (c1, c2) is actually detected as smooth is quite high. A few relations
would be still missed out even with the modified ‘closeness criterion’, but thatis
more than compensated by the speed-up gained by the method.

The above strategy helps us in a way other than by reducing the number of
modular inverses. We note that for practical values ofp, the small primes in the
factor base are usually single-precision ones. As a result, the computationof d can
be carried out using single-precision operations only.

We now compare the performance of the modified strategy with that of the
original strategy for a value ofp of length around 150 bits. This prime is chosen as
a random one satisfying the conditions (i)(p − 1)/2 is also a prime, and (ii)p is
close to a whole cube. This second condition is necessary, because forsuch a prime,
the cubic sieve method is also applicable, so that we can compare the performance
of the two sieve methods for this prime.

Table 4.7: Performance of the linear sieve method
p = 1320245474656309183513988729373583242842871683

t = 7000, M = 30000

No. of No. of CPU Time
Algorithm ξ Relations (̄ρ) Variables (̄ν) ρ̄/ν̄ (seconds)

Exact 0.1 108637 67001 1.6214 225590
Approximate 1.0 108215 67001 1.6151 101712

1.5 108624 67001 1.6212 101818
2.0 108636 67001 1.6214 102253
2.5 108637 67001 1.6214 102250

In Table 4.7 we compare the performance of the ‘exact’ version of the algorithm
(where all relations are made available by choosing values ofh > 1) with that of the
‘approximate’ version of the algorithm (in which powersh > 1 are neglected). The
CPU times listed in the table do not include the time for filtering out the ‘spurious’
relations obtained in the approximate version. It is evident from the table thatthe
performance gain obtained using the heuristic variant is more than 2. It is also clear
that values ofξ between 1.5 and 2 suffice for fields of this size.
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4.2.2 Implementation of the cubic sieve method

For the cubic sieve method (Section 3.2.3), we employ similar strategies. That is,
we solve the congruenceR(A,B,C) ≡ 0 (mod q) for each small primeq in
the factor base and ignore higher powers ofq that might divideR(A,B,C). As
before, we set the cut-off atξ lg qt for someξ > 1. We are not going to elaborate
the details of this strategy and the expected benefits once again. Instead wefocus
on the performance figures available from our experiments. As in the linearsieve,
we work in the prime fieldFp with

p = 1320245474656309183513988729373583242842871683

For this prime, we haveX = ⌊ 3
√
p⌋+1 = 1097029305312372, Y = 1,Z = 31165

as a solution of (3.4).

We did not implement the ‘exact’ version of this algorithm in which one tries
to solve (3.7) for exponentsh > 1 of q. Table 4.8 lists the experimental details for
the ‘approximate’ algorithm. (The meaning of the parameterλ will be explained in
Section 4.4.) As in Table 4.7, the CPU times do not include the time for filtering
out the spurious relations available by the more generous closeness criterion for
the approximate algorithm. For the cubic sieve method, the values ofξ around 1.5
works quite well for our primep.

Table 4.8: Performance of the cubic sieve method for various values ofξ
p = 1320245474656309183513988729373583242842871683

t = 10000, M = 10000, λ = 1.5

No. of No. of CPU Time
ξ Relations (̄ρ) Variables (̄ν) ρ̄/ν̄ (seconds)

1.0 54805 35001 1.5658 43508
1.5 54865 35001 1.5675 43336
2.0 54868 35001 1.5676 43492

4.2.3 Performance comparison between linear and cubic sieve methods

The speed-up obtained by the cubic sieve method over the linear sieve methodis
about 2.5 for the field of size around 150 bits. For larger fields, this speed-up is
expected to be more. It is, therefore, evident that the cubic sieve method,at least
for the caseα = 1/3, runs faster than the linear sieve counterpart for the practical
range of sizes of prime fields.

4.3 Heuristic modification of the linear sieve method
We now describe a heuristic way of modifying the first stage of the linear sieve
method for the computation of discrete logarithms over prime fields. Our heuristic
allows us to build a factor base consisting of integers around square rootsof several
small multiples ofp. The strategy reduces the average of the absolute value of the
integers that are checked for smoothness with respect to the small primes in the
factor base. This, in turn, leads to a larger density of smooth integers compared
to the original method. On the other hand, our heuristic decreases the ratio of the
number of relations to the number of variables and may lead to failure to get a
full-rank system of linear congruences.
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4.3.1 The heuristics

In the linear sieve method, we work with the quantitiesH = ⌊√p⌋+1, J = H2−p
and the boundM in the sieving interval (See Section 3.2.2). Let us now define,
for any integerr > 1, the quantities:Hr = ⌊√rp⌋ + 1, Jr = H2

r − rp (so
thatH = H1 andJ = J1). The linear sieve method works exactly the way we
described in Section 3.2.2 independent of the value ofr we choose. In this case,
however,Hr ≈ √

rp andJr 6 2
√
rp. Therefore, if a valuer > 1 is chosen,

bothHr andJr are
√
r times the valuesH andJ respectively. This increases the

value ofT (c1, c2) by a factor of
√
r and, thereby, reduces the chance of smooth

factorization of this integer. As a result, we have to select a larger value ofM in
order to get sufficient number of relations.

To work around with this difficulty and at the same time to use the possibility
of using different values ofr, we propose the following heuristic variations of the
linear sieve method. To start with, we select asmallpositive integers and compute
for eachr, 1 6 r 6 s, the values ofHr andJr as defined above. The factor
base now comprises of primes less thanL[1/2] (as in the original version of the
method) and integersHr + c for each1 6 r 6 s and−µ 6 c 6 µ, whereµ is the
bound on|c| for eachr in the modified method. Now for each value ofr, we repeat
the sieving procedure, that is, we collect relations involving the indicesindg(qi),
indg(Hr + c1) andindg(Hr + c2) for −µ 6 c1 6 c2 6 µ.

In the original method we work with a factor base of size2M+1+ t and check
the smoothness ofT (c1, c2) for approximately2M2 pairs(c1, c2) with c1 6 c2. If
we apply our heuristic modification, the factor base size becomess(2µ+1)+ t and
the number of integers of the form

Tr(c1, c2) = Jr + (c1 + c2)Hr + c1c2

checked for smoothness (for all1 6 r 6 s) becomes approximately2µ2s.

HEURISTIC L1 Define the integerµ asµ = ⌊M√
s
⌋, whereM is chosen as in the original

method described in Section 3.2.2. With this choice the total number of in-
tegers checked for smoothness remains the same as in the original method
(viz. 2M2), whereas the factor base size increases from2M +1+ t to approx-
imately2M

√
s+ s+ t.

HEURISTIC L2 The second alternative is to keep the factor base size same as in the original
method. This can be achieved by takingµ = ⌊Ms ⌋. With this choice ofµ, the
number of integers reduces approximately to2M2/s.

We show in the next section that with both these choices ofµ, the average of the
absolute value ofTr(c1, c2) decreases compared with the average of|T (c1, c2)| in
the original method. As a result, the probability thatTr(c1, c2) factorizes smoothly
over the firstt primes is more than that forT (c1, c2). We, therefore, expect to get
more relations for a given number of(c1, c2) pairs.

All these do not come free. For the first heuristic, the number of variables
(i.e. the number of factor base elements) increases by approximately a factor of√
s. For the second, on the other hand, the number of pairs(c1, c2) decreases by

a factor ofs. These variations seem unimportant asymptotically at least for small
values ofs. In practice, however, one might fail to get a system with more equations
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than unknowns for values ofs > 1, while the original strategy with corresponding
values oft andM produces a full-rank linear system of congruences. In particular,
one must not chooses to be quite large.

4.3.2 Analysis of the heuristics

In this section, we prove that the average value of|T (c1, c2)| over all possible
combinations ofc1 andc2 is larger than the average value of|Tr(c1, c2)| over all
possible combinations ofr, c1 andc2. For the original method, we have calculated
the average value of|T (c1, c2)| in Section 3.3.1. From Result 3.4, we write this
average value as

T ≈ 2MH

3
≈ 2M

√
p

3

For the heuristic modifications, we can proceed similarly and prove that the average
of |Tr(c1, c2)| over all choices ofr, c1 andc2 is

T heu ≈ 2µ(H1 +H2 + . . .+Hs)

3s
≈ 2µ(

√
1 +

√
2 + . . .+

√
s)
√
p

3s

The proportion of these average values is

r =
T heu

T
≈ µ

M

√
1 +

√
2 + . . .+

√
s

s

For the heuristic L1, we haveµ ≈ M√
s
, so thatr ≈

√
1+

√
2+...+

√
s

s
√
s

. Clearly,r < 1.

In fact, r approaches23 ass tends to∞. For the heuristic L2, on the other hand,

µ ≈ M
s , so thatr ≈

√
1+

√
2+...+

√
s

s2
< 1√

s
and approaches to zero ass tends to∞.

4.3.3 Experimental results

In this section, we compare typical timings and number of relations obtained in the
first stage of the linear sieve method with those obtained from our heuristic modi-
fications. We report the results available from the ‘exact’ version of the algorithm.
(See Section 4.2.1 for the meaning of ‘exact’ in the last sentence.)

We experimented in the prime fieldFp with

p = 38275450020766122418475251523827352087

This is a randomly generated prime of length 125 bits, for which(p − 1)/2 is a
prime. The parameterst andM are selected slightly larger than the optimal values
so that the number of relations available is about twice the size of the factor base
(for the original method). In the following tables we illustrate how the number of
relations generated by our heuristic schemes varies with the additional parameter
s introduced at the beginning of this section. The cases = 1 corresponds to the
original method. We did not try to solve the resulting systems, neither did we make
an attempt to check the ranks of the systems. We alloweds to increase as long as
we get sufficiently more relations than the number of variables (size of the factor
base). The tables also list the total CPU time taken by the execution of the relation-
collecting stage of the method.
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Table 4.9: Performance of heuristic L1
p = 38275450020766122418475251523827352087, t = 3000,M = 12500

Size of the No. of relations Total time
s factor base r = 1 r = 2 r = 3 r = 4 r = 5 Total (Seconds)
1 28001 62244 62244 36632
2 38354 34380 36347 70727 46742
3 46299 24194 25726 23968 73888 53725
4 53004 18908 19996 18828 19659 77391 59422
5 58905 15585 16441 15554 16162 14251 77993 64284

Table 4.9 shows the performance of the first heuristic. We see the expected
increase in the total number of relations generated, as we increases. However,
this increase in the number of relations seems to reach a saturation fors > 4. It
is also evident that the ratio of the number of relations to the number of variables
decreases with increasings. For larger values ofs, say, fors = 10 (not shown in
the table), our heuristic fails to generate more relations than the size of the factor
base. The values = 3 appears to be an optimal choice. As we increases, the
running time increases too, but at a rate smaller than the increase in the size ofthe
factor base. For the cases = 5, for example, we generate relations for a factor base
whose size is2.104 times that in the original case (s = 1), whereas the time we
spend to achieve this is about1.755 times that for the original method.

Table 4.10: Performance of heuristic L2
p = 38275450020766122418475251523827352087, t = 3000,M = 12500

Size of the No. of relations Total time
s factor base r = 1 r = 2 r = 3 Total (Seconds)
1 28001 62244 62244 36632
2 28002 18908 19996 38904 29937
3 27999 9358 9908 9400 28666 26321

For the second heuristic (see Table 4.10), the problem of not having a system
with more equations than unknowns becomes more acute, as we increases. As a
result, the largest values ofs allowed by the second heuristic are smaller than those
allowed by the first.

4.4 Heuristic modification of the cubic sieve method

We recall from Lemma 3.5 that we check the smoothness ofR(A,B,C) for −M 6

A 6 B 6 C 6 M . With this condition,C varies from 0 toM . We note that for
each value ofC, we have to execute the entire sieving operation once. For each
such sieving operation (that is, for a fixedC), the sieving interval forB is (i.e. the
admissible values ofB are)−C/2 6 B 6 min(C,M − C). Correspondingly
A = −(B + C) can vary frommax(−2C,−M) to −C/2. It is easy to see that in
this case total number of triples(A,B,C) for which the smoothness ofR(A,B,C)
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is examined isτ =
M
∑

C=0

(

C/2 + min(C,M − C)

)

≈ M2/2. The number of

unknowns, that is, the size of the factor base, on the other hand, isν ≈ 2M + t.

4.4.1 The heuristic

If we remove the restrictionA > −M and allowA to be as negative as−λM for
some1 < λ 6 2, then we benefit in the following way. As before, we allowC
to vary from 0 toM keeping the number of sieving operations fixed. SinceA can
now assume values smaller than−M , the sieving interval increases to−C/2 6

B 6 min(C, λM −C). As a result, the total number of triples(A,B,C) becomes

τλ =
M
∑

C=0

(

C/2 + min(C, λM − C)

)

≈ M2

4
(4λ − λ2 − 1), whereas the size of

the factor base increases toνλ ≈ (λ + 1)M + t. (Note that with this notation the
valueλ = 1 corresponds to the original method andτ = τ1 andν = ν1.) The ratio
τλ/νλ is approximately proportional to the number of smooth integersR(A,B,C)
generated by the method divided by the number of unknowns. Therefore, λ should
be set at a value for which this ratio is maximum. If one treatst andM as constants,

then the maximum is attained atλ∗ = −U+
√
U2 + 4U + 1, whereU =

M + t

M
=

1 +
t

M
. As we increaseU from 1 to∞ (or, equivalently the ratiot/M from 0 to

∞), the value ofλ∗ increases monotonically from
√
6 − 1 ≈ 1.4495 to 2. (See

Appendix A for detailed calculations.) In Table 4.11, we summarize the variation
of τλ/νλ for some values ofU . These values ofU correspond from left to right to
t ≪ M , t ≈ M/2, t ≈ M andt ≈ 2M respectively. The corresponding values of
λ∗ are respectively 1.4495, 1.5414, 1.6056 and 1.6904. It is clear from the table,
that for practical ranges of values ofU , the choiceλ = 1.5 gives performance quite
close to the optimal.

Table 4.11: Variation ofτλ/νλ with λ

τλ/νλ (approx)
λ U = 1 U = 1.5 U = 2 U = 3

1 0.2500M 0.2000M 0.1667M 0.1250M
1.5 0.2750M 0.2292M 0.1964M 0.1527M
2 0.2500M 0.2143M 0.1875M 0.1500M
λ∗ 0.2753M 0.2293M 0.1972M 0.1548M

We note that this scheme keepsM and the range of variation ofC constant and
hence does not increase the number of sieving steps and, in particular, the number
of modular inverses and square roots. It is, therefore, advisable to apply the trick
(with, say,λ = 1.5) instead of increasingM . With that one is expected to get a
speed-up of about 10 to 20%.

4.4.2 Experimental results

We work inFp with the 150-bit primep of Section 4.2. In Table 4.12, we fixξ
at 1.5 and tabulate the variation of the performance of the cubic sieve method for
some values ofλ. (The parameterξ is defined in Section 4.2.) It is clear from the
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table that among the cases observed, the largest value of the ratioρ̄/ν̄ is obtained
at λ = 1.5. (The theoretical maximum is attained atλ ≈ 1.6) We also note that
changing the value ofλ incurs variation in the running time by at most 1%. Thus
our heuristic allows us to build a larger database at approximately no extra cost.

Table 4.12: Performance of the cubic sieve method for various values ofλ
p = 1320245474656309183513988729373583242842871683

t = 10000, M = 10000, ξ = 1.5

No. of No. of CPU Time
λ Relations (̄ρ) Variables (̄ν) ρ̄/ν̄ (seconds)

1.0 43434 30001 1.4478 43047
1.5 54865 35001 1.5675 43336
1.6 56147 36001 1.5596 43347
2.0 58234 40001 1.4558 43499

4.4.3 Effect of the heuristic onR, Rmax and d(η)

We recall from Section 3.3 thatR andRmax denote the average and maximum
values of|R(A,B,C)| asA,B,C run over all possible triples withA+B+C = 0,
A 6 B 6 C. The distribution functiond(η) is introduced in Definition 3.9. We
now investigate the effect of our heuristic modification, namely−λM 6 A, on
these quantities. Since we are experimenting with a primecloseto a cube, so that
Y = 1, we consider the caseY ≪ X/M and write the approximate value ofR as

R ≈ X ·




M
∑

C=0

min(C,λM−C)
∑

B=−C/2

(B2 +BC + C2)





/





M
∑

C=0

min(C,λM−C)
∑

B=−C/2

1



 (4.2)

The denominator equalsτλ and is shown in Section 4.4.1 to be approximately equal
to M2

4 (4λ−λ2−1). The numerator evaluates toM
4

1536(−151λ4+512λ3−384λ2+
512λ − 160). The maximum of|R(A,B,C)| can be easily shown to be obtained
atC =M,B = (λ− 1)M,A = −λM . We, therefore, have

RESULT 4.1 For the heuristic modification of the cubic sieve method,R andRmax can be
written in terms ofλ as

R ≈
[

−151λ4 + 512λ3 − 384λ2 + 512λ− 160

384(4λ− λ2 − 1)

]

·M2X

Rmax ≈ (λ2 − λ+ 1)M2X

In Table 4.13, we list the values ofR,Rmax andR/Rmax for λ = 1 (the original
method),λ = 1.5 (the recommended value) andλ = 2. We see that increasingλ
increases both the average valueR and the maximum valueRmax. However, the
increase inRmax is more than the increase inR. Therefore, the ratioR/Rmax

decreases with increasingλ.

We end this section by a graphic description ofd(η). Similar to the original
method, we computeD(η) from the sum
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Table 4.13: Variation ofR,Rmax andR/Rmax with λ

λ R Rmax R/Rmax

1.0 0.43M2X M2X 0.43
1.5 0.67M2X 1.75M2X 0.38
2.0 0.88M2X 3M2X 0.29

D(η) ≈
min
(

M,
⌊

M
√

4η(λ2−λ+1)/3
⌋)

∑

C=0

[

1 + ⌊C/2⌋+

min

(

C,M − C,

⌊

−C/2 +
√

η(λ2 − λ+ 1)M2 − 3C2/4

⌋)

]

andd(η) = D(η)/D(1), whereD(1) ≈ (4λ− λ2 − 1)M2/4.

Figure 4.1: Variation ofd(η) for the modified cubic sieve method
(a)λ = 1.0 (b) λ = 1.5 (c) λ = 2.0
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From the above figure we see that as we increaseλ, the curve ford(η) shifts
upwards. This phenomenon is corroborated by the decrease ofR/Rmax with in-
creasingλ.

The details of the calculations of this section are given in Appendix B.
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Appendix A Determination and properties of λ∗

We recall from Section 4.4.1 that for our heuristic modification of the cubic sieve
method, we have

τλ = Number of triples for whichR(A,B,C) is tested for smoothness

≈ M2

4
(4λ− λ2 − 1)

νλ = Size of the factor base

≈ (λ+ 1)M + t

We want to maximize

f(λ) = τλ/νλ =
M2

4

[

4λ− λ2 − 1

(λ+ 1)M + t

]

In order to do so, we computef ′(λ):

f ′(λ) = −M
3

4





λ2 + 2
(

M+t
M

)

λ− 4
(

M+t
M

)

− 1

((λ+ 1)M + t+ 1)2





If we write U = M+t
M , we see thatf ′(λ) has two zeros at−U ±

√
U2 + 4U + 1.

Sinceλ is positive in the region of our interest, we haveλ∗ = −U+
√
U2+ 4U+1.

It is not difficult to see that at this value ofλ∗, we havef ′′(λ) < 0, so thatf(λ) is
maximum atλ = λ∗ = −U +

√
U2 + 4U + 1.

We now deduce some properties ofλ∗. First we note thatt can vary from 0 to
+∞ and, therefore,U = M+t

M varies from 1 to+∞. We now prove the following

LEMMA 4.2 As U varies from 1 to+∞, λ∗ = −U +
√
U2 + 4U + 1 increases monotoni-

cally from
√
6− 1 to 2. In particular, for all1 6 U 6 ∞, we have1 6 λ∗ 6 2.

Proof We have

dλ∗

dU
= −1 +

√

U2 + 4U + 4

U2 + 4U + 1
> 0

for all U > 1. Therefore,λ∗ increases monotonically withU for U > 1. For
U = 1, λ∗ =

√
6 − 1. As U increases, the quantity

√
U2 + 4U + 1 tends to the

quantity
√
U2 + U + 4 = U + 2. HencelimU→∞ = 2. �

The above lemma guarantees that for all values ofU , we get the optimal value
λ∗ in the region whereλ is defined, namely,1 6 λ 6 2. However, note that
increasingλ increasesR and thereby reduces the fraction of smooth integers among
R(A,B,C). (See Result 4.1 and Table 4.13.) We have experimentally verified that
takingλ = 1.5 works quite well in practical situations.
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Appendix B Calculations ofR, Rmax and D(η)

In this section, we derive the expressions forR, Rmax andD(η) for our heuristic
modification of the cubic sieve method. We consider the caseY ≪ X/M only.
In particular, we have experimented withY = 1, so that this case applies to the
results and observations we have reported. Finally note that puttingλ = 1 gives the
expressions for the original cubic sieve method – the ones which we purposefully
omitted in the appendix to the previous chapter.

B.1 Calculation ofR

For the modified cubic sieve method,C varies from 0 toM . For a givenC, B
varies from−⌊C/2⌋ tomin(C, λM −C). Since we have assumedY ≪ X/M , we
approximateR(A,B,C) as|R(A,B,C)| ≈ |AB+AC +BC|X = (B2 +BC +
C2)X. This leads to the following approximate value ofR.

R = X ·




M
∑

C=0

min(C,λM−C)
∑

B=−⌊C/2⌋
B2 +BC + C2





/





M
∑

C=0

min(C,λM−C)
∑

B=−⌊C/2⌋
1



 (4.3)

The denominator is equal toτλ in Appendix A and can be evaluated as follows.
With the observation thatC 6 λM − C if and only ifC 6 λM/2, we have

M
∑

C=0

min(C,λM−C)
∑

B=−⌊C/2⌋
1

=

⌊λM/2⌋
∑

C=0

(⌊C/2⌋+ C) +
M
∑

C=⌊λM/2⌋+1

(⌊C/2⌋+ λM − C)

≈ M2

4
(4λ− λ2 − 1)

The sum in the numerator of (4.3), on the other hand, can be written as

⌊λM/2⌋
∑

C=0

C
∑

B=−⌊C/2⌋
(B2 +BC + C2) +

M
∑

C=⌊λM/2⌋+1

λM−C
∑

B=−⌊C/2⌋
(B2 +BC + C2) (4.4)

The former sum in the last expression equals

⌊λM/2⌋
∑

C=0

[

(

12 + 22 + . . . (⌊C/2⌋)2
)

+
(

12 + 22 + . . .+ C2
)

+

C ((⌊C/2⌋+ 1) + (⌊C/2⌋+ 2) + . . .+ C) + C2(C + ⌊C/2⌋+ 1)

]

≈ 21

512
λ4M4 +O(M3)

and the second sum in (4.4) equals

M
∑

C=⌊λM/2⌋+1

[

(

12 + 22 + . . .+ (⌊C/2⌋)2
)

+
(

12 + 22 + . . .+ (λM − C)2
)

+ C[(−⌊C/2⌋) + (−⌊C/2⌋+ 1) + . . .+ (−1) + 1 + 2 + . . .+ (λM − C)]

+ C2(⌊C/2⌋+ 1 + λM − C)

]
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≈ 1

768

(

−107λ4 + 256λ3 − 192λ2 + 256λ− 80
)

M4 +O(M3)

Adding these two sums gives the value of the numerator of (4.3) as

(

1

1536

[

−151λ4 + 512λ3 − 384λ2 + 512λ− 160
]

M4 +O(M3)

)

X

Therefore,

R ≈
(

−151λ4 + 512λ3 − 384λ2 + 512λ− 160

384(4λ− λ2 − 1)

)

M2X

B.2 Calculation ofRmax

For a fixedC, the expression

|R(A,B,C)| ≈ (B2 +BC + C2)X = ((B + C/2)2 + 3C2/4)X

increases withB and thus attains the maximum value of3C2X for 0 6 C 6 λM/2
and((λM − C)2 + (λM − C)C + C2)X = (λ2M2 − λMC + C2)X = ((C −
λM/2)2+3λ2/4)X for λM/2 6 C 6M . Now if we varyC, we see that the first
expression reaches the maximum value of3

4λ
2M2X atC = λM/2, whereas the

second expression reaches the maximum value of(λ2 − λ + 1)M2X atC = M .
Now 3

4λ
2M2X > (λ2 − λ+ 1)M2X if (λ− 2)2 < 0 which is impossible for any

realλ. Therefore,

Rmax ≈ (λ2 − λ+ 1)M2X

B.3 Calculation ofD(η)

The condition|R(A,B,C)| 6 ηRmax demands

(B + C/2)2 6 η(λ2 − λ+ 1)M2 − 3C2/4 (4.5)

If the right side of the inequality (4.5) is negative, that is, ifC is larger than
M
√

4η(λ2 − λ+ 1)/3, then no values ofB satisfy (4.5). On the other hand,
if C 6 M

√

4η(λ2 − λ+ 1)/3, then (4.5) is satisfied by allB satisfying0 6

B + C/2 6
√

η(λ2 − λ+ 1)M2 − 3C2/4, that is,−C/2 6 B 6 −C/2 +
√

η(λ2 − λ+ 1)M2 − 3C2/4. In additionB satisfies−C/2 6 B 6 min(C,
λM − C). Combining these results gives the value ofD(η) as

D(η) ≈
min
(

M,
⌊

M
√

4η(λ2−λ+1)/3
⌋)

∑

C=0

[

1 + ⌊C/2⌋+

min

(

C,M − C,

⌊

−C/2 +
√

η(λ2 − λ+ 1)M2 − 3C2/4

⌋)

]

In Figure 4.1, we plotd(η) = D(η)/D(1) for λ = 1, 1.5, 2 andM = 1000.
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5 On the congruence X3 ≡ Y 2Z (mod p)

In Section 3.2.3, we introduced the cubic sieve method for the computation of dis-
crete logarithms over a prime fieldFp. The working of this method is based on the
availability of a solution of the congruence

X3 ≡ Y 2Z (mod p) (5.1)

withX,Y, Z of the order ofpα for some1
3 6 α < 1

2 . We are interested in solutions
with X3 6= Y 2Z. Henceforth, we denote by ‘the cubic sieve congruence’ or by
CSC for brevity, the congruence specified by (5.1).

This chapter is devoted to a study of the solutions of the CSC. In the Section 5.1,
we introduce some notations and results from analytic number theory, that weuse
throughout the chapter. In Section 5.2, we deduce that the number of solutions of
the CSC (with or without the inequalityX3 6= Y 2Z) is Θ(p2). In Section 5.3,
we provide a heuristic estimate of the number of solutions of the CSC subject to
the conditionX,Y, Z 6 pα, X3 6= Y 2Z. We show that for sufficiently largep, a
value ofα, 1/3 < α < 1/2, is expected to give at least a solution of the CSC with
X,Y, Z 6 pα. Our argument is not to be taken as a proof for the existence of a
solution. It heuristically justifies that for sufficiently large primes, one isexpected
to have a desired solution of the CSC. Some small-scale experiments carried out by
us provide evidence in favor of our claim regarding this asymptotic expected value.
Indeed our experimental results tally quite closely with the theoretical estimates up
to a constant factor. We finally emphasize that our demonstration isnotprocedural
in the sense that it does not lead to an algorithm for finding a solution when one
exists.

5.1 Some results from analytic number theory

In this section, we introduce some notions and results from analytic number theory,
that we use throughout the chapter. For details we refer the reader to any introduc-
tory text book on analytic number theory, for example [4, Chapter 3].

DEFINITION 5.1 A real- or complex-valued function defined on the setN of natural numbers is
called anarithmetic function.

If f is an arithmetic function, it is often possible to extend the domain of def-
inition of f to the set of all positive real numbers such that the restriction off to
N is the given arithmetic function. Certain results requiref to have acontinuous
derivativef ′(x) for all x ∈ R or at least forx ∈ [a, b] for some0 < a < b. In such
a case, we can evaluate the sum

∑

a<n6b f(n) by evaluating an integral as follows:
(Here the sum extends over all integersn, a < n 6 b.)
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THEOREM 5.2 [Euler’s summation formula] Iff has a continuous derivativef ′ in the closed
interval[a, b], where0 < a < b, then

∑

a<n6b

f(n) =

∫ b

a
f(t)dt+

∫ b

a
(t− ⌊t⌋)f ′(t)dt

+ f(b)(⌊b⌋ − b)− f(a)(⌊a⌋ − a)

The following results are easy consequences of Euler’s summation formula:

THEOREM 5.3 Forx > 1 and for real values ofs, we have:

(a)
∑

16n6x

1

n
= lnx+ γ +O

(

1

x

)

(b)
∑

16n6x

1

ns
=
x1−s

1− s
+ ζ(s) +O(x−s) if s > 0, s 6= 1

(c)
∑

n>x

1

ns
= O(x1−s) if s > 1

(d)
∑

16n6x

ns =
xs+1

s+ 1
+O(xs) if s > 0

In the above theorem,γ is the Euler constant defined by

γ = lim
n→∞

(

1

1
+

1

2
+ . . .+

1

n
− lnn

)

= 0.57721566 . . .

andζ(s) is the Riemann zeta function defined for all reals > 0, s 6= 1 as

ζ(s) =























∞
∑

n=1

1

ns
if s > 1

lim
x→∞

( ∞
∑

n=1

1

ns
− x1−s

1− s

)

if 0 < s < 1

We now define for an integern ∈ N the integerd(n) to be the total number of
(positive integral) divisors ofn. Then Theorem 5.3 gives the following:

THEOREM 5.4 For all realx > 1, we have

∑

n6x

d(n) = x lnx+ (2γ − 1)x+O(
√
x)

5.2 Total number of solutions of the CSC

To start with let us introduce a few notations related to the set of solutions of the
CSC.

S = {(X,Y, Z) | X3 ≡ Y 2Z (mod p), 1 6 X,Y, Z < p}
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S= = {(X,Y, Z) ∈ S | X3 = Y 2Z}
S6= = {(X,Y, Z) ∈ S | X3 6= Y 2Z}
Sα = {(X,Y, Z) ∈ S6= | 1 6 X,Y, Z 6 pα}

For the cubic sieve method, we are not interested in solutions of the CSC inS=.
However, it is easy to estimate the cardinality ofS=. This, in turn, gives the car-
dinality of S6=. We also remark that the setsSα for 1/3 6 α < 1/2 are extremely
important for the cubic sieve method. In fact, the smallest possible value ofα for
whichSα is non-empty, determines the running time of the cubic sieve method.

It turns out that the setS under coordinate-wise multiplication modulop is
a group with identity(1, 1, 1) and (X,Y, Z)−1 = (X−1, Y −1, Z−1), where the
inverses ofX, Y andZ are modulop. Since(1, 1, 1) 6∈ S6=, S6= is never a subgroup
of S. The same argument holds for the setsSα. ForX3 = Y 2Z, it is not necessary
that(X−1)3 = (Y −1)2Z−1 and thusS= is also not a subgroup ofS. At any rate,
these facts do not seem to have a bearing on the material that follows in this chapter.

In this section, we derive the cardinalities ofS, S= andS6=. We will discuss
about the cardinalities of the setsSα in the next section.

5.2.1 Cardinality of S

For each value ofX,Y ∈ Fp
∗, we have a unique solution forZ ∈ Fp

∗ satisfying the
CSC. Therefore

#S = (p− 1)2 = Θ(p2) (5.2)

5.2.2 Cardinality of S=

Choose1 6 X < p and a solution(X,Y, Z) ∈ S=. Let the prime factorization
of X beX = pβ1

1 p
β2
2 . . . pβr

r , wherepi are distinct primes andβi > 0. Therefore,
Y 2Z = X3 = p3β1

1 p3β2
2 . . . p3βr

r . SinceY 2|X3, for eachi = 1, . . . , r, the power of
pi dividing Y must be one of0, 1, 2, . . . , ⌊3βi/2⌋. Some choices of these powers
lead toY > p. We neglect this for the time being and see that for the givenX, total
number of choices forY (and hence forZ) is

6

r
∏

i=1

(1 + ⌊3βi/2⌋)

6

r
∏

i=1

(1 + 3βi/2)

6
3

2

r
∏

i=1

(1 + βi)

=
3

2
d(X)

If we sum this quantity over all1 6 X < p and use Theorem 5.4, we get

#S= 6
3

2

∑

16X<p

d(X)

=
3

2
(p− 1) ln(p− 1) + (3γ − 3

2
)(p− 1) +O(

√
p) (5.3)

= O(p ln p)
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Next we derive a lower bound forS=. First note that eachX = Y = Z ∈ Fp
∗ is

in S= and hence#S= > p − 1. We can determine a bound slightly better than
this. To do so, we first fixY . ThenY 2 6 X3 < Y 2p, since1 6 Z < p. Let
the values ofX that satisfyY 2 6 X3 < Y 2p beX1, X2, . . . , Xs wheres =
(Y 2p)1/3− (Y 2)1/3+O(1) andXi = X1+ i−1. SinceY < p, it’s clear that each
Xi above is less thanp. We consider only those values ofXi for which Y 2|X3

i .
We see that ifY |Xi, thenY 2|X3

i . Hence for a fixedY , total number of solutions
(X,Y, Z) ∈ S= is greater than or equal to((Y 2p)1/3− (Y 2)1/3 +O(1))/Y . If we
sum this over allY , we get applying the formula (a) and (b) of Theorem 5.3

#S= >
∑

16Y <p

(Y 2p)1/3 − (Y 2)1/3 +O(1)

Y

= (p1/3 − 1)
∑

16Y <p

1

Y 1/3
+O(ln p)

= (p1/3 − 1)

[

(p− 1)1−1/3

1− 1/3
+ ζ(1/3) +O(p−1/3)

]

+O(ln p)

=
3

2
p+O(p2/3) (5.4)

whereζ(1/3) = −0.97336024 . . . In particular,#S= = Ω(p).

5.2.3 Cardinality of S 6=

SinceS is the disjoint union ofS= andS6=, Eqns 5.2, 5.3 and 5.4 give

(p−1)2− 3

2
(p−1) ln(p−1)+O(p) 6 #S 6= 6 (p−1)2− 3

2
p+O(p2/3) (5.5)

In particular,#S6= = Θ(p2).

5.3 Heuristic estimate of#Sα

In this section, we count the number of solutions of the CSC withX,Y, Z 6 pα,
X3 6= Y 2Z. Since the cubic sieve method demands1/3 6 α < 1/2, we consider
α only in this range, though our argument is valid for any0 6 α 6 1.

We first fixY and writeX3 = Y 2Z+kp for somek ∈ Z\{0}. We then see that
X3 ≡ kp (mod Y 2). This implies thatk must be chosen such thatkp is a cubic
residue moduloY 2. We are interested only in the cubic residues13, 23, . . . , ⌊pα⌋3
moduloY 2.

CLAIM 5.5 Irrespective of whether the⌊pα⌋ cubic residues13, 23, . . . , ⌊pα⌋3 are distinct
moduloY 2 or not, for anyn distinct random values ofkp, we expectn⌊pα⌋/Y 2

distinct solutions for(X,Y, Z) with X 6 pα.

Proof This is because ifX3
1 ≡ X3

2 ≡ kp (mod Y 2) for somek with X1 6= X2,
then we get two solutions(X1, Y1, Z1) and(X2, Y2, Z2). In particular, if thegood
cubic residues13, 23, . . . , ⌊pα⌋3 assumem distinct values moduloY 2, then from
then given values ofkp, we expectnm/Y 2 values ofk to correspond to the set
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of these cubic residues. Each such residue, on the other hand, is associated, on
an average, with⌊pα⌋/m solutions withX 6 pα. Hence the expected num-
ber of solutions(X,Y, Z) corresponding to the givenn random values ofkp is
(nm/Y 2)(⌊pα⌋/m) = n⌊pα⌋/Y 2. �

Now we allowk to vary in the range

1

p
− pα−1Y 2 6 k 6 p3α−1 − Y 2

p
(5.6)

This corresponds to a total of

p3α−1 − Y 2

p
+ pα−1Y 2 +O(1)

values ofk 6= 0. Sincekp = X3−Y 2Z and1 6 X,Z 6 pα, we have for the fixed
value ofY chosen above,1− pαY 2 6 kp 6 p3α − Y 2 which implies (5.6). Note,
however, that the converse is not true, that is, all values ofk prescribed by (5.6) do
not lead to values of1 6 X,Z 6 pα. We will force 1 6 X 6 pα and consider
only those solutions for which1 6 Z 6 pα.

Now we make the followingheuristic assumption:

ASSUMPTION5.6 As k varies in the range given by (5.6), the integerskp behave as random inte-
gers moduloY 2.

This is a reasonable assumption since the gcd(Y 2, p) = 1. This assumption to-
gether with Claim 5.5 guarantees an expected number of approximately

(

p3α−1 +O(1) +

(

pα−1 − 1

p

)

Y 2
)

pα

Y 2
(5.7)

solutions(X,Y, Z) with the givenY . All these solutions correspond to1 6 X 6

pα, but not necessarily to1 6 Z 6 pα as told before. The inequalities (5.6)
together withX3 = Y 2Z + kp show that the range of variation ofZ is

1− p3α −X3

Y 2
6 Z 6 pα +

X3 − 1

Y 2
(5.8)

At this point we make thesecond heuristic assumption:

ASSUMPTION5.7 All these values ofZ are equally likely to occur.

For any1 6 X 6 pα, (5.8) prescribespα − 1 + p3α−1
Y 2 +O(1) non-zero values for

Z including the values1 6 Z 6 pα. Therefore, by assumption 5.7, the probability
thatZ lies in the range1 . . . ⌊pα⌋ is

≈ pα

pα − 1 + p3α−1
Y 2

=
pαY 2

(pα − 1)Y 2 + p3α − 1

>
Y 2

Y 2 + p2α

>
Y 2

2p2α
(5.9)
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This probability multiplied by (5.7) gives the expected number of solutions inSα
with the given fixedY , as greater than or equal to

1

2pα

(

p3α−1 +O(1) +

(

pα−1 − 1

p

)

Y 2
)

.

We finally varyY with 1 6 Y 6 pα and use (d) of Theorem 5.3 to obtain:

Expected cardinality ofSα

>
1

2pα

(

p3α−1pα +O(pα) +

(

pα−1 − 1

p

)

(

(pα)3

3
+O((pα)2)

))

=
2

3
p3α−1 +O(max(1, p2α−1))

= Ω(p3α−1) (5.10)

For sufficiently largep, the term2
3p

3α−1 dominates and one might expect to get
a solution if 23p

3α−1 ≫ 1, say, for example, if23p
3α−1 > 1000, i.e., if

α >
1

3
+

ln(1500)

3 ln p

For example, ifp ≈ 2500, thenα = 0.34037 is expected to makeSα non-empty.

We have noted that assumption 5.6 is reasonable and gives a good picture of the
average situation. Assumption 5.7, on the other hand, is difficult to justify math-
ematically. Indeed this assumption is equivalent to the question of existence ofa
suitable solution. We assumed an average scenario to get an estimate of#Sα. As
we pointed out earlier, our aim is not toprove the non-emptiness or otherwise of
Sα, but to compute an approximate value of its cardinality with the hope that this
behavior is general enough to portray the average situation. In the next section, we
show that up to a constant factor our estimates are quite close to the experimen-
tal values we obtained from a set of small scale experiments. These experimental
results together with our theoretical estimate tempt us to make the following con-
jecture:

CONJECTURE5.8 The expected cardinality ofSα is asymptotically equal toχp3α−1 for all 0 6

α 6 1 and for some constantχ ≈ 1. (Note that (5.5) demandsχ = 1.)

Few primes of special forms might not obey the conjectured estimates. But we
do not see any such special form – both experimentally and theoretically. The bulk
of the derivation of (5.10) is based on the cubic residues moduleY 2 for integers
Y = 1, 2, 3, . . . The primep does not seem to play an important role in connection
with assumption 5.6. The second assumption, however, can be influenced by the
choice ofp and may lead to situations we failed to visualize.

5.3.1 Experimental verification

We experimented with randomly generated primes of size around 30 bits. We ac-
tually enumerated all the solutions of the CSC for various values ofα in the range
0.33 6 α 6 0.50. We tabulate these experimental values together with the theo-
retical estimates obtained as#Sα = ⌊23p3α−1⌋. We also list the conjectured values
given by#Sα = ⌊χp3α−1⌋ with χ = 1.
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Table 5.1:#Sα for p = 32263723 (A 25-bit prime)

Values of#Sα
α (a) (b) (c) (b)/(a) (c)/(a)

0.33 0 0 0
0.34 0 0 1
0.35 1 1 2 1.00 2.00
0.36 1 2 3 2.00 3.00
0.37 1 4 6 4.00 6.00
0.38 4 7 11 1.75 2.75
0.39 8 12 18 1.50 2.25
0.40 23 21 31 0.91 1.35
0.41 38 35 53 0.92 1.39
0.42 62 59 89 0.95 1.44
0.43 105 100 150 0.95 1.43
0.44 191 168 252 0.88 1.32
0.45 356 283 424 0.79 1.19
0.46 623 475 713 0.76 1.14
0.47 1060 798 1198 0.75 1.13
0.48 1785 1341 2012 0.75 1.13
0.49 3043 2254 3381 0.74 1.11
0.50 5225 3786 5680 0.72 1.09

(a) experimental, (b) estimated, (c) conjectured

Table 5.2:#Sα for p = 1034302223 (A 30-bit prime)

Values of#Sα
α (a) (b) (c) (b)/(a) (c)/(a)

0.33 0 0 0
0.34 1 1 1 1.00 1.00
0.35 1 1 2 1.00 2.00
0.36 2 3 5 1.50 2.50
0.37 5 6 9 1.20 1.80
0.38 9 12 18 1.33 2.00
0.39 23 22 34 0.96 1.48
0.40 53 42 63 0.79 1.19
0.41 98 78 118 0.80 1.20
0.42 185 147 220 0.79 1.19
0.43 368 274 411 0.74 1.17
0.44 695 511 766 0.74 1.10
0.45 1363 952 1429 0.70 1.05
0.46 2475 1776 2664 0.72 1.08
0.47 4646 3310 4965 0.71 1.07
0.48 8815 6170 9256 0.70 1.05
0.49 16615 11502 17253 0.69 1.04
0.50 31451 21440 32160 0.68 1.02
(a) experimental, (b) estimated, (c) conjectured

92



Table 5.1 gives data forp = 32263723, a random 25 bit prime. Table 5.2
gives the same for a random 30-bit primep = 1034302223. Though we have
experimented with many primes of this size, we give the values of#Sα only for
these two values. This is because we get exactly similar pattern of variation of#Sα
with α for all of our test primes. Thus a few representatives are sufficient toreflect
the scenario.

The tables clearly show that apart from constant factors the experimental, es-
timated and conjectured values exhibit the same pattern of variation of#Sα with
α. Forα close to 0.33, the relation between these values is little erratic. Asα in-
creases, sayα > 0.40, the ratio of the estimated value to the experimental value and
the ratio of the conjectured value to the experimental value tend to approach con-
stant values. In particular, the conjectured values are quite close to the experimental
values. It remains unsettled if this pattern continues to hold for general primes of
larger sizes, say for primes of size6 1000 bits. Since at present no algorithms
are known to solve the CSC in polynomial time oflog p, we cannot experiment
with higher values ofp. In addition, even if such an algorithm exists, one should
spendO(p2α) time for enumerating all the solutions inSα. This makes it infeasible
to continue the experimental study with primes of practical interest. These small-
scale experiments give us some confidence about the theoretical estimates derived
in this section.

In spite of all these theoretical and experimental exercises, the question of exis-
tence or otherwise of a solution of the CSC for some1/3 6 α < 1/2 continues to
remain unanswered. It is believed that a solution exists [28, 77]. Our analysis only
strengthens the belief in favor of a solution and to that effect is much stronger than
the argument presented in [77].
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6 Conclusion

In this chapter we summarize the work reported in the thesis. We also describethe
possibilities and need for further research in this area.

6.1 Summary of work done

This thesis has been devoted to a study of the computational aspects of finite fields.
We started with a brief survey on the main computational problems of theoreti-
cal and practical concern to applied mathematicians and computer scientists. We
provided a list of the state-of-the-art algorithms to solve these problems andthe
running times of these algorithms.

In the second chapter, we described our computational library of functions for
working over finite fields. This library developed by us is termed the Galois Field
Library (GFL). GFL consists of built-in routines for solving many computational
problems discussed in the survey of Chapter 1. It provides arithmetic overfinite
fields of arbitrary characteristic and cardinality. It also provides routines for uni-
variate polynomials and matrices over finite fields. Our library allows the user to
work with prime fields of any characteristic and with their algebraic extensionsob-
tained by adjoining roots of any number of irreducible polynomials. Our library
introduces and makes extensive use of what we call the packed representation of
finite field elements. This packed representation helps us provide a uniformtreat-
ment of all finite fields. To the best of our knowledge, no other library forcom-
putation over Galois fields provides this generality. Another important feature of
GFL is its dynamic memory management policy which eliminates garbage collec-
tion overheads. GFL seems to provide the largest set of built-in routines as far as
computation over finite fields is concerned.

We demonstrated the programming techniques with GFL through some small
and simple examples. We also provided an exhaustive list of functions currently
provided by GFL. We compared the performance of GFL with those of three other
libraries, namely, LiDIA, NTL and ZEN.

The rest of the thesis (Chapters 3 through 5) has been devoted to a studyof the
discrete logarithm problem (DLP) over finite fields of prime cardinalityp. The DLP
is a very difficult computational problem for which no polynomial time algorithms
are known. It is not even known if this problem can be solved in polynomialtime.
The best algorithms known till date are based on the index calculus method and
take time subexponential inlog p. We concentrated on three variants of the index
calculus method, namely the basic method, the linear sieve method and the cubic
sieve method.

The sieve methods test a set of deterministically generated integers (the inte-
gersT (c1, c2) andR(A,B,C) introduced in Chapter 3) for smoothness over a pre-
determined set of small primes. The analysis of running times of these methods
is based on the heuristic assumption that these deterministically generated integers
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behave as if they have been chosen following a random distribution. We started
our study of the DLP by showing that the actual distribution of these integersis not
really random in the sense that these integers do not follow uniform distribution.
To prove our claim we found out the arithmetic mean and the cumulative statis-
tical distribution of these integers. We found that the average bit-length of these
test integers is smaller than the expected bit-length of a sample of integers chosen
following the uniform distribution. Since smaller integers have higher chanceof
being smooth, we concluded that the actual distribution of the test integers is better
than the uniform distribution.

In Chapter 4, we proposed heuristic modification schemes for the three variants
of the index calculus method stated above. We analytically and experimentally
found out the effectiveness of our heuristics. For the basic method, our heuristic
schemes reduce the total number of discrete exponentiations carried out inthe field.
We also bring down the cost of trial divisions by factor base primes using two
strategies: maintaining a list of remainders and sieving. All these help us get a
speedup of between 1.5 and 3 over the original method. We, however, notethat the
index calculus method in the basic form is very slow and achieving a speed-up of
this order does not make it usable in practical situations. Therefore, ourstudy of
the basic method is mostly of theoretical interest.

The linear sieve and the cubic sieve methods are practical methods for primesof
medium size (6 250 bits). Our heuristic modifications of the linear sieve method
decrease the running time per relation generated. This is because our heuristics
test for smoothness a set of integers that are on an average smaller than the integers
tested for smoothness in the original method. At the same time the heuristics reduce
the ratio of the number of relations to the size of the factor base and may lead to a
situation where one fails to get a full-rank system of linear congruences.

Although the cubic sieve method proposed in 1986 [28] is asymptotically faster
than the linear sieve method, it drew very little attention by the research commu-
nity. The most probable reason for this is that the applicability of this method banks
on a solution of the congruenceX3 ≡ Y 2Z (mod p) with X3 6= Y 2Z. Given a
solution of this congruence, one can, however, readily use the cubic sieve method.
We studied a case when a solution of the congruence is easily available, namely the
case when the cardinalityp of the prime field is close to a whole cube. We showed
that in this case the cubic sieve method runs faster than the linear sieve method by a
factor of 2.5, even whenp is small (of length around 150 bits). For larger fields, the
speed-up of the cubic sieve method over the linear sieve method is expected tobe
more. In order to prove the superiority of the cubic sieve method, we implemented
an efficient version of the two sieve methods. Our implementation speeds up the
equation collecting phase by a reasonable amount. Finally we proposed a heuristic
modification of the cubic sieve method, that allows us to build a larger factor base
without any significant increase in the running time. We also determined, theoreti-
cally and experimentally, the optimal value of a parameter which plays the central
role in this heuristic scheme.

We conclude our study of the DLP by an analytic study of the congruence
X3 ≡ Y 2Z (mod p). A solution of this congruence withX,Y, Z of the order
of pα with 1/3 6 α < 1/2 is needed for the cubic sieve method. The smallest
possible value ofα determines the best running time of the cubic sieve method. It
is, however, not known how one can find a solution of the congruence.Moreover,
it is not even known if a solution withα in the above range exists. Our heuristic
analytic arguments show that on an average one can expect to have a solution of
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the congruence withα close to1/3. More precisely, we showed that under two
(reasonable) heuristic assumptions, the expected number of solutions of the above
congruence with1 6 X,Y, Z 6 pα is Ω(p3α−1). We carried out some small scale
experiments to enumerate all the solutions of the congruence and found thatour
heuristic estimate tallies quite closely with the experimental values. Our analysis,
however, does not lead to an algorithmic determination of a solution.

6.2 Directions for further research

The theory of finite fields finds many applications in various areas like cryptogra-
phy, error control coding, combinatorial design. As a result, design, analysis and
implementation of algorithms for computation over finite fields are getting more
and more popular among mathematicians and engineers. Many tools are coming up
to meet the practical needs of users. We have developed GFL as a general-purpose
easy-to-use library. There are many ways in which the library can be enhanced. We
mention a few important possibilities.

1. Improving performance ofGFL routines:This involves devising and/or im-
plementing algorithms that run more efficiently compared to the routines cur-
rently implemented in GFL. A comparative study of GFL with other existing
libraries (See Section 2.5.4) shows that there are many scopes for improve-
ment. Though the generality of GFL is partially responsible for its slower
relative performance, it is not the only source of inefficiency. It requires con-
siderable additional effort for finding out and removing possible loop-holes
in the implementation.

2. Adding new features:GFL can be made to address a wider range of com-
putational problems over finite fields. For example, data structures and rou-
tines for manipulating multi-variate polynomials and polynomial functions
can be added to GFL. Routines for elliptic curves over finite fields can also
be added.

3. Designing a front-end:An interpreter that runs on top of GFL can make
programmer’s task much easier and user-friendly.

4. Parallelization:The GFL routines can be parallelized and run in a distributed
fashion on a network of processors. One possible way to achieve this is to
implement a client-server application with the help of Unix domain sockets.

As we discussed in the survey of Chapter 1, many computational problems over
finite fields do not have deterministic polynomial-time solutions. This is, in gen-
eral, not a problem, because randomized algorithms solve these problems reason-
ably efficiently and are sufficient for all practical purposes. The discrete logarithm
problem, on the other hand, continues to remain an outstanding open problem.The
advent of cryptography to exploit human inability to solve the problem efficiently
(even with randomization) only intensifies the intellectual challenge. Cryptography
is a negative application in a broad sense, but it has practical usefulness. It is rather
debatable if an efficient solution of the DLP does any good to mankind. But then
as A. K. Lenstra and H. W. Lenstra, Jr. say [77]:“Most number theorists consid-
ered the small group of colleagues that occupied themselves with these problems
as being inflicted with an incurable but harmless obsession.”
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An obsession or scientific inquisitiveness, the need for further research to solve
the DLP can hardly be denied. Our study of the DLP in this thesis is motivated
by this need. The question of solvability or otherwise of the DLP in polynomial
time is a hard one to answer. We point out a few easier and more down-to-earth
questions, the solutions of which can augment our study:

• Randomness ofT (c1, c2) and R(A,B,C): We showed that the integers
T (c1, c2) andR(A,B,C) do not follow uniform distribution. The ques-
tion that remains unanswered is whether these integers behave randomly as
a sample of integers drawn according to the distributions they follow.

• Comparison with the number field sieve method:The number field sieve
(NFS) method is currently known to be the fastest method to solve the DLP,
both theoretically and experimentally. Our study reveals that the cubic sieve
method holds promise. It is, therefore, necessary to calibrate the perfor-
mance of the cubic sieve method against the NFS method. The NFS method
is asymptotically faster than the cubic sieve method. But it demands exper-
imentation to settle from which sizes ofp, the NFS method starts perform-
ing better than the cubic sieve. Similarly, albeit somewhat less importantly,
we need to compare the performance of the cubic sieve method with the
Gaussian integer method (though the Gaussian integer method is asymptot-
ically slower than the other two methods discussed in this paragraph). It is
imortant to note here that for primes close to a cube, the number field sieve
method also gets efficient, that is, one should use the special number field
sieve method instead of the general number field sieve method.

• More about the cubic sieve congruence:We need a proof for the existence
of suitable solutions of the congruenceX3 ≡ Y 2Z (mod p). More impor-
tantly, we need ‘good’ algorithms for calculating a solution.

• Further enhancements of the algorithms:We need further improvements
(heuristic or otherwise) over the existing methods for solving the DLP. In
particular, the second stage of the cubic sieve method is known to be quite
slow. Any improvement in the running time of this stage makes the cubic
sieve method more usable.

The integer factorization problem is known to be yet another difficult open
problem and is widely believed to be equivalent to the DLP. There are evidences
in favor of the equivalence; see, for example, [85, Section 6.9]. Indeed, save a few
exceptions, most algorithms we use nowadays for solving the DLP are direct adap-
tations of the algorithms for solving the integer factorization problem. Any new
algorithm to solve one of these problems is expected to apply to the other problem
as well. We end this section with the following sobering quote by A. K. Lenstra
and H. W. Lenstra, Jr. [77], which though meant to address the integer factorization
problem is equally applicable for the DLP.

“It is important to point out that there is only historical evidence that factorization is an intrinsically
hard problem. Generations of number theorists, a small army of computer scientists, and legions of cryptol-
ogists spent a considerable amount of energy on it, and the best they cameup with are (the) relatively poor
algorithms. . . Of course, as long as the widely believed P6=NP-conjecture remains unproved, complexity
theory will not have fulfilled its originally intended mission of proving certain algorithmic problems to be
intrinsically hard; but with factorization the situation is worse, since even the celebrated conjecture just
mentioned has no implications about its intractability. Factorization is considered easier than NP-complete
and although the optimistic conjecture that it might be doable in polynomial time is only rarely publicly
voiced, it is not an illegitimate hope to foster.”
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algorithm
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low complexity, 2
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closeness criterion, 51, 52, 67, 75
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decryption, 26
encryption, 26
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discrete logarithm, 10, 11, 31, 46, 47, 64, 94
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table, 2, 33, 34, 45

distinct-degree factorization, 32
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statistical, 53, 60, 63, 81, 85

ElGamal’s protocol, 25, 47
elliptic curve, 10, 48, 96
equal-degree factorization, 32
Euler constant, 87
Euler summation formula, 87
extended Riemann hypotheses, 2, 5, 7, 8

factor base, 46, 48, 50, 52, 64, 77, 80, 95
Fast Fourier Transform, 31, 37
FFT, See ‘Fast Fourier Transform’
finite field

arithmetic, 2, 34, 41
elements of, 17
extension, 13, 16, 22
isomorphism, 31, 46
matrix over, 42
polynomial over, 41
representation of, 16, 41
safe multiplication of elements, 33, 35
unsafe multiplication of elements, 33, 35
vector over, 42

Galois field, See ‘finite field’
library, See ‘GFL’

Gaussian integer method, 10, 49, 97
gcd, See ‘multi-precision integer’
GFL, 11, 13–46, 64, 94

data structures
factorBase1, 39
factorBase2, 39
factorBase3, 39
GFelement, 18, 38
GF d, 38
GF info, 38
intFactor, 38
matrix, 19, 21, 39
mpint, 15, 21, 38
poly, 18, 21, 38
polyFactor, 39
vector, 19, 21, 39

functions
findPrimElement, 25
absNorm, 41
absTrace, 41
assignInt, 40
basis, 45
cardinality, 26, 41
characteristic, 41
charPoly, 23, 42
compInt, 40
compMatrix, 42
copyInt, 24, 40
copyMatrix, 42
copyPoly, 24, 42
copyVector, 42
createExtGF, 22, 41
createFactorBase1, 46
createFactorBase2, 46
createFactorBase3, 46
createPrimeGF, 22, 36, 41
createPrimTable, 45
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destroyFactorBase1, 46
destroyFactorBase2, 46
destroyFactorBase3, 46
destroyInt, 25, 26, 40
destroyIntFactor, 41
destroyMatrix, 25, 42
destroyPoly, 25, 41
destroyPolyFactor, 44
destroyPrimTable, 45
destroyVector, 25, 42
destroyZechTable, 45
distinctDegreeFactorization, 44
dlog1, 46
dlog2, 46
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equalDegreeFactorization, 44
equalMatrix, 43
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equalVector, 43
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extDeg, 41
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factorizeInt, 41
factorizePoly, 44
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findIsoMatrix, 46
findNormalElement, 45
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findPrimElement, 44
findPrimElement2, 44
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findRootBR, 44
findRootBT, 44
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GFdiff, 41
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intBGCD, 41
intDec, 40
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intEGCD, 41
intExp, 40
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intModProd, 40
intOR, 40
intPP, 40
intProd, 40
intProdTwo, 40
intRightShift, 40
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intSqrt, 41
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intTwo, 40
intXOR, 40
irreducible, 43
lc, 42
linIndep, 43
linIndepCols, 43
linIndepRows, 43
linSysSolve, 43
listAllIrrPoly, 44
listAllNormalElements, 45
listAllNPolys, 45
logTwo, 40
longToInt, 24, 40
LUPD, 43
matrixDet, 43
matrixDiff, 43
matrixExp, 43
matrixInv, 43
matrixProd, 43
matrixRank, 43
matrixSum, 43
matrixTranspose, 43
matrixVectorProd, 43
mctov, 42
minimalPoly, 42
modpInv, 40
monic, 42
monicize, 42
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mrtov, 43
mtocv, 42
mtorv, 42
negativeInt, 40
negUnityInt, 40
newFactorBase1, 46
newFactorBase2, 46
newFactorBase3, 46
newInt, 26, 39
newIntFactor, 41
newMatrix, 42
newPoly, 41
newPolyFactor, 44
newVector, 42
nextPrime, 40
norm, 41
normal, 45
NPoly, 45
ntocTransMatrix, 46
ntopTransMatrix, 45
overspLinSysSolve, 43
permPoly, 44
polyBasis, 45
polyDerivative, 42
polyDiff, 42
polyDisc, 42
polyDiv, 20, 24, 42
polyExp, 42
polyGcd, 42
polyModExp, 42
polyModProd, 42
polyProd, 42
polyRes, 42
polySum, 42
positiveInt, 40
prime, 40
primeSubGF, 41
primitive, 44
primitive2, 44
printFactors, 44
printGFElement, 41
printGFInfo, 41
printIntFactors, 41
ptogTransMatrix, 45
ptonTransMatrix, 45
randInt, 40
randPrime, 40
randRes, 26, 40
readFactorBase1, 46
readFactorBase2, 46
readFactorBase3, 46
readInt, 40
readMatrix, 22, 42
readMatrixFromArray, 42

readPoly, 41
readPolyFromArray, 41
readPrimTable, 45
readSmallPrimes, 39
readVector, 42
readVectorFromArray, 42
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rvtom, 43
saveFactorBase1, 46
saveFactorBase2, 46
saveFactorBase3, 46
savePrimTable, 45
saveZechTable, 45
scalarMatrixProd, 43
scalarVectorProd, 43
setIdentityMatrix, 42
setZeroMatrix, 42
setZeroVector, 42
showInt, 40
singular, 43
sqLinSysSolve, 43
squareFreeFactorization, 44
subGF, 41
symmetricMatrix, 43
totExtDeg, 41
trace, 41
twoPowerToInt, 40
underspLinSysSolve, 43
unityInt, 40
vectorDiff, 43
vectorMatrixProd, 43
vectorSum, 43
vtomc, 43
vtomr, 43
writeInt, 24, 40
writeMatrix, 42
writePoly, 42
writeVector, 42
zeroInt, 40
zeroMatrix, 43
zeroPoly, 24, 42
zeroVector, 43

header file, 21, 38
initialization, 21, 39
initialization of variable, 21
programming with, 19–27
reference manual, 38–46

Hilbert’s irreducibility theorem, 5

index, See ‘discrete logarithm’
index calculus method, 10, 48, 94

basic, 11, 49, 64, 94
two stages, 48

107



integer, See ‘multi-precision integer’

Karatsuba multiplication, 29, 31, 37

LiDIA, 12, 35, 94
linear sieve, 10, 11, 32, 49, 50, 74, 76, 94
linear system, 9, 33, 50, 78

over-specified, 33
sparse, 9, 33
under-specified, 33

LIP, 29
LUP decomposition, 33

MAGMA, 35
matrix

arithmetic, 32
companion, 32
determinant of, 32
rank of, 32

multi-precision integer, 14, 15, 27, 34, 39
addition, 30
algorithm for product, 28, 30
algorithm for square, 29
arithmetic, 27
binary gcd, 27, 30
division, 30
factorization, 30, 97
gcd, 27, 30
left shift, 30
modular exponentiation, 27, 47, 64, 68
modular inverse, 74, 80
multiplication, 30
primality testing, 30
right shift, 30
smooth, 12, 49, 50, 52, 53, 64, 73, 77, 79
square, 30
square root, 27, 52, 80
subtraction, 30

N-polynomial, 45
next divisibility index, 67, 68
nonresidue, 8
norm, 2, 31
normal element, 31, 45
NTL, 12, 35, 94
number field sieve, 10, 49, 97

packed representation, 17, 37
Pohlig-Hellman method, 10, 48
Pollard’s rho heuristic, 10, 48
polynomial

arithmetic, 3, 32, 35, 41
characteristic, 32
discriminant of, 32
factorization, 4, 5, 32, 44

interpolation, 4
irreducible, 6, 32, 43
minimal, 7, 32
multi-variate, 96
number of zeros, 8
permutation, 9, 32, 44
primitive, 7

table, 8
resultant of, 32
roots of, 3, 32, 44
safe multiplication, 33, 35
unsafe multiplication, 33, 35

prime number theorem, 50, 52
primitive element, 7, 31, 44, 47, 64
primitive normal element, 8

quadratic sieve, 30, 66, 74

random number generator, 20
relation, 48, 50, 51, 77, 95
residue list sieve, 10
Riemann zeta function, 87

Shank’s baby-step-giant-step method, 10, 48
sieving, 50, 52, 66, 95

interval, 50, 52, 80
SIMATH, 35
square-free factorization, 32

timing
comparison of, 36
cubic sieve, 76, 81
field arithmetic, 34
linear sieve, 75

heuristic L1, 79
heuristic L2, 79

multi-precision integer arithmetic, 29, 31, 34
polynomial arithmetic, 35

trace, 2, 31
trial division, 50, 64

xedni calculus method, 11, 48

Zech’s logarithm table, 2, 33, 34, 45
ZEN, 12, 35, 94
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