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Preface

The modern study of finite fields dates back to the seminal work of Evaristés@al830 [33].
It is because of this finite fields are popularly knownGedois fields After Galois’ untimely
death, many mathematicians have devoted their energy in unleashing thetipsopgfinite
fields. At present the theory of finite fields is a vast and rich area & pathematics.

With the advent of error control coding theory in the early fifties of thigaen finite fields
started playing an important role in engineering applications. E. R. Berlekamaprobably
the first who realized the need for a formal algorithmic treatment of finite fi@ldls He de-
veloped manynodernalgorithms for solving several computational problems associated with
finite fields. Almost a decade later (in 1976) Diffe and Hellman’s pioneeriagogery [31]
gave birth to the technology of public-key cryptography, and the thebfinite fields found
yet another serious application that demanded further computationépments both for the
users of cryptographic protocols and for those who try to break them.

Quite expectedly, the last twenty years saw intense research activitiegeraiihe world
for designing faster algorithms for finite field problems. At present mogi@tomputational
problems on finite fields are reasonably satisfactorily solved, in partiuithr.extensive ap-
plications of randomization techniques. Known deterministic complexities of mahy@ob-
lems are still poor (exponential in the bit-size of the field). In addition, ther@eoblems (like
the well-knowndiscrete logarithm probleijrfor which even randomization does not help much,
and the best with which we have to be satisfied are the so-csllleeixponentiahlgorithms.
Naturally enough, this area will continue to attract many engineers and dpipdiereticians at
least for the next few decades.

In short this is the setting behind the conception of this thesis. We start witlveysof the
known algorithms for solving some important practical problems in finite field coatjons.
Then we talk about a computational library of functions written in C, develgme a part
of the research work. This library, known as t@alois Field Library (abbreviated GL),
provides built-in routines for many of the computational problems discusdbé isurvey just
mentioned. The rest of the thesis is devoted to a study of the discrete logaritkem over
finite fields of prime cardinality. We report our efficient implementation techesgisome
analytic estimates and certain heuristic improvements for some of the well-krganittams
to compute discrete logarithms.

The material in the thesis draws upon many basic results from abstractalglmentary
number theory and the theory of finite fields. For abstract algebra, opeanault the book of
Herstein [53]. For elementary number theory, we refer the reader tothieldy Niven, Zuck-
erman and Montgomery [135]. Lidl and Niederreitdsible [82] should be read by anybody
interested in finite fields. For this thesis, the first four chapters of this blookld be sufficient.
Some knowledge of the programming language C is also strongly recommended.

The chapters of the thesis can be read more or less independently. [y Isizable depen-
dency is that of Chapter 4 on Chapter 3. The motivation for Chapter 5 alses from the
description of the cubic sieve method in Chapter 3. Apart from these mioydar orders need
be strictly adhered to, though reading the material in the way presentei Iseigggested.

Throughout the thesis we make some abuse of notations and terminologgxdtaple,
in the thesis a field is &nite field, a prime field is dield with prime cardinality, and a field
extension is always agigebraicextension. Similarly, the term ‘cryptography’ refersptablic-
keycryptography. An index of notations follows this preface. We tried to beoasistent as
possible regarding these notations across the different chapters: ééeptions are allowed
with the hope that these do not lead to confusions.

iv
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Abstract

Computation over finite fields (also calléshlois field$ is an active area of research in number
theory and algebra, and finds many applications in cryptography,@mndrol coding and combi-
natorial design. In this thesis, we describe our computational experienbs area. Our work
consists of two parts. In the first part, we build a comprehensive lib@rywbérking over finite
fields. In the second part, we make a detailed study of the discrete logarittoem (DLP) over
prime fields.

We have developed a computational library of functions written in C for a wdage of
problems that are of theoretical and practical interest in finite field compungatid/e call this
library the Galois Field Library or L for short. GFL provides routines for field arithmetic
and for manipulation of univariate polynomials and matrices over finite fietdslows the user
to work on finite fields ofany characteristic andny cardinality. It is based on a set of routines
for doing arbitrary-precision integer arithmetic and is portable, fast andaneefficient. We
have carried out extensive testing and benchmarkingif.&Ve demonstrate the programming
techniques with BL through some small and simple examples. We also provide an exhaustive
list of functions currently provided by 5. We compare the performance offG with those of
three other libraries, namely, LiDIA, NTL and ZEN.

Computing discrete logarithms over a prime fi&ldis a very difficult problem for which no
polynomial time algorithms are known. The best algorithms known till date aedl@asthe index
calculus method and take time subexponenti&gyp. We concentrate on three variants of the in-
dex calculus method, namely the basic method, the linear sieve method and theexdimethod.

The sieve methods test a set of deterministically generated integers for sree®tver a pre-
determined set of small primes. The analysis of running times of these methoatseid on the
heuristic assumption that these deterministically generated integers beharelam integers.
We start our study of the DLP by showing that the actual distribution of ti@sgers is not
random in the sense that these integers do not follow uniform distributmprdve our claim we
find out the arithmetic mean and the cumulative statistical distribution of theseliaitéye find
that the average bit-length of these test integers is smaller than the expiettedth of a sample
of integers chosen following the uniform distribution.

We then describe our implementation details and heuristic modification schentles toree
methods mentioned above. In the basic method, our heuristic scheme rdtrioesnber of dis-
crete exponentiations. We also make trial divisions faster by adopting tategites: maintaining
a list of remainders and sieving. For the linear sieve method, our heuristicages a set of inte-
gers smaller on an average than the integers checked for smoothnessriigitined method. This
increases the chance of getting smooth integers, but decreases thé ttadiowmber of relations
to the number of elements in the factor base. Finally for the cubic sieve metlkeddcrease the
sieving interval by a heuristic strategy. This allows us to build a larger fd@se without any
significant increase in the running time. We also describe efficient implementatbniques for
the sieve methods and establish the superiority of the cubic sieve method everetr sieve
method for a special class of primes.

We conclude our study of the DLP by an analytic study of the congru&tice Y2Z (mod p)
subject to the conditiok® # Y2Z. This congruence plays an important role in the cubic sieve
method. We estimate that the total number of solutions of the congruence rioneypis © (p?).

We also show that under certain heuristic assumptions, the expected noinsoduitions of the
congruence with < XY, Z < p*for1/3 < a < 1/2is Q(p3*~1). Small scale experiments re-
veal that apart from constant factors our estimate tallies with the experimehitas quite closely.

Vi
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1 Introduction

Computation over finite fields (also call&hlois field3 is an active area of research
in number theory and algebra, and finds many applications in cryptograpioy
control coding and combinatorial design [85, 115]. In this thesis, wertdesour
computational experience in this area. Our work consists of two partse Ifirgi
part, we build a comprehensive library for working over finite fields. Bngecond
part, we make a detailed study of the discrete logarithm problem over prime. field
In Section 1.1, we provide a short survey of the algorithms for finite fields,

known until recently. In Section 1.2, we introduce our work that the résh®
thesis deals with. We also summarize in this section the organization of the thesis.

1.1 Algorithms for finite fields

The theory of finite fields, originating from the seminal work of Galois [88Jjtin-

ues to be an important and active branch of mathematics. While theoreticians ha
devoted their effort in extracting properties of finite fields, applied matheraatic
and engineers have found it immensely useful to apply these propertiesnto ma
practical problems — most notably in the areas of error control codiggiagra-

phy and combinatorial design. This has stimulated interest in various compiadatio
problems associated with finite fields. In this section we survey some of teetrec
results on algorithmic aspects of finite fields.

The first encyclopedic treatment of the theory of finite fields is the celebrate
book by Lidl and Niederreiter [82], that covers both theoretical andpatational
results on finite fields, known till early eighties. More recent results cafiolred
in [85] and [115] — the former is a supplement to [82], whereas the lattetiges
a thorough treatise on finite field algorithms. The recent paper [118] parSih-
ski and Mullen lists many open problems in the areas of theoretical, combiratoria
and computational aspects of finite fields. Notwithstanding the usefulrshsy r
indispensability, of these works, these do not cover the vast reskiareiture of
the last few years. This survey aims at filling up this gap and, as expéotedes
mostly on papers that appeared in this decade only. Some older papaisare
referred, sometimes for the sake of completeness, sometimes to presaiue-co
ity and sometimes for mere beauty of the results. This survey, by itself, is neithe
exhaustive nor complete. Also for the sake of brevity, we do not delveti@o
detailed aspects of the algorithms. We only mention the running times of the algo-
rithms and, whenever possible, some short descriptions of the same.uiey s
is intended to provide many pointers, hints and references which interesteers
and researchers would find worth investigating.

1.1.1 Notations

In what follows, we shall assume, unless otherwise stated, that the fofj@yin-
bols designate the entities as defined below. We shall often use sevénalsef
symbols throughout this survey without specific mention of their meanings.



F, The finite field with cardinality;

qg=7p" p a prime number angh a positive integer

Fqy[z] The ring of univariate polynomials with coefficients frdip

Fylx1,...,2,]) Thering of multivariate polynomials with coefficients frdy

n The number of indeterminates (for multivariate polynomials)

f A polynomial inF,[z] or Fy[z1, ..., zy)

d The (total) degree of

t A bound on the number of nonzero termsfof

T A bound on the number of nonzero terms fobr any of its
irreducible factors

o The softO notation (i.e. order notation up to logarithmic fac-
tors)

K The runtime for multiplying twor x r matrices i) (r"): k = 3
for the “classical” algorithm; for the fastest known algorithm
due to Coppersmith and Winograd [29], we can take 2.376

L(d) log dloglogd

ERH The Extended Riemann Hypothesis

1.1.2 Arithmetic over finite fields

¢ The effect of representation of elementdfgfon the basic operations-(—, x etc.)
onlF, is discussed in Section 6.1.2 of [90].

e If Fys is represented &s,/(f) wheref is an irreducible (oveF,) polynomial of
degrees in F,[z], then addition and subtractionlifys can be performed using(s)
operations ifF,,, multiplications withO(sL(s)) operations irf, and divisions with
O(sL(s)log s) operations ir¥,.

¢ Use ofnormal basidor representing elements Bf is known to be very convenient
for computing the product of two elementslgf. Low complexitynormal bases —
namely,optimalandnear-optimalnormal bases — deserve specific mention in this
respect. Chapter 5 of [85] is a good introduction to these topics and pomdny
references to related works.

¢ |toh and Tsujii [61] presented a configuration of parallel multipliersier based
on polynomial basis They useO(m?) AND gates andD(m?) XOR gates and
achieve an operation time of abdlibg m )T whereT is the delay time of an XOR
gate.

e Itoh and Tsuijii [60] presented an algorithm for computing multiplicative inegrs
in Fom using normal basis. The algorithm uses repeated squaring technique that
requires at most[log,(m — 1)| multiplications inFom and(m — 1) cyclic shifts.

¢ Efficient sequential and parallel algorithms for exponentiation in a finite figliu
normal basis are given by Stinson [124] foe= 2™ and by von zur Gathen [37, 39]
for generaly. Von zur Gathen has also proved that his algorithms are optimal.

e Table of discrete logarithms with respect to a primitive element and Zech'’s loga
rithm tables [59, 85] speed up arithmeticamallfinite fields and their algebraic
extensions.

e The papers [3, 130] report various implementation issues for the basiatams
in finite fields of characteristic 2.

e Computation of traces and norms:LetF, = K C E = F,s. Von zur Gathen and
Shoup’s “repeated doubling” algorithm [43] computes the tracg/x : £ — K
of an element irE’ usingO(log s) additions inE andO(log s) powering operations
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in E of the formg — qu,whereﬂ € Fandl <j <s.ThenormNg i : £ — K
of an element inE, on the other hand, can be computed usingL(s) log s)
operations ink, of which onlyO(s) are divisions [38, 111].

1.1.3 Polynomial arithmetic over finite fields

Here we list the (best-known) running times for the basic arithmetic operations
univariate polynomials ovef,.

e Evaluationof a polynomial inl, [x] of degree< d at a point inF, can be performed
usingO(d) operations+{,—,x only) inF, (Horner’s rule).

e Evaluationof a polynomial inF,[z] of degree< d at a point inF,s can be per-
formed usingD(d*~1)/2s 4- d*/?sL(s)) operations i, [111] (assuming a poly-
nomial representation @,s overlF,).

e Addition andsubtractionof two polynomials inF,[z] of degree< d can be per-
formed usingD(d) operations{,— only) inF,.

e Multiplication of two polynomials inF,[z] of degree< d can be performed using
O(dL(d)) operations{,—,x only) inF,,.

A lower bound of2.5d — o(d) on the number of multiplications/divisions re-
quired to compute the product is shown in [17]. Averbuch et. al. [5] gbtlat if
d < g, then any optimal algorithm for computing the polynomial product is based
on Chinese remainder theorem.

e Division with remaindemvolving two polynomials of degree at mastan be done
with O(dL(d)) operations ir¥,.

e Letay,...,aq € Fy. Then thecoefficientof (z — ) ... (x — ag) € Fylz] can be
computed usin@(dL(d) log d) operations{,—,x only) in F,.

e Let f andg be polynomials ir,[z] of degree< d, g # 0. Thenf (mod g) can
be computed usin@(dL(d)) operations irF,.

e Letf, g1,..., g, bepolynomialsif,[z] s.t.deg f < danddeg gi+...+deg gi <
d. Thenf(mod g1), ..., f(mod gx) can be computed usin@(dL(d) log k) oper-
ations inlF,,.

e Let f andg be polynomials ir¥,[z] of degree< d. Then the gcd of andg can be
computed usin@ (dL(d) log d) operations irf,,.

For the proof of most of these facts see [107].

1.1.4 Finding roots of univariate polynomials

If one factors a univariate polynomigle IF,[x] overF,, one can read off the roots
of finF, from the linear factors of. On the other hand, the problem of univariate
factorization reduces in polynomial time to the problem of root finding &ygsee
for example [131]).

e Berlekamp proposed a powerful randomized algorithm [11] which candeel
wheng = p™ for any odd primep and any integefn > 1. The expected run-
ning time isO(d? log d log q) F, operations. This algorithm is sometimes referred
to as theBerlekamp—Rabin algorithfior root finding.

e Berlekamp trace algorithnfil1] is another method for root finding that is useful
wheng is small andn is large.



e Berlekamp, Rumsey and Solomon’s algorifi2] computes the least affine mul-
tiple of f and then computes the roots of the affine multiple by solving a linear
system of equations.

e Oorschot and Vanstone’s algorithf@8] also uses the least affine multiple.

e Menezes et. al. [88] present a generalization of Moenck’s root findigorithm
over F,. The generalized algorithm is deterministic, given a primitive element
of F,. If ¢ — 1 is b-smooth, where» = (log q)°"), then the algorithm runs in
polynomial time.

See [85] and [87] for a description and comparison of these methods.

1.1.5 Sparse multivariate polynomial interpolation

The sparse multivariate interpolation problem can be stated as: To ragmnstr
(i.e. interpolate) a-sparse polynomial (i.e. a polynomial with at masterms)

in n variables, given a black box which will produce the value of the polynomial
for any value of the arguments.

e Clausen et. al. [24] proved a lower bound<®fn’) for interpolation over a fixed
finite field F, when the black box can only evaluate points lyingfy'. Conse-
guently, it is impossible to solve the problem efficiently without enabling the black
box to evaluate points over extension fieldsfof

e The algorithm of Grigoriev et. al. [51] evaluatgsat points in a finite field of
cardinality ¢[21°2«(")1+3 " The parallel time for the algorithm i (log®(nt)) on
O(n?t%log?(nt)) number of processors.

e Roth and Benedek [103] proposed an algorithm for the specialgcasg.

e The best known algorithm for multivariate interpolation is due to Huang arad Ra
[57]. Itis an effective adaptation of Ben-Or and Tiwari's algorithmt@{he case of
finite fields. The algorithm needs?d — 2td + 2t evaluation points in an extension
field of cardinalityg°g((8=2)>+11 " The (parallel) running time for the algo-
rithm is O(log*(td) log?(tm)log*p) and the processor requirement is polynomial
int, d, m, n andlog p.

1.1.6 Univariate polynomial factorization

A brief summary of the univariate factorization algorithms is given below. &s p
our notations we leff € F,[z] be a polynomial of degreé which we want to
factorize.

e Berlekamp’s@Q)-matrix method [10] is the first modern deterministic algorithm for
univariate polynomial factorization over finite fields. The running time of this a
gorithm isO(d3q).

e Camion proposed a randomized algorithm [20] for computing the primitive idem-
potents for improving the running time of Berlekamg@smatrix algorithm.

e Zassenhaus [131] reduced the factorization problem to the problestexidining
roots of certain polynomials ovét,.

e Camion [21] and Cantor and Zassenhaus [22] independently discoaerher
randomizedalgorithm which does not rely on Berlekamp’s subalgebra. This algo-
rithm runs inO™(d? log ¢) operations.

e Shoup’sdeterministicalgorithm [107] completely factorgin O(q'/?(log ¢q)?d**<)
bit operations wheré® denotes a fixed but unspecified polynomialdg d.
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e Shparlinski [115] showed that the running time bound of [107] can be insorto
O(q"/?(log q)d?**¢) bit operations. This is supposedly the best known running time
for adeterministicalgorithm for univariate factorization over finite fields.

o Niederreiter [95] proposed a new deterministic factorization algorithm dbmm-
mials over finite fields that is based on a new type of linearization of the faatoriz
tion problem. It uses differential equations in rational function fields asrdhal
bases of field extensions.

e Gottfert's improvement [49] over [95] works for finite fields of characteei®.
The total cost of calculating all monic irreducible factors of by this algorithm
is O(dm? + d"m*) arithmetic operations iffs plus O(r?M,(d)log d) arithmetic
operations irf",;, wherex is the exponent of fast matrix multiplication, and,(d)
is the arithmetic complexity of multiplying two polynomials of degreel in I, [z].

¢ Niederreiter and @ttfert [96] propose another extension of [49] for arbitrary fi-
nite fields. It require<)(qr?) polynomial gcd’s,0(qr?) polynomial multiplica-
tions/divisions andD(¢r?d) arithmetic operations iff,. Herer is the number of
irreducible factors off.

e \on zur Gathen and Shoup [43] give a newobabilistic univariate factorization
algorithm that use®((d? + dlog q)(log d)? log log d) arithmetic operations over
IF,. This algorithm is based on a new way of computing Frobenius maps.

e The best knowmrobabilisticalgorithm for factorization of univariate polynomials
over finite fields is proposed in [66]. It uses tbqual degree factorizatiotech-
nique of [43] that require®(d" %8 + d'+°(1og ) operations infF,. It solves
the distinct degree factorizatioproblem by ababy step/giant steptrategy using
O(d*#% log q) operations irf,.

e If one assumes thERH, deterministic polynomial time univariate factorization
algorithms are known for certain special classes of polynomials. Somemets
are [35, 55, 100, 101, 102, 109].

Open problems

1. For fixedq, the fastest known deterministic algorithm is [107] that runs in
time O(d2+°(1)). It remains an open problem to find a subquadratic deter-
ministic algorithm.

2. Itis not known whether there exists a deterministic algorithm for factoriza
tion of univariate polynomials over finite fields that runs in time polynomial
in log ¢ andd.

1.1.7 Multivariate polynomial factorization

e In [75] Lenstra gives a deterministic multivariate polynomial factorization -algo
rithm that makes use of a basis reduction strategy for latticesloyg}. Let f
Fylz1,...,2p] with deg,, f = d;. Let D; = [[i_;(d; + 1). Then Lenstra’s algo-
rithm factorizesf completely oveff, usingO ((2d1)** D3 D3 + (2d1)*"~%D3pm)
arithmetic operations iff,.

e \on zur Gathen [34] describes a polynomial-time probabilistic algorithm for multi-
variate factorization. It uses an effective version of Hilbert’s irreblility theorem.

o Let f € Fylz1,...,z,] (n > 3) of total degreel > 2 with r irreducible factors
and such that the number of nonzero termg or any of its irreducible factors is at
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mostT. The algorithm in [40] correctly computes the irreducible factorization of
f with probability at least — 2~¢ and with an expected number of bit operations
O(K3(2d3T)" + k'"T3) wherek = max(d, n, log q).

e \on zur Gathen and Kaltofen[41] present a probabilistic algorithm thdsfthe
irreducible factors of a bivariate polynomial ovy in time O(d'! log dlog q).

e Wan'’s bivariate factorization algorithm [126] is probabilistic and has imgptime
O(d*® log? dlogq).

e Shparlinski [116] shows that fgr > d° there exists a deterministic algorithm that
factors all except possiblg (p(@+1(d+2)/2(1oglog p)~2) polynomials f(z,y) €
F,[z,y] of total degreel, in O(d®" log® p + d*>T¢log? p) operations irF,,.

e Huang and Rao [57] showed that their sparse multivariate interpolationitalgo
can be combined with the black box Berlekamp algorithm of [67] to give a-prob
abilistic parallel multivariate factorization algorithm with expected running time
of O <log2 dlog?(dM)log* p + log?(kd) log? (kM log k) log k log* p) wherek =
max (T, d), F,u is a “suitable” extension df,. (Other notations are as in the third
algorithm [40] of this section.) 1§ is a given bound on the probability of failure,
then the algorithm runs in expected time which is polyloditk, m, n, log% and
p and the number of processors used is a polynomia] il m, n andlog p.

1.1.8 Irreducibility testing

Factoring a univariate or multivariate polynomial allows one to conclude veheth
the given polynomial is irreducible. This is however not an efficient metood
testing irreducibility of a polynomial. In fact, polynomial time deterministic algo-
rithms exist for both univariate and multivariate irreducibility testing.

e Univariate polynomials: It is easy to check if a polynomiaf is square-free
by checking ifged(f, f/) = 1. For a square-free polynomidl the first stage
of Berlekamp’sQ-matrix method [10] gives the number of irreducible factors of
f. This procedure requires a total number@fd* + d?log q) operations inF,
[90]. For another deterministic check in polynomial time see [85, TheoreB].3.2
Shoup [111] summarizes some more efficient methods for irreducibility testing.
These references are tabulated below:

Author Reference Complexity
Butler [19] O™ (d" + dlogq)

Rabin [99] O™ (d?log q)

Ben-Or [8] worst-caseO™(d? log q)

average~(dlog q)
Gathen and Shoup [43] O (d"tD/2 4 dlogq)

e Multivariate polynomials: Kaltofen [63, 64] shows that for polynomials in
Fy[z1,. .., xy,] both irreducibility overfF, and absolute irreducibility can be tested
deterministically in polynomial time. This algorithm seemingly tak&$d® log q)
operations irf, for the bivariate casey= 2).

1.1.9 Construction of irreducible polynomials

Consider the following problem: If a finite fielH, and a positive integed are
given, how can one efficiently construct an irreducible polynomial gfeled over
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IF,? There is presently no deterministic polynomial time algorithm known to solve
this problem.

e The construction of irreducible polynomials for many special cases xameple,
for special values of, d etc.) can be found in Sections 3.3 and 3.5 of [82] and in
Sections 3.2 through 3.5 of [85].

e Rabin’s randomized algorithm [99] is based on the fact that the probabiétyath
random monic polynomial of degregin F,[z] is irreducible, is nearly}l. (See
Exercise 3.3 of [85].)

e Shoup [108] gives a deterministic algorithm for prime fielélgz]. This algo-
rithm takesO(,/p(log p)3d>*¢ + (log p)2d***) that iS,O~(d3pé + d*log®p) T,
operations. If one assumes tB®H, the same can be done in deterministic time
O~ (log? p + d*1og p). The problem of constructing an irreducible polynomial has
been shown to be deterministically reducible in time polynomiad iand log p
to the problem of factoring polynomials ové&r,. This algorithm can be modi-
fied to work for arbitraryFF, in which case the running time igp(dlog q)°W.
Shoup also shows that for any constant ¢ < i there exists a randomized al-
gorithm (depending on) with the following properties: It usegilogp| random
bits, halts in time polynomial id andlog p, and upon termination, it either outputs
an irreducible polynomial of degrekoverF,, or reports failure. Furthermore, the
probability that it fails is no more tharyp°?.

e The probabilistic algorithm proposed by Shoup [111] uSg$d? log d + dlog q)
log dloglog d) F, operations.

e The best known probabilistic algorithm is due to Shoup [112] that usespated
number ofO™(d? + log ¢) arithmetic operations iff,.

e Shparlinski [117] gives a survey on many results associated with tretrogtion
of irreducible polynomials over finite fields.

¢ Minimal polynomials: Given an extensioli,s of degrees overF, and an element
a € [Fys, it is possible to compute the minimal polynomiabf o overIF, deter-
ministically usingO(s(**+1)/2) operations inF,. Moreover, if a bound! on the
degree of; is given to the algorithm, then it uses ory(d"~1/2s + d/2sL(s))
operations irf, [111].

Open problems

1. Does a probabilisti©™(d* + dlog q) algorithm exist fork < 2 for the con-
struction of an irreducible polynomial of degréeverF,?

2. Does arO™(d?) algorithm exist that solves the problem deterministically for
q = 2? (Shoup [111] suggestsa (d?) algorithm.)

1.1.10 Construction of primitive polynomials and primitive elements

There are no known polynomial time algorithms for constructing a primitive root
(or a primitive polynomial), or even for testing whether a given element isna-pr
itive element. (Note that a primitive polynomial is the minimal polynomial of a
primitive element, also called a primitive root.)

e Atestforf € Fy[x] to be primitive is given in [82, Theorem 3.18].

¢ Since the product of all primitive polynomials ov&y of degreed is equal to the
cyclotomic polynomial)., with e = ¢% — 1, factorization ofQ, gives all primitive
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polynomials oveil, of degreed. This fact and another method that is based on
the construction of a primitive element Bf. are discussed in Section 3.3 of [82].
Also see Section 6.1.3 of [90].

e Shoup [110] considers the problem of deterministically generating in potiaio
time a subset oF ,» that contains a primitive root. A solution to this problem is
given for smallp, i.e., forp = mP®). This problem is also solved for largeand
m = 2 under the assumption &RH.

e Buchmann and Shoup [18] proposed a deterministic polynomial time algorithm fo
constructing primitive roots ifi",» assuming thé&ERH and assuming availability
of factorization ofp™ — 1.

e \Von zur Gathen and Shparlinski [44] present an algorithm for compuEagss
periodsof a specific type in polynomial time. These Gauss periods have been
shown to have exponentially large multiplicative orders.

e Shparlinski [117] provides a survey on the construction of primitivetsawver
IF, and on some related problems. In particular, the paper states that for a field

[F,, a primitive root can be found deterministically in tin@?(qi) and in time
O”(q%) under theERH. This paper also mentions a probabilistic algorithm to find
a primitive root ofF,, in the expected timexp ((1 + 0(1))(log g loglog q)%).

e Extensive tables of primitive polynomials over prime fields can be found ih [52
[133] and [134].

¢ Primitive normal element: Lenstra and Schoof [79] showed tfigt- always con-

tains a primitive element that generates a normal basisefoverF,. Stepanov
and Shparlinski [123] showed that §f is a primitive element off,» then for

N > max (exp exp(c1 In?(m)), com ln(q)) there is at least one element in the set

{0,62,...,6N} which generates a primitive normal basis. Morgan and Mullen [92]
provide extensive tables for primitive normal polynomials over prime fields.

1.1.11 Construction of nonresidues

Buchmann and Shoup [18] considered the problem of constructitify power
nonresidue irf,~, i.e. an element that is not a perféth power of any element in
F,~, wherek is a prime divisor op™ — 1. Givena € Fyn, testing if is akth
power nonresidue has a trivial solution: just testf” —1)/% -£ 1. Probabilistically,
the problem of constructing nonresidues also has a trivial solution: ostsex €
F,= at random and test if it is &th power nonresidue. However, the deterministic
complexity of constructing nonresidues is currently unknown, evenrdthd&RH.
Buchmann and Shoup [18] shows that for dixgdm, this problem can be solved
in deterministic polynomial time assuming t&&®H. The research problem 3.2 of
[85] states a related problem on computing nonresidues.

1.1.12 Counting number of zeros

In this section we shall consider effective procedures for countingntingber of
solutions off € Fy[z1,...,xy,] overF,".

e For atreatment of earlier results see Chapter 6 of [82] and the book df [221.

e Karpinski and Luby [68] gave a(nt3log(})/e?) algorithm for counting the
number of zeros of € Fy[zy,. .., x,] with relative error at most and with prob-
ability at leastl — ¢, wheret is the number of nonzero terms ff
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e Grigoriev and Karpinski [50] generalized the algorithm of [68] foriaeyy . The
generalized algorithm has the running time

wheret is the number of terms of and P(q) is the bit cost for multiplication and
powering inlF, (which is O(log? qloglog qlogloglog ¢)). This paper also gives
an (e-d)—approximation algorithm for estimating the number of nonzergs@fer
F, whose complexity i€)(nt'°2 92 P(q) log()/€?).

e Huang and lerardi [56] consider the problem of counting the numbgoiots on a
plane curve given by a homogeneous polynonfia I, [z, y, z] which is rational
over the ground fieldF,,.

e Some deterministic and probabilistic methods are presented in [42] for counting
and estimating the number of points on curves over finite fields and on th@cpro
tions. Letf € F [z, y] have degred,C = {f =0} C Fgl andletd C Fym C F .

This algorithm computes the number of point€aiver A in O™ (#A-m-(dlog g+
d'"logl)) operations irF, (where# A denotes the cardinality of).

See the papers [45, 58] for some related algorithms.

1.1.13 Solution of linear systems

o Kaltofen and Pan [65] showed that the solution set of a systeminéar equations
in n unknowns can be computed in parallel with randomization simultaneously in
poly-logarithmic time inn and with only as many processors as are necessary to
multiply two n x n matrices.

e Coppersmith [27] proposes a method for solving large sparse systerngobie-
neous linear equations oves. This algorithm is a modification of an algorithm
due to Wiedemann [129].

e See [74] for practical implementation issues regarding solutions of la@esep
linear systems over finite fields.

1.1.14 Permutation polynomials and functions

e A polynomial f € F,[z] is called apermutation polynomiaf the mappingF, —
[F, given bya — f(a) is bijective. Von zur Gathen [36, 38] gives probabilistic algo-
rithms for checking permutation polynomials in timi¥d log ¢) (and exceptional
polynomials in timeD(log ¢ - d°(M)).

o Let f = g/h € Fylz] with ged(g,h) = 1. Then f induces a partial mapping
F, = F, bya — f(a) Va € F, with h(a) # 0. If f is total and bijective, then
f is called apermutation functioroverF,. (In particular, ifh = 1, thenf = g
is a permutation polynomial.) Ma and von zur Gathen [83] consider the problem
of deciding whetherf is a permutation function ovef,. They have shown that
this problem is deterministic polynomial time reducible to the problem of factoring
univariate polynomials over finite fields. A deterministic test is described ses u
O(q M(d)logd) operations inf, if ¢ < 64d* andO(q"/?d*> M (d)log q) opera-
tions if ¢ > 64d* (whered = max(deg g, deg h) andM (d) is the cost of multipli-
cation inFF,). The algorithm assumes thét< char F,. A simple probabilistic test



is also described for the cage> 64d*, which usesD(dM (d)log qloge~') oper-
ations inF, and [2d log e '] random choices whereis the probability of failure
(when the answer is NO).

e The articles [80, 81] by Lidl and Mullen describe a series of open problelated
to permutation polynomials over finite fields. Also see [93, 94, 118, 125{fther
open problems and more up-to-date surveys on permutation polynomials.

1.1.15 The discrete logarithm problem

e The old methods, like Shank’s baby-step-giant-step method and Pollaodtsen-
ristic, for the computation of discrete logarithms olfgrtake worst-case expected
running timeO(,/q) [85]. The Pohlig-Hellman method solves the problem in time
O(y/plogp), wherep is the largest prime factor @f— 1. In particular, ifg — 1 has
only small factors, the Pohlig-Hellman method is quite efficient. However in the
worst case = O(q) and hence this method gives a fully exponential algorithm.

e The index calculus method [85] is currently the best known method for cempu
ing discrete logarithms over finite fields. It takes an expected running time of
L{q,w,c) = O(exp((c + o(1))(log q)* (log log ¢)! =) which is subexponentiah
log q, wherec and0 < w < 1 are constants. Various variants of the index calculus
method are used in practice.

e Coppersmith, Odlyzko and Schroeppel [28] describe three variarttseofhdex
calculus method for prime fieldg,. These methods are called the linear sieve
method, the residue list sieve method and the Gaussian integer method. Each of
these takes timé(p, 1/2,1). The same paper also proposes a cubic sieve method
that can solve the problem in timg(p, 1/2, \/a/2) for somel/3 < a < 1/2.

Also see [77] for a note on the cubic sieve method. LaMacchia and Od[y8to
describe an implementation of the linear sieve and the Gaussian integer methods.
Also look at the survey article by McCurley [84].

e Gordon [47] uses number field sieves for computing discrete logarithmpduee
fields. This algorithm has a heuristic expected running timé @f, 1/3, c). See
[78] for a good introduction to number field sieves. Weber et. al. [103, 128]
have implemented and proved the practicality of the number field sieve method.
Also see Schirokauer’s paper [104].

e Odlyzko [97] surveys the algorithms for the fielfis-». The best algorithm for these
fields is Coppersmith’s algorithm [26]. This takes tithé;, 1/3, ¢). No analog of
this algorithm is known for prime fields. Gordon and McCurley [48] susfigly
used Coppersmith’s algorithm for the computation of discrete logarithriis.in
andFgsos.

1.1.16 Elliptic curves over finite fields

e For elliptic curve group law of addition, see [71, 72, 85, 86].
e Schoof [106] gives an algorithm for counting the number of points on ellgotices
over finite fields.

e Elliptic curve discrete logarithm problem: Computation of discrete logarithms
in elliptic curves over finite fields seems to be a very difficult problem. A direct
adaptation of the index calculus method for computing elliptic curve discrete log-
arithms is expected to lead to a running timersethan that of brute-force search
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[120]. Logarithms in a singular elliptic curve defined o¥grwith a cusp can be
computed in polynomial time. The discrete logarithm problem for a general el-
liptic curve overF, can be reduced to the discrete logarithm problem in the field
FF,« for a suitablek. However, thisk is quite large in general and the reduction
takes time exponential ilvg ¢ [7]. For supersingular elliptic curves, this reduction
can be done in probabilistic polynomial time. Recently, Joseph H. Silverman has
proposed a new method, called thedni calculus methofiL19], which, though
originally devised for computing elliptic curve discrete logarithms, can be abplie
to finite fields. However, this method has been experimentally and heuristically
shown to be impractical [62]. Koblitz [70] and Miller [91] pointed out that dllip
curves can be used to build cryptosystems. See the books by Koblitzgrand
Menezes [85, 86] for good surveys on the elliptic curve discrete loganittoblem

and its application to cryptography.

1.2 About this thesis

In this section, we outline the work reported in this thesis. Our work can Ise cla
sified into two major tracks outlined below. We also describe the conventi@hs an
organization of the thesis.

1.2.1 Galois Field Library

We have developed a computational library of functions for a wide rahgeob-
lems that are of theoretical and practical interest in finite field computatioms. W
call this library the Galois Field Library or &L for short. GFL provides routines

for field arithmetic and for manipulation of univariate polynomials and matrices
over finite fields. It encompasses most of the topics described in theysuirtiee

last section. To the best of our knowledgeF IGprovides the largest variety of
built-in routines among the existing symbolic computation packages (like LiDIA,
NTL and ZEN) that support computations over finite fields. It allows the tse
work on finite fields ofany characteristic andny cardinality. It is based on a
set of routines for doing arbitrary-precision integer arithmetic and is bleitéast
and memory-efficient. We have carried out extensive testing and benkhgaf
GFFL. We have used it in our studies of the discrete logarithm problem dedcribe
next. We have also used it for testing various cryptographic applications.

1.2.2 Study of the discrete logarithm problem

The security of many cryptographic protocols depends on the difficultgobf-

ing the discrete logarithm problem (DLP) over finite fields [28, 70, 73934, We

study the DLP over prime fields and report our implementation results anistieur
modification schemes for some methods for solving the DLP. We provide some an
alytic estimates on certain parameters that arise in connection with these methods.

We concentrate our study on three popular methods for solving the DLBeThe
are the basic index calculus method, the linear sieve method and the cubic sieve
method. We propose heuristic variants of each of these methods. Fordice ba
method, these variants lead to speedup factors between 1.5 and 3. Favthe s
methods, our heuristic schemes help us build larger factor bases. Teewtvwds
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generate a set of integers deterministically and check these integers foihsiess
over a set of small primes. The analysis of the methods is based on theibesrs
sumption that these integers, though generated deterministically, behavelasr
integers. We show that this behavior is not random in the sense that thegertn
do not follow uniform distribution. We derive the average and maximum cfehe
integers and plot the distribution of them. Our study shows that the actualioeh
of these integers isetterthan that of a sample of integers chosen following the uni-
form distribution. We also study the effects of our heuristic modification reeise
on these average values and distributions. Finally, we find estimates ofrtiiEenu
of solutions of a certain congruence that arises in connection with the sigvie
method.

1.2.3 The organization of the thesis

The rest of the thesis is organized as follows. In Chapter 2, we deshelgasic
conventions and programming paradigms &G We demonstrate the working
of the library through some small examples. Running times of many bdsic G
routines are also provided and compared with those of analogous routis@se
other existing libraries, namely LiDIA, NTL and ZEN.

Chapter 3 starts with a description of the three methods mentioned above for
solving the DLP. We then calculate expressions for maximum and averagssva
of the integers checked for smoothness in the sieve methods. We alse theriv
formulas for the distribution of these numbers.

Chapter 4 is devoted to a description of the implementation details and heuris-
tic modification schemes for the three methods. In the basic method, our heuristic
scheme reduces the number of discrete exponentiations. We also makeritial d
sions faster by adopting two strategies: maintaining a list of remainders aimbsie
For the linear sieve method, our heuristic generates a set of integers somadler
average than the integers checked for smoothness in the original methisdn-T
creases the chance of getting smooth integers, but decreases thettaiawhber
of relations to the number of elements in the factor base. Finally for the cubix sie
method, we increase the sieving interval by a heuristic strategy. This allsws u
to build a larger factor base without any significant increase in the rurtivrey
In this chapter, we also describe efficient implementation techniques forethee s
methods and establish the superiority of the cubic sieve method over the lmear s
method for a special class of primes.

The congruenc&® = Y2Z (mod p) plays a major role in the cubic sieve
method. In Chapter 5, we estimate that the total number of solutions of the con-
gruence for a prime subject to the conditioiX® # Y27 is ©(p?). We also show
that under certain heuristic assumptions, the expected number of solutitves o
congruence with < XY, Z < p®for1/3 < a < 1/2is Q(p**~1). Small scale
experiments reveal that apart from a constant factor our estimate tallieshsith
experimental values quite closely.

In Chapter 6 we conclude the thesis with a summary of the work done and
suggesting the scope for further research in this area.

Each chapter (like this) starts with an introductory note stating the basic theme
discussed in that chapter. The main results are also highlighted there. $ome o
the chapters contain appendix sections after the regular sections. \Weagtatne
details of certain calculations in these appendices. A quick referenG¥foralso
appears in the appendix of Chapter 2.
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Galois Field Library

Galois Field Library (&L) is a portable general-purpose computational library of
functions written in C for working over finite fields. The library providesoanpre-
hensive treatment of operations in prime fields and their arbitrary finite Eirten

This chapter illustrates the main features of this library. Running times of many
basic GFL routines are also provided. This library should be useful to application
programmers for developing programs in the areas of public-key crigyiby, er-

ror control coding and combinatorial design.

The basic goal for the design off& has been to build and make available an
easy-to-use and comprehensive library for computer scientists andmeitians.
While implementing the library routines, we have put emphasis on generality and
uniform representation of fields and field elements, which most of the otisting
libraries are lacking. At the same time we did not want to sacrifice perforenanc
at the cost of generality. Unfortunately these two goals are sometimes tingflic
We have tried to make a reasonable trade-off between them. We claim thégin sp
of the generality and uniformity of L library calls, the performance of & is
comparable to (and, in some cases, better than) that of the other existimgsbra

In Section 2.1, we introducel@. and highlight the salient features of the li-
brary. In Section 2.2, we explain how one can represent variousraigeintities
(integers, fields, polynomials, matrices and so on) liLGIn Section 2.3, we il-
lustrate by two examples the programming techniques with Gbrary calls. The
first example is a toy one that explains manipulation of multi-precision integers,
polynomials and matrices usingf& library calls. In the second example we write
three procedures that implement the EIGamal public-key encryption sct8he [
A high-level listing of the functions currently provided byFG appears in Sec-
tion 2.4. In Section 2.5, we tabulate typical timing results for basic field opegation
and polynomial arithmetic usinglld.. We also compare the timings of theFG
routines with those of the corresponding routines provided by some ogher s
bolic computation libraries that support working over finite fields. We calelu
this chapter by an appendix that provides a detailed description of thetygreso
of GFFL library calls.

2.1 Introduction

Galois Field Library (&L) is a portable general-purpose computational library of
functions written in C for working over finite fields (also calléadlois field$. GF L
provides routines for field arithmetic and for manipulation of univariate pmiyin

als and matrices over finite fields. The salient featuresliof @re as follows.

1. Generality: GFL works on finite fields of any characteristic and any car-
dinality. It allows one to work both on prime fields and on their finite al-
gebraic extensions obtained by adjoining an arbitrary number of (alggbra
elements. That is, one first creates prime fields and then defines extensions
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of these prime fields, extensions of these extensions, and solbh.dGes
notimpose any restriction on the characteristic and extension degree of fi-
nite fields, as long as the computer system can provide sufficient memory for
storing the relevant data.

2. ExtensivenessGF L provides extensive tools for a wide range of problems
that are of computational importance in the theory of finite fields. To the best
of our knowledge, BL provides the largest number of built-in functions for
working over Galois fields among all the symbolic computation packages.

3. Performance:Use of suitable data structures, fine tuning of basic arithmetic
operations, and use of several implementation tricks such as table look-up
and modularity make BL a fast and efficient tool.

4. Efficient memory managemen®FL uses dynamic arrays for representing
many algebraic data (for example, polynomials, matrices and even multi-
precision integers). The built-in routines ofFG allocate and deallocate
memory associated with these arrays as and when needed. This practice lea
to an efficient management of system memory and relieves the operating
system of garbage collection overheads.

5. Multi-precision support: The field arithmetic of GL is based on a set of
routines for carrying out arbitrary precision integer arithmetic. Howeter
use of these multi-precision routines are much slower compared to the single-
precision routines for fields where both types of routines can be used. T
alleviate this difficulty, &L routines have been designed to use the single-
precision integer arithmetic routines whenever possible. In particular, for
fields of characteristic 2, B provides routines that make extensive use of
bit operations instead of integer arithmetic operations.

6. Portability: GFL can be used on any workstation that has an ANSI C com-
piler. It is totally self-contained in the sense that it is not built as a library
over existing packages.I& has been built as an easy-to-use tool.

In what follows, we describe the basic conventions and features vy
GFL. We also demonstrate through some examples the basic paradigms that users
should follow, when they useI@. routines in their programs. This chapter is by
no means a complete reference tBIG It is intended to give the reader a flavor
of the programming techniques using*G. For a complete reference manual of
GFL, we refer the reader to [30]. We do not go into the implementation details of
GFL routines (though we sometimes outline the strategy behind them). Nor do we
make an attempt to define algebraic terms and concepts that are well-kndwn an
can be found in text books on algebra [53], linear algebra [54] or ffigtds [82,
85, 90, 115]. We define and/or explain terms that we introduce duringatinse
of the discussion, i.e. those that are specific RLGSimilarly we assume that the
reader is familiar with the programming language C. In what follows we ptesen
pertinent material in a manner so as to hold the interest of both mathematicians and
computer scientists.

Randomized algorithms play a very important role in computations over finite
fields. This is because for many of the common problems, deterministic polynomial
time algorithms are not known. (By a polynomial time algorithm, we mean one
that runs in time polynomially bounded by the logarithm of the cardinality of the
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field.) In many cases, even if deterministic algorithms are known, they cannot
normally compete in speed with their probabilistic counterparisL @nplements
the probabilistic versions of the algorithms whenever applicable or useful.

Finite field algorithms find immense applications in the areas of public-key
cryptography, error control coding, combinatorial designs and soVida expect
that this library would be useful to programmers who develop applicatiokeg@s
in these areas. We plan to distribut& Gas afreewarefor academic and research
purposes.

2.2 Basic data structures

In this section, we describe howF& represents various algebraic entities neces-
sary for computations over finite fields. We explain only the most important data
types. The appendix at the end of this chapter gives a complete list ofda&se
structures and the library calls. The reference manual [30] provitldseadetails

left out here.

2.2.1 Multi-precision integers

data typempint

In typical applications involving finite fields, one uses integers much larger th
the maximum integer representable bpiag int. For example, gong int typically
contains 32 bits in small work-stations or 64 bits in large machines and thus is not
sufficient for storing elements d, with p of length 400 bits. A floating point
number (saydouble), on the other hand, can represent numbers in this range, but
not to the full precision. (Typically a 64-bdouble has 52 bits precision.) We,
therefore, need an alternative representation of large integers. Tihigoregision
integer library of &L is designed for this purpose. Multi-precision integers are
special data structures that can store an integer value across sengraits. We

use dynamic arrays for holding the individual words of a multi-precisiorgente

typedef struct { /* Multi-precision integer */
char sign;  /* '+ for positive integers, - for negative integers, '’ for zero */

int size; /* Number of longs needed to represent the integer */
long *word; /* link to the array of longs holding the integer */
} mpint;

Thus anmpint defines a representation sifjnedintegers ofarbitrary length. The
first field of thestruct indicates the sign of the integé#’, ‘=" or ‘' (space) accord-
ing as whether the integer it holds is positive, negative or zero. Thaenddad
(size) is the exact number ddng ints necessary to hold the multi-precision integer
and the third fieldWord) is a pointer to a dynamic array @dng int holding the
fragments of the (absolute value of the) integer.

The usual arithmetic operations, (, *, /, % etc.) forlong int can no longer be
applied tompint. GF L provides routineitSum, intDiff and so on to do arithmetic
with mpint. For efficient implementation of these routines, we use a 25 bits per
long packing (assuming thatlang consists of 32 bits and double has 52 bit
precision). That is, each word of ampint is adigit in radix R = 2%° = 33554432.
Thus the integer
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Representation of

11223344556677889900998877665544332211
— 8853657R* + 25051344 R> + 6227312R? + 31737219R + 17261491

has the following representation asmapint (n, say).

n.sign ="'+

n.size = 5;

n.word[0] = 17261491,
n.word[1] = 31737219;
n.word[2] = 6227312;
n.word[3] = 25051344;
n.word[4] = 8853657;

The negative of this integer has the same representation except that

’n.sign ="

Finally thempint n representing the special integer 0 (zero) has the following val-
ues for itsstruct components:

n.sign="",
n.size = 1;
n.word[0] = O;

For efficient memory management[FG routines nevereturn an mpint. An as-
signment is effected by passing to a routine a pointer tarthit where we want
to store the desired result. For example, the call

’GFprod(&c, a, b, K);

stores inc thempint obtained by multiplyingnpints a andb over the fieldK.

2.2.2 Fields

GFL maintains dield descriptorfor every finite field created. This descriptor is of
the data typesF_d (which is essentially ghort int). All references to the fields
created can be done through these descriptofisL &lows one to work with at
mostMAX_FIELDS field descriptors.

A finite field of prime cardinalityp is represented as an algebraic system where
all arithmetic operations are integer operations mogul& non-prime field, on the
other hand, cannot exist as a stand-alone field. It has to be defirredadgebraic
extension of an existing field (which might be a prime field or another non—prime
field that has been already defined). Each such algebraic extensigfimisciby an
irreducible polynomial of given degree over the field being extendeithietic in
the extension field is carried out as polynomial arithmetic in the subfield modulo the
defining irreducible polynomial. In other wordsF& always uses the polynomial
basis representations of field extensions.

1The header filéield.h defines the macrmMAX_FIELDS as 64.
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There is no limit (other thaMAX_FIELDS) on the length of the chain of field
extensiondy C F, C F3 C ... that one can create usingfG. In addition, it is
possible to define extensions Bf other thanF; ,, extensions of these extensions,
and so on. Itis also admissible to define more than one prime field. In sholt, G
allows one to work with an arbitramjirected foresbf fields.

2.2.3 Field elements

Elements of a finite field, of cardinalityq are represented astegersbetweer)
andq—1. For fields of prime cardinality, this is an obvious representation. For fields
of prime power cardinality, this has the following interpretation. First let ssiae
thatF, is an extension of the prime fiel}, defined by a polynomiaf(z) € F,[x]

of degrees (so thaty = p®). Leta be a root off (z) in Fy[z]. Then an element €

IF, can be uniquely representedas: Co_10° Ve’ 24+ 4cra+co, where
Cs—1,Cs—2," ", C1,Co € Fp. We may viewc as ans-digit integerc,_ics_2 - - - cico

in basep. Thenc is an integer betweefandq — 1. Note thatl, o, a2, ..., a5
constitute the polynomial basis @, over F,. Viewed as integers, these basis
elements are respectivelyp, p?, ..., p° L.

Next let us extend’, by g(z) € F,[z] of degreet to get the fieldF, =
Fq[z]/(g), where(g) represents the ideal ifi,[z] generated by(z). If 3 is a
root of g(x) in Fy, then an element € [ has the unique representation=
ci—1B 7 oS24 -+ 18+ co, Wherec,_1, ¢i—a, - -, 1, ¢ € F. We may,
therefore, representas thet-digit integerc;_1c;—o - - - c1co in baseq = p®. Each
¢i, on the other hand, can be represented asdigit integerc; s_1¢; s—2 - - - ¢i,1¢i0
in basep, so that

s—1 s—2 t—1
c = (c—15-10" " Fco1500" T+ F o0+ c-10)f
s—1 s—2 t—2
+ (ci—2,5-10° " F 520" "+ F o1+ ¢—20)P

-1 _

+ (c1,5-10°7 " +¢1 520" 244 cria+ i)
1 2

+ (co,s—10° " + o —20° "+ -+ o100+ o)

Hence we may view also as thest-digit integerc, 1 s—1¢t—1,5—2 - Ct—1,1¢t—1,0
Ct—2,6—1Ct—2,5—2 " " Ct—21Ct—1,0 " * * C0,s—1€0,5—2 " * * C0,1C0,0 IN basep. Thus,cis an
integer betweef andp** — 1. Herel, 3, 32, ..., 5~! form the polynomial basis of
IF,« overF,. GFL represents these basis elements as the intégers®, ..., ¢' L
Note also that the elements

-1 -1 t—1 pt—1 t—1 _s—1
lLa,...,a° %, B, Ba,...,8a° ..., 0, 0 a,..., 0’

form a basis off,;: overlF,. This is, in general, not a polynomial basis. We call
it a composed basisf ... overlF,. GFL represents these basis elements as the
integersl, p, p?, ..., p* ! respectively.

Itis clear that this representation of finite field elements by integers can be simi-
larly extended to extensions Bf, to extensions of these extensions, and so on. To
sum up, for any, the elements df, are represented as integers betwgandg — 1
irrespective of the definition df,. The interpretation of the integers is, however,
dependent on the definition Bf,. We call this representation of finite field elements
the packed representatiosms contrasted with thenpacked representatian which
elements are represented as tuples or polynomials. Before we procted, flet
us highlight the relative merits and demerits of the packed representation.
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data typeGFelement

. The packed representation needs less memory than its unpackedgarinte

. The packed representation is a uniform representation of a finite feeld e

ment irrespective of the field to which the element belongs. This means that
if an extensionk of F' is defined whereard(F') = ¢, an element € K

with 0 < ¢ < ¢ — 1 is automatically an element df and has thesamein-
terpretation in bothK and F'. For example, the integ@r(resp.1) represents

the additive (resp. multiplicative) identity in any field. There is no overhead
of typecasting elements of one field to those of another. This saves time.

. Indexing arrays etc. by finite field elements or letting a loop variable ran ov

finite field elements become easier with this representation of the elements
as integers. This too speeds up computation.

. Almost all arithmetic operations over finite fields require the individual ele-

ments of the unpacked representation. This means that for every seich op
tion the operands should first be unpacked and after the operatiorstiie re
should be packed and returned. This adds to the cost of arithmetic. Hris ov
head is negligible during computation of products and powers, whereas fo
sums and differences, we cannot neglect the effect of packingrapatking.
GFL is designed to keep this overhead at a bare minimum.

. When we are working over fields of characteristic 2, the individual ddits

the unpacked representation remain “visible” in the sense that packing and
unpacking can be done using only bit operations which are very fastl-In
dition, the procedure that implements sum (and difference) over thesg field
need not separate the individual bits of the operands. An XOR ope@tion

a full word processes all the bits in the word simultaneously.

GFFL defines the data typ&Felement to represent elements of a finite field.
As we have seen &Felement should hold an integer value. Indeed, the multi-
precision integer data type defined in the first subsection hastippedef-ed as
GFelement.

typedef mpint GFelement;

2.2.4 Polynomials

data typepoly

GFL represents a polynomial as a structure of two elements. The first element is
theexact degreef the polynomial and the second a pointer to the coefficient array.
The coefficients are of typ@Felement.

typedef struct { [* Data structure for polynomial */

int degree; [* The exact degree */

GFelement *coeff; /* Pointer to the array of coefficients */
} poly;

That is, iff is a variable of typgoly andf.degree = d (d > 0), the coefficient
of 27 of f can be accessed soeff[i] for 0 < i < d. In particularf.coeff[f.degree]
is theleading coefficiendf f. Thezero polynomiahas the following representation

The zero polynomial | f.degree = MINUS_INFINITY; f.coeff = NULL; ‘
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As in the case oGFelements, the definition of a polynomial does not mention
a field to which the polynomial is intended to belong. When one calls a routine that
does arithmetic on polynomials, one must specify the fiele_d) over which the
coefficient arithmetic should take place.

2.2.5 Vectors and matrices

The following two data structures define the data types for matrices andrsvecto
over finite fields. As with polynomials, the elements of a matrix or a vector are
dynamically managed by pointers. Similarly, the definitions avoid committing to
particular fields.

typedef struct { /* Data structure vector */
data typevector int size; I* Veptor size */
GFelement *element; [* Pointer to the array of vector elements */
} vector;
typedef struct { /* Data structure matrix */
int row; /* Number of rows */
data typematrix int col; /* Number of columns */
GFelement **element; [* Pointer to 2-dimensional array of elements */
} matrix;

A vector in this paradigm is neither a row vector nor a column vector. It is just
an array ofGFelement. It is up to the users how they would like to view it. In
some cases one may ugector as an ordered list (tuple) or even as an unordered
set. There are certain routines, however, wheFé @ssumes specific structure on
their vector arguments. Most notably, the linear equation solving routines assume
that avector is a column vector. At any rate, we encouragélQusers to treat a
vector as acolumn vector

Note that &L uses dynamic arrays for representing various algebraic data
(mpint, poly, vector andmatrix and many other which we do not mention here).
The advantage of this representation over the representation by stayis arthat
in the former representation passing data to subroutines is much faster then tha
the latter. This is because with dynamic arrays only a pointer to the coeffariayt
need to be passed instead of the entire array. Moreover, use of dyaaayis leads
to more efficient use of memory, since the pointers can be allocated only d&s muc
memory as is needed to hold the array. On the other hand, this represemiakies
programming a little difficult. One has to be careful while allocating and freeing
memory associated with such data, in particular, inside one’s own subroutines

2.3 Programming paradigms

In the last section we have seen how we can represent various atgebtities
using GFL. We now demonstrate how we can write programs that use these data
structures. We explain the major steps that the programmer should follow while
developing his/her own application programs usiriglGWe explain the program-
ming process by means of two examples. Before we do so, we make a fevaben
remarks about GL library calls.
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1. Names of the GL built-in functions have been chosen carefully to make
them self-explanatory. For example, we will later see that thé @Gutine
findRandomlrrPoly finds a random irreducible polynomial of a given degree
over a given field.

2. In all GFL functions a uniform convention for sequencing input and output
parameters has been adoptedf LGoutines often return scalar values like
long or char. They never return structures with dynamic arraygor ex-
ample findRandomlirrPoly should compute poly. Since this data structure
contains a dynamic array, it is not returned by the routine. Instead @® ha
pass a pointer to poly as thefirst argument to store the irreducible polyno-
mial. In general, the pointers to the data that we need to compute are passed
at the beginning of the argument list. Next come the operands followed by
relevant field descriptors. Certain flags are sometimes passed at thé end o
the parameter list. Here is an example. The routine

| polyDiv(&q, &, 1, g, K);

performs polynomial division of by g over the fieldK. The quotient poly-
nomial is stored im and the remainder in. If one is interested in only
one of the output polynomials (say, the remainder), one is allowed to pass
the NULL pointer as the other argument. Most other routines do not allow
NULL pointers as arguments.

3. In many functions a choice of algorithms is made possible through an input
argument. We will see an example later: the roufindRoot finds the roots
of a polynomial. The algorithm that it selects is dependent on an input pa-
rameter. Certain values of the parameter allo#iLGo take the decision by
itself.

4. Many GFL routines need a source of random integers. These integers are
obtained using the built-in random number generator provided in the C li-
brary. In most of the cases, the user is given an option to seed themmando
number generator. Special flags should be supplied to the routines ¢o effe
this. Typical choices of seeding are: do not seed, use current timeeds s
or use the value of a specific pre-defined variable. We leave the chdioe to
programmer as to what is desirable: repeatability or randomness.

5. Every GfL function does automatic memory management. That is, when-
ever a dynamic array is to be reallocated memory, the routine first frees the
memory (if any) allocated to the dynamic array and then reassigns memory
to the array. The user need not bother about it. But when one writés one
own subroutines, we encourage one to follow the same strategy. This prac
tice allows G L programs to hold just the amount of memory they need for
the computation, and thereby reduces garbage collection overheads of th
operating system.

2.3.1 Example 1

We start with the following example: computation of the characteristic roots of a
matrix with proper multiplicities. We develop the detailed program step by step.

2The initialization routines are an exception whlgLL pointers are returned.
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Include all header files

The initialization routine

Variable declarations

Variable initialization

Include header files

One should first include BL header files to tell the C compiler about the new data
structures and external procedure declarations definedfin. @ne may choose
only the individual &L header files that are needed for the particular program. In
that case the user should know which data structures and functionsfarecdin
which files. The @L reference manual [30] describes these in details. At any rate,
the easier way to include the necessary files is to include all the files — bothdke on
we need in our program and the ones that we do not.

#include <stdio.h> [* C standard io header file */
#include <GFL/all.h> /* Include all GFL header files */
Initialize GFL

This is a very important step. Any program that usé8LGnust do this before
doing anything else. This step carries out certain book-keeping tasksess up
some tables for later use. If the library is not initialized, one would get l@zarr
results like unwelcome halts, nasty segmentation faults and so on. Initialization of
the GF L kit is rather easy. One should just call

GFLinitialize();

Declare variables

We first decide what data we need to represent. We then declare thegnthusin
user-defined data types introduced in the last section. In our exampiegeka
few field descriptors (of typ&F_d) for referring to various fields, matrix whose
characteristic roots will be calculatedpaly to hold the characteristic polynomial
of this matrix, avector to store the roots of this polynomial, and some other auxil-
iary variables of typdong.

GFdF K, L; /* The field descriptors */
poly f; /* Polynomials */

matrix M; /* Matrices */

vector v; [* Vectors */

mpint p; /* Integers */

long i, n; /* Auxiliary variables */

Initialize variables

Any GFL structure that has dynamic arrays must first be initialized before it can be
used. In this example, the variabled/, v, p contain dynamic arrays. These arrays
are initialized toNULL as follows:

f = newPoly(); M = newMatrix(); v = newVector(); p = newInt();

Alternatively one may explicitly make the pointers in these structitdkL as
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Explicit initialization

Create fields

f.coeff = NULL; M.element = NULL; v.element = NULL; p.word = NULL;

It is to be noted that this explicit initialization is a little bit more efficient than call-
ing the initialization routines likanewlInt, newPoly etc. At any rate, this is not
really an important issue for the user to ponder too much. Instead we egphas
that whenever a new variable with dynamic arrays is declared (as glababies,
inside procedures or loops, or even inside another variable, e.g. inciuste con-
taining polynomials or matrices etc.), it is mandatory to initialize the variable be-
fore anything is done with it. Many &L routines free the memory associated with
dynamic arrays (unless they ai®JLL) before they are assigned new memory. An
uninitialized nonNULL value can, therefore, lead to run-time hazards.

Create fields

Let’s say that we want to compute the characteristic values of a matrixFgven

the extension field;:2. To this end, we first create the prime field of characteristic
3. Then we find a random irreducible polynomial of degree 4 @eand attach

a root of this polynomial td&s in order to get the extension fieltys. In a similar
fashion we extend's: by an irreducible polynomial of degreéeover Fs1. This
gives usFsi2. All these can be done very simply by a few library calls.

longTolnt(&p, 3); /* Characteristic of the fields */
F = createPrimeGF(p); /* Create the prime field of characteristic 3 */
findRandomirrPoly(&f, F, 4, 1);

/* Find a random irreducible polynomial of degree 4 over F */
K = createExtGF(F, f); /* Extend F by f */
findRandomlirrPoly(&f, K, 3, 1);

[* Find a random irreducible polynomial of degree 3 over K */
L = createExtGF(K, f); /* Extend K by f */

Each call tocreatePrimeGF or createExtGF returns a field descriptoiGF_d)
that we shall use for all future references to the respective fieldslaBhargument
of findRandomlrrPoly is a directive to the random irreducible polynomial genera-
tor routine on how to seed the random number generator — 0 means “ded™ 4
means “use current time as seed” and 2 means “read the valRROSEED _VAL
as seed”. The routinindRandomlrrPoly returns a value (of data typet) that we
choose to ignore here. In fathdRandomlirrPoly generates random monic poly-
nomials of the given degree one after another and checks them foudroddy.
As soon as it finds one irreducible polynomial, it returns the total numbeolgf p
nomials checked before and including this irreducible polynomial. The icibtiu
polynomial is stored for future use in tipely pointed to by the first argument.

Do computations

We are now ready to carry out the actual computations. First we havaignas
matrix to the variabléM. There are many ways in which this can be done. For the
time being, we read it frorstdin in an interactive fashion.

readMatrix(&M); ‘
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This asks the user for the numbers of rows and columi afd then the elements
in the row-major order. We intend to I8 store a matrix ovekK, i.e.,Fsi. As
explained in the previous section, the element#.pfare represented as integers
betweerd and3* — 1 = 80 (both inclusive). So we must input a value in this range
for every element oM. SincereadMatrix does not know in advance how we are
going to interpret these values, it does not complain if we supply elemerts/maht

in the above range. The responsibility of entering meaningful values igftie,

on the user.

In the next step we compute the characteristic polynomidfofhis is also
easy. @&'L provides the built-in procedureharPoly to do this.

‘ charPoly(&f, M, K);

We then find all the roots dfin the extensioh.. We call another built-in routine
findRoot to do this.

n = findRoot(&v, f, L, 0); \

The roots are stored as elements in the veetdthe number of roots can be found
from v.size or the value returned bfindRoot (assigned tan above). The last
argument tdindRoot tells findRoot which algorithm to use: (1) the exhaustive
search algorithm or (2) the Berlekamp-Rabin algorithm [11] or (3) Barlgs
trace algorithm [11]. Any other value passed as this argument (sayp@ascase)
will allow findRoot to take the decision itself. The decision criterion goes like this:
If the cardinality ofL is less tharBMALL_Q_BOUND?, call the exhaustive search
algorithm, else if the characteristic bfis 2, call Berlekamp's trace algorithm, else
call the Berlekamp-Rabin algorithm. One may call these routines explicitly as well
(findRootES, findRootBR andfindRootBT). We won't go into further details of
the syntax of these individual calls.

Now we have all the characteristic rootsMfin the extension field.. What is
left is to compute the multiplicities of these characteristic roots. One can do it in
several ways. For example, instead of computing the rootsved can factorizé
and read the multiplicities from those of the linear factor§ &nother possibility
is to dividef successively by — a for each characteristic roetof f till a non-zero
remainder is found. We follow the second approach, because it illushratesne
can do arithmetic on polynomials. We need three auxiliary polynorgiatsm and
quot.

3SMALL_Q_BOUND is a macro defined iroot.h, that has the default value 100.
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poly g, rem, quot;
mpint pmo;

/* Initialize new variables */
g.coeff = rem.coeff = quot.coeff = NULL; pmo.word = NULL;

/*setpmotop—1*
copylnt(&pmo, p); intMM(&pmo);

/* set g to be a polynomial of degree 1 */

g.degree = 1;

g.coeff = (GFelement *)malloc(2 * sizeof(GFelement));
g.coeff[0].word = g.coeff[1].word = NULL;
longTolnt(&g.coeff[1], 1);

/* loop for each characteristic root of f */
for (i=0; i<n; i++) {
int mul,

/* Set the constant term of g to —a, where a is the ith characteristic root of f */
/* Note that —a = (—1)a, and —1 has the representation p— 1 in F, Kand L */

GFprod(&g.coeff[0], v.element][i], pmo, L);

/* GFprod returns in the first argument the product of its second and
third arguments considered as elements of the field supplied as the
fourth argument */

mul = 0; /* Initialize multiplicity to O */

do {
polyDiv(&quot, &rem, f, g, L);
/* Divide f by g and store the quotient in quot and remainder in rem */
/* L is the field where the coefficient arithmetic takes place */

if (zeroPoly(rem)) {
/* If the remainder is zero, that is,
if (rem.degree == MINUS_INFINITY) */
mul++; /* Increase multiplicity by 1 */
copyPoly(&f, quot); [* Store the quotient in f */

} while (zeroPoly(rem));

printf("Multiplicity of "); writeInt(v.element][i], stdout); printf(" is %d\n”, mul);

The above example clearly illustrates how easy it is to do the desired task by
simple library calls. Before we go to the next topic, we mention that an assignmen

of the form

f = quot; ‘

should always be avoided, because such an assignment does nca rexkatim
copy of the coefficient array a@juot to that off. Instead, it copies theoeff pointer
of quot to that off. This means that after the execution of the statementdb#
pointers of bothquot andf point to the same memory location, so thagiot
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Free memory

2.3.2

Generate key

coefficients are changed (orgtiot.coeff is free’d), that change will be reflected in
falso (and vice versa). This is undesirable. Moreover, such assigameght lead
to fatal run-time errors. We ask the users to use the copying routinpgioly for
polynomials,copyMatrix for matrices, and so on) in such cases.

wind up

Now that our program has printed the characteristic roots of the input matrix
gether with their multiplicities, we may choose to exit from the program. A better
approach is first to free the memory allocated toc¢beff arrays ofpoly, theele-
ment arrays ofmatrix andvector and so on. These can be done by explicit calls to
free. Alternatively, the following routines can be used.

destroyPoly(&f); destroyPoly(&g); destroyPoly(&quot); destroyPoly(&rem);
destroyMatrix(&M); destroyVector(&v); destroylnt(&p); destroylnt(&pmo);

In general, it is always a good practice to free the memory allocated to dynamic
arrays whenever the contents of the memory are no longer needed. eEdisat

be done only at the very end of the programs. In our example, we might call
destroyMatrix(&M) immediately after the characteristic polynomialis calcu-
lated. We don’t need the elementshfafter this step.

Example 2

In the second example, we illustrate how the user can write his/her ownusuna®
using GFL library calls. We develop a finite field cryptosystem proposed by ElGa-
mal [32]. We implement three basic subroutines for the cryptosystem udithg G
calls. Suppose that A (Alice) wants to send a message to B (Bob) ovenaalha
where a third party C (Carol) may intercept A's messages and read tted sdor-
mation meant for B only. To befool C, A and B choose a large finite fi€I{F 01

or Fys0s, for example) and compute a primitive elemenin that field* B then
selects a random integérand computes = ¢°. B publishes the public keyand
keeps the private kdya secret. This process of key generation can be implemented
as follows.

void makekey ( GFelement *b , GFelement *| , GFelement g, GF_.d K) {
mpint gmo;
gmo = newInt(); * Initialize gmo */
cardinality(&gmo, K); /* Store in gmo the cardinality of K */
intMM(&gmo); /*gmo — —*/
randRes(b, gmo); /* Store at *b a random non-negative integer less
than gmo */
GFexp(l, g, *b, K); /* Calculate I = g® in K */
destroylnt(&gmao); /* Return to system the memory held by gmo */
}

4A random primitive element in a finite field can be obtained by the call

’findPrimEIement(&g, K, 0);

where the last argument is similar to thafimdRandomlrrPoly, i.e. it tellsfindPrimElement how
to seed the random number generator.
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Encryption routine

Decryption routine

The call ofrandRes in the above procedure sdi$o a random nonnegative integer
less than the cardinality of the fiekd minus 1. At the next step the powe' is
computed and saved thby the callGFexp. Note that in an actual implementation,
one should discard trivial values bfsay 0 or 1. We do not indicate this step here

for the sake of simplicity. Note also how the temporargint gmo is initialized,
used and then destroyed in the routine. After B calls this subroutine as

’ makekey(&b, &l, g, K);

thempint b holds B’s private key and thapint | holds his public key.

Now A wants to send an element € K to B. She carries out the following
three steps to encrypt her message.

1. choose a random integeand computes; = g', where) <t < ¢ —1,¢=
the cardinality ofK.

2. read B’s public key!fj and computes, = mi?.

3. send the paife;, e2) to B.

A can use the following subroutine for the purpose of encryption.

void encrypt ( GFelement *el , GFelement *e2 , GFelement g , GFelement m ,
GFelement |, GF.d K) {
GFelement t, gmo;

t = newint(); gmo = newlInt(); [* Initialize mpint */
cardinality(&gmo, K); intMM(&gmo); /*Setgmotoq—1*
do randRes(&t, gmo); while (zerolnt(t));

[* Generate a random integer between 1 and ¢ — 2 */

GFexp(el, g, t, K); I* First part e; (= g*) of encrypted message */
GFexp(e2, I, t, K); /* Compute [t */

GFprod(e2, *e2, m, K); /* Second part ex(= mi') of encrypted message */
destroyInt(&t); /* Free memory */

destroylnt(&gmao); /* Free memory */

}

A now sends:; andes to B. B recovers the messagefrom these values using his
private keyb in the following way. We have; = ¢* ande; = ml* = mg®, so that
m=ey-g " = ey - e7’. The subroutine for decryption is, thus:

void decrypt ( GFelement *m , GFelement el , GFelement e2 , GFelement b,
GF.dK) {
GFexp(m, el, b, K); I* Compute et */
GFinv(m, el, K); /* Compute (e})~! = ey %/
GFprod(m, *m, e2, K); /* Compute ey - e */
}
Sincee! ' = 1in K if ¢; # 0, we can calculate;” also ase;® = e/ 1", We

leave out the details of the implementation.

Now let’s talk about C. She has knowledgefof g andl, but not ofb. Suppose

C getse; andey, and wants to decipher the original message She must first
calculateb which is the discrete logarithm éfin K with respect tg;. If she goes
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through the G'L manual carefully, she will be happy to see thdfIGprovides
built-in routines for the computation of discrete logs in finite fields. Similar to the
above procedures, it is very easy to write a routine for Carol, thatthess G'L
library calls. But the bad news for Carol is that this algorithm does noirrtime
polynomially bounded by the size df. Indeed it issub-exponentialso that if

K is sufficiently large (sayFFys03), C cannot compute discrete logarithmsHnin
feasible time. But C must not blame the designers BLG- at present no better
algorithms are known for computing discrete logs in finite fields. And this is why
ElGamal’s scheme of encryption is secure.

2.4 Functions provided

In this section we briefly describe what functions are provided By GNe also
mention the algorithms implemented for these functions. The details of the syn-
taxes of the library calls will be listed in Appendix A.

2.4.1 Integer functions

We have demonstrated howFG represents signed arbitrary-precision integers.
We also stated that there are built-in procedures to do arithmetic with these multi-
precision integers. Multiplying or dividing a multi-precision integer by anotaer

be coded very efficiently when the second operand is a power of ZicbaF L
routines take care of these situations. These routines find extensiver dgdds

of characteristic 2. In addition, these functions can be used for doihgridfright

shift operations on multi-precision integers. Separate (and a tiny bit marieef)
routines are also provided for (in-place) shift operations.

Other integer functions include checking and generating prime numbens, co
puting integer factorization, integer square root, integer gcd, modulamexpia-
tion etc.

Here we mention the multiplication algorithm we have used. We have stated
previously that our 25 bits/long packing of multi-precision integers is motivated
by efficiency considerations. We now explain how this helps us write the multi-
plication routine very efficiently. Let us assume that we are working ieitlyg of
size 32 bits andlouble of size 64 bits. We also assume that the data tjqéble
has 52 bit precision for the mantissa. These are the default values ore aanige
of (small) work-stations available nowadays. For large machines (with 4dojt 6
long) our strategy has to be modified.

We have seen that eatbng in the word array of anmpint stores (at most)
25 bits of a multi-precision integer. For the multiplication routine one needs to
compute the word-by-word product of thdsag values. The result can be at most
50 bits long and hence does not fit in a singlag. Routines at the assembly-
language level can take care of the carry. Our implementation does ntiisse
strategy, because the assembler macros are very much machine-aep8odae
best strategy is to usgouble multiplication® Since ourdouble has 52 bit pre-
cision, multiplying two 25-bittong values (after typecasting tdouble) does not
lead to an overflow in the mantissa. Note that with our assumptiaiooble, we

SWe have also tried using the data structiorey long, which is 64-bit long, butlouble multipli-
cation seems faster and leads to more efficient codes.
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GFL’s multiplication

could have opted for 26 bitehg packing. But as we will see now, such a packing
renders our multiplication routine erroneous.

Let’s say that we want to multiplg = a,,,_1R™ ' + ... 4+ a1 R + ag with
b="b,_1R" '+ ...+ bR+ by (WhereR = 2% is the radix). The result is to be
stored inc = c¢,_1R" ! + ...+ 1R+ ¢y, wherer = m +norm+n — 1. Inthe
following code snippet, we denofe by RADIX, R? = 2°° by RADIX_SQR and
R~ = 2725 asRADIX_INV. Note that oudouble can store each of these three
quantities with full precision. For simplicity, we denaieby ali] (rather than by
a.word[i]). We assume tha andb are arrays ofong, whereas is an array of
double. The variablecarry is of data typdong.

/* Initialize c to 0 */
for (i=0; i<m+n; i++) c[i] = O;

/* Multiplication loop */
for (i=0; i<m; i++) {
for (j=0; j<n; j++) {
c[i+j] += (double)(a[i]) * (double)(blj]);
if (c[i+j] >= RADIX_SQR) {
c[i+j] —= RADIX_SQR;
c[i+j+2] +=1;

}

/* Normalize the intermediate result */
carry = 0;
for (i=0; i<m+n; i++) {
c[i] += (double)(carry);
carry = (long)(c[i] * RADIX_INV);
c[i] —= (double)(carry) * (double)RADIX;

In the multiplication loop of the above code, eagh; is kept at a value< R?.
With this trick, each word-by-word multiplication is associated wittoaible mul-
tiplication, adouble addition and possibly one modeuble addition and one more
double subtraction. We note that if we had 26 blitsig packing, the instruction

c[i+]] += (double)(a[i]) * (double)(b[j]);
might lead to overflow in the 52-bit mantissaajf+j]. On the other hand, our 25
bitslong packing leads to no such situation.

Now let’s discuss the usual method of multiplication, where one kegps
normalized at values. R. In that case, each word-by-word multiplication would
require ondong and twodouble multiplications and several additions and sub-
tractions as shown in the next code snippet. Here all variables usetida@aype
long (including the array elementgi]). In the code, we make the assumption that
when the product of twdéong values exceeds the rangelohg, the carry is ne-
glected and the outplibing holds the lowest 32 bits of the product. This behavior
is true in most modern machines, but there may be exceptions. The ofreted
in the code stands for the bitwise ‘AND’ operation.

Itis clear how GLs strategy speeds up the multiplication loop. But thELG
routine has the additional overhead of normalizing the elements of the atmay
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Usual multiplication

/* Multiplication loop */
for (i=0; i<m; i++) {
for (j=0; j<n; j++) {
low = (a[i] * b[j]) & (RADIX — 1);
high = (long)(0.25 + RADIX_INV * ((double)(a[i]) * (double)(b[j])
— (double)(low)));
c[i+] += low;
if (c[i+j] >= RADIX) {
c[i+j] &= (RADIX — 1);
c[i+j+1]++;

c[i+j+1] += high;

if (c[i+j+1] >= RADIX) {
cli+j+1] &= (RADIX — 1);
cli+j+2]++;

the digits in radixR, after the word-wise multiplications are done. This, however,
can be neglected, since this normalization process takesditme + n) which

is smaller (both theoretically and practically) than thémn) time taken by the
multiplication loop.

GFL's multiplication routine as presented so far can be further optimized. For
example, the typecasting (ttouble) of a[i] andb]j] can be done outside the loop.
This saves some time. In addition, we can use three multiplications for computing
the four products of; anda; 1 with b; andb;, for eveni andj. This can be done
using Karatsuba’s strategy by computiag 10,41, a;b; anda;bj 11 + ai41b; =
ai+1bj41 + aibj — (aiy1 — a;)(bj+1 — bj). The detailed code is shown in the next
page, where it is assumed thatandn are even.

We finally note that @L's multiplication routine with the Karatsuba improve-
ment can be appliethutatis mutandiso squaring. The only difference is that for
squaring the variablmid can be calculated more efficiently as:

mid = (double)(a[i] << 1) * (double)(@[j]);
Here<< denotes left shift. Note that in the case of squaling a. The actual

implementation of the squaring routine inFG uses further optimizations. We
leave out the details here.

In order to see that our multiplication algorithm is efficient, we here mention
the timings of the multiplication of a 2000-bit integer with a 1000-bit one using our
routine and using A. K. Lenstra’s long integer package LIP [76] (\derd.1). On
a 200 MHz Pentium processor running Linux, our routine takes abdugSGor
the above product, whereas LIP takes about g&0Note that LIP uses Karatsuba
multiplication (on the entire integer) which is known to be faster than the quadratic
algorithm described above (at least theoretically). We get faster rasiitshe
guadratic algorithm at a size of the order of 1000 bits.

For multi-precision division we have implemented the algorithm described in
Knuth’'s book [69, Section 4.3]. EL provides routines for both ordinary gcd
(i.e. gcd by successive division) and binary gcd. It has been wddehat for
integers of length around 1000 bits, the binary gcd is faster by a factaoohd
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Karatsuba improvement

24.2

/* Multiplication loop */
for (i=0; i<m; i+=2) {
for (j=0; j<n; j+=2) {
high = (double)(a[i+1]) * (double)(b[j+1]);
low = (double)(al[i]) * (double)(b[j]);
mid = high + low — (double)(a[i+1] — a[i]) * (double)(b[j+1] — b[j]);
c[i+] += low;
if (c[i+j] >= RADIX_SQR) {
c[i+j] —= RADIX_SQR;
c[i+j+2] += 1;
}
if (mid >= RADIX_SQR) {
mid —= RADIX_SQR;
cli+j+3] +=1;

c[i+j+1] += mid;

if (c[i+j+1] >= RADIX_SQR) {
c[i+j+1] —= RADIX_SQR,;
c[i+j+3] +=1;

}

c[i+j+2] += high;

if (c[i+j+2] >= RADIX_SQR) {
c[i+j+2] —= RADIX_SQR;
c[i+j+4] +=1;

6 compared to the other variant. Routines for extended gcd calculatiordsare
provided. For integer square root we have used the algorithm deganil@ohen’s
book [25, Chapter 1]. Miller-Rabin’s improved test is implemented for primality
testing and the quadratic sieve algorithm is used for integer factorization.

Since we have mentioned A. K. Lenstra’s long integer package in connectio
with the multiplication algorithm, it is worthwhile to compare the performance
of GIFL routines with that of the LIP routines for other integer operations too.
Table 2.1 provides the relevant details. We used the same operanddqenra®00
bit integer and a random 1000 bit integer) as discussed before. IndlecAdd’,
‘Sub’, ‘Mul’, ‘Sqr’, ‘Div’, ‘Lsh’, ‘Rsh’ and ‘GCD’ respectively stand for addition,
subtraction, multiplication, squaring, division (with remainder), left shift {600
bits), right shift (by 1000 bits) and binary gcd. The operations Sdr,dral Rsh are
applied on the 2000 bit integer.

We note that though our multiplication is faster than that in LIP, all other rou-
tines are slower in GL compared to LIP. This is partly because LIP uses a 30
bitslong packing, whereas L packs at 25 bitédng. We are unable to apply the
strategy we used for ‘Mul’ to the other routines (except ‘Sqr’). Thiscamts for a
slowing down factor 080/25 = 1.2 for additive routines and df30/25)? = 1.44
for multiplicative routines.

Field functions

We have seen examples of creating and representing finite fields of aiylaage
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Table 2.1: Timings (inus) of basic multi-precision integer operations

Operation Add Sub Mul Sqgf Div Lsh® Rsh GCD

GFL 18 23 490 690 815 18 11 5,004

LIP 75 6.7 645 590 440 12 6.8 3,775
* for the 2000 bit integer

cardinalities. We have also seen examples of arithmetic routines for computing
sum, difference, product, inverse, power etc. in finite fields. At prig¢@ratsuba

or FFT-based techniques are not employed for field multiplication. The fuse o
logarithm tables to speed up field arithmetic is implemented and is discussed in
detail in Section 2.4.5.

In addition to the field arithmetic, 5L provides routines for the following
operations on field elements.

1. Computing traces and norm&fhe repeated doubling algorithms proposed
by von zur Gathen and Shoup [43] have been implemented.

2. Computing and checking normal elementa: order to check ifa € Fs
generates a normal basis oV, we compute the gcd of the polynomials
o 251 4+ . 4+ a% + o and2® — 1. The elementy is normal over
F, if and only if the above gcd is 1 (See [85, Theorem 4.5]). In order to
construct (random) normal elementskgps overF,, three algorithms have
been implemented. The first algorithm generates F,s randomly and
checks ifa is normal oveiff,. The second algorithm is also a randomized one
and is based on a lemma due to Artin [85, Theorem 4.23]. This algorithm is
effective, ifg > 2s(s—1). The last algorithm implemented is Bach, Driscoll
and Shallit's deterministic factor refinement algorithm [6].

3. Computing and checking primitive elemenitsorder to check if an element
a € Fy is primitive, we use factorization of the integer— 1. If ¢ — 1 is
prime, thenx is primitive. Otherwise, let — 1 = pfl ...p be the prime

—1
factorization of¢ — 1. Thena is primitive, if and only ifo 7 # 1 for all
i=1,...,r. Inorderto find a primitive element @;, we generate elements
of F; randomly and check them for primitivity.

4. Computing transformation matrices between different bases of finite fields:
Let a, ..., as—1 constitute a basis df,s overF,. We first express the;
in the polynomial (or composed) basisBfs overF,. We then use linear
algebra techniques to compute the transformation matrix.

5. Computing isomorphism between two fields of the same cardinality (and of
different representation)Let K; and K- be two representations of the fi-
nite field of cardinalityp®. In order to compute the matrix that transforms
coordinates of an element of € K in the composed basis &f,s overF,
to those of an isomorphic image afin K5, we find out a polynomial basis
of Ky overF, and then compute the transformation matrices between this
polynomial basis and the composed base& pand K, overF,,.

6. Computing discrete logarithms with respect to primitive elemetsrently
only the basic index calculus method [85] has been fully implemented. For
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prime fields, heuristic B1 (discussed in Chapter 4) is employed. For fields
Fys, the improvement due to Blake et. al. [14] has been incorporated. The
linear and cubic sieve methods [28] for prime fields have been partially im-
plemented.

2.4.3 Polynomial functions

GFL's polynomial arithmetic is based on the standard high-school techniques.
Karatsuba and FFT-based techniques are not yet incorporatedt fApa stan-
dard arithmetic functions, L provides many utilities for univariate polynomials
over finite fields. These include

1.

Computing minimal polynomialsiWe compute the minimal polynomial of
o € Fys overF, as(z — a)(z — a?)... (z —a?" "), whered is the least
positive integer for whichv?’ = o.. (Note thatd|s.)

. Computing irreducible polynomials and checking polynomials for irredu-

cibility: The check of [85, Theorem 3.28] is used for testing irreducibility
of polynomials. In order to compute random irreducible polynomials over
a finite fieldIF,, we generate monic polynomials with coefficients randomly
chosen fron¥, and check if these polynomials are irreducible advgr

. Computing characteristic polynomials of matrices, companion matrices of

polynomials, resultants and discriminants of polynomia&andard tech-
niques from linear algebra are used. (See, for example, [25, Ch&h83r)

Factorizing polynomials:The well-known route comprising of square-free
factorization, distinct-degree factorization, equal-degree factorizatisumc-
cession is followed as in [43]. However, the latest development in this area
namely Kaltofen and Shoup’s range decomposition strategy [66], has not
been implemented.

. Finding roots of polynomialsThree algorithms are implemented for finding

roots of a polynomiaf (x) over a finite fieldF,. The exhaustive search algo-
rithm computesf («) for eacha € F, and returns those values@for which
f(a) = 0. This is a reasonable strategyyifs small The Berlekamp-Rabin
algorithm (applicable for fields of odd characteristics only) and Berlekamp
trace algorithm are two powerful randomized algorithms [11] for roofiffigd
and have been incorporated iff'G.

. Checking permutation polynomial$he von zur Gathen test for permutation

polynomials [36, 38] is applied.

. Computing affine multiples of polynomial§he coefficients of the least

affine multiple of a polynomial are calculated by solving a homogeneous
over-specified system of linear equations [85, Section 2.9].

2.4.4 Linear algebra functions

GFL provides all basic arithmetic routines on matrices and vectors over finite
fields. In addition it provides routines for computing ranks, determinands an
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LUP decompositions of square matrices. Routines for solving systems of linea
equations (including cases of over- and under-specified systems)saravail-
able. Well-known algorithms of linear algebra have been implemented. Fast matr
multiplication techniques are not used. Special routines for solving spaese
systems [74] have also not been implemented yet.

2.4.5 Speeding up field arithmetic

Primitive elements are very useful for speeding up arithmetic in finite fields. To
see how let’s assume that the fields = F* C K = F,s are defined. Ley be

a primitive element of. For arbitrary elements,b € K,a,b # 0, letu andv

be the discrete logarithms afandb respectively with respect t@ that isa = g*
andb = ¢”. Thenu andv are integers unique modujd — 1. Then the product
a-be Kisg"”wherew =u+v (mod p®— 1). Now let's assume that > .
Thena + b = g“(1 + ¢"~). If we know the discrete logarithm df+ ¢g"~* = g”
(say), then we can calculatet+ b = ¢ wherew' = u + v’ (mod p* — 1).

In general, it is computationally very difficult to find discrete logarithms in a
finite field. Though &L provides routines for computing discrete logarithms in
finite fields, use of these routines does not speed up finite field arithmetteath
GFFL provides facilities for creating and using tables of powers of a primitive el-
ement and discrete logs with respect to the same primitive element. These tables
are used for computing products and inverse&inlf one wants to use primitive
elements to accelerate sums (and differences) too, one needs anotheatiziol
Zech'’s logarithm tablg59] that stores for each the discrete log ot + g“ (with
respect tqy, of course).

Each of these three tables must reside in the main memory and therefore their
sizes are limited by the amount of RAM provided by the system. With current-
day technology it is possible even with small personal computers to store table
for fields as large a8'%. For a larger field that has a subfieldsyhall cardinality,
we recommend the following strategy. Suppose we want to work Byes. We
create the tower of field extensiohsC K C L, whereF' = F3, K = F310 and
L = F3100. We then create primitive power, discrete log and Zech logarithm tables
for the intermediate field& = [F510. This speeds up arithmetic considerably in both
K andL.

2.4.6 Fields of small characteristics

It is observed that the built-in arithmetic routines of C for single-precisiomers
are much faster than the multi-precision routines for the same integers fdreere
when the characteristic of the field (over which we are working) is small, it is
preferable to use the single-precision routines to the multi-precision onlgis. T
may lead to speed-ups of the order of as high as 10. Speé&ihlrGutines have
been written to exploit this phenomenon. In addition to thiEL.Grovides routines

for certain field operations, that work nicely 8- (p odd), if s(p—1)? is less than

the largest positive integer representable lsjgaed long. If, on the other hand,
s(p — 1)% is larger than this value, the routines might calasgy overflow. Hence
these routines are termedsafe When unsafe routines apply, they are reasonably
faster than theisafecounterparts. The user should turn on a flag in order to invoke
the unsafe routines. Otherwise the safe routines are called by default.
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Fields of characteristic 2 deserve specific mention in this subsection. These
fields are probably the ones that are most useful in practice. Almostsad bper-
ations on elements of fields of characteristic 2 can be performed usingebétams
only, whereas those for fields of odd characteristic require integensetib. Since
bit operations are much faster than integer arithmetic operatidnk,uSes special
routines for fields of characteristic 2.

In spite of the existence of different sets of routines for fields of dffiechar-
acteristics, the user need not bother about them and call the approprititees
explicitly. The GFL routines at the outermost level make suitable branchings de-
pending on the characteristic of the underlying field.

2.5 Performance measure

In this section we tabulate the timings for basic integer, field and polynomial op-
erations as achieved byRE routines. We obtained these figures on a 200 MHz
Pentium machine running Linux version 2.0.34. GNU'’s C compiler version 2.7
was used. We use the tricks of speeding up finite field arithmetic by maintaining
multiplication and Zech tables whenever possible.

2.5.1 Multi-precision integer arithmetic

In Table 2.1 we have listed typical timing figures for arithmetic operations on two
multi-precision integer operands. The first one is a random 2000 bit iraegethe
second one a random 1000 bit integer. Squaring and shift operatmapplied on

the 2000 bit integer.

2.5.2 Field arithmetic

In Table 2.2 we give timings for operations in the field&uoo, Fyt01, F3250 and
F3251. We maintain multiplication and Zech’s logarithm tablesfgrs (a subfield

of Fy100) andF3i0 (a subfield ofFs250). This strategy does not work for the other
two fields, since 401 and 251 are primes. We also show timing resulfs4ar, |,
which is a prime field. Note that the cardinalities of these five fields are ofynear
equal sizes (nearly 400 bits or 120 digits).

Table 2.2: Times (irus) for basic field operations

Operation Field

F2400 F2401 F3250 F3251 F2400+181
Addition 5.0 4.7 803 7,710 9.6
Subtraction 5.2 5.0 805 7,720 13.8
Multiplication ~ 880 960 2,610 19,700 218
Inverse 900 1,400 2,520 26,000 2,620

It is evident that the routines for fields of characteristic 2 are two to three o
ders of magnitude more efficient than those of odd characteristics. Thasatiab
illustrates the speedup due to multiplication tables and Zech’s logarithm table. For
characteristic 2 fields, use of multiplication tables speed up multiplication and in-
verse by a small factor. This behavior tallies closely with the observatiqgostesl
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in [130]. For fields of odd characteristic, the speedup obtained usikgo@bles

is of the order of 10. For the fielH;2s1, we have used the unsafe mode of mul-
tiplication, since251 - (3 — 1)2 = 1004 is much less than the capacity ofang.

With the safe multiplication, computing product and inverse in this field takes time
37,700us and 38,30Qus respectively. These figures clearly illustrate the benefit of
using unsafe multiplication mode when it applies.

2.5.3 Polynomial arithmetic

We choose two random polynomials of degrees 200 and 100 respectiazigach

of the five fields of Table 2.2. We tabulate in Table 2.3 the time takenlbly Bu-
tines for doing arithmetic on these two polynomials. We maintained multiplication
and Zech's tables for the field,is andFsi0 to accelerate computations lit400
andFs2s0 respectively.

Table 2.3: Times (in seconds) for basic polynomial operations

Operation Field

F2400 IF2401 IF3250 F3251 F2400+181
Addition 0.0015 0.0014 0.087 0.774 0.0020
Subtraction 0.0015 0.0014 0.085 0.772 0.0022
Multiplication 6.79 20.0 41.12 2439 4.49
Division 3.59 10.1 20.93 1243 2.39

For polynomial arithmetic we see similar patterns in the timings as we de-
scribed in connection with the field operations. We point out an importamrobs
vation here for characteristic 2 fields. Though the field multiplication (and$eye
become nominally faster with multiplication tables, the polynomial multiplication
and division routines run about 3 times faster when these tables are maintaine
For polynomials oveifs2s1, we once again used the unsafe multiplication mode.
In the safe mode, the above multiplication and division take time 594.3 and 302.3
seconds respectively.

2.5.4 Comparison with other libraries

LiDIA

NTL
ZEN

Here we list a set of symbolic computation libraries other th&h G&hat support
computation over finite fields.

A C++ library for Computational Number Theory, The LiDIA Group, TU Dar
stadt [13]

A C++ Library for doing Number Theory, V. Shoup [113]

A toolbox for computations in finite extensions of finite rings, F. Chabaud and
R. Lercier [23]

(MAGMA [15] and SIMATH [132] are two computer algebsystemshat provide
routines for finite field computations.)

In this subsection, we compare the timings of tHeLGoutines for field arith-
metic with the analogous routines provided by the above libraries. The timings
are listed in Table 2.4. We used same compilers (gcc and g++) for building the
libraries and for compiling the test programs on the same machine (a 200 MHz
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Table 2.4: Comparison of timings of basic field operations in various
symbolic computation packages

Field Operation Time (in us)
GFL LiDIA  NTL ZEN
Fau00, 157  Addition 9.6 4 3.2 1.9

Subtraction 13.8 5 3.6 25
Multiplication 218 68 101 57
Inverse 2,620 17,510 820 378

Fy401 Addition 4.7 1.3 11 1.6
Subtraction 5.0 1.4 1.2 1.7
Multiplication 960 1,240 230 434
Inverse 1,400 13,840 960 5,740

Fa251 Addition 7,710 447 37 56
Subtraction 7,720 385 35 33
Multiplication 19,700 18,060 8,920 46,920
Inverse 26,000 214,800 48,000 82,000

Pentium-based Linux PC mentioned before). As a result, these timing data are d
rectly comparable (at least for the Pentium architecture). We used Mers3al of
LiDIA, Version 3.0e of NTL and Version 1.0b of ZEN.I& is yet to be released
publicly (and thus get a version number).

Each library uses the polynomial basis representation for extension fidkls
used thesamerreducible polynomials for defininBy10: andFs2s:. We intended to
work in a general situation and therefore we chdsaserreducible polynomials
for extending the respective prime fields.

The most obvious conclusion from the above table is that ZEN is the fastest
library for prime fields and NTL is the fastest one for extension field8L@nd
LiDIA are slower in general than NTL and ZEN.

The packed representation of field elements FLGSection 2.2.3) adds to the
running time for additive routines over extension fields. For charactegidtalds
the overhead is minimal, whereas for fields of odd characteristics, thheactis
significant. & L's multiplication is slower by a factor of around 5 compared to
the best timing tabulated. Our implementation of field inverse is relatively slow
for prime fields, but quite close to the best for extension fields. Indeed;ts:,
GFL's inverse routine is the fastest.

There are several other issues that lead to slower performance laof Frst
of all, GFL is very generalin the sense that it provides a uniform treatment of all
fields, irrespective of whether the characteristic is small (i.e. 2) or lavgether
the field is a prime field or a simply or multiply represented extension etc. The
outermost routines call appropriate lower level routines depending ofiefds.
Thus a user’s program written for characteristic 2 fields will work equat for
a field of characteristic 3 or 101 af°° + 181, only if the value of the argument in
createPrimeGF is changed. No other library discussed here achieves this general-
ity. Indeed a user has to write separate (albeit similar) programs for dargathe
thing over fields of different characteristics. Most notably, the otheatibs pro-
vide a set of routines for fields of characteristic 2, a set for fields glaiprecision
characteristics and yet another set for fields of multi-precision chaistats. In

36



addition, most of these libraries other thaff Gdo not provide facility to work
with multiply represented extension fields or with more than one prime or exten-
sion fields simultaneously. I&. allows one to create and work with as many fields
as one wants. In spite of that, the outer prototype of a call is same for afi.fieid
apparent that maintaining different data structures and using diffee&nof library
calls for fields of differentypesof characteristics speeds up individual operations.
We mentioned that the other libraries do this. We did not, because we did nbt wa
to sacrifice generality.

GFL uses dynamic memory for storing data whose sizes are not kagsiori.
Some test implementations carried out by us show that the same routines built with
static arrays can speed up the running time by 10 to 20%. However, thef use o
dynamic arrays appears better to us because of efficient memory mamageme

The packing overhead for addition and subtraction can be minimized by the
following strategy. First define a prime field, and then an extensioR,» =
F,lz]/(f(x)). Then an element € F,» has the representation= ag + a1z +
e Fap_12™ 1 a; € F,. GFL substitutesp for = and represents as a non-
negative integer. A packed representation would still be possible if drstigues
b for x, whereb is a power of 2 andl > p. This strategy is, however, somewhat less
memory efficient and counterintuitive. It also increases the running timeroés
other operations like generation of random elements of a field. So we diphot
for this.

We finally note that in spite of the packing overhead, generality and dynamic
memory management schemes @& |G it can be made faster by further tuning in
the codes and using and/or devising better algorithms for various oper.aton
example, Karatsuba or FFT-based multiplication technigues can be applied fo
fields of high extension degree. Itis also useful to define field extesbipsparse
irreducible polynomials. Last but not the least, we have seen in Sectiona? #bith
other operations on field elements, polynomials and matrices, it is possible to im-
plement some of thpractically betteralgorithms. We plan to enhance continually
both the capability and the performance & IG
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Appendix A Reference manual for Galois Field Library

In this section, we provide a detailed listing of all data structures and pre®tyjp
all library calls provided by GBL at present.

A.1l Include and compile directives

Include header file
Compile option

#i ncl ude <GFL/all . h>
-1 GFL

A.2 Data Structures

Many of the data structures provided by Ghave already been discussed. For the

sake of completeness, we repeat those definitions here.

typedef struct {
char sign;
int size;
long *word;
} mpint;

typedef struct {
int nf;
int *multiplicity;
mpint *factor;
} intFactor;

typedef mpint GFelement;
typedef short GF_d;

struct {
GFelement p;
GFelement q;
int extlev;
GF_d extof;
long extdeg;
long totextdeg;
GFelement *defpoly;
long *primpower;
long *disclog;
long *zechlt;

} GF_info[MAX_FIELDS];

typedef struct {
long degree;
GFelement *coeff;
} poly;

typedef struct {
int row;
int col;
GFelement **element;

/* Multi-precision integer */

[* ‘+" for positive numbers, ‘-’ for negative numbers, *’ for zero */
/* Number of longs needed to represent the number */

/* link to the array of longs holding the integer */

/* Data structure to store complete or partial factorization of an integer */
/* Number of factors */

/* Pointer to the array holding the multiplicities of the factors */

/* Pointer to the array of factors */

/* Element of a Galois field */

/* Galois field descriptor */

/* characteristic */

/* cardinality */

/* Extension level */

/* Extension of */

/* Extension degree (over immediate subfield) */

/* Total extension degree (over prime subfield) */

/* Painter to coefficients of defining polynomial */

/* Table of powers of a primitive element */

[* Table of discrete logs with respect to a primitive element */
/* Zech’s logarithm table */

/* The data structure poly */
/* The exact degree */
/* Pointer to the array of coefficients */

[* Data structure matrix */

/* Number of rows */

/* Number of columns */

[* Pointer to 2-dimensional array of matrix elements */
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} matrix;

typedef struct {

int size;

GFelement *element;
} vector;

typedef struct {
long nf;
long *multiplicity;
poly *factor;

} polyFactor;

/* Data structure vector */
I* Vector size */
[* Pointer to the array of vector elements */

[* Structure holding the partial or complete factorization of a polynomial */
/* Number of factors */

[* Pointer to the array holding the multiplicities of the factors */

[* Pointer to the array of factors */

/* Factor base for prime fields */

typedef struct {
GFelement p;
GFelement gen;
int fbsize;
long *base;
GFelement *baselog;
} factorBasel;

[* Characteristic of the field in which discrete log is taken */
/* Base to which discrete log is taken */

/* Number of primes in the factor base */

/* Elements of factor base */

/* Discrete logs of factor base elements */

/* Factor base for non-prime fields of extension level = 1 */

typedef struct {
GFelement p;
GFelement gen;
int maxdeg;
int fbsize;
int nprime;
long *base;
GFelement *baselog;
} factorBase2;

/* Characteristic of the field in which discrete log is taken */

/* Base to which discrete log is taken */

/* Maximum degree of irreducible polynomials in the factor base */
/* Number of elements in the factor base */

/* Number of primes between 2 and p-1 */

/* Elements of factor base */

/* Discrete logs of factor base elements */

[* Factor base for non-prime fields of extension level > 1 */

typedef struct {
GFelement p;
matrix ctop;
GFelement gen;
int maxdeg;
int fosize;
int nprime;
long *base;
GFelement *baselog;
} factorBase3;

/* Characteristic of the field in which discrete log is taken */

[* Matrix for composed-to-polynomial basis transformation */

/* Base to which discrete log is taken */

/* Maximum degree of irreducible polynomials in the factor base */
/* Number of elements in the factor base */

/* Number of primes between 2 and p-1 */

[* Elements of factor base */

/* Discrete logs of factor base elements */

A.3 Built-in routines

Initialization routines

This routine initializes the ®L library and must be called at the very
void GFLinitialize() beginning of any program that involve$fG library calls.

void readSmallPrimes(int n) Read the firsts (< 10°) primes from database and store them in the

arraySMALL_PRIME. The array elemer8MALL_PRIME[: — 1] holds
theith prime fori 2> 1.

Multiprecision integer arithmetic

mpint newint() Initialize an mpint before use
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void assignint(mpint *n, char c[])
void longTolnt(mpint *n, long m)

long intToLong(mpint a)

void readInt(mpint *n, char *msg)

int writelnt(mpint n, FILE *fp)
int showInt(mpint n, FILE *fp)

void destroyInt (mpint *n)
void copyInt(mpint *n, mpint m)

int complnt(mpint n, mpint m)

int zerolnt(mpint n)

int positivelnt(mpint n)

int negativelnt(mpint n)

int unitylnt(mpint n)

int negUnityInt(mpint n)

int intTwo(mpint n)

void twoPowerTolnt(mpint *n, long e)
long logTwo(mpint n)

void intMinus(mpint *n, mpint m)

void intSum(mpint *t, mpint n, mpint m)
void intDiff(mpint *t, mpint n, mpint m)
void intProd(mpint *t, mpint n, mpint m)
void intProdTwo(mpint *t, mpint n, long e)
void intSqr(mpint *t, mpint n)

void intExp (mpint *t, mpint n, mpint e)
void intExpTwo(mpint *t, mpint n, long e)

void intDiv(mpint *t, mpint *s, mpint n, mpint m)
void intDivTwo(mpint *t, mpint *s, mpint n, long e)

void intModProd(mpint *t, mpint n, mpint m, mpint r)
void intModExp(mpint *t, mpint n, mpint e, mpint r)
void modplnv(GFelement *t, GFelement n, GFelement
m

void intPP(mpint *n;

void intMM(mpint *n)

void intinc(mpint *n, long a)

void intDec(mpint *n, long a)

void intOR(mpint *t, mpint n, mpint m)

void intAND(mpint *t, mpint n, mpint m)

void intXOR(mpint *t, mpint n, mpint m)

void intLeftShift (mpint *n, long e)

void intRightShift (mpint *n, long e)

void randInt(mpint *n, int len, short seedInfo)

void randRes (mpint *n, mpint m)
int prime(mpint n)

int randPrime(mpint *n, int len, short seedInfo)

void nextPrime(mpint *n, mpint m)

Convert a numeric character stringo thempint n.

Convert thdong m to thempint format and store it im.

Return the value of thmpint a aslong. No error check for overflow.
Read thempint n from stdin. msg is the prompt to display for the input.

Print thempint n as a decimal integer to the file poinfer If fp is NULL,
output is directed tetdout. Returns the number of characters printed.
Print the words of thenpint n to the file pointefp. If fp is NULL, output
is directed tostdout. Returns the number of characters printed.

Free memory currently allocated to thepint n.

Copy the contents ah to n.

Return 1, 0 or —1 depending on whether> m, n = m andn < m
respectively.
Checkifn =0

Checkifn > 0
Checkifn < 0
Check ifn =1
Checkifn = —1
Check ifn = 2
n = 2¢
Return|logg(n) |
Assighn = —m
t=n+m
t=n—m
t=nm
t=mn-2°

t =n?
t=n¢
t =n2°

t = n/m (quotient),s = n%m (remainder). If only one of ands is
needed, th&lULL pointer can be passed as the other output argument.
t = n/2¢ (quotient),s = n%2¢ (remainder). If only one of ands is
needed, th&lULL pointer can be passed as the other output argument.
t = nm % r (Modular product).

t = n® % r (Modular exponentiation).

t =n~1 (mod m) (Modular inverse). This routine assures m) =

n += a (Increment by thelong a)

n —= a (Decremenn by thelong a)

tis assigned the bitwise OR afandm.
tis assigned the bitwise AND of andm.
tis assigned the bitwise XOR af andm.
Left shift n by e bits.

Right shiftn by e bits.

Assign ton a random integer of bit lengtten. The third argument
specifies how to seed the random number generator. Admissble v
ues are: O (don’t seed), 1 (current time), 2 (use the valumsigned int
INT_SEED_VAL as seed).

Assign ton a random number between 0 amd| — 1.

Check ifn is prime.

Setn to a random prime of bit lengtlen. The third argument has the
same interpretation as nandint. randPrime returns the number of it-
erations that was necessary to get the first random prime number
Assign ton the smallest odd prime larger than or equahto
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void intSqrt(mpint *n, mpint m)
void intGCD(mpint *n, mpint a, mpint b)
void intBGCD(mpint *n, mpint a, mpint b)

void intEGCD(mpint *n, mpint *u, mpint *v, mpint a,
mpint b)
intFactor newlIntFactor()

void destroylIntFactor(intFactor *ff)
int printintFactors(intFactor ff, FILE *fp)

void factorizelnt(intFactor *ff, mpint n)

n = [v/m] (m must not be negative)

n = ged(a, b)

n = ged(a, b) (The binary GCD algorithm)

n = ged(a, b) = au + bv (The extended GCD algorithm)

Initialize anintFactor
Free memory associated with timtFactor ff

Print the factorization stored in thetFactor ff to the file pointerfp. If
fp is NULL, output goes tstdout.
Assign toff the complete factorization of.

Galois fields

GF_d createPrimeGF(mpint p)

GF_d createExtGF(GF_d K, poly f)

GF_d primeSubGF(GF_d K)
GF_d subGF(GF_d K)

void defPoly(GF_d K, poly *f)

void characteristic(mpint *p, GF_d K)
void cardinality(mpint *q, GF_d K)
long extDeg (GF_d K, GF_d F)

long totExtDeg (GF_d K)

int extLevel(GF_d K)

void printGFInfo(GF_d K)

Create a Galois field of prime characterigtic The field descriptor (of
type GF_d) returned can be used for all later references to this fiehe. T
value ofp must be prime.

Create an algebraic extension of the existing figldy attaching a root
of the polynomialf. The GF_d returned is to be used to access the
extension field created. The irreducibility ¢fis not checked.

Return the field descriptor of the prime subfieldrfof

Return the field descriptor of the field of whidk is represented as an
extension. —1 is returned K is a prime field.
Assign tof the defining polynomial of<.

Assign top the characteristic ok

Assign toq the cardinality ofK.

Return the extension degree Bfover F.

Return the extension degree Bfover its prime subfield.

Level of extension ofK over its prime subfield, i.e. number of polyno-
mials attached to the prime subfield to have a representatiéh of
Print tostdout information on the Galois field.

Galois field arithmetic

void GFsum(GFelement *t, GFelement a, GFelement b,
GF_d K)

void GFdiff(GFelement *t, GFelement a, GFelement b,
GF.d K)

void GFprod(GFelement *t, GFelement a, GFelement b,
GF.d K)

void GFinv(GFelement *t, GFelement a, GF_d K)

void GFqt(GFelement *t, GFelement a, GFelement b,
GF_d K)

void GFexp(GFelement *t, GFelement a, mpint e, GF_d
K)

void trace(GFelement *t, GFelement a, GF_d K, GF_d F)
void absTrace(GFelement *t, GFelement a, GF_d K)
void norm(GFelement *t, GFelement a, GF_d K, GF_d F)
void absNorm(GFelement *t, GFelement a, GF_d K)

int printGFElement(GFelement a, GF_d K, FILE *fp,
short flag)

t =a+ b (overK)
t=a—b(overK)
t=a-b(overkK)

t=a""! (overk)
t=a-b"! (overkK)

t = a® (overK)

t = Trgp(a) (Trace)
t = Trg | p(a) (@bsolute trace) wherE is the prime subfield o<
t = Ngr(a) (Norm)
t = N |r(a) (@bsolute norm) wher#' is the prime subfield of<

Printa as an element oK to the file pointerfp (stdout if fp is NULL).
Theflag specifies the format of printing. The admissible values and the
corresponding formats are: 0 (Single integer), 1 (Vector agemmedi-

ate subfield), 2 (Vector of vectors of ... over prime subfiedd)-lattened
form of 2), 4 (Same as 3 except without parentheses), 5 (Poliaian

last extending element), 6 (Polynomial in extending elemetegalt]).
printGFElement returns the number of characters printed.

Arithmetic of polynomials over finite fields

poly newPoly()

void destroyPoly(poly *f)

void readPoly(poly *f)

void readPolyFromArray(poly *f, long d, GFelement *ca)

Initialize a data structurpoly before use
Free memory associated with thely f
Read the polynomidlinteractively fromstdin

Read the coefficients of a polynomifabf degreed from the arrayca.
ca[i] should store the coefficient af in f(z) fori =0,...,d.
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int writePoly(poly f, GF_d K, FILE *fp, short flag)

void copyPoly(poly *f, poly g)
void Ic(GFelement *a, poly f)
int monic(poly f)

int zeroPoly(poly f)

int equalPoly(poly f, poly g)

void evalPoly(GFelement *b, poly f, GFelement a, GF_d
K)
void monicize(poly *f, GF_d K)

void polySum(poly *h, poly f, poly g, GF_d K)

void polyDiff(poly *h, poly f, poly g, GF_d K)

void polyProd(poly *h, poly f, poly g, GF_d K)

void polyDiv(poly *h, poly *r, poly f, poly g, GF_d K)

void polyExp(poly *h, poly f, mpint e, GF_d K)

void polyModProd(poly *h, poly f, poly g, poly m, GF_d K)
void polyModExp(poly *h, poly f, poly m, mpint e, GF_d
K)

void polyGed(poly *h, poly f, poly g, GF_d K)

void polyDerivative(poly *h, poly f, GF_d K)

void minimalPoly(poly *f, GFelement a, GF_d K, GF_d F)
void FrobeniusOrder(poly *f, GFelement a, GF_d K,

GF.dF)
void charPoly(poly *f, matrix A, GF_d K)

void compMatrix(matrix *M, poly f, GF_d K)
void polyRes(GFelement *a, poly f, poly g, GF_d K)
void polyDisc(GFelement *a, poly f, GF_d K)

Print the polynomialf () as a polynomial ovef. The output goes to
the file pointerfp (or to stdout if fp == NULL). Theflag specifies the
format for printing the coefficients. Sg®intGFElement above for a
meaning of thiswritePoly returns the number of characters printed.

Assign (z) = g(x)

Assign toa the leading coefficient of (z).
Check if f(z) is a monic polynomial.

Check if f(z) is the zero polynomial.

Check if f(z) = g(z) (as polynomials).
Setb = f(a). The field arithmetic is that ok’

Monicize a polynomiaf by multiplying it with the inverse of its leading
coefficient. (over fieldx)

h(z) = f(z) + g(z) (in K[z])

h(z) = f(z) — g(z) (in K[z])

h(z) = f(z) - g(z) (in K[z])

Perform polynomial division:(z) = f(z)/g(x) (quotient),r(z) =
f(z) % g(x) (remainder) (ink [x]). One ofh orr can beNULL.

h(z) = f(x)° (in Kz])

h(z) = (f(z) - g(z)) % m(z) (in Klx])

h(z) = f(x)¢ % m(z) (in K[z])

h(z) = ged(f(2), g(x)) (in K[z])

Assign toh the formal derivative off (z) € K|[z].

Assign tof the minimal polynomial of: € K over F, whereF' C K
are fields.

Store inf the order olx € K with respect to the Frobenius automorphism
of K overF.

Assign tof the characteristic polynomial of the matuik (with elements
from K).

Assign toM the companion matrix of (z) € K|[x].

Assign toa the resultant of the polynomialxz) andg(z) in K[z].
Assign toa the discriminant off (z) € K|z].

Matrices and vectors over finite fields

matrix newMatrix()

matrix newVector()

void destroyMatrix(matrix *M)
void destroyVector(vector *v)
void readMatrix(matrix *M)

void readMatrixFromArray(matrix *M, int row, int col,
GFelement **src)
void readVector(vector *v)

void readVectorFromArray(vector *v, int size, GFelement
*src)
void writeMatrix(matrix M, GF_d K, FILE *fp, short flag)

void writeVector(vector v, GF_d K, FILE *fp, short flag)
void setZeroMatrix(matrix *M, int n, int m)

void setldentityMatrix(matrix *M, int n)

void setZeroVector(vector *v, int n)

void copyMatrix(matrix *M, matrix A)

void copyVector(vector *v, vector u)

void mtocv(vector *v, matrix M)

void mtorv(vector *v, matrix M)

void mctov(vector *v, matrix M, int j)

Initialize a data of typenatrix.

Initialize a data of typevector.

Free memory associated with thmatrix M.
Free memory associated with thector v.
Read matrixM interactively fromstdin.

Read a matrixM with row rows andcol columns from a 2-dimensional
arraysrc.
Read vectow interactively fromstdin.

Read a vectov of dimensionsize from an arraysrc.

Print a matrixM to a file pointerfp (TheNULL value offp implies output
to stdout). The elements dfl are formatted as elements&fdepending
upon the value oflag (seeprintGFElement).

The analogous output routine for vectors.

SetM to then x m null matrix.

SetM to then x n identity matrix.
Setv to the zero vector of dimensian
AssignM = A.

Assignv = u.

Copy an x 1 matrixM to a vectow.
Copy al x n matrixM to a vectonw.

Store inv the jth column ofM.
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void mrtov(vector *v, matrix M, int i)

void cvtom(matrix *M, vector v)

void rvtom(matrix *M, vector v)

void vtomc(matrix M, vector v, int j)

void vtomr(matrix M, vector v, int i)

int equalMatrix(matrix A, matrix B)

int equalVector(vector v, vector u)

int zeroMatrix(matrix A)

int zeroVector(vector v)

int identityMatrix(matrix A)

int symmetricMatrix(matrix A)

void matrixTranspose(matrix *M, matrix A)

void matrixSum(matrix *M, matrix A, matrix B, GF_d K)
void vectorSum(vector *w, vector v, vector u, GF_d K)
void matrixDiff(matrix *M, matrix A, matrix B, GF_d K)
void vectorDiff(vector *w, vector v, vector u, GF_d K)
void matrixProd(matrix *M, matrix A, matrix B, GF_d K)

void matrixVectorProd(vector *w, matrix M, vector v,
GF.d K)

void vectorMatrixProd(vector *w , vector v, matrix M,
GF.dK)

void scalarMatrixProd(matrix *M, GFelement ¢, matrix A,
GF.d K)

void scalarVectorProd(vector *w, GFelement c, vector v,
GF.d K)

void matrixExp(matrix *M, matrix A, mpint e, GF_d K)

void matrixDet(GFelement *a, matrix A, GF_d K)

int singular(matrix A, GF_d K)

void matrixInv(matrix *M, matrix A, GF_d K)
int matrixRank(matrix A, GF_d K)

int linindep(vector *va, int n, GF_d K)

int linindepRows(vector *v, matrix A, GF_d K)

int linindepCols(vector *v, matrix A, GF_d K)

int LUPD(matrix *M, vector *v, matrix A, GF_d K)

void linSysSolve(vector *w, matrix A, vector v, GF_d K)

void overspLinSysSolve(vector *w, matrix A, vector v,
GF.d K)

void underspLinSysSolve(matrix *M, vector *w, vector
*u, matrix A, vector v, GF_d K)

int sqLinSysSolve(matrix *M, vector *w, vector *u, matrix
A, vector v, GF_d K)

Store inv theith row of M.

Store inM a vectorv of dimensionn as an x 1 matrix.
Store inM a vectorv of dimensionn as al x n matrix.
Set thejth column of M to the vectow.

Set theith row of M to the vectow.

CheckifA = B.

Check ifv = .

Check if A is a null matrix.

Check ifv is a null vector.

Check if A is an identity matrix.

Check if A is a symmetric matrix.

AssignM = At.

M = A + B (using arithmetic of the field()

w = v + u (using arithmetic of the field()

M = A — B (using arithmetic of the field)

w = v — wu (using arithmetic of the fields)

M = A - B (using arithmetic of the field)

w = Mwv wherev is treated as a column vector (over the fi&ldl

w = vM wherev is treated as a row vector (over the figtg
Scalar multiplicationV = cA (arithmetic in fieldK)
Scalar multiplicationv = cv (arithmetic in fieldK)

M = A¢ (using arithmetic of the field<). Negative values o¢ are
allowed, if A is invertible.

Assign toa the determinant of the square matrix(arithmetic in field
K).

Check if A is a singular matrix ovef.

SetM = A~ (using arithmetic of the field).

Returns the rank of the square matdxover K.

Check if then vectors (overK) stored in the arraya are linearly inde-
pendent.

Compute a maximal set of linearly independent rows of the madrix
The rank (sayr) is returned and the first entries of the vectov hold
the indices of a set of linearly independent rows4of

Compute a maximal set of linearly independent columns of the rnatri
A. The rank (sayr) is returned and the firgstentries of the vector hold
the indices of a set of linearly independent columnslof

Compute the LUP decomposition of the invertible matfixLet PA =
LU whereP is a permutation matrix[L a lower-triangular matrix with
1's at the diagonal, anti an upper-triangular matrix. After the call the
entries inM that are above and on the main diagonal are elements of
U whereas those below the diagonal are elements.offhe (i, j)-th
element inP is 1 if and only ifk = ¢ andv,, = j for somek.

Solve the linear systedw = v. A is assumed invertible. (arithmetic
overK)

Solve the overspecified linear systetnv = v. Here A is ann x m
matrix withn > m. The routine assumes that the rank4ofs m.

Solve an underspecified system of linear equations. Heredgificient
matrix A is ann x m matrix withn < m and rankn. For details see
the GFL reference manual.

Solve a square linear system. Here the coefficient matrix ann x n
matrix whose rank is (possibly) less than For details see the G
reference manual.

Irreducible polynomials

int irreducible(poly f, GF_d K)

Check if f(z) is irreducible over the fields.
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int findRandomlrrPoly(poly *f, GF_d K, long d, short
seedInfo)

void findFirstlrrPoly(poly *f, GF_d K, long d)

void listAlllrrPoly(GFelement *count, GF_d K, long d,
FILE *fp, short flag)

Assign tof a random polynomial of degregirreducible overK. The
flag seedInfo specifies how to seed the random number generator. It can
take the following values: 0 (don't seed), 1 (use local timeseed), 2
(use the value ofinsigned int SEED_VAL as seed). The function re-
turns the number of random polynomials checked to find the uciste
polynomial.

Assign tof the lexicographically first irreducible polynomial of degié
overk.

List all irreducible polynomials of degreé over K. The file pointer
fp should be supplied for directing the outpINYLL meansstdout).
Theflag specifies the formatting option (SeeitePoly andprintGFEle-
ment). After the routine returnszount holds the total number of irre-
ducible polynomials found.

Roots of polynomials

int findRootES(vector *v, poly f, GF_d K)

int findRootBR(vector *v, poly f, GF_d K)

int findRootBT(vector *v, poly f ,GF_d K, GF_d F)

int findRoot(vector *v, poly f, GF_d K, short flag)

Find roots off(z) in K and return the roots as elements of the vector
v. The routine returns the number of roots found. The exhaaistarch
algorithm is used.

Find roots off(z) in K and return the roots as elements of the vector
v. The routine returns the number of roots found. BerlekampirRab
algorithm is used. It applies only to fields of odd charastezi

Find roots off(z) in K and return the roots as elements of the vector
v. The routine returns the number of roots found. Berlekampisetr
algorithm is used. This requires a sub-fiditlof K. Typically F' is

the prime sub-field of<. This algorithm is suitable wheR' has small
cardinality.

This routine calls one of the above routines depending ottassteargu-
ment flag). The actions corresponding to the different values are: 1 —
(Call findRootES), 2 — (CallfindRootBR), 3 — (callfindRootBT with

F = the prime sub-field of<), anything else — (if cardinality of is

< SMALL_Q_BOUND call findRootES, else if characteristic oK is 2,

call findRootBT, else callfindRootBR).

Polynomial factorization

polyFactor newPolyFactor()
void destroyPolyFactor(polyFactor *pf)

long printFactors(polyFactor pf, GF_d K, FILE *fp, short
flag)

void squareFreeFactorization(polyFactor *pf, poly f,
GF_d K)

void distinctDegreeFactorization(polyFactor *pf, poly f,
GF.d K)

void equalDegreeFactorization(polyFactor *pf, poly f, int
d, GF_d K)

void factorizePoly(polyFactor *pf, poly f, GF_d K)

Initialize a data of typeolyFactor.
Free memory associated wipi.

Print the factorization stored ipf to the file pointerfp (NULL implies
stdout). flag specifies how to format the coefficients (as elements of the
field K); seewritePoly and printGFElement for details. The routine
printFactors returns the total number of characters printed.

Store inpf the square-free factorization ¢fxz) over the fieldK.

This routine takes as input a square-free polynorfijal) and computes
the distinct degree factorization ¢fz) over K and stores this factoriza-
tion in pf.

The polynomialf(z) input to the routine must be a square-free poly-
nomial of which all the irreducible factors are of degite The equal
degree factorization of (z) over the fieldK is computed and stored in
pf.

This routine factorizes a polynomigl(z) over the fieldK” and stores
this factorization irpf. This routine in turn calls the square-free, distinct-
degree and equal-degree factorization routines descaibede.

Permutation polynomials

int permPoly(poly f, GF_d K)

Check if f is a permutation polynomial ovet

Primitive elements

int primitive(GFelement a, GF_d K)
int primitive2(GFelement a, GF_d K, intFactor ff)
void findPrimElement(GFelement *a, GF_d K, short

seedInfo)

void findPrimElement2(GFelement *a, GF_d K, intFactor
ff, short seedlInfo)

Check ifa is a primitive element of<.

Same agrimitive except that the integer factorizationgf 1 is supplied
throughff, wheregq is the cardinality ofi<.

Assign toa a random primitive element ik’. The last argumensgéed-

Info) specifies how to seed the random number generator: 0 mearis ‘don
seed’, 1 means ‘use current time as seed’, and 2 means use theofalu
theunsigned int PRIMITIVE_SEED_VAL as seed.

Same adindPrimElement except that the integer factorizationpf- 1

is supplied througlff, whereg is the cardinality ofK.
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void createPrimTable(GFelement g, GF_d K)

void destroyPrimTable(GF_d K)
void savePrimTable(GF_d K, char *fname)
void readPrimTable(GF_d K, char *fname)

void createZechTable(GF_d K)

void destroyZechTable(GF_d K)
void saveZechTable(GF_d K, char *fname)
void readZechTable(GF_d K, char *fname)

Create tables of powers of the primitive elemere K. Maintaining this
table speeds up computation (products and inverse) BveHowever,

the cardinality of should not be large so that these tables can reside in
main memory.

Free memory associated with the primitive power tables

Save primitive power tables of the field in hard disk filefname.
Read primitive power tables for the field from hard disk filesfname.

Create Zech'’s logarithm table for the fiekd. This table speeds up ad-
dition and subtraction id<. Before this function is called, the primitive
power and discrete logarithm tables must be created. Zeotpsithm
table resides in main memory, so the cardinalitysoshould be small if
this table is to be maintained.

Free memory associated with the Zech'’s logarithm table fofiéhe K.

Save Zech’s logarithm table of the fiekd in hard disk filefname.
Read Zech'’s logarithm table for the field from hard disk filefname.

Normal elements

int normal(GFelement a, GF_d K, GF_d F)
int NPoly(poly f, GF_d F)

void listAllNormalElements(GF_d K, GF_d F, FILE *fp,
short flag)

void listAlINPolys(GF_d F, long d, FILE *fp, short flag)

void findNormalElementR(GFelement *a, GF_d K, GF_d
F, short seedInfo)

void findNormalElementA(GFelement *a, GF_d K, GF_d
F, short seedInfo)

void findNormalElementBDS(GFelement *a, GF_d K,
GF.dF)

void findNormalElement(GFelement *a, GF_d K, GF_d F,
short flag)

Check ifa is a normal element for the extensiéf F'.

Check if f(z) € F[z] is an N-polynomial for the extensiaki | F' where
K = Flz]/<f(x)>.

List all normal elements for the extensidf| F' to the file pointerfp (or
tostdout if fp is NULL). Theflag specifies the output format of elements
in K (seeprintGFElement).

List all N-polynomials inF'[z] of degreed. fp andflag has the same
significance as itistAllNormalElements.

Find a random normal element for the extensiShF and store it ina.
The flagseedInfo is a directive to seed the random number generator: O
means ‘don’t seed’, 1 means ‘use current time as seed’ and 2 mesns *
the value of theinsigned int NORMAL_SEED_VAL as seed.

Find a normal element for the extensi@f F' and store it ina. This
uses the algorithm that follows from Artin’s lemma [85, Theuré.23].
seedInfo has same meaning as in the routimeNormalElementR.

Find a normal element for the extensi@f| F' and store it ina. This
routine uses Bach, Driscoll and Shallit's factor refinemégbathm [6].
Find a normal element for the extensidf| £’ and store it ima. It calls
one of the above routines depending on the valuitagt For the values
1, 2 and 3 offlag, the routinedindNormalElementR, findNormalEle-
mentA andfindNormalElementBDS are called respectively. For any
other value offlag, findNormalElementA is called ifg > 2s(s — 1),
otherwisefindNormalElementBDS is called (whergy is the cardinality
of F ands is the degree of the extensidf| F).

Basis utilities

int basis(vector v, GF_d K, GF_d F)

void gtopTransMatrix(matrix *M, vector v, GF_d K)

void ptogTransMatrix(matrix *M, vector v, GF_d K)

void gtogTransMatrix(matrix *M, vector u, vector v, GF_d
K)

void ntopTransMatrix(matrix *M, GFelement a, GF_d K)

void ptonTransMatrix(matrix *M, GFelement a, GF_d K)

void polyBasis(vector *v, poly *f, GF_d K, GF_d F, short
seedInfo)

Check if the elements of the vectoform a basis ofK” over F'.

Assign toM the transformation matrix from a general basis to the polyno-
mial basis ofK over its immediate subfield. The elements of the general
basis are those af.

Assign toM the transformation matrix from the polynomial basis to a
general basis o over its immediate subfield. The elements of the
general basis are those af

Assign toM the transformation matrix from a general basis (defined by
u) to another general basis (defineddyof K over its immediate sub-
field.

Assign toM the transformation matrix from the normal bagis:?, - - -,
a?’ " tothe polynomial basis ak over its immediate subfiel# where
|F|=qgand[K : F] =s.

Assign toM the transformation matrix from the polynomial basis to
the normal basig, a4, - - -, a9 of K over its immediate subfield@
where|F| = gand[K : F| = s.

This routine assigns toa polynomial basis of the fiel& over a subfield

F (not necessarily immediate). That is, suppose that the tofxetten-
sionsF = Fy C Fy--- C Fy = K is represented. The default basis
of K over F' that GFL works with, is called theeomposed basisThis

is not, in general, a polynomial basis &f over F'. polyBasis returns a
polynomial basis for the extensidi| F'.
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void gtocTransMatrix(matrix *M, vector v, GF_d K, GF_d
F)

void ctogTransMatrix(matrix *M, vector v, GF_d K, GF_d
F)

void gtogTransMatrix2(matrix *M, vector u, vector v,
GF.dd K, GF_F)

void ntocTransMatrix(matrix *M, GFelement a, GF_d K,
GF.dF)

void ctonTransMatrix(matrix *M, GFelement a, GF_d K,
GF.dF)

Assign toM the transformation matrix from a general basis to the com-
posed basis o over a subfield?. The elements of the general basis
are those ob.

Assign toM the transformation matrix from the composed basis to a
general basis of< over a subfield®. The elements of the general basis
are those ob.

Assign toM the transformation matrix from a general basis (defined by
u) to another general basis (defineddyof K over a subfield.

Assign toM the transformation matrix from the normal basis:?, - - -,
""" to the composed basis &f over a subfield® where|F| = gand
[K: F]=s.

Assign toM the transformation matrix from the composed basis to the
normal basis, a4, - - -,a‘ls*1 of K over a subfield?” where|F| = ¢
and[K : F] = s.

Isomorphism between finite fields

void findlsoMatrix(matrix *M, GF_d K1, GF_d K2)

This routine computes the transformation matkik between two fields
K1 and K> of the same cardinality. Suppose tlfats the prime subfield
of K7 andKy with [K; : F| = [K2 : F] = s. Lete; € K; have the
isomorphic image:> € K. If the coordinates o€, in the composed
basis ofK(; overF are(ao, - - -, as—1) and those o€z in the composed
basis ofK5 over F are(bo, - - -, bs—1), then the relation between the
andb; is given by(bo, - - -, bs—1)* = M(ao, -+, as—1)%.

Discrete logarithms

Discrete logarithms in finite fields can be computed with respect to primitive
elements using the index calculus method. In the first stage one should compute
logarithms of elements in a factor base. At the second stage one computes indi-
vidual logarithms with the help of the factor base. At present only the badéxin
calculus method has been implemented. Sieve methods will come up shortly.

The data type for the storage of factor bases and the corresponditigeo
are dependent on the type of the field over which one intends to calculatetdis
logarithms. They have generic names. One has to append 1, 2 or 3 to émesg n
depending on whether the field is a prime field, a simply represented exterision
a prime field or an extension field of representation level more than 1. Tnus f
a field K represented a&’ = IFy[z]/ < f(x) >= IF,« (Wheredeg(f(x)) = d
andp a prime), one should use the data tfpetorBase2 and the routinesew-
FactorBase2, destroyFactorBase2, createFactorBase2, saveFactorBasez2,
readFactorBase2 anddlog2.

In what follows, we explain the generic description of these routines.

factorBase newFactorBase()

void destroyFactorBase(factorBase *fb)

void saveFactorBase(factorBase fb, char *fname)
void readFactorBase(factorBase *fb, char *fname)

void createFactorBase(factorBase *fb, GF_d K,
GFelement g, long or int N)

void dlog(GFelement *I, GFelement a, GF_d K,
factorBase fb)

Initialize afactorBase

Free memory associated witlfactorBase

Save contents of factorBase in hard disk filefname
ReadfactorBase from a hard disk fildname

Create a factor base for the field with respect to the primitive element
g and store the data fiv. The last argumentN) is of typelong for Type

1 factor bases (it signifies a bound on the value of the priméwifactor
base) and of typat for Type 2 and Type 3 factor bases (here it signifies
the maximum degree of an irreducible polynomial in the facteeha
Assign tol the discrete logarithm of € K using the data stored in
factorBase fb. The primitive element with respect to which the discrete
logarithm is taken is stored iilp; one doesn't have to specify it as input
to the routine.
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3 Algorithms for computing
discrete logarithms over prime fields

Computation of discrete logarithms over a finite fi&ldis a difficult problem. No
algorithms are known to solve the problem in time bounded by a polynomial in
log q. For practical applications, one typically uses prime fields or fields ofachar
teristic 2. In this chapter, we concentrate on prime fields only. We describe th
variants of the index calculus method for the computation of discrete logarithms
over finite fields of prime cardinality. The first one called the basic methodtia no
practical method for discrete logarithm computation. It can be applied ongltisfi

of smallcardinality. The other two methods known as the linear sieve method and
the cubic sieve method are practical methods for medium-sized primes.

In Section 3.1 we formally define the discrete logarithm problem (DLP) and
provide a generic description of the index calculus method to solve DLRedn S
tion 3.2, we describe the three methods mentioned above for solving DLP. The
analysis of the sieve methods [28] are based on the heuristic assumptidhethat
integers checked for smoothness over a set of primes are randomly udesdtib
In Section 3.3, we prove that this behavior is not random in the sense #sat th
integers do not follow uniform distribution. Indeed we establish that frogrctin-
sideration of bit-size, the actual distributiontstterthan the uniform distribution
for both the linear sieve and the cubic sieve methods. We give the details of the
calculations of Section 3.3 in the appendix at the end of this chapter.

3.1 The discrete logarithm problem

LetF,, be a prime field of cardinality. For an elemeni € I, we denote by the
representative of in the set{ 0,1,...,p — 1 }. Letg be a primitive element dFf,,
(i.e. a generator of the cyclic multiplicative groiiy). Given an element € [y,
there exists a unique integer< = < p — 2 such thaw = ¢g” in IF,,. This integerz
is called thediscrete logarithnor indexof a in F,, with respect tgy and is denoted
by indy(a). The determination af from the knowledge op, g anda is referred to
as thediscrete logarithm problerfDLP).

In general, one need not assugne be a primitive element and one is supposed
to computex from a and g, if such anx exists (i.e. ifa belongs to the cyclic
subgroup ofF, generated by). In this article, we always assume for simplicity
thatg is a primitive element of,.

We note that the DLP is the inverse of discrete exponentiation. Discrete expo
nentiation iseasyto compute in the sense that there exist algorithms to solve this
problem in time bounded by a polynomiallisg p. The DLP, on the other hand, is a
difficult computational problem. No algorithms are known to solve the DLP in time
bounded by a polynomial ilog p. The intractability of the DLP is exploited for de-
signing various public-key cryptosystems, for example, the EIGamal scfg2he
It is, therefore, of great interest to obtain practical performance ivgpnents and
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rigorous analysis of algorithms for the DLP, typically for primes of sigd 000
bits.

The older methods for solving the DLP, namely, Shank’s Baby-Step Giapt-S
method, Pollard’s rho method and Pohlig-Hellman method [85, Sections 6.4, 6.5]
have worst-case running times exponentialdgp and hence cannot be used ex-
cept forsmall fields. They, however, have the advantage that they work for any
arbitrary cyclic group. The index calculus method [28, 73, 84, 85, 9liigently
the best known method for solving DLP over fields of both prime and prinveepo
cardinalities and has sub-exponentiaéxpected running time. It, however, does
not apply to any arbitrary group. For example, a direct adaptation of thexical-
culus method for computing discrete logarithms in elliptic curves over finite fields
is expected to lead to a running tim@rsethan that of brute-force search [120].
Recently, Joseph H. Silverman has proposed a new algorithm, call&ddhéecal-
culus method119], which, though originally devised for computing elliptic curve
discrete logarithms, can be applied to finite fields. However, this algorithm has
been experimentally and heuristically shown to be impractical [62].

3.1.1 The index calculus method

Suppose that we want to comptitel,(a) in F,. In the index calculus method,
we start by choosing actor baseB which is asuitablesubset off; of small
cardinality. Let us denot® = {by, bs, ..., bs}. We then search faelationsof the
form

g%ad® [1v = H b (mod p)
i=1

=1

This gives us a linear congruence

a+ findga + Z’yiindgbi = Zéiindgbi (mod p—1)
i=1 i=1

The index calculus method proceeds in two stages. In the first stageaveh $er
relations withg = 0. When sufficiently many relations are available, the resulting
system of linear congruences is solved npod 1 for the unknownsnd, b;. In the
second stage, a single relation involvifi¢ p — 1) = 1 is found. Substituting the
precomputedalues ofind, b; yieldsind, a.

The running time of the index-calculus method is of the form

L{p,w,¢) = exp ((c + (1)) (log p)* (log log p) ') (3.1)

for some positive constantand for some real numbér< w < 1. By an abuse of
notation, we denote b¥(p, c) any quantity that satisfies

L(p,c) = exp ((c + 0(1))\/lnplnlnp)

This corresponds to = % in Egn. 3.1. Whemn is understood from the context, we
write L{c] for L(p, ¢). In particular,L[1] is denoted simply by..

The basic index calculus method [85, Section 6.6.2] for the computation of
discrete logarithms over prime fields and the adaptations of this method take time
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Lic] for ¢ between 1.5 and 2 and are not useful in practice for prime figldsith

p > 2190, Coppersmith, Odlyzko and Schroeppel [28] proposed three vagénts

the index calculus method that run in tini¢l] and are practical fop < 2250, A
subsequent paper [73] by LaMacchia and Odlyzko reports implementaitioro

of these three variants, namely the linear sieve method and the Gaussian integer
method. They were able to compute discrete logarithni, iwith p of about 200

bits.

The paper [28] also describes a cubic sieve method due to Reyneri forriiie
putation of discrete logarithms over prime fields. The cubic sieve method has a
heuristic running time of.[v/2a] for somel < o <  and is, therefore, asymp-
totically faster than the linear sieve method (and the oftjéf methods described
in [28]). However, the authors of [28] conjectured that the theoretisgimptotics
do not appear to take over forin the range of practical interest (a few hundred
bits). A second problem associated with the cubic sieve method is that itesguir
solution of a certain Diophantine equation. It is not known how to find a salutio
of this Diophantine equation in the general case. For certain special priraes
solution arises naturally, for example, whers closeto a whole cube.

Recently, a new variant of the index calculus method based on genenaknu
field sieves has been proposed and has a conjectured heuristic run time of

L(p,1/3,¢) = exp ((c + o(1))(log p) (log log p) 7 )

(See [78] for a good reference on this topic). Weber et. al. [105, 128] have
implemented and proved the practicality of this method.

3.2 Three variants of the index calculus method for DLP

In this section, we describe the details of the basic method, the linear sievedmetho
and the cubic sieve method. They differ in the choice of the factor basmdhd

way the relations are generated. We concentrate on the first stage dhig.ig
typically the more time-consuming stage.) The description of the second stage is
similar and can be found in [28, 84, 85].

3.2.1 The basic method

For this method, the factor basefs= {q;, ¢s, - - ., g, }, Whereg; is theith prime

(¢; =2, ¢, = 3 and so on). With a harmless abuse of convention, we call an integer
n to be B-smooth, if all the prime factors of are in B, that is, if n factorizes
completely over the factor bade. The first stage of the method computes the
discrete logarithms of the elementsBf(with respect tg)). In order to do that, one
raisesg to a random powef, 2 < j < p — 2 and checks i/ factorizes smoothly
over the factor basB as an integer. Thus, i = []i_, ¢, then

t
j= Zaidi (modp—1)
i=1

whered; is the discrete logarithm af;. This gives us a linear congruence in the
unknownsd;. After ¢ such linearly independent relations are found, the resulting
system is solved modulp — 1. Every search step for a relation involves the fol-
lowing two computations:
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1. Computation of the discrete exponentiatign
2. A check ifgi factorizes completely oveB.

The second step is carried out by trial divisions by the elemengs of

3.2.2 The linear sieve method

LetH = |,/p|+1andJ = H?>—p. ThenJ < 2,/p. Let’s consider the congruence
(H+c1)(H +c2) =J+ (c1+c2)H + ciea (mod p) (3.2)

Forsmallintegers:y, co, the right side of the above congruence, henceforth denoted
as

T(c1,c2) = J + (e1 + o) H + c1co (3.3)

is of the order of,/p. If the integerT’(ci, c2) is smooth with respect to the first
primesq, g2, - - - , ¢, that s, if we have a factorization liké+ (¢1 +c2) H +c1c2 =

t_1 ¢, then we have arelation

t
indg(H + c1) + indg(H + ¢3) = > _ o indy(gs)
i=1

For the linear sieve method, the factor base comprises of primes less[th&n(so
thatt ~ L[1/2]/In(L[1/2]) by the prime number theorem) and integéfst ¢ for
—M < ¢ < M. The boundV oncis chosen such th&t/ ~ L[1/2 + ¢] for some
small positive reat. Once we check the factorization ®{c;, c2) for all values of

c1 andes in the indicated range, we expect to ddi /2 + 3¢| relations like (3.2)
involving the unknown indices of the factor base elements. If we furtheurras
that the primitive elemenj is a small prime which itself is in the factor base, then
we get a relatiorind,(g) = 1. The resulting system with asymptotically more
equations than unknowns is expected to be of full rank and is solved toutemp
the discrete logarithms of elements in the factor base.

In order to check for the smoothness of the intedé(s,, c2) for ¢, ¢y in the
range—M, ..., M, sieving technigues are used. First one fixes and initializes
to zero an arrafl indexed— M, ..., M. One then computes for each prime power
¢" (¢ is a small prime in the factor base ahds a small positive exponent), a
solution forc, of the congruenc€H + c;)ez + (J +c1H) =0 (mod ¢"). If the
gcd(H + ¢1,q) = 1, i.e.if H + ¢; is not a multiple of, then the solution is given
byd = —(J+c1H)(H +c1)~' (mod ¢"). The inverse in the last equation can
be calculated by running the extended ged algorithniHos ¢; andg”. Then for
each value oty (—M < ¢y < M) thatis congruent td (mod ¢"), 1g ¢ is added
to the array locatio®!.,. On the other hand, i§"'||(H + ¢;) with oy > 0, we
computehy > 0 such thay"2||(J + c1 H). If hy > ho, then for each value af,,
the expressiofl’(cy, ) is divisible by¢"? and by no higher powers @f So we
add the quantityry In g to ., for all —M < co < M. Finally, if by < hg, then we
addh;Ingto ., forall —M < c; < M and forh > h; solve the congruence as

d=— (1) (%) tmoda ),

"More precisely, some approximate valudgf, say, for example, the integet0001g q|.
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Once the above procedure is carried out for each small pgiinethe factor
base and for each small exponént we check for which values af,, the entry
of 2 at indexc; is sufficiently clos¢o the valudg (T'(c1, c2)). These are precisely
the values of; such that for the given;, the integefl’(c;, ¢,) factorizes smoothly
over the small primes in the factor base.

In an actual implementation, one might choose to varyjn the sequence
—M,—M +1,—M + 2,... and, for eache;, consider only the values af, in
the rangec; < ¢o < M. The criterion for ‘sufficient closeness’ of the array ele-
ment2., andlg (7'(c1, c2)) goes like this. IfI'(c;, c2) factorizes smoothly over the
small primes in the factor base, then it should differ fraily by a small positive
or negative value. On the other hand, if the former is not smooth, it wowld &a
factor at least as small ag; 1, and hence the difference betwderT'(c, c2)) and
2., would not be less thalg p,+ 1. In other words, this means that the values of the
differencelg (T'(c1, c2)) — 2., for smooth values of (c;, c2) are well-separated
from those for non-smooth values and one might choose for the criteritieck
whether the absolute value of the above difference is less than 1.

This completes the description of the equation collecting phase of the first stag
of the linear sieve method. This is followed by the solution of the linear system
modulop — 1.

3.2.3 The cubic sieve method

Let us assume that we know a solution of the Diophantine equation

X3 = Y?Z (mod p) (3.4)
X3 £ Y%z

with X, Y, Z of the order op* for some% <a< % Then we have the congruence
(X +AY) (X +BY)(X+CY) = (3.5)

Y2 {Z + (AB + AC + BC)X + (ABC)Y] (mod p)

for all triples (A, B, C') with A + B + C = 0. If the bracketed expression on the
right side of the above congruence, namely,

R(A,B,C) = {Z + (AB + AC + BO)X + (ABC’)Y] (3.6)

is smooth with respect to the firspprimesqy, ¢o, . . ., ¢, that is, if we have a fac-
torizationR(A, B,C) = [T, qf then we have a relation like

indy(X + AY) + indy(X 4+ BY) + indy(X + CY) =

¢
ind, (Y?) + Z Biindg(g;) (mod p—1)

=1

If A, B, C aresmallintegers, therR(A, B, C) is of the order op®, since each of
X, Y andZ is of the same order. This means that we are now checking integers

2The exponent can be chosen in the sequerige, 3, . . . until one finds arh for which none of
the integers between M and M is congruent tal.
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smaller tharO(p%) for smoothness over firgtprimes. As a result, we expect to
get relations like (3.5) moreasilythan relations like (3.2) as in the linear sieve
method.

This observation leads to the formulation of the cubic sieve method as follows.
The factor base comprises of primes less thay«/2] (so that by prime number

theoremt ~ L[\/a/2]/In (L[\/a/Q})), the integey’? and the integers( + AY

for0 < |A| < M, whereM is of the order of_.[\/a/2]. The integeR(A, B, C) s,
therefore, of the order @i*L[/3a/2] and hence the probability that it is smooth
over the firstt primes selected as above, is abdlit-1/a/2]. As we check the
smoothness fol.[v/2a] triples (A, B, C) (with A + B + C = 0), we expect to
obtainL[/a/2] relations like (3.5).

In order to check for the smoothness B{A, B,C) = Z + (AB + AC +
BC)X + (ABC)Y over the firstt primes, sieving techniques are employed. We
maintain an arrayl indexed—M ... + M as in the linear sieve method. At the
beginning of each sieving step, we fiX initialize the array?l to zero and letB
vary. The relatiold + B + C = 0 allows us to eliminated from R(A, B,C) as
R(A,B,C) = —B(B + C)(X + CY) + (Z — C?X). For a fixedC, we try to
solve the congruence

~B(B+C)X +CY)+ (Z-C*X)=0 (mod ¢") (3.7)

whereq is a small prime in the factor base ahds a small positive exponent. This
is a quadratic congruence B If X + C'Y is invertible modula;” (i.e. modulog),
then the solution foB3 is given by

B= —% - \/(X +0oY) Y7 -02X) + 22 (mod ¢") (3.8)

where the square root is moduld. If the expression inside the radical is a
quadratic residue modulg, then for each solutiod of B in (3.8),lg ¢ is added to
those indices of( which are congruent td modulog”. On the other hand, if the
expression under the radical is a quadratic non-residue mgdulee have no so-
lutions for B in (3.7). Finally, if X + C'Y" is non-invertible modulg, we compute
hi1 > 0 andhy > 0 such tha™ ||(X + CY) and¢™2||(Z — C?X). If hy > hao,
thenR(A, B, C) is divisible by¢"? and by no higher powers gffor each value of
B (and for the fixed”). We addh, lg ¢ to 2; for each—M < i < M. On the other
hand, ifh; < ho, we addh; Ig g to 2; for each—M < i < M and try to solve the

congruence-B(B + C) (X;L,ffy) + (Z‘q(,ffX) =0 (mod ¢" M) forh > hi.

SinceX;;fY is invertible modulay”—"1, this congruence can be solved similar to
(3.8).

Once the above procedure is carried out for each small pgitnethe factor
base and for each small exponéntve check for which values a8, the entry ofA
atindexB is sufficiently clos¢o the valudg(R(A, B, C)). These are precisely the
values ofB for which R(A, B, C') is smooth over the first primes for the given
C'. The criterion of ‘sufficient closeness’ 8f andlg(R(A, B, C)) is the same as
described in connection with the linear sieve method.

In order to avoid duplication of effort, we should examine the smoothness of
R(A,B,C)for —-M < A < B < C < M. The ranges over whici, B andC
vary are described in Lemma 3.5.
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After sufficiently many relations are available, the resulting system is solved
modulop — 1 and the discrete logarithms of the factor base elements are stored for

computation of individual discrete logarithms.

Attractive as it looks, the cubic sieve method has several drawbacké winic
pair its usability in practical situations.

1. Itis currently not known how to solve the congruence (3.4) for aergp.

And even when it is solvable, how large carbe? For practical purposes
should be as close L§) as possible. No non-trivial results are known to the
authors, that can classify primgsaccording as the smallest possible values
of « they are associated with. (See Chapter 5 for some estimates of the
expected number of solutions of the congruence.)

. Because of the quadratic and cubic expressionls i andC as coefficients

of X andY in R(A, B,C), the integersk(A, B, C) tend to be as large as
p% even whem is equal tol /3. If we compare this scenario with that for
T(c1, c2) (See Equation 3.3), we see that the coefficierfifa$ a linear func-
tion of ¢; andcy and as such, the integefgcy, c2) are larger tham)% by a
small multiplicative factor. This shows that though the integefsl, B, C)
are asymptotically smaller than the integét&:, c2), the formers are, in
practice, around 0*-10° times smaller than latter ones, even wheras-
sumes the most favorable value (namély3). In other words, when one
wants to use the cubic sieve method, one should use valu€safthe num-
ber of small primes in the factor base) much larger than the values preascribe
by the asymptotic formula far.

. The second stage of the cubic sieve method, i.e. the stage that invatves co

putation of individual logarithms, is asymptotically as slow as the equation
collection stage. For the linear sieve method, on the other hand, individual
logarithms can be computed much faster than the equation collecting phase.

3.3 Average behavior and distribution of 7'(c1, ¢o) and R(A, B, C)

DEFINITION 3.1

THEOREM 3.2

Central to the running time analysis of the index calculus methods describeal in th

previous section is the concept of smoothness and probabilistic densigssimn
of smooth integers.

An integerz is said to be-smoothfor a positive integey, if all prime factors of
x are< y. Wheny is understood from the context, we spealdfeingsmooth
We denote by)(z, y) the number of positive integers = that arey-smooth.

The following theorem gives an asymptotic estimateifor, y) [28, 77, 84].

If u = log z/logy, then foru — oo andy > log? z,

Y(,y) = zu o

In particular, if we haver = p® andy = L[] = exp(8+/log ploglogp), then

vla.p)/a =L | =55,
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DEFINITION 3.3

The quantityy(x,y)/x measures the likelihood that an integer chosen ran-
domly between 1 and is y-smooth. The analysis of the running times of the linear
and cubic sieve methods makes bigiristicassumption that the numbéféc,, c2)
andR(A, B, C) are randomly distributed between 1 and a boundherefore, the
expected number of relations obtained is governed by the probabilityy) /.

In this section, we prove that this assumption does not strictly hold. To thjs end
we first define the following quantities:

For the linear sieve method, we defifieto be the average value {(f(c;, cz)|
and Ty« to be the maximum value df’(c1, c2)|, asc; andey range over all
permissible values, namelyM < ¢; < ¢o < M. For the cubic sieve method
let R and Rp,,.x denote the average and maximum valuegiif4, B, C)| over
all triples(A, B, C) satisfying—-M < A< B<C<M,A+B+C=0.

If T(c1,co) (resp.R(A, B, C)) were truly random, we expect that(resp.R)
would be close tdl,.x/2 (resp. Rmax/2). However, we calculate that and R
are significantly smaller thaif,., /2 and R,,.,./2 respectively. Though these dif-
ferences are asymptotically unimportant, they reveal that in practical sitgdtie
sieve methods tend to produce more relations than predicted by the theastical
timate.

3.3.1 Average value ofl'(¢y, o)

REsuULT 3.4

From Eqn. 3.3, it is clear that for most of the valuespfandcs, the term(c; +
c2)H dominates in the expression (¢, c2). In view of this, we can write the
approximate value df’ as

M M
T~H- > er + e / o1 (3.9

c1,c0=—M c1,e0=—M
c1<co c1<co

The denominator on the right side of this equation counts the number of pairs o

integers(cy, c2) subject to the conditior- M < ¢; < ¢ < M, and can be shown
to have a value of M + 1)(2M + 1) = 2M? + O(M). The sum in the numerator

M M
of (3.9) canbe brokenas® ~ (ci+c2) + Y —(c1+c). Itiseasyto see

c1,c0=—M c1,c9=—M
c1<cg,c1+co>0 c1<cg,c1+co<0

that these two sub-sums are identical. Therefore, evaluating the firgjisamthe
value of the numerator of the right side of (3.9) to(&/3 + O(M?))H. Thus we
get

TaH @M + 0(1)> (3.10)

Finally it is easy to see that the maximum valueldt:, c;) is attained approxi-
mately atc; = co = =M. To sum up, we have

T~ H(3M + O(1)) andTax ~ 2M H, so thatl / Tyax ~ 1/3.
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3.3.2 Average value of?(A, B, C)

LEMMA 3.5

Proof

REsSULT 3.6

We first study the range over whieh B andC can vary. The next lemma provides
the complete description of this.

With the conditions-M < A < B < C < M andA+ B+ C = 0in the cubic
sieve method,

i) Cvaries from 0 tolM. In particular,C is always positive.

i) ForagivenC, B varies from—C/2 to min(C, M — C).

i) For a givenC', A varies frommax(—2C, —M) to —C'/2. In particular,A is
always negative.

i) If C <0thenA+ B+ C = 0implies thatA + B > 0 and hence at least one
of A andB is greater than 0. This contradicts the fact that C' andB < C.

i) We have2B > A+ B = —C,soB > —(C/2. AgainB < C andB =
—A—-C < M-CsinceA > —M. ThusB < min(C, M — C). ltis easy to
see that all values dB in the range-C/2 < B < min(C, M — C') correspond to
some triple(A, B, C).

i) 2A<A+B=-C,A>-MandA=-B—-C>-2C,sinceB<C. 1

In what follows we assume thatis small in the sense that it can be neglected in
the expression foR(A, B, C'). We consider two cases. In the first case we assume
Y <« X/M. For example, we study a specific instance of this case With 1 in
the next chapter. Itis evident from Eqn. 3.6 that in this case the tdibh+ AC +
B(C)X is the dominant one in the expression (A, B, C). Therefore, we can
write

R~ X- > |AB+AC+BC|/ > 1| g1y

—~M<ALBLOLM —M<ALBLOLM
A+B+C=0 A+B+C=0

The denominator is the number of tripled, B, C) for which the smoothness of
R(A, B,C) is checked and evaluates $8/% + O(M). In order to evaluate the
numerator, we note thatB + AC + BC = —(B? + BC + C?) = —1[(B +
C)? + B? + C?] < 0 for all values of B andC. Therefore, the lemma 3.5 allows
us to write the numerator as - Y., ngi‘(_cc’%*c) (B%+ BC + C?). This sum

evaluates tg?2: M* + O(M?). We thus get

ForY < X/M, R ~ X(33M? + O(M)) and Rax ~ M?X, so that

R/ Ruax ~ 329/768 ~ 0.43.

The value ofR,,.x in the last theorem can be calculated in the following way.
Since|R/X| ~ B? + BC + C? = (B + C/2)? + 3/4C?, then by lemma
3.5, R(A, B, C) increases monotonically for a fixed in the range of admissi-
ble variation ofB. In particular, if for a particula€®’, Rc denotes the maximum of
|R(A, B,C)/X]|, then we have

R _{302 for C' < M/2
CTAM =02+ (M—-C)C+C*=M?—MC+C? forC > M/2
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REsSULT 3.7

SinceM? — MC + C? = (C — M/2)* + 3/4M? increases monotonically with
for C > M/2, Rc reaches maximum & = M, the maximum value being equal
to M?2.

Next we consider the more general case, namely, wkiesand Y are of the
same order of magnitude. In this ca&&Y > X and hence the term involving
Y dominates in the expression f&( A, B, C). SinceA = —(B + C) is always
non-positive and” is always non-negative, (3.6) allows us to wiRkeas

R~Y- > |B|C(B+C)/ oo (3.12)

~M<ALBLCLM ~M<ALBLOLM
A+B+C=0 A+B+C=0

The denominator ig M2+ O(M) as before. The numerator evaluategfo)/® +
O(M*). Finally, it is also easy to check that the maximum valu¢rifA, B, C)|
is obtained atl = B = —M/2,C = M. Thus we have

WhenMY > X, R~ Y (25 M3 + O(M?)), Rmax ~ Y M3 /4 and therefore

R/ Rax ~ 31/120 ~ 0.26.

3.3.3 Distribution of T'(¢y, ¢2)

DEFINITION 3.8

The average valu@ does not portray a complete picture of the distribution of
T'(c1,c2). In order to have a better insight of the integ@i;, c2), we define the
following:

Forareald < n < 1, letus denot&(n) = #{ (c1,¢c2) | — M < ¢1 < 2 <
M, |T(c1,c2)| < NTmax }- We also define(n) = €(n)/€(1)

By the above definition¢(1) is the total number of pair&:;, c2) for which
T(c1,c2) is checked for smoothness. We have calcula@géd = 2M? + O(M).
In order to calculat&(n) for 0 < n < 1, we proceed as follows. The inequality
|T(c1,c2)] < nTmax iMplies —2nM — ¢; < ¢ < 2nM — ¢;. We also have
c1 < cg < M. Therefore,

M
¢(n) = Z max (0, min(M, 2nM — ¢;) — max(c1, —2nM — ¢1) + 1>
c1=—M

The closed form expression f@7) can be obtained by evaluating the sum on the
right side of the last equation and we g&t) = 2n(2 — n)M? + O(M). Normal-
izing by €(1) givesc(n) ~ n(2 — n). The variation ofc(n) is shown in Fig 3.1.
The dotted line corresponds to the variationc@f), if |T'(c1, c2)| wereuniformly
distributed between 0 arill,,.. The graphs show that for a given< n < 1, there
are more integerd’(c1, c2)| < nTmax than for the uniform distribution. For exam-
ple,c(1/2) ~ 3/4, that is, about 75% of the integefic;, c2) have absolute value
no larger thar%TmaX. If the distribution were uniform, this percentage would be
50%. Since smaller integers have higher chance of being smooth, thestesuk
that the actual distribution df'(c1, c2)| is better than the uniform distribution.
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Figure 3.1: Variation of(n) for the linear sieve method
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3.3.4 Distribution of R(A, B, C)

DEFINITION 3.9

Similar to the case witf'(ci, co) we define the following analogous quantities for
the cubic sieve method:

Forareald < n < 1, letus denoted(n) = #{(A,B,C) | — M < A <
B<C<MA+B+C =0,|R(A,B,C)| < nRmax }- We also defing

o(n) =D(n)/D(1)

For the cubic sieve method, we consider the two cases” (i X/M and
(i) Y > X/M. As told before we assumg to besmall In the former case,
we approximatéR(4, B, C)| ~ (B? + BC + C?)X. Therefore]R(A, B, C)| <
NRmax leads to the inequalityB < —C/2 + /nM? — 3/4C?, if the quantity
inside the radical is positive. We also have from Lemma 3.5 @2 < B <
min(C, M — C). Therefore®(n) evaluates to the sum

1+1C/2) +min<C,M—C7 {—C/H\/MJ)}

Fig 3.2 shows the variation @f(n) = ©(n)/®(1) with . Here also we see that
the curve foro(n) lies abovethe curve for the uniform distribution implying that
the situation with theR(A, B, C) is better than that with a uniformly distributed
sample of integers.

In the second casg > X /M and we approximat&(A, B, C) ~ |B|C(B +
(Y. In this case®(n) can be computed from the sum

o) = 143 [1+min(c.ar—c | -c2+ e me])]

min (M, | 2M+/n/3])

SO

C=0

C=1
[n'/3M ] M 1
— 2 _ 3
LD SRZ TR S B N ]
c=1 [l /3M ) +1

57



The corresponding variation ofn) = ©(n)/®(1) is also shown in Fig 3.2. In this
case, the distribution aR(A, B, C) is even better than that in the previous case.

Figure 3.2: Variation ob(n) for the cubic sieve method
Case 1Y <« X/M, Case 2Y > X/M

om) ' T T
o8t
case 2 .
06} Case 1
=" Uniform
04}
o2} §
0 1
0 0.2 0.4 0.6 0.8 1

To sum up, we see that for both the linear sieve and the cubic sieve methods,
the numberg(c1, c2) andR(A, B, C') do not behave exactly as a random sample
of integers between 0 ari, .x Or Riax-
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Appendix A Detailed calculations

In the last section, we have outlined the procedure to derive the eiqnessrT,
Tmax, By Rmax, €(n) and®(n). In this appendix, we provide complete details of
the calculations. Result 3.6 and the expressior&fon) for the casey” < X/M
are not derived in this chapter. In the appendix of the next chaptgorovwe them

in a more general setting.

A.1 Calculation of T

We recall from Eqn 3.9 thaf can be approximated as

M M
T~ H- Z|Cl+02| / Z 1

c1,c0=—M c1,c0=—M
c1<c2 c1<eg

The denominator is equal to the suya/ + 1) + (2M) + ... + 1 which equals
(2M +1)(2M +2)/2 = 2M? + O(M). The sum in the numerator can be written

as
M M M
Z ’Cl + CQ‘ = Z (01 + CQ) + Z *(Cl + 02)
c1,c0=—M cl,c0=—M c1,co=—M
e1<eo er<es e1<es
c1+co>0 c1+co<0
M

The second subsum can be written as Z ((—c2)+(—c1)) and s, therefore,

—cg,—c1=—M
—cgS—cy
) (=e2)+(=c1)>0
equal to the first subsum. Hence the sum in the numerator of Eqn 3.9 egdluate

M

2 Z (Cl + CQ)
cl,c0=—M
c1<eg
c1+cg>0
[ o M M M
= 2 Z Z (c1+¢2) —l—z Z(cl+02)
_clz—M co=—c1+1 c1=1c2=c1

0
= 20 Y (1+2+...+(a+M)+
_01:—M

M
> @er+ (e + 1)+ .+ (e + M))

c1=1

oy 20: (01+M)(01+M+1)+§/[:(M—cl+1)(3c1+M)

c1=—M 2 c1=1 2

M(M + 1)(4M + 5)
3

4M3/3

Q

ThereforeT ~ H(3M + O(1)).
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A.2

A3

Calculation of T},

SinceT = |c1 + co|H and—M < ¢1 < ca < M, itis clear thatl'(cy, c2) attains
the maximum value at; = ¢y = £ M. This maximum value i§,,.x ~ 2M H.

Calculation of ¢(n) and ¢(n)

The inequality|7’(c1, c2)| < NTmax ~ 2nM H implies —2nM < ¢; + co < 20,
that is,—2nM — ¢; < co < 2nM — ¢1. We also have, < co < M. Therefore,
for a given value of;, the values of;, corresponding td7'(c1, c2)| < NTimax are

max(cy, —2nM — ¢1) < co < min(M, 2nM — ¢1)

Summing over all values af, gives
M
C(n) = Z max(0, 1 + min(M, 2nM — ¢1) — max(ci, —2nM — ¢1))
c1=—M
Now M < 2nM — ¢y ifandonly ife; < (2n—1)M, ande; < —2nM — ¢ if and
only if ¢; < —nM. Finally, (2n—1)M < —nM if and only if p < 1/3. Therefore,
we consider two cases < 1/3 andn > 1/3. We derive the expression fa(n)
only for the former case; the derivation for the other case is very similate that
in the former case, we haveM < (2n —1)M < —mM < M and thus the sum
for €(n) can be written as

L(2n—1)M]
cn) = Z max (0, M + 2nM + ¢; + 1)
c1=—M
[—nM]
+ > max(0,2nM —ci +2nM + 1 +1)  (3.13)
ca=|(2n-1)M]+1
M
+ Z max(0,2nM — ¢ — 1 + 1)
c1=|—nM|+1

SinceM + ¢; > 0 and2nM + 1 is a positive quantity, the first sum on the right
side of the last equation evaluates to

L(2n-1)M|
S (M+2pM +1+¢p)
c1=—M

1
5 [+ 20 =DM + 1] [M +29M +1 = M + M +2qM + 1+ 2pM — M]
= 67°M?*+O(M)

The second sum on the right side of (3.13) is simply seen to be approximatelly e
to

Q

(4nM + 1)(=nM — (20 — 1)M) = 4n(1 — 3n)M? + O(M)
Finally note thanM — 2¢; + 1 > 0ifand only if¢; < nM — % Therefore, the
third sum on the right side of (3.13) is

1
LTYM—§

> (29M —2c; +1)
c1=[—nM]+1
(2nM + 1)2nM + O(M)
= 4’M*+O(M)

%
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Summing up the values of these three subsums gives the €épe~ 2n(2 —
n)M?. For the other case, namely> 1/3, €(n) evaluates to the same expression.
Sinced(1) ~ 2M?, we haver(n) = €(n)/€(1) ~ n(2 — 7).

This completes the derivation of the average and distribution of the integers
T(c1,c2) for the linear sieve method. We next concentrate on the behavior of
R(A, B, C) for the cubic sieve method. As told at the beginning of this appendix,
we concentrate only on the cadéY > X. For the other case that we studied,
namelyY < X/M, we refer the reader to the Appendix B of the next chapter.

A.4 Calculation of R

In the case\/Y > X, we approximatéR(A, B,C)| as|R(A, B,C)| ~ |ABC|Y
= |- BC(B+ CO)|Y = |B|C(B+ C)Y, since by Lemma 3.5B + C = —A
is always non-negative. We also see from Lemma 3.5 that for a give® varies
from —C/2 to min(C, M — C). Consequently, we can wri@ as

M min(C,M—-C) M min(C,M—-C)
(Z > IBIC( B+C>/(Z > 1) (3.14)
C=0 B=[-C/2] C=0 B=[-C/2]

Now C < M — C'ifand only if C < M/2. Therefore, the denominator of the
above equation is

M

CZZO [1 + F;-‘ + min(C, M — C)}
[M/2] M
= M+1+ cZ:o HA +C} +C:U\§/:2J+1 [(ﬂ +M—C]

1
~ MM +5) = M?/2 +O(M)

The sum in the numerator can, on the other hand, be written as

M min(C,M—C) M min(C,M—C)
¢ > BB + > ¢ Y B (3.15)
C=0  B=[-C/2] C=0  B=[-C/2]

The first subsum evaluates to

[M/2] M M—C
Zc Z BB + >, C > |BB
C=0 B=[-C/2] C=|M/2]+1 B=[-C/2]
|M/2]
= Y C[-|C2P—... =22 -1+ 0+ 12+ 2 +... + C?
M
+ D Cl-C2)P - =22 =P+ 0P+ 1P+ 22+ + (M - C)?
C:LM/2J+1
QLM/2J
~ 204 » ct+o(M?)
C=0
~ B 4
240M +O(M*)
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and the second sum to

[M/2] c M M-C

> > Bl + >, ¢* > B
C=0 B=[-C/2] C=|M/2]+1  B=[-C/2]
[M/2]

= > CYC/2]+...424+14+0+1+2+...+C]
Cc=0

M
+ % OO 241401424+ M —C]
C=|M/2]+1

4 I 312M 2 4
C—MZC+§M > C*P+o(M?)

X
| ot
M=

Cc=0 C=|M/2]+1 C=|M/2]+1
Y™ 4
~ 192M + O(M*?)

Therefore, the numerator of (3.14) is approximately equé{+e;5 + 105)M° +
O(MY)Y = (M3 + O(MY)Y, sothatR ~ (#5M° + O(M*))Y.

Calculation of R,

In order to compute the value &,,,., we consider the following cases separately.

Case 1:B <0

In this case,B varies from—|C/2| to 0. Writing 5 = —B, we see that
IR(A,B,O)|/Y ~ [B|C(B + C) = BC(C — B) = C(C%/4 — (C/2 - B)2).

For a givenC, this expression attains the maximum valuedat C'/2 and this
maximum value iSC3 /4 (neglecting the possible inequality 6€/2| and C/2).

As C ranges over all possible values, the maximum of this maximum value be-
comesM? /4 attained wher' = M.

Case2:B >0

In this case,B varies from0 to min(C, M — C') and we have the approximation
|R(A, B,C)|/Y ~ BC(B + C) = C((B + C/2)? — C?/4), which increases
monotonically in the range of variation @& and, therefore, reaches maximum at
B =min(C,M — C).

Case2a:B>0and0 < C < M/2

We havemin(C, M — C') = C and hence the maximum value|dt(A, B, C)|/Y
for a givenC is approximatelyC((C + C/2)? — C?/4) = 2C3. This approximate
value is maximized at = M /2, the maximum being equal to/3 /4.

Case2b:B>0and M/2<C <M

Heremin(C,M — C) = M — C and for a givenC, the maximum value of
|R(A, B,C)|/Y is approximateNC((M —C+C/2)?—~C?/4) = M (M?/4—(C—
M/2)?). The last expression attains the maximum valu@/f/4 for C = M/2.

Thus we see that in all the casg®(A, B, C)|/Y has the approximate maxi-
mum value of\/3 /4 and, thereforeR ,.x ~ Y M3 /4.
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A.6 Calculation of ®(n) and a(n)

By definition,® (n) equals the number of triplés!, B, C') for which|R(A, B, C)|
< nRmax- This inequality, in turn, leads to the approximate condition

|B|C(B+C) < nM?3/4 (3.16)

For C' = 0, there is only one value dB, namelyB = 0, that satisfies (3.16) and
Lemma 3.5 for all values af. ForC > 0, we consider two cases:

Casel:B>0

In this case (3.16) reduces {® + C/2)? < ’CT]‘? + %2, or equivalently,B <

—C/2+ /L 1+ €2 Since we also hav8 < min(C, M — C), we see that for
a givenC', non-negative values db that satisfy (3.16) are

) nM3  C?
<BK —-C, - -+ —
O\B\mln(C,M C,—-C/2+ e + 1
Case2:B <0
In this case, the condition (3.16) demands
C2 77M3
25 2 17
(B+C/2)?> = -5 (3.17)

If the right side of this inequality is negative, that is,Gf < n'/3M, then the
inequality is satisfied by alB in the range-|C/2| < B < 0. On the other hand,

for C > n'/3 M, the right side of (3.17) is non-negative, and the negative values of
B that satisfy (3.16) are

C2 77]\43
—-C/2 ————<B<0
C/2+ 1 e <
This is certainly a more restrictive condition tha«€”'/2 < B < 0.
Considering the above two cases, we can write the approximate vaiig)pf

as
M
M3 2
D) ~ 1+ [1+min|CM-C—C/2+ %+%
Cc=1
ln'/3 M M
c?  nMs3
+ lcr2l+ > —-C/2 + 4_40‘
o=1 O=(nt/3M |41

We have plotted the value ofn) = ©(n)/D(1) in Fig 3.2 for M = 1000.

63



4 Heuristic modifications of discrete
logarithm algorithms

In the last chapter, we discussed three variants of the index calculusdrettibe
computation of discrete logarithms over finite fields of prime cardinality. In this
chapter, we propose some heuristic modifications of these methods.

In Section 4.1 we start with the description of two heuristic variants of the basic
method. These variants reduce the number of discrete exponentiatiomsikethe
trial division procedure more efficient. This leads to a speed-up oftébover the
basic method. In Section 4.2, we discuss efficient implementation schemes for th
linear and cubic sieve methods. A heuristic modification of the linear sieve method
follows in Section 4.3. This modification checks smaller numbers for smoothness
over the chosen factor base and is, thereby, expected to produceretaiiens
than the original method. A heuristic improvement of the cubic sieve method is
described in Section 4.4. Our heuristic helps generate a larger faceabalsnost
no extra cost. We also study the effect of the heuristic on the averageattimum
and the distribution of the integers that are checked for smoothness.

In this chapter, we use terms and notations introduced in the previous chap-
ter — often without specific mention. All experiments reported in this chapéer ar
carried out using the Galois Field Library described in Chapter 2, on avidd
Pentium machine running Linux version 2.0.34 and having 64 Mb RAM. ThelGN
C Compiler version 2.7 is used. The timings correspond to an older (and s@inewh
slower) version of G'L.

4.1 Heuristic modification of the basic method

We recall from Section 3.2.1 that in the basic method, a relation is set up grais
g to a random power and by checking if that power factorizes completelytbge
chosen factor base as an integer. This process involves two time-cogsopan
ations: a discrete exponentiation in the field and a check whether the pbther o
primitive element factorizes smoothly over the factor base. This check &lysu
carried out by trial divisions by elements of the factor base. Here wgogmsome
heuristic variants of this basic method. These methods try to factorize several
tegers which are identical as elementsgf before a new exponent is tried. This
decreases the total number of discrete exponentiations. In order wertddricost
of trial divisions we apply certain tricks that help us avoid all unnecgdsiat di-
visions. We concentrate only on the first stage of the method. Our modification
be applied directly to the second stage of the index calculus method as well.

4.1.1 The first heuristic

For all integers, g7 + rp = ¢7 as elements oF,. (In this section 4’ denotes
integer addition unless otherwise specified.) Therefore, if for somenagative
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HEURISTICB1

integerr, we have a factorizatiogy + rp = ;‘leqji, we have a relation. On the

other hand, if for some negative integewe haveg’ + rp = — [[i_; ¢5, then
p—1_¢
j+ —— = ;aiindgqi (mod p—1)
sinceg% = —1inF, (g being a primitive element df,). This motivates us to

reframe the search procedure for relations in the following way:

1. Choose arandom integger2 < j < p— 2.

2. Check ifg7 factorizes completely over the factor baBelf yes, a relation
is found, store it and proceed to Step 1.

3. Check ifg7 + rp factorizes completely oveB in succession for =
1,2,... If a relation is found for some value of, store it and proceed
to Step 1. Else it exceeds a predefined valkethe choice ofk will be
explained later), proceed to Step 4.

4. Check if— (97 + Tp) factorizes completely ovel in succession for =
—1,-2,... If arelation is found for some value of store it and proceed
to Step 1. Else ifr| exceeds:, go to Step 1.

Note thatg/ is a number with less than or equal iz p] bits. On the other
hand,g7 + rp is a number with at mogtg |rp|] bits. The bound: of r in Steps 3
and 4 should be small enough so that the bit-lengif7 ef p is not too large com-
pared with[lg p]. This is because if this bit-length is large comparedltp|, the
probability thatg/ + rp factorizes smoothly oveB is sufficiently small compared
to the corresponding probability for an integer less th#8ee Theorem 3.2). As a
result, the search procedure loses effectiveness if large values®thosen. Later
we discuss the variation of the performance of our heuristic for difteraines of
k for some small example problems.

Since we check the factorization gf + rp in succession for = 0,1,2, ...
in Step 3, we can make trial divisions more efficient in the following way. Let
v; be the integer between 0 aggd— 1, that is congruent tp modulog;. Thet
integersvy, vo, ..., v, can be pre-computed. Let us denote®y, pr2,. .., prt
the remainders of divisions aff + rp by qi,qo, . .., q respectively. Aftergi
is computed for some random) po 1, po.2,---,pos+ are computed by perform-
ing actual divisions ofy/ by the primesg; in the factor base. The remainders
p1,1,P1,2,---,p1, are computed frompg 1, po2, - - ., pos and, in general, the re-
mainder, 11,1, pr+1.2, - - -, Pr+1,c are calculated from,. 1, p, 2, . . ., pr+ using the
relationp, 1, = pr; +v; (mod ¢;) foralli =1,2,...,t. Now ag; € B divides
g/ +rpifandonly if p, ; = 0. Hence trial divisions of’ +p by ¢; is carried out if
and only ifp,; = 0. Since in typical situations only a few of ; are 0 irrespective
of whetherg/ + rp factorizes completely oveB or not, we save many unnecessary
divisions ofg¢7 + rp by g;.

In Step 4, the incremental procedure involves the following operatjprsg?
is computed by subtracting from p. Subsequently(|r| + 1)p — ¢ is computed
by addingp to |r|p — ¢/. Here we designate by_- ; the remainder of division
of |r|p — g7 by ¢;. The remainderg_i 1,p—-1,2,...,p—1, are obtained using the
relationsp_1; = v; — po; (mod ¢;). For|r| > 1, we have the relatiop_,|_, ; =

65



vi+p_jp; (mod g;). Therefore, the incremental procedure in Step 4 is essentially

the same as in Step 3 (except for the case—1).

4.1.2 The second heuristic

HEURISTIC B2

As explained in the last section, we cannot take large valuégibie bound ofr|

in ¢/ 4+ rp). In typical applications one should be satisfied with< 10. If we
want to use larger values &f(say, values of the order of 100), we should have an
even faster method of checking integers f&ssmoothness. Our second heuristic
achieves that by using sieving techniques similar to those used in connedton w
the quadratic sieve method for factoring integers [16, 46]. This methodfoalls
more additional storage than what is needed in the previous heuristic,@mnd @
costlier pre-computation stage. In this case, the basic steps are as follows:

1. Choose arandom integgr2 < j < p— 2.

2. Foreachr = —k,—k+1,...,—1,0,1,...,k, check if@+rp| factorizes
completely over the factor bage: Store relations corresponding to &t
smooth values of? + rp. Go to Step 1.

The basic difference between heuristics B1 and B2 is that in B1, an erpon
j is discarded when a relation is found or when all valisgés< k are checked.
In B2, on the other hand, all valués < k are considered for a given exponent
irrespective of whether we get relations for some values. oT his is justifiable
because we are checking a larger range of values &6 that we might expect to
get more than one for which @ + rp| is B-smooth for a givery. The second
difference between B1 and B2 is the way in which the checkfeamoothness of
@ + rp| is implemented. We now describe this check procedure for B2.

Before the search for relations is started, we precompute and stordidinarig
guantities:

1. Foreach =1,2,...,t, the exponeng; such that;fi <(k+1)p< gt

i .

2. The powerslﬁ foralli =1,2,...,tandforalll =1,2,..., 5.

3. The approximate values of the logarithiag;! for all i = 1,2,...,¢ and
foralll = 1,2,...,05;. For a multi-precision integet represented in base
R=2%as

n=asR°+as_ 1R +...+aR+ ao

with a, # 0, the approximate logarithm is set equal to fleat log, (ay), if
s = 0, and to theloat log, (as R + as—1) + (s — 1)b, if s > 1.
4. The (positive) remainders of division efp~! by ¢! forall i = 1,2,...,t

7

and foralll = 1,2,...,3;. Note thatp—! = p%—a ' —1 (mod ¢}).

Our sieving procedure is little different from the traditional one used in the
gquadratic sieve method for integer factorization. Before we discuss thédieaod
sieving procedure, let us introduce the following terminology. For a giverk <
r < k, the least integer + « with u > 0 satisfying(g? + rp) + up = 0 (mod qh)
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is defined to be thaext divisibility indexof ¢! atr. If » + w is less than or equal to
k, we say that the prime powef is activein the range~,r + 1,..., k.

After a randony is selected and the discrete exponentiagibis carried out, we
first calculategy — kp. Then for eachi = 1,2,...,¢ and for each = 1,2, ..., ;,
the next divisibility index forg! at —k is calculated. By definition, this is the small-
est integeru — k with « > 0 satisfying(g/ — kp) + up = 0 (mod 4, ie.,
u= (—p 1) (¢/ —kp) (mod ¢}). This is where we use the pre-computed values of
—p~t moduIOqﬁ. We also calculate for each= 1, 2,...,t the valued; such that

¢’ is active in the range-k, . . . , k, but¢?"™ is not. We have); < ;.
Now we repeat the following procedure in succession/foe= —k, —k +
1,...,—1,0,1,..., k. Ifthe next divisibility index ofg; atr is equal to- itself, then

q; divides (g7 + rp) and we calculate the largest integer< ; such that the next
divisibility index of ¢ is r but that ofg¢ ** is greater tham. Theng:'||(g7 + rp).
On the other hand, if the next divisibility index gf atr is greater tham, we take
e; = 0. We then calculate the quantity

t
£=1g(¢ +rp) — > _lg(¢f") (4.1)
=1

If £is close to 0 or negative, then we have a relation.

Before, we proceed with + 1, we compute the next divisibility indices faf
atr + 1 in the following way (for alll < i < tandl <[ < §;). If Il > ¢, the
next divisibility index ofq§ atr 4+ 1is the same as thatat If [ < ¢;, then the next
divisibility index of ¢! atr + 1 is ¢! plus the next divisibility index of} at.

This completes the description of the details of the heuristic B2. Before we
end this section, two further comments are in order. First we note that we can
implement the next divisibility indices as single-precision integers, though their
definition demands them to be multiple-precision ones. This is because, ifggome
is not active intherange . . ., k, then this prime power divides none of the integers
¢ +rp, ..., 97 + kp. Our heuristic never tries to check the integeist rp for
r > k and hence whenevef gets non-active, we may set its next divisibility index
to k£ + 1. Also note that instead of defining the next divisibility indices as integers
> —k, one can define them as integers0 by addingk to the values following
from the current definition.

Finally note that if the logarithms calculated aseact thengi + rp is B-
smooth if and only if€ = 0. But in practical situations we work with approximate
logarithms and as such the smoothness criterion should be different feocheick
£ = 0. If ¢ + rpis B-smooth, therng should be a small real number (positive
or negative). On the other hand,gf + rp is not B-smooth, it will have at least
one prime factor not iB and hence£ must not be too less thag(qg+1), ¢i+1
being the smallest prime not id. This implies that the values of for B-smooth
integers are well-separated from those for igsmooth integers and the selection
criterion might be taken to be the check whetler: 1.

4.1.3 Performance analysis

In this section, we argue heuristically why our modifications should runrfidse
the basic method. Suppose that multi-precision integers are representedamth
puter memory as an array of words in radix Therefore the storage of drbit
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number needs$l/b] words. In particular, each of the numbetsp, j, g7, g7 + p

(for smallr) occupies nearlyy = (lngl words. The discrete exponentiatighre-
quiresO(w?) multiplications and an equal number of additions of machine words.
A summation(g7 + rp) + p to getg/ + (r + 1)p from g7 + rp, on the other hand,
needsO(w) additions of machine words. Trial divisions gf+ rp by a prime ofB
takesO (w) multiplications, divisions, additions and subtractions of machine words
(since B consists only of single-precision primes in typical applications).

In the basic method, only a single integer is checkedBesmoothness after
every discrete exponentiation. In our heuristics, several other istegerchecked
for B-smoothness, before the next exponentiation is carried out. Thesergsege
obtained by successively addipgand so the costs of obtaining these integers are
much less than those for obtaining integers by discrete exponentiation.

For the heuristic B1, computation gfy; for all « = 1,2,...,t requires
O(tw) operations (additions, subtractions, multiplications and divisions) of ma-
chine words. Subsequently, ; for » # 0 and for alli = 1,2,...,¢ can be com-
puted usingD(t) additions and subtractions of machine words (since they are ob-
tained by adding,_1 ; or p,41,; to v; each of which is a single-precision integer).

If s is the average number ofor which p,; = 0, our procedure avoid®(t — s)
unnecessary divisions ¢f/ + rp| by factor base primes at the cost@ft) single-
precision additions and subtractions mentioned above. Sinsausually much
smaller compared to, this leads to a significant decrease in the cost associated
with the trial division procedure.

For the other heuristic B2, trial divisions are completely dispensed with at the
cost of maintaining the next divisibility indices for factor base primes anddidr
able powers of them. L€&f’ denote the total number of primes and prime pow-
ers monitored by the algorithm. Using the terminology of the previous section,
T = O(3i—; B:), whereg; = [log, ((k + 1)p)]. In particular,T” = O(t1g(kp)).
If s primes ofB divide |g7 + rp|, then we requir@® (s 1g(kp)) integer comparisons
to compute the exponenésandO(s) floating-point subtractions to compugein
Eqgn 4.1. Subsequently we update the next divisibility indices of the primes and
the associated powers only for thaSés) primes that dividdg/ + rp|. This re-
quiresO(slg(kp)) single-precision additions. Once again, sirds usually much
smaller thart, our heuristic speeds up the trial division procedure.

4.1.4 Experimental results

In this section, we compare typical timings for the first stage of the basic in-
dex calculus method with those of our modified methods. In the following ta-
bles, we list timing results fop = 19196459099, p = 781487259479 andp =
29438018625539. For each of these values pf pgl is a prime. These primes are
obtained by searching random integers of given bit-lengths. The foltpwata-
tions are used in the tables:
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Table 4.1: Timings for heuristic B1 with = 19196459099 (A 35-bit prime)

Basic method Heuristic B1

t t t Tav t t t T | B | PL | P

0.348| 0.122| 0.471| 41.043 0.138| 0.076| 0.214| 16.796| 42.8| 39.3| 17.7
0.111| 0.083| 0.194| 15.346| 34.8| 38.2| 26.9
0.091| 0.084| 0.175| 12.836| 25.7| 45.0| 29.2
0.090| 0.100| 0.191| 16.015| 24.2| 41.1| 34,5
0.082| 0.106| 0.189| 17.005| 22.8| 44.8| 32.2
0.064| 0.106| 0.171| 14.439| 15.9| 47.4| 36.5
0.066| 0.143| 0.21 | 13.569| 15.9| 41.3| 42.7

N O AW NP &

[EnY
o

0.239| 0.099| 0.338| 34.973 0.096| 0.062| 0.159| 19.631| 41.5| 37.9| 20.5
0.082| 0.070| 0.153| 16.862| 32.9| 38.9| 28.0
0.067| 0.073| 0.140| 19.039| 25.4| 45.0| 29.4
0.062| 0.080| 0.143| 15.841| 23.3| 39.3| 37.2
0.056| 0.083| 0.139| 14.562| 19.6| 40.9| 39.4
0.047| 0.088| 0.136| 18.421| 17.5| 42.0| 40.3

0.048| 0.115| 0.164| 19.574| 16.6 | 38.6 | 44.7

~N| O AW N

-
o

0.164| 0.083| 0.247| 45.911 0.074| 0.057| 0.132| 25.713| 40.4| 37.6| 21.8
0.058| 0.061| 0.120| 21.566| 30.4 | 38.4| 31.0
0.046| 0.060| 0.106| 20.692| 26.1| 42.1| 31.7
0.045| 0.067| 0.112| 18.113| 26.1| 39.3| 34.4
0.036| 0.066 | 0.102| 19.017| 19.9| 42.6| 37.4
0.027| 0.064 | 0.092| 18.632| 14.1| 45.6| 40.1

0.029| 0.086| 0.116| 19.229| 14.2| 37.9| 47.8

~N| O AW N

=
o

t = Number of primes in the factor base

k = The bound orr| such that the integerg/ + rp are tested for
B-smoothness

t = Average time in seconds (per relation generated) taken for com-
puting integers for trial divisions (i.e. for the computationgof
and (in our heuristics)? + rp)

to = Average time in seconds (per relation generated) taken by trial
divisions

t = Average time to generate a relation tg+ to

Ta = Average total time in seconds taken by the first stage of the index
calculus method

Py = Percentage of the occurrences wiyétis B-smooth

P, = Percentage of the occurrences whgn+ rp is B-smooth for
somer > 0

P_ = Percentage of the occurrences whgnt rp is B-smooth for
somer < 0

These data are average ones obtained over a set of 10 randonf tuméirst stage
of the index calculus method corresponding to each set of values of tlreiva
parametersy, t andk).

The valueg; andt, represent the average times spent by exponentiations and
by trial divisions respectively for generating each relation. Their sum{; + to)
is the total average time spent for generating a relation (dependent peimidknt).
This numbett seems to be the best metric to assess the effectiveness of our heuris-
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Table 4.2: Timings for heuristic B1 with = 781487259479 (A 40-bit prime)

Basic method

Heuristic B1

t t

zav

t

t2

t Zav

Py

Py

P_

50

2.308

0.710| 3.018

216.32

0.952

0.419

1.371| 95.811

43.4

38.9

17.6

0.859| 0.515| 1.374| 102.35| 33.6| 41.0| 25.3
0.675| 0.509| 1.184| 85.367| 26.0| 43.7| 30.1
0.650| 0.591| 1.241| 90.977| 26.0 | 41.8| 32.0
0.523| 0.555| 1.079| 63.85| 20.2| 44.7| 35.0
0.482| 0.650| 1.132| 67.252| 18.4| 49.0| 32.5
0.476| 0.829| 1.305| 81.419| 17.7 | 38.6| 43.6

N O AW NP &

[EnY
o

60

1.475

0.535] 2.011| 173.40

0.644| 0.332| 0.976| 85.133| 40.4| 38.7| 20.7
0.550| 0.382| 0.932| 83.47 | 35.7| 36.3| 27.9
0.448| 0.391| 0.839| 74.695| 27.8| 41.3| 30.7
0.386| 0.403| 0.790| 57.112| 24.5| 38.7 | 36.6
0.341| 0.419| 0.761| 58.729| 22.0| 43.8| 34.1
0.280| 0.439| 0.720| 61.04 | 19.1| 47.9| 32.8
0.311| 0.620| 0.932| 89.156| 17.7 | 37.7 | 44.5

~N| O AW N

-
o

75

0.921

0.410| 1.332| 199.92

0.388| 0.238| 0.627| 71.707| 42.0| 38.2| 19.7
0.331| 0.277| 0.609| 83.923| 32.6| 38.7| 28.5
0.247| 0.260| 0.507 | 67.547| 26.6 | 42.1| 31.1
0.219| 0.278| 0.498| 61.649| 23.1| 42.5| 34.2
0.198| 0.288| 0.486| 59.805| 20.1| 42.6| 37.2
0.163| 0.301| 0.464| 53.713| 15.8| 45.3| 38.7
0.159| 0.383| 0.542| 74.955| 15.7 | 38.4| 45.7

~N| O AW N

=
o

tics as compared with the basic meth@g, represents the total time taken by each
execution of the first stage of the index calculus method. This includes the time
to do the necessary pre-computations, the time to genefistearly independent
relations and the time to solve the resulting system mogulol. ¥, depends on

t and also on the number of relations that need to be generated beforganfull-
system is obtained. This number of relations generated varies widely tnoror

run (typically from¢ to 3t). Only 10 random runs that we carried out for each set
of parameter values, seem insufficient to smooth out the variation. So wetdo
take¥,, as an effective measure of the performance of the algorithms, though this
guantity reflects the scenario on the whole.

The first three tables (Tables 4.1 through 4.3) correspond to the helistic
We have taken runs for some valuesiof the rangel . .. 10. Itis evident from the
tables that for a givep andt, the quantityt; decreases with increasigwhereas
to increases witht. Their sumt decreases with increasirigwhen k is small,
reaches a minimum at some optimal valué:pnd increases with increasikgor
values ofk larger than the optimal value. In our experiments, we get the optimal
value at around: = 7. The next three tables (4.4 through 4.6) represent average
data for the heuristic B2. In this cage, t; andt vary ast does in case of B1. That
is, when we increasg, each of these three quantities decreases for small values
of k, reaches a minimum at some optimal valuekadnd then increases with
The optimalt is obtained at around = 75. Typical speed-ups obtained using
our modifications over the basic method range from 2.5 to 2.9 for the heuriktic B
and from 1.3 to 1.5 for B2. B1, therefore, seems to perform better thanltB2
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Table 4.3: Timings for heuristic B1 with = 29438018625539 (A 45-bit prime)

Basic method

Heuristic B1

t t

zav

t

t2

t Zav

Py

Py

P_

60

9.321

3.004| 12.32

1042.0

4.165

1.864

6.030 | 464.41

39.7

41.5

18.7

3.312| 1.986| 5.298| 370.84| 30.9| 41.0| 27.9
2.684| 2.045| 4.729| 388.66| 27.8| 42.3| 29.7
2.451| 2.235| 4.687 | 395.35| 24.9| 40.7| 34.2
2.312| 2.478| 4.790| 349.30| 23.6| 41.3| 35.0
1.967| 2.683| 4.650| 355.27| 15.7| 48.1| 36.0
2.130| 3.749| 5.880| 461.11| 17.9| 38.8| 43.1

N O AW NP &

[EnY
o

75

5.123

2.042| 7.165| 712.14

2.077| 1.132| 3.210| 392.66| 39.0| 40.9| 19.9
1.752| 1.275| 3.027| 377.06| 36.1| 37.5| 26.2
1.486| 1.364| 2.850| 309.73| 28.0| 42.4| 29.5
1.376| 1.502| 2.879| 317.24| 24.2| 40.4| 35.3
1.143| 1.463| 2.607| 334.16| 19.7| 45.2| 34.9
0.997| 1.593| 2.590| 258.53| 15.3 | 47.6| 36.9
0.969| 2.041| 3.010| 315.68| 17.9| 34.6| 47.3

~N| O AW N

-
o

90

3.121

1.472| 4.593| 695.79

1.396| 0.890| 2.287| 318.05| 37.9| 42.3| 19.6
1.238| 1.043| 2.282| 337.74| 31.7| 39.9| 28.2
0.912| 0.970| 1.883| 273.60| 26.0| 41.9| 31.9
0.870| 1.109| 1.979| 315.42| 25.6| 38.5| 35.8
0.734| 1.086| 1.821| 254.70| 19.4 | 44.7| 35.7
0.570| 1.080| 1.651| 216.39| 15.0| 48.8| 36.1
0.641| 1.565| 2.206| 323.70| 16.2| 38.6| 45.1

~N| O AW N

=
o

remains undecided which heuristic yields better (i.e. faster) results wipdiec o
large-scale problems.

We now heuristically justify the behavior ¢f andt; as functions oft. t;
counts the average time (per relation) needed to generate integers édinche
B-smoothness. This involves discrete exponentiations (computatiopq ahd
multi-precision additions or subtractions (computations;oft+ rp for non-zero
r). Each such discrete exponentiation is much costlier than such an addition or
subtraction. Ask is increased, the ratio of the number of discrete exponentiations
to the number of additions or subtractions decreases. This leads to smhlks va
of t; for larger values ok. The other quantity, counts the cost of the following:
in case of B1,

(a) computation opy ;

(b) updation of the remaindefs ; for r # 0

(c) trial divisions byg; for which p,; = 0
and in case of B2,

(d) computation of next divisibility indices atk

(e) computation of® in Eqn 4.1

(f) updation of the next divisibility indices
For the heuristic B1, (a) is costlier compared to (b) and (c), whereadBZp(d) is
costlier than (e) and (f). A% is increased, the operation (a) (resp. (d)) is carried
out less frequently in comparison with the operations (b) and (c) (respand
(f). As a result, we expedp to decrease whenever we increaseHowever, we
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Table 4.4: Timings for heuristic B2 with = 19196459099 (A 35-bit prime)

Basic method

Heuristic B2

to

t

(zav

t

t2

t

Zav

Py

Py

P_

50

0.348

0.122

0.471

41.043

25

0.039

0.320

0.360

30.899

9.03

40.9

50

50 | 0.033| 0.312] 0.346| 23.958| 6.82| 42.0| 51.1
75 | 0.031] 0.292| 0.323| 26.267| 5.04 | 47.1| 47.8
100 | 0.030| 0.326| 0.357| 23.001| 3.67 | 48.4| 47.8
200 | 0.039| 0.392| 0.431| 29.39 | 3.80| 47.1| 49.0
300 | 0.039| 0.408| 0.448| 34.015| 1.99| 47.8| 50.1
500 | 0.048| 0.502| 0.550| 40.032| 2.22| 44.5| 53.1

60

0.239

0.099| 0.338| 34.973| 25 | 0.027| 0.259| 0.286| 27.591| 8.83 | 43.6 | 47.5

50 | 0.021| 0.231| 0.252| 23.86 | 6.08 | 43.2| 50.6
75 | 0.020| 0.225| 0.246| 21.79 | 3.78| 46.2| 50

100 | 0.019| 0.234| 0.254| 23.408| 3.16 | 45.0| 51.7
200 | 0.023| 0.270| 0.293| 26.251| 1.99| 46.5| 51.4
300 | 0.026| 0.314| 0.341| 29.703| 1.77 | 48.6| 49.6
500 | 0.033| 0.399| 0.433| 33.159| 1.28 | 51.1| 47.5

75

0.164

0.083| 0.247| 45.911| 25 | 0.016| 0.190| 0.206 | 32.881| 7.69 | 42.7 | 49.5

50 | 0.013| 0.168| 0.181| 28.769| 5.27 | 45.7 | 48.9
75 | 0.013] 0.175] 0.188| 28.028| 3.12| 46.1 | 50.7
100 | 0.013| 0.181| 0.194 | 24.031| 4.03 | 48.7 | 47.2
200 | 0.013| 0.197| 0.211| 27.005| 1.66 | 47.2| 51.1
300 | 0.013| 0.197| 0.210| 27.711| 1.71| 48.6| 49.5
500 | 0.017| 0.262| 0.280| 35.372| 1.28 | 49.0| 49.6

see a different pattern of variation tf in connection with both the heuristics. In
particular,t> exhibits the expected pattern only in case of B2 and for small val-
ues ofk. The unexpected behavior &f can be accounted for from the following
consideration. As we increasg the bit-size of the integerg + rp (for |r| < k)
increases. This leads to a smaller probability of findBygmooth integers among
the onesy/ + rp. As a result more integers are checked to find a single relation.
Sincety measures the cost of trial divisions for generating a relation, this too in-
creases with the decrease in the above probability. The same argumentdrold
t; also and is corroborated by the behaviortpfor large values of, typically

k > 300 (See the tables for B2). Another quantity that tallies with this decrease of
probability with increasing bit-size of the integefs+ rp is Py. If all integers in

the set{g/ + rp | — k < r < k} had the same probability of beirig-smooth,P,
would be approximately00/(2k + 1). The tables show much larger values than
this.

At any rate, our heuristics are motivated by the need to decrease the moimbe
discrete exponentiations carried out during the generation of relatidris.l€lads
to integers with absolute value larger thabeing subject to trial division. So we
adopted certain tricks to bring down the cost associated with trial divisiOns.
heuristics (in particular, B2) are useful when the cost of each disergienentia-
tion is comparable with or more than the cost of a trial division by all primes in the
factor base. This typically happens if the factor base sige< w? lg p (which is
O(lg® p)), wherew is the number of machine words needed to represent an integer
havinglg p bits.
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Table 4.5: Timings for heuristic B2 with = 781487259479 (A 40-bit prime)

Basic method

Heuristic B2

to

t

(zav

t2

t

Zav

Py

Py

P_

50

2.308

0.710

3.018

216.32

25

0.277

2.239

2.517

153.70

8.36

40.8

50.8

50 | 0.244| 2.112| 2.357| 159.17| 6.55| 42.6 | 50.7
75 | 0.248| 2.246| 2.495| 156.10| 6.10| 48.1| 45.7
100 | 0.231| 2.165| 2.396| 151.83| 3.92 | 45.8| 50.2
200 | 0.260| 2.561| 2.821| 172.12| 461 | 47.5| 47.8
300 | 0.283| 2.873| 3.157 | 184.45| 1.61| 47.7 | 50.6
500 | 0.321| 3.302| 3.624| 218.25| 3.31 | 48.2| 48.4

60

1.475

0.535| 2.011| 173.40| 25 | 0.169| 1.553| 1.723| 140.25| 8.19| 44.6| 47.1

50 | 0.127| 1.281| 1.409| 126.42| 6.24| 42.5| 51.2
75 | 0.132] 1.359| 1.492| 137.80| 4.50 | 44.5| 50.9
100 | 0.140| 1.540| 1.681| 124.39| 2.94| 43.9| 53.0
200 | 0.144| 1.696| 1.841| 138.70| 2.91 | 48.8| 48.1
300 | 0.156| 1.815| 1.971| 160.40| 2.19| 49.7 | 48.0
500 | 0.195| 2.364| 2.559| 180.78| 1.92| 48.1| 49.9

75

0.921

0.410| 1.332| 199.92| 25 | 0.093| 1.030| 1.123| 137.61| 7.67 | 43.9| 48.3

50 | 0.079| 0.955| 1.035| 114.44| 6.74| 43.9| 49.2
75 | 0.072] 0.905| 0.977| 115.53| 4.11| 46.7| 49.1
100 | 0.073| 0.962| 1.035| 110.61| 4.16| 48.2| 47.5
200 | 0.081| 1.118| 1.199| 159.71| 2.46 | 48.8 | 48.6
300 | 0.084| 1.205| 1.290| 129.6 | 2.84| 50.9| 46.2
500 | 0.093| 1.381| 1.475| 150.13| 1.03 | 48.2| 50.6

4.1.5 Open questions

We have shown both heuristically and experimentally that our heuristic ipeasl s
up the basic method considerably. Before we end, we raise some impogargtth
ical questions that, if answered, would give better explanation of thenpeshce
of our modifications.

e Given thatg’ does not factorize completely over the factor basevhat is
the probability that at least one ¢f + rp for r = +1, 42, ..., +k does for
some pre-determineld?

e Can one find g easily such that for a giveh, the set{¢gi + rp | r =
0,+1,+2,...,+k} contains with a high probability at least one element that
factorizes smoothly over the factor base?

e Can one find an expression for the optimum valug fidr the heuristic meth-
ods B1 and B2 (i.e. the values bfthat minimize the running times of the
methods for givem andt)?

If we assume that the integej+ rp behave asandomintegers of absolute value
O(p), and if the factor bas® comprises of primes less thafj], then Theorem 3.2
suggests that the probability of finding-smooth integers among + rp is of
the order ofL[—1/20]. For practical situations, this probability is ratHew and
demands values @f higher than the optimal range found out experimentally.
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Table 4.6: Timings for heuristic B2 with = 29438018625539 (A 45-bit prime)

Basic method

Heuristic B2

ts t

(zav

t2

t Zav

Py

Py

P_

60

9.321

3.004 | 12.32

1042.0

25

1.097

10.12

11.22 | 825.36

9.64

38.4

51.9

50 | 0.950| 9.651| 10.60| 724.68| 6.85| 43.5| 49.6
75 | 0.865| 9.089| 9.954 | 819.64| 4.96 | 47.4| 475
100 | 0.854| 9.423| 10.27| 783.33| 7.13 | 42.7| 50.0
200 | 0.933| 10.59| 11.52| 776.69| 3.52| 45.6 | 50.8
300 | 0.987| 11.50| 12.49| 884.44| 2.33 | 43.8 | 53.8
500 | 1.242| 14.65| 15.89| 1151.5| 2.29| 47.4| 50.2

75

5.123

2.042| 7.165| 712.14| 25 | 0.562| 6.070| 6.632| 627.40| 10.5| 42.0| 47.4

50 | 0.485| 5.858| 6.343| 592.00| 6.44 | 42.7 | 50.8
75 | 0.415] 5.207 | 5.623 | 504.61| 5.59 | 44.8 | 49.5
100 | 0.407| 5.318| 5.726| 543.98| 5.29| 43.5| 51.1
200 | 0.424| 5.715| 6.140| 646.06| 2.94 | 48.7 | 48.2
300 | 0.501| 7.071| 7.572| 741.76| 2.32| 48.4| 49.2
500 | 0.541| 7.859| 8.401| 839.67| 1.86| 50.0| 48.0

90

3.121

1.472| 4593 | 695.79| 25 | 0.332| 4.139| 4.472| 611.08| 6.87 | 42.8 | 50.2

50 | 0.301| 4.232| 4.533| 596.87| 5.52| 42.5| 51.9
75 | 0.274] 4.083| 4.358| 491.58| 4.09 | 46.0| 49.8
100 | 0.240| 3.708| 3.948| 404.00| 3.31| 47.0| 49.5
200 | 0.273| 4.451| 4.725| 586.19| 2.58 | 47.8 | 49.5
300 | 0.303| 4.827| 5.131| 694.37| 2.14 | 47.5| 50.3
500 | 0.318| 5.545| 5.864| 628.55| 2.12| 47.2| 50.5

4.2 Efficient implementation of the linear and cubic sieve methods

In this section, we delve into the details of our implementation of the linear sieve
and the cubic sieve methods. The tricks that help us speed up the equdlgot: co

ing phase of the sieve methods are very similar to those employed in the quadratic
sieve method for integer factorization (See [16, 46, 121] for detalils).

4.2.1 Implementation of the linear sieve method

We start our discussion with the linear sieve method. We first recall from Sec
tion 3.2.2 that at the beginning of each sieving step, we find a solutian food-
ulo ¢ in the congruenc&(ci,c2) = 0 (mod ¢") for every small primey in the
factor base and for a set of small expongnt3he costliest operation that need be
carried out for each such solution is the computation of a modular inveasee(y,
that of H + ¢; modulog”™). As described in [73] and as is evident from our ex-
periments too, calculations of these inverses take more than half of the CPU time
needed for the entire equation collecting stage. Any trick that reducesithban
of computations of the inverses, speeds up the algorithm.

One way to achieve this is to solve the congruence every time only ferl
and ignore all higher powers q@f That is, for every; (andc;), we check which
of the integersl’(cy, c2) are divisible byg and then addg ¢ to the corresponding
indices of the arral. If someT' (¢, c2) is divisible by a higher power af, this
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strategy fails to addk g the required number of times. As a result, thig, c2),
even if smooth, may fail to pass the ‘closeness criterion’ described in 8&:8®.
This is, however, not a serious problem, because we may increase-ti¢ fram

a value smaller thaly ¢; to a valuet Ig ¢; for some¢ > 1. This means that some
non-smoothl’(c1, c2) will pass through the selection criterion in addition to some
smooth ones that could not, otherwise, be detected. This is reasonatalesbed¢he
non-smooth ones can be later filtered out from the smooth ones and oneuseght
even trial divisions to do so. For primesof less thar200 bits, values ot < 2.5
work quite well in practice [16, 121].

The reason why this strategy performs well in practice is as follows; isf
small, for example; = 2, we should addnly 1 to 2., for every power of2
dividing T'(c1, c2). On the other hand, if is much larger, say = 1299709 (the
10°th prime), therlg ¢ ~ 20.31 is large. ButT'(c1, c2) would not be, in general,
divisible by ahigh power of thisq. The approximate calculation of logarithm of
the smooth part of (c;, ¢2), therefore, leads to a situation where the probability
that a smootf'(cy, c2) is actually detected as smooth is quite high. A few relations
would be still missed out even with the modified ‘closeness criterion’, butishat
more than compensated by the speed-up gained by the method.

The above strategy helps us in a way other than by reducing the number of
modular inverses. We note that for practical valuep,ahe small primes in the
factor base are usually single-precision ones. As a result, the computhtiaran
be carried out using single-precision operations only.

We now compare the performance of the modified strategy with that of the
original strategy for a value of of length around 150 bits. This prime is chosen as
a random one satisfying the conditions () — 1)/2 is also a prime, and (iip is
close to a whole cube. This second condition is necessary, becagselfica prime,
the cubic sieve method is also applicable, so that we can compare the perderma
of the two sieve methods for this prime.

Table 4.7: Performance of the linear sieve method
p = 1320245474656309183513988729373583242842871683
t = 7000, M = 30000

No. of No. of CPU Time

Algorithm ¢ | Relations ) | Variables ¢) | p/v (seconds)
Exact 0.1 108637 67001 1.6214| 225590
Approximate| 1.0 108215 67001 1.6151| 101712
15 108624 67001 1.6212| 101818
2.0 108636 67001 1.6214| 102253
25 108637 67001 1.6214| 102250

In Table 4.7 we compare the performance of the ‘exact’ version of theitiigo
(where all relations are made available by choosing valugsefl) with that of the
‘approximate’ version of the algorithm (in which poweérs> 1 are neglected). The
CPU times listed in the table do not include the time for filtering out the ‘spurious’
relations obtained in the approximate version. It is evident from the tableh@at
performance gain obtained using the heuristic variant is more than 2. lbislabr
that values of between 1.5 and 2 sulffice for fields of this size.
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4.2.2 Implementation of the cubic sieve method

For the cubic sieve method (Section 3.2.3), we employ similar strategies. That is,
we solve the congruencB(A, B,C) = 0 (mod q) for each small prime; in

the factor base and ignore higher powers;dhat might divideR(A, B,C). As
before, we set the cut-off &tlg ¢; for some¢ > 1. We are not going to elaborate
the details of this strategy and the expected benefits once again. Instéaduse

on the performance figures available from our experiments. As in the laneze,

we work in the prime field,, with

p = 1320245474656309183513988729373583242842871683

For this prime, we hav&' = | ¢/p]+1 = 1097029305312372,Y = 1, Z = 31165
as a solution of (3.4).

We did not implement the ‘exact’ version of this algorithm in which one tries
to solve (3.7) for exponents > 1 of ¢q. Table 4.8 lists the experimental details for
the ‘approximate’ algorithm. (The meaning of the paramatell be explained in
Section 4.4.) As in Table 4.7, the CPU times do not include the time for filtering
out the spurious relations available by the more generous closeneswicrftar
the approximate algorithm. For the cubic sieve method, the valug¢smmfund 1.5
works quite well for our prime.

Table 4.8: Performance of the cubic sieve method for various valugs of
p = 1320245474656309183513988729373583242842871683
t = 10000, M = 10000, A = 1.5

No. of No. of CPU Time

¢ | Relations p) | Variables ¢) | p/v (seconds)
1.0 54805 35001 1.5658| 43508
15 54865 35001 1.5675| 43336
2.0 54868 35001 1.5676| 43492

4.2.3 Performance comparison between linear and cubic sievnethods

The speed-up obtained by the cubic sieve method over the linear sieve neethod
about 2.5 for the field of size around 150 bits. For larger fields, thisdsppées
expected to be more. It is, therefore, evident that the cubic sieve methizdst

for the casex = 1/3, runs faster than the linear sieve counterpart for the practical
range of sizes of prime fields.

4.3 Heuristic modification of the linear sieve method

We now describe a heuristic way of modifying the first stage of the lineae siev
method for the computation of discrete logarithms over prime fields. Our heuristic
allows us to build a factor base consisting of integers around squareofcssgeral
small multiples ofp. The strategy reduces the average of the absolute value of the
integers that are checked for smoothness with respect to the small primes in th
factor base. This, in turn, leads to a larger density of smooth integers cedhpa
to the original method. On the other hand, our heuristic decreases thefrdi® o
number of relations to the number of variables and may lead to failure to get a
full-rank system of linear congruences.
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4.3.1 The heuristics

HEURISTICLL1

HEURISTICL2

In the linear sieve method, we work with the quantitiés= | /p] +1, J = H*—p

and the bound\/ in the sieving interval (See Section 3.2.2). Let us now define,
for any integerr > 1, the quantities:H, = |/7p| + 1, J, = HZ — rp (so
that H = H; andJ = Jp). The linear sieve method works exactly the way we
described in Section 3.2.2 independent of the value w& choose. In this case,
however,H, ~ ,/rp andJ, < 2,/rp. Therefore, if a value- > 1 is chosen,
both H, and J, are/r times the value$/ andJ respectively. This increases the
value of T'(c1, c2) by a factor of,/r and, thereby, reduces the chance of smooth
factorization of this integer. As a result, we have to select a larger valié of
order to get sufficient number of relations.

To work around with this difficulty and at the same time to use the possibility
of using different values of, we propose the following heuristic variations of the
linear sieve method. To start with, we selesinaall positive integes and compute
for eachr, 1 < r < s, the values offH, andJ, as defined above. The factor
base now comprises of primes less thdt /2] (as in the original version of the
method) and integerd,. + c for eachl < r < sand—u < ¢ < u, wherey is the
bound on¢| for eachr in the modified method. Now for each valuergfve repeat
the sieving procedure, that is, we collect relations involving the indiceég(q; ),
indy(H, + ¢1) andindy (H, + c2) for —p < ¢1 < e < p.

In the original method we work with a factor base of st2¢ + 1+ ¢ and check
the smoothness af(c1, co) for approximately2M? pairs(cy, c2) with ¢; < co. If
we apply our heuristic modification, the factor base size becati2¢s+ 1) + ¢ and
the number of integers of the form

TT(Cl, CQ) = Jr + (Cl + CQ)HT + c1co

checked for smoothness (for ali » < s) becomes approximatefy?s.

Define the integep aspu = L%J, where M is chosen as in the original
method described in Section 3.2.2. With this choice the total number of in-
tegers checked for smoothness remains the same as in the original method
(viz. 2M?), whereas the factor base size increases ftd#- 1 + ¢ to approx-
imately2M /s + s + t.

The second alternative is to keep the factor base size same as in the ofiginal
method. This can be achieved by taking- L%J. With this choice ofu, the
number of integers reduces approximatel2d?/s.

We show in the next section that with both these choices tife average of the
absolute value of (¢, c2) decreases compared with the averagg&l @t , co)| in
the original method. As a result, the probability tiafc, , c2) factorizes smoothly
over the firstt primes is more than that faf(c;, c2). We, therefore, expect to get
more relations for a given number @f;, c2) pairs.

All these do not come free. For the first heuristic, the number of variables
(i.e. the number of factor base elements) increases by approximately adécto
V/s. For the second, on the other hand, the number of gajts,) decreases by
a factor ofs. These variations seem unimportant asymptotically at least for small
values ofs. In practice, however, one might fail to get a system with more equations
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than unknowns for values af> 1, while the original strategy with corresponding
values oft and M produces a full-rank linear system of congruences. In particular,
one must not chooseto be quite large.

4.3.2 Analysis of the heuristics

In this section, we prove that the average valugTofc;, c2)| over all possible
combinations of;; andc;y is larger than the average value |@f.(c1, c2)| over all
possible combinations of ¢; andcs. For the original method, we have calculated
the average value df’(c1, c2)| in Section 3.3.1. From Result 3.4, we write this
average value as

2MH _2M./p
3 7 3

T~

For the heuristic modifications, we can proceed similarly and prove that énags/
of | T, (c1, c2)| over all choices of, ¢; andcs is

7 2u(Hi+Hy+ ...+ Hy)  2u(vV1+V2+...+/5)p
heu ~ ~
3s 3s

The proportion of these average values is

_TheuNﬂ\ﬁ‘F\/ﬁ‘i‘---‘F\/g

¢ T M s

For the heuristic L1, we have ~ % so thatr ~ %ﬂ Clearly,t < 1.
In fact, ¢ approache% ass tends toco. For the heuristic L2, on the other hand,

M VI4V2+. 45 1L
52

p = ~, so thatr ~ 7 and approaches to zero atends tooo.

4.3.3 Experimental results

In this section, we compare typical timings and number of relations obtained in the
first stage of the linear sieve method with those obtained from our heuristic mod
fications. We report the results available from the ‘exact’ version of lgparighm.

(See Section 4.2.1 for the meaning of ‘exact’ in the last sentence.)

We experimented in the prime fielg), with
p = 38275450020766122418475251523827352087

This is a randomly generated prime of length 125 bits, for wiijch- 1)/2 is a
prime. The parametetsand M are selected slightly larger than the optimal values
so that the number of relations available is about twice the size of the facter ba
(for the original method). In the following tables we illustrate how the number of
relations generated by our heuristic schemes varies with the additionahgtara

s introduced at the beginning of this section. The case 1 corresponds to the
original method. We did not try to solve the resulting systems, neither did we make
an attempt to check the ranks of the systems. We allosmedncrease as long as
we get sufficiently more relations than the number of variables (size of therfa
base). The tables also list the total CPU time taken by the execution of the relation
collecting stage of the method.
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Table 4.9: Performance of heuristic L1
p = 38275450020766122418475251523827352087, t = 3000, M = 12500

Size of the No. of relations Total time
s | factorbase r=1|r=2 | r=3|r=4| r=5 | Total | (Seconds)
1 28001 62244 62244 36632
2 38354 | 34380| 36347 70727| 46742
3 46299 | 24194 | 25726| 23968 73888| 53725
4 53004 | 18908| 19996 | 18828 | 19659 77391| 59422
5 58905 | 15585| 16441 | 15554 | 16162 | 14251 | 77993| 64284

Table 4.9 shows the performance of the first heuristic. We see the edpecte
increase in the total number of relations generated, as we incsealdewever,
this increase in the number of relations seems to reach a saturatiersfot. It
is also evident that the ratio of the number of relations to the number of vesiable
decreases with increasing For larger values of, say, fors = 10 (not shown in
the table), our heuristic fails to generate more relations than the size of the fac
base. The value = 3 appears to be an optimal choice. As we incregsthe
running time increases too, but at a rate smaller than the increase in the giee of
factor base. For the case= 5, for example, we generate relations for a factor base
whose size i2.104 times that in the original case & 1), whereas the time we
spend to achieve this is abou55 times that for the original method.

Table 4.10: Performance of heuristic L2
p = 38275450020766122418475251523827352087, t = 3000, M = 12500

Size of the No. of relations Total time
s | factorbase r=1 | r=2 | r=3 | Total | (Seconds)
1 28001 | 62244 62244| 36632
2 28002 18908 | 19996 38904| 29937
3 27999 9358 | 9908 | 9400 | 28666| 26321

For the second heuristic (see Table 4.10), the problem of not havingtensy
with more equations than unknowns becomes more acute, as we ingrease
result, the largest values sfallowed by the second heuristic are smaller than those
allowed by the first.

4.4 Heuristic modification of the cubic sieve method

We recall from Lemma 3.5 that we check the smoothned&df, B, C') for —M <

A < B < C < M. With this condition,C varies from 0 tolM. We note that for
each value of”, we have to execute the entire sieving operation once. For each
such sieving operation (that is, for a fixé, the sieving interval fo3 is (i.e. the
admissible values oB are)—C/2 < B < min(C, M — C). Correspondingly

A = —(B + C) can vary frommax(—2C, —M) to —C'/2. It is easy to see that in
this case total number of tripl¢st, B, C') for which the smoothness &(A, B, C)
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M
is examined isr = Z (0/2 + min(C, M — C’)) ~ M?/2. The number of

C=0
unknowns, that is, the size of the factor base, on the other hands i8M + ¢.

4.4.1 The heuristic

If we remove the restrictiodl > —M and allowA to be as negative as\M for
somel < A < 2, then we benéefit in the following way. As before, we alléw
to vary from 0 toM keeping the number of sieving operations fixed. Sidcean
now assume values smaller thari/, the sieving interval increases toC'/2 <
B < min(C,A\M — C). As aresult, the total number of tripléd, B, C') becomes
M 2
M .
T = Z (C/Q + min(C, A\M — C)) R~ T(4)\ — A% — 1), whereas the size of
Cc=0
the factor base increasesuQ ~ (A + 1) M + ¢. (Note that with this notation the

value\ = 1 corresponds to the original method ane- 7, andv = v4.) The ratio
Tx/V IS approximately proportional to the number of smooth inte@&td, B, C)
generated by the method divided by the number of unknowns. Therefehmuld
be set at a value for which this ratio is maximum. If one treatsd M as constants,

. . . M+t
then the maximum is attained &t = —U ++/U?2 + 4U + 1, whereU = ]\; =

t . . .
1+ W As we increasé/ from 1 tooco (or, equivalently the ratio/)M from 0 to

o0), the value ofA* increases monotonically frony6 — 1 ~ 1.4495 to 2. (See
Appendix A for detailed calculations.) In Table 4.11, we summarize the variation
of 7, /v, for some values of/. These values dff correspond from left to right to

t < M,t~ M/2,t =~ M andt ~ 2M respectively. The corresponding values of
A* are respectively 1.4495, 1.5414, 1.6056 and 1.6904. It is clear frertatiie,
that for practical ranges of values©f the choice\ = 1.5 gives performance quite
close to the optimal.

Table 4.11: Variation of /v, with A

72/ (8pprox)
A U=1 U=15 U=2 U=3
1 | 0.2500 M | 0.2000 M | 0.1667 M | 0.1250 M
1.5] 0.2750 M | 0.2292 M | 0.1964 M | 0.1527 M
2 [ 0.2500M | 0.2143 M | 0.1875 M | 0.1500 M
A" 0.2753M | 0.2293 M | 0.1972 M | 0.1548 M

We note that this scheme keepband the range of variation @f constant and
hence does not increase the number of sieving steps and, in particelagrttber
of modular inverses and square roots. It is, therefore, advisablepty e trick
(with, say,A = 1.5) instead of increasing/. With that one is expected to get a
speed-up of about 10 to 20%.

4.4.2 Experimental results

We work inF,, with the 150-bit primep of Section 4.2. In Table 4.12, we fi
at 1.5 and tabulate the variation of the performance of the cubic sieve method f
some values oh. (The parametef is defined in Section 4.2.) It is clear from the
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table that among the cases observed, the largest value of the fatie obtained
at A = 1.5. (The theoretical maximum is attained)at~ 1.6) We also note that
changing the value of incurs variation in the running time by at most 1%. Thus
our heuristic allows us to build a larger database at approximately no estra co

Table 4.12: Performance of the cubic sieve method for various valugs of
p = 1320245474656309183513988729373583242842871683
t = 10000, M = 10000, £ = 1.5

No. of No. of CPU Time

A | Relations ) | Variables ¢) | p/v (seconds)
1.0 43434 30001 1.4478| 43047
15 54865 35001 1.5675| 43336
1.6 56147 36001 1.5596| 43347
2.0 58234 40001 1.4558| 43499

4.4.3 Effect of the heuristic onR, R,,., and d(n)

ReEsuLT4.1

We recall from Section 3.3 thak and R,,., denote the average and maximum
values of R(A, B, C)| asA, B, C run over all possible triples with + B+C' = 0,

A < B < C. The distribution functiorv(n) is introduced in Definition 3.9. We
now investigate the effect of our heuristic modification, namelyM < A, on
these quantities. Since we are experimenting with a pdlogeto a cube, so that
Y = 1, we consider the casé < X/M and write the approximate value &fas

M min(C,AM—-C) M min(C,AM—C)
R~X- (Z 3 (B2+BC+02)>/(Z 1) (4.2)

C=0 B=—C/2 C=0 B=—C/2

The denominator equats and is shown in Section 4.4.1 to be approximately equal
to 22 (4x — A2 — 1). The numerator evaluates{é%(—151)\‘l + 51203 — 384)\2 +
512X — 160). The maximum of R(A, B, C')| can be easily shown to be obtained
atC = M,B=(\—1)M,A=—\M. We, therefore, have

For the heuristic modification of the cubic sieve meth&dand R,,,.. can be
written in terms of)\ as

7 a | T1BIAT 4 5120° — 384X% + 512 — 160
~ 384(4X — A2 — 1)

CM2X

Rmax = (N2 = XA+ 1)M?X

In Table 4.13, we list the values &, Ry,.x andR/ Ryax for A = 1 (the original
method),\ = 1.5 (the recommended value) and= 2. We see that increasing
increases both the average valRend the maximum valu®,,... However, the
increase inRy,.x is more than the increase iR. Therefore, the ratid?/ Ryax
decreases with increasing

We end this section by a graphic descriptiono6f)). Similar to the original
method, we comput® (n) from the sum
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Table 4.13: Variation o, Ryax and R/ Ryayx With A

)\ R Rmax E/Rmax
1.0 0.43M?%X M?*X 0.43
1.5] 0.67TM?2X | 1.75M?2X 0.38
2.0| 0.88M2X 3M?X 0.29

min (M, | My/4n(A2=X+1)/3] )

D(n) =~ >

C=0

min (C, M-C, {—0/2 +4/n(A2 = A+ M2 — 302/4D 1

1+ (C/2] +

ando(n) = D(n)/D(1), whereD (1) ~ (4\ — A\? — 1) M? /4,

Figure 4.1: Variation ob(n) for the modified cubic sieve method
@A=10 (b)A=15 ()A=2.0

1 —
G A I ——
(©)
osl
“ (a) \m.«».‘««m«.\\“
p
0.6k ( 3‘”
-~
04l
0.4 0.6 0.8 1

From the above figure we see that as we increggsbe curve fo(n) shifts
upwards. This phenomenon is corroborated by the decreaB¢ Bf,.. with in-
creasing)\.

The details of the calculations of this section are given in Appendix B.
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Appendix A Determination and properties of \*

LEMMA 4.2

Proof

We recall from Section 4.4.1 that for our heuristic modification of the cubiesie
method, we have

7» = Number of triples for whichR( A, B, C) is tested for smoothness
M2
S A1)
vy = Size of the factor base
A+1)M +t

We want to maximize

M? [4)\)\21
(

TR =nm =" v+

In order to do so, we computg(\):

M2 (M) ) —a (M) 1
(A+ )M+t +1)? ]

MS
4

f'N) =

If we write U = % we see thaf’(\) has two zeros atU + vU? + 4U + 1.
Since) is positive in the region of our interest, we have= —U ++/ U2+ 4U +1.
It is not difficult to see that at this value af, we havef”(\) < 0, so thatf()\) is
maximum at\ = \* = —U + VU? +4U + 1.

We now deduce some properties)df First we note that can vary from O to
+o0 and, thereforel/ = % varies from 1 to+oc. We now prove the following

As U varies from 1 to+oo, \* = —U + vU? + 4U + 1 increases monotoni-
cally fromv/6 —1t02. In particular, for alll < U < oo, we havel < \* < 2.
We have

dX* U2 +4U + 4
=-1 >0
dU + U2 4+4U + 1
forall U > 1. Therefore, \* increases monotonically with’ for U > 1. For

U =1, =6 —1. AsU increases, the quantityU?2 + 4U + 1 tends to the
quantityvU? + U + 4 = U + 2. Hencelim y_,, = 2. [

The above lemma guarantees that for all value§ oive get the optimal value
A* in the region where\ is defined, namely] < A < 2. However, note that
increasing\ increasest and thereby reduces the fraction of smooth integers among
R(A, B,C). (See Result 4.1 and Table 4.13.) We have experimentally verified that
taking A = 1.5 works quite well in practical situations.
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Appendix B Calculations of R, Ry,.x and ©(n)

In this section, we derive the expressions RrR,.x and®(n) for our heuristic
modification of the cubic sieve method. We consider the dase X/M only.

In particular, we have experimented with = 1, so that this case applies to the
results and observations we have reported. Finally note that putting gives the
expressions for the original cubic sieve method — the ones which we seftply
omitted in the appendix to the previous chapter.

B.1 Calculation of R

For the modified cubic sieve method, varies from 0 toM. For a givenC, B
varies from—|C/2| tomin(C, A\M — C). Since we have assum&d< X /M, we
approximateR(A, B,C) as|R(A, B,C)| ~ |AB+ AC + BC|X = (B*+ BC +
C?)X. This leads to the following approximate value/®f

M min(CAM—C) M min(C,AM—C)
R=X. (Z > B2+BC+C2)/(Z > 1) (4.3)

C=0 B=-|C/2| C=0 B=—|C/2]

The denominator is equal tg, in Appendix A and can be evaluated as follows.
With the observation that' < A\M — C'ifand only if C' < AM /2, we have

M min(C,AM—-C)

>, > 1
C=0 B=-|C/2]
[AM/2] M
= Y (lc2]1+0) + > (l¢/2]+AM -0)
C=0 C=|AM/2|+1
2
~ MT(M — A1)

The sum in the numerator of (4.3), on the other hand, can be written as

[AM/2] c M AM—C

> Y (B*+BC+C?* + > > (B*+BC+C? (44)

C=0 B=—|C/2] C=|AM/2]+1 B=—|C/2]
The former sum in the last expression equals

IAM/2]
2 [(12+22+---(LC/2J)2) + (124224 )+
C=0

CUC/2] + 1)+ ([C/2] +2) + ... +C) + C(C + |C/2] +1>}

2L \appa 3

512)\ M* 4+ O(M?)
and the second sum in (4.4) equals

M

3 (12422 .+ (l0/2))7) + (12 + 224 ...+ (AM - C)?)
C=[AM/2]+1

+ C[(=lC2)+(=C/2] + 1)+ ...+ (=) +1+2+ ...+ (MM = O)]
+ (|02 +1+)\M—C’)}
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B.2

B.3

1
~ oo (—107>\4 + 2563 — 19202 4 256 — 80) M* + O(M?)

Adding these two sums gives the value of the numerator of (4.3) as

1

Therefore,

= —151M* + 51203 — 384\ + 512X — 160\ _ ,
R ~ M=X
( 384(4X — A2 — 1)

Calculation of R«

For a fixedC, the expression
|R(A,B,C)| =~ (B®>+ BC +C?)X = (B+C/2)* +3C%*/4)X

increases wittB and thus attains the maximum valued¢f? X for0 < C' < AM /2
and((AM — C)2 4+ (AM — C)C + C?)X = (N°M? — \MC + C*X = ((C —
AM/2)? +3)2/4)X for A\M /2 < C < M. Now if we varyC, we see that the first
expression reaches the maximum valueﬁm?MQX atC = \M/2, whereas the
second expression reaches the maximum valuygof- A + 1)M2X atC = M.
Now 2A2M2X > (A2 — A+ 1)M2X if (A — 2)% < 0 which is impossible for any
real\. Therefore,

Rimax ~ (A2 =X+ 1)M?X

Calculation of ®(n)

The condition R(A, B, C)| < nRmax demands
(B+C/2)> <n(\* = X+ 1)M?* — 3C?/4 (4.5)

If the right side of the inequality (4.5) is negative, that is,(ifis larger than
M+/4n(A\2 — X +1)/3, then no values of3 satisfy (4.5). On the other hand,
if C < My/4n(\2 —X+1)/3, then (4.5) is satisfied by alB satisfying0 <
B+ C/2 < /n(A2=X+1)M?2—3C?/4, thatis,—-C/2 < B < —C/2 +
Vn(A2 =X+ 1)M?2 — 3C2/4. In addition B satisfies—C/2 < B < min(C,
AM — (). Combining these results gives the valuef)) as

min (M, | My/4n(A2=X+1)/3] )

D(n) ~ >

C=0

min (C, M-C, {C/Q +4/n(A2 = A+ M2 — 302/4D ]

1+ (C/2] +

In Figure 4.1, we plod(n) = ©(n)/D(1) for A = 1,1.5,2 and M = 1000.
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On the congruence X° =Y?Z (mod p)

In Section 3.2.3, we introduced the cubic sieve method for the computation of dis-
crete logarithms over a prime fielg),. The working of this method is based on the
availability of a solution of the congruence

X3=Y?Z (modp) (5.1)

with X, Y, Z of the order ofp* for some% <a< % We are interested in solutions
with X3 £ Y2Z. Henceforth, we denote by ‘the cubic sieve congruence’ or by
CSC for brevity, the congruence specified by (5.1).

This chapter is devoted to a study of the solutions of the CSC. In the Section 5.1
we introduce some notations and results from analytic number theory, thateve
throughout the chapter. In Section 5.2, we deduce that the number tibaslof
the CSC (with or without the inequalitX® # Y22) is ©(p?). In Section 5.3,
we provide a heuristic estimate of the number of solutions of the CSC subject to
the conditionX,Y, Z < p*, X3 # Y2Z. We show that for sufficiently large, a
value ofa, 1/3 < o < 1/2, is expected to give at least a solution of the CSC with
X, Y, Z < p* Our argument is not to be taken as a proof for the existence of a
solution. It heuristically justifies that for sufficiently large primes, onexpected
to have a desired solution of the CSC. Some small-scale experiments catrisd ou
us provide evidence in favor of our claim regarding this asymptotic expeciee.
Indeed our experimental results tally quite closely with the theoretical estimates u
to a constant factor. We finally emphasize that our demonstratioot jgrocedural
in the sense that it does not lead to an algorithm for finding a solution when on
exists.

5.1 Some results from analytic number theory

DEFINITION 5.1

In this section, we introduce some notions and results from analytic numloeythe
that we use throughout the chapter. For details we refer the readey totaoduc-
tory text book on analytic number theory, for example [4, Chapter 3].

A real- or complex-valued function defined on the Bedf natural numbers is$
called anarithmetic function

If fis an arithmetic function, it is often possible to extend the domain of def-
inition of f to the set of all positive real numbers such that the restrictiof tof
N is the given arithmetic function. Certain results requfire®o have acontinuous
derivativef’(x) for all z € R or at least forr € [a, b] for some0 < a < b. In such
a case, we can evaluate the spip_,,, f(n) by evaluating an integral as follows:
(Here the sum extends over all integets: < n < b.)
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THEOREMS5.2 | [Euler's summation formula] Iff has a continuous derivativg in the closed
interval [a, b], where0 < a < b, then

/f dt+/t— dt

f@)([b] =b) = f(a)(la) —a)

a<n<b

The following results are easy consequences of Euler's summation formula

THEOREMb5.3 | Forz > 1 and for real values of, we have:

@ > Tllzlnx+fy+0(i)

1<n<Lx
1 xlfs -
() > =1 (&) TO0ET) Hs>0s5#1
1<nLx
1 .
© > = O@'™%) ifs>1
n>x
strl
s _ s if >
(d) K%mn T TOGE) >0

In the above theoremy, is the Euler constant defined by

1 1 1
v = lim (1++...+—lnn> = 0.57721566. ..
n

n—00 2

and((s) is the Riemann zeta function defined for all reat 0, s # 1 as

oo
1 .
— if s >1
n—lns
C(S): - 0o 1—s
. 1 T .
hm( — — ) fo<s<1
w0 \ L= s 1— g

We now define for an integer € N the integerd(n) to be the total number of
(positive integral) divisors ofi. Then Theorem 5.3 gives the following:

THEOREMb5.4 | For all realz > 1, we have

Z d(n)=zlnz + (2y — 1)z + O(v/z)

n<x

5.2 Total number of solutions of the CSC

To start with let us introduce a few notations related to the set of solution®of th
CSC.

S = {(X,Y,2)| X*=Y?Z (modp), 1 <X,Y,Z < p}

87



S_ = {(X,Y,2)eS|X?=Y?%2)}
Sy = {(X,)Y,2) eS| X°#Y?Z}
Se = {(X,Y,2) € S.|1<X,Y,Z <p%}

For the cubic sieve method, we are not interested in solutions of the CSC.in
However, it is easy to estimate the cardinalitySf. This, in turn, gives the car-
dinality of S... We also remark that the sef§ for 1/3 < o < 1/2 are extremely
important for the cubic sieve method. In fact, the smallest possible valadaf
which S, is non-empty, determines the running time of the cubic sieve method.

It turns out that the se$' under coordinate-wise multiplication modutois
a group with identity(1,1,1) and (X,Y, Z2)~! = (X-1, Y~1 Z~1), where the
inverses ofX, Y andZ are modulg. Since(1,1,1) € S, S is never a subgroup
of S. The same argument holds for the s&ts ForX? =Y?2Z, itis not necessary
that(X—1)3 = (Y~1)2Z~! and thusS is also not a subgroup . At any rate,
these facts do not seem to have a bearing on the material that follows indbpigch

In this section, we derive the cardinalities §f S— andS.. We will discuss
about the cardinalities of the sefs in the next section.

5.2.1 Cardinality of S

For each value oK, Y € F,;, we have a unique solution fdf € F, satisfying the
CSC. Therefore

#5=@p-17>=00p" (5.2)

5.2.2 Cardinality of S_

Choosel < X < p and a solution X,Y, Z) € S—. Let the prime factorization
of X be X = pj pﬁQ .pP, wherep; are distinct primes and; > 0. Therefore,
Y27 = X3 = 351 352 _..p%. SinceY2| X3, for eachi = 1,...,r, the power of
p; dividing Y must be one 00,1,2,...,]33;/2|. Some choices of these powers
lead toY” > p. We neglect this for the time being and see that for the giX¥etotal
number of choices foy” (and hence fo¥) is

T

< [T+ 86:/2)

=1

< H (1+36:/2)

<

( + Bi)

N
,_.

If we sum this quantlty over all < X < p and use Theorem 5.4, we get

#5- < Z d(X
1<X<p

- %(p—l)ln(p—l)Jr(?w—g)(p—l)JrO(\/ﬁ) (53)
= O(plnp)
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Next we derive a lower bound fa¥_. First note thateaclk =Y = Z € Fj is

in S_ and hence#S— > p — 1. We can determine a bound slightly better than
this. To do so, we first fix". ThenY? < X3 < Y?p, sincel < Z < p. Let
the values ofX that satisfyY? < X3 < Y?p be X, Xs,..., X, wheres =
(Y2p)'/3 — (Y23 +0(1) andX; = X +i— 1. SinceY < p, it's clear that each
X; above is less thap. We consider only those values &f; for which Y2| X3,
We see that ifY'| X;, thenY2| X}, Hence for a fixed, total number of solutions
(X,Y, Z) € S_ is greater than or equal t¢Y ?p)'/3 — (Y2)1/3 + O(1))/Y. lf we
sum this over all’, we get applying the formula (a) and (b) of Theorem 5.3

(V)% — (V)3 +0(1)

45 >
lggf;p Y
1
= 3 -1) 1; Vi3 + O(lnp)
SY<p
1-1/3
= ) [P /3 4 06| 4 Ofnp)
= Spr 0w 54

where((1/3) = —0.97336024 . . . In particular,#S= = Q(p).

5.2.3 Cardinality of S

Sinces is the disjoint union oS_ andS., Eqns 5.2, 5.3 and 5.4 give

(10— 1~ S(p-1)(p—1) +Ol) < #8, < -1~ p+0(*")  (55)

In particular#S. = ©(p?).

5.3 Heuristic estimate of#S,,

CLAIM 5.5

Proof

In this section, we count the number of solutions of the CSC witly, Z < p%,
X3 # Y?Z. Since the cubic sieve method demands < o < 1/2, we consider
« only in this range, though our argument is valid for @yt o < 1.

We first fix Y and writeX® = Y2 Z +kp for somek € Z\ {0}. We then see that
X3 = kp (mod Y?). This implies that must be chosen such that is a cubic

residue moduld2. We are interested only in the cubic residaés2?, . .., [p*|3
moduloY2.
Irrespective of whether thgp®| cubic residued®,23,..., [p¥|? are distinct

moduloY 2 or not, for anyn distinct random values dfp, we expect:|p* | /Y2
distinct solutions fof X, Y, Z) with X < p®.

This is because ifX? = X3 = kp (mod Y?) for somek with X7 # Xo,
then we get two solutiongX, Y7, Z1) and(Xs, Y2, Z5). In particular, if thegood
cubic residued?,23, ..., |p*|? assumen distinct values moduld?, then from
the n given values ofcp, we expectym/Y? values ofk to correspond to the set
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ASSUMPTIONS.6

ASSUMPTIONS.7

of these cubic residues. Each such residue, on the other hand, satsdoon
an average, withp®|/m solutions withX < p®. Hence the expected num-
ber of solutions(X, Y, Z) corresponding to the given random values ofp is

(nm/Y?)([p*]/m) = n[p*]/Y?. u
Now we allowk to vary in the range

1 Y2
- _pa—ly2 <k< p3a—1 _ - (56)
p p

This corresponds to a total of

Y2
pSafl o ? —}—pa71Y2 + O(l)

values ofk # 0. Sincekp = X3 —Y2Z andl < X, Z < p®, we have for the fixed
value ofY chosen above, — p®Y? < kp < p3® — Y2 which implies (5.6). Note,
however, that the converse is not true, that is, all valudsprescribed by (5.6) do
not lead to values of < X, Z < p®. We will forcel < X < p® and consider
only those solutions for which < Z < p©.

Now we make the followindpeuristic assumptian

As k varies in the range given by (5.6), the integkpsbehave as random inte
gers moduld2.

This is a reasonable assumption since the @¢tl p) = 1. This assumption to-
gether with Claim 5.5 guarantees an expected number of approximately

_ _ 1 p*
3a—1 a—1 2

1 - =Y — 5.7
(p +O()+(p p) )Y2 (5.7)
solutions(X, Y, Z) with the givenY". All these solutions correspond to< X <

p%, but not necessarily td¢ < Z < p® as told before. The inequalities (5.6)
together withX? = Y2Z + kp show that the range of variation &fis

3a 3 3
P — X X3 -1
vz SZSP At

At this point we make theecond heuristic assumption

1 (5.8)

All these values off are equally likely to occur. ‘

For anyl < X < p®, (5.8) prescribes® — 1 + 2571 + O(1) non-zero values for

Z including the values < Z < p®. Therefore, by assumption 5.7, the probability
thatZ liesinthe rangd ... [p“] is

(87

.
p3a_1

pay2
(p* = 1)Y2 +pie—1
Y2
Y? + p2a
Y2

27 (5.9)

~
~
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CONJECTUREbS.8

This probability multiplied by (5.7) gives the expected number of solutions,in
with the given fixedY’, as greater than or equal to

L [ 301 ( a-1 1) 2)
— 1 — - )v?).
2 (p +01)+ (p )

We finally varyY with 1 <Y < p® and use (d) of Theorem 5.3 to obtain:

Expected cardinality of,,
L 3a—1_ o fo' ( a—1 1) (pa)3 a2
o (p p*+ 0@+ (p » 5 HO"))

2
= 3p™7 4+ O(max(1,p* 7))

_ Q(p3a—1) (5.10)

WV

For sufficiently largep, the term%p?")‘—1 dominates and one might expect to get
a solution if2p3*~1 >> 1, say, for example, ip3*~! > 1000, i.e., if

1 N In(1500)
3 3lnp

oz

For example, ifp ~ 2°%9, thena = 0.34037 is expected to maké,, non-empty.

We have noted that assumption 5.6 is reasonable and gives a good pith@e o
average situation. Assumption 5.7, on the other hand, is difficult to justify math-
ematically. Indeed this assumption is equivalent to the question of existerace of
suitable solution. We assumed an average scenario to get an estimate ohAs
we pointed out earlier, our aim is not povethe non-emptiness or otherwise of
S, but to compute an approximate value of its cardinality with the hope that this
behavior is general enough to portray the average situation. In theewidrs we
show that up to a constant factor our estimates are quite close to the experimen
tal values we obtained from a set of small scale experiments. Theseregptal
results together with our theoretical estimate tempt us to make the following con-
jecture:

The expected cardinality of,, is asymptotically equal tqp3>~—! for all 0 <
«a < 1 and for some constant= 1. (Note that (5.5) demandg= 1.)

Few primes of special forms might not obey the conjectured estimates. But we
do not see any such special form — both experimentally and theoretichéybdik
of the derivation of (5.10) is based on the cubic residues moddléor integers
Y =1,2,3,... The primep does not seem to play an important role in connection
with assumption 5.6. The second assumption, however, can be influepdld b
choice ofp and may lead to situations we failed to visualize.

5.3.1 Experimental verification

We experimented with randomly generated primes of size around 30 bits. \We ac
tually enumerated all the solutions of the CSC for various valuesinofthe range

0.33 < a < 0.50. We tabulate these experimental values together with the theo-
retical estimates obtained &sS,, = L%p?’a—lj. We also list the conjectured values
given by#5S, = |xp*>*~ '] with xy = 1.
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Table 5.1:#5,, for p = 32263723 (A 25-bit prime)

Values of#5S,,
a | (@ | () | (¢ | (b)a)] (c)(a)

0.33 0 0 0

0.34 0 0 1 _ _
0.35 1 1 2 1.00| 2.00
0.36 1 2 3 2.00| 3.00
0.37 1 4 6 4.00| 6.00
0.38 4 7 11 1.75| 2.75

0.39 8 12 18| 1.50| 2.25
0.40 23 21 31| 091, 1.35
0.41 38 35 53| 0.92| 1.39
0.42 62 59 89| 095, 1.44
0.43| 105| 100| 150| 0.95| 1.43
0.44| 191, 168| 252| 0.88| 1.32
0.45| 356| 283| 424| 0.79| 1.19
0.46| 623| 475| 713| 0.76| 1.14
0.47| 1060| 798| 1198, 0.75| 1.13
0.48| 1785 1341| 2012| 0.75| 1.13
0.49| 3043 | 2254|3381 0.74| 1.11
0.50| 5225| 3786 | 5680| 0.72| 1.09
(a) experimental, (b) estimated, (c) conjectured

Table 5.2:#5,, for p = 1034302223 (A 30-bit prime)

Values of#5S,,
o () (b) (c) | (b)(a)] (c)/(a)

0.33 0 0 0 - -
0.34 1 1 1 1.00| 1.00
0.35 1 1 2 1.00| 2.00
0.36 2 3 5 1.50| 2.50
0.37 5 6 9 1.20| 1.80
0.38 9 12 18 1.33| 2.00

0.39 23 22 34| 096| 1.48
0.40 53 42 63| 0.79| 1.19
0.41 98 78 118| 0.80| 1.20
0.42 185 147 220 0.79] 1.19
0.43 368 274 411 0.74| 1.7
0.44 695 511 766 | 0.74] 1.10
0.45| 1363 952 | 1429| 0.70| 1.05
0.46| 2475| 1776| 2664| 0.72| 1.08
0.47| 4646| 3310| 4965| 0.71| 1.07
0.48| 8815| 6170| 9256| 0.70| 1.05
0.49| 16615| 11502| 17253| 0.69| 1.04
0.50| 31451| 21440| 32160| 0.68| 1.02
(a) experimental, (b) estimated, (c) conjectured
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Table 5.1 gives data fop = 32263723, a random 25 bit prime. Table 5.2
gives the same for a random 30-bit prime= 1034302223. Though we have
experimented with many primes of this size, we give the valueg.gf only for
these two values. This is because we get exactly similar pattern of variage8 of
with « for all of our test primes. Thus a few representatives are sufficiaeflect
the scenario.

The tables clearly show that apart from constant factors the experimesta
timated and conjectured values exhibit the same pattern of variatigdbgfwith
a. Fora close to 0.33, the relation between these values is little erraticy ks
creases, say > 0.40, the ratio of the estimated value to the experimental value and
the ratio of the conjectured value to the experimental value tend to approaeh c
stant values. In particular, the conjectured values are quite close togberagntal
values. It remains unsettled if this pattern continues to hold for general poime
larger sizes, say for primes of size 1000 bits. Since at present no algorithms
are known to solve the CSC in polynomial timelog p, we cannot experiment
with higher values op. In addition, even if such an algorithm exists, one should
spendO(p**) time for enumerating all the solutions if),. This makes it infeasible
to continue the experimental study with primes of practical interest. These small-
scale experiments give us some confidence about the theoretical estierated d
in this section.

In spite of all these theoretical and experimental exercises, the quektris-o
tence or otherwise of a solution of the CSC for soijig@ < « < 1/2 continues to
remain unanswered. It is believed that a solution exists [28, 77]. Olyssanly
strengthens the belief in favor of a solution and to that effect is much strahgn
the argument presented in [77].
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5] Conclusion

In this chapter we summarize the work reported in the thesis. We also deidaribe
possibilities and need for further research in this area.

6.1 Summary of work done

This thesis has been devoted to a study of the computational aspects ofdidie fi
We started with a brief survey on the main computational problems of theoreti-
cal and practical concern to applied mathematicians and computer scientists. W
provided a list of the state-of-the-art algorithms to solve these problemshand
running times of these algorithms.

In the second chapter, we described our computational library of fursctar
working over finite fields. This library developed by us is termed the Galois Fie
Library (GFL). GFL consists of built-in routines for solving many computational
problems discussed in the survey of Chapter 1. It provides arithmeticfiover
fields of arbitrary characteristic and cardinality. It also provides roatfoe uni-
variate polynomials and matrices over finite fields. Our library allows the user to
work with prime fields of any characteristic and with their algebraic extengibns
tained by adjoining roots of any number of irreducible polynomials. Our kbrar
introduces and makes extensive use of what we call the packed erfatsn of
finite field elements. This packed representation helps us provide a urtifeatn
ment of all finite fields. To the best of our knowledge, no other librarycfom-
putation over Galois fields provides this generality. Another important featir
GFL is its dynamic memory management policy which eliminates garbage collec-
tion overheads. GL seems to provide the largest set of built-in routines as far as
computation over finite fields is concerned.

We demonstrated the programming techniques witi.@rough some small
and simple examples. We also provided an exhaustive list of functionsntiyrr
provided by G°L. We compared the performance oF G with those of three other
libraries, namely, LiDIA, NTL and ZEN.

The rest of the thesis (Chapters 3 through 5) has been devoted to asthdy
discrete logarithm problem (DLP) over finite fields of prime cardinalitifhe DLP
is a very difficult computational problem for which no polynomial time algorithms
are known. It is not even known if this problem can be solved in polynotimed.
The best algorithms known till date are based on the index calculus method and
take time subexponential liag p. We concentrated on three variants of the index
calculus method, namely the basic method, the linear sieve method and the cubic
sieve method.

The sieve methods test a set of deterministically generated integers (the inte-
gersT'(c1,c2) andR(A, B, C) introduced in Chapter 3) for smoothness over a pre-
determined set of small primes. The analysis of running times of these methods
is based on the heuristic assumption that these deterministically generatedsintege
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behave as if they have been chosen following a random distribution. \Wedsta
our study of the DLP by showing that the actual distribution of these intég et
really random in the sense that these integers do not follow uniform distnibu

To prove our claim we found out the arithmetic mean and the cumulative statis-
tical distribution of these integers. We found that the average bit-lengtheséth
test integers is smaller than the expected bit-length of a sample of integeesnchos
following the uniform distribution. Since smaller integers have higher chafce
being smooth, we concluded that the actual distribution of the test integaztas b
than the uniform distribution.

In Chapter 4, we proposed heuristic modification schemes for the thrieatsar
of the index calculus method stated above. We analytically and experimentally
found out the effectiveness of our heuristics. For the basic methodyeuistic
schemes reduce the total number of discrete exponentiations carriedtoaified.
We also bring down the cost of trial divisions by factor base primes using tw
strategies: maintaining a list of remainders and sieving. All these help us get a
speedup of between 1.5 and 3 over the original method. We, howevethabtae
index calculus method in the basic form is very slow and achieving a sgeeél-u
this order does not make it usable in practical situations. Thereforestody of
the basic method is mostly of theoretical interest.

The linear sieve and the cubic sieve methods are practical methods for pfimes
medium size € 250 bits). Our heuristic modifications of the linear sieve method
decrease the running time per relation generated. This is because oistit®u
test for smoothness a set of integers that are on an average smallewtivaediers
tested for smoothness in the original method. At the same time the heuristice reduc
the ratio of the number of relations to the size of the factor base and may lead to a
situation where one fails to get a full-rank system of linear congruences.

Although the cubic sieve method proposed in 1986 [28] is asymptotically faster
than the linear sieve method, it drew very little attention by the research commu-
nity. The most probable reason for this is that the applicability of this methddsban
on a solution of the congruencé® = Y?Z (mod p) with X?® # Y2Z. Given a
solution of this congruence, one can, however, readily use the cubsiethod.

We studied a case when a solution of the congruence is easily availabldy nlaene
case when the cardinalipyof the prime field is close to a whole cube. We showed
that in this case the cubic sieve method runs faster than the linear sieve mgthod b
factor of 2.5, even whepis small (of length around 150 bits). For larger fields, the
speed-up of the cubic sieve method over the linear sieve method is expebied to
more. In order to prove the superiority of the cubic sieve method, we implethente
an efficient version of the two sieve methods. Our implementation speeds up the
equation collecting phase by a reasonable amount. Finally we proposedstibe
modification of the cubic sieve method, that allows us to build a larger facter bas
without any significant increase in the running time. We also determined gtiteor
cally and experimentally, the optimal value of a parameter which plays the tentra
role in this heuristic scheme.

We conclude our study of the DLP by an analytic study of the congruence
X3 =Y?Z (mod p). A solution of this congruence witlX, Y, Z of the order
of p® with 1/3 < a < 1/2 is needed for the cubic sieve method. The smallest
possible value ofr determines the best running time of the cubic sieve method. It
is, however, not known how one can find a solution of the congrueviceeover,
it is not even known if a solution witkx in the above range exists. Our heuristic
analytic arguments show that on an average one can expect to haveiansotu
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the congruence witlx close tol/3. More precisely, we showed that under two
(reasonable) heuristic assumptions, the expected number of solutioresaifdte
congruence with < X, Y, Z < p® is Q(p3*~1). We carried out some small scale
experiments to enumerate all the solutions of the congruence and founauthat
heuristic estimate tallies quite closely with the experimental values. Our analysis,
however, does not lead to an algorithmic determination of a solution.

6.2 Directions for further research

The theory of finite fields finds many applications in various areas like cgyato

phy, error control coding, combinatorial design. As a result, desigalyais and
implementation of algorithms for computation over finite fields are getting more
and more popular among mathematicians and engineers. Many tools are cpming u
to meet the practical needs of users. We have develoffddas a general-purpose
easy-to-use library. There are many ways in which the library can keneed. We
mention a few important possibilities.

1. Improving performance dBF L routines: This involves devising and/or im-
plementing algorithms that run more efficiently compared to the routines cur-
rently implemented in BL. A comparative study of GL with other existing
libraries (See Section 2.5.4) shows that there are many scopes for improve
ment. Though the generality of[& is partially responsible for its slower
relative performance, it is not the only source of inefficiency. It nexpucon-
siderable additional effort for finding out and removing possible looled
in the implementation.

2. Adding new featuresGIFL can be made to address a wider range of com-
putational problems over finite fields. For example, data structures and rou
tines for manipulating multi-variate polynomials and polynomial functions
can be added to L. Routines for elliptic curves over finite fields can also
be added.

3. Designing a front-end:An interpreter that runs on top of & can make
programmer’s task much easier and user-friendly.

4. Parallelization: The GF L routines can be parallelized and run in a distributed
fashion on a network of processors. One possible way to achieve this is to
implement a client-server application with the help of Unix domain sockets.

As we discussed in the survey of Chapter 1, many computational problemns ov
finite fields do not have deterministic polynomial-time solutions. This is, in gen-
eral, not a problem, because randomized algorithms solve these probksosa-re
ably efficiently and are sufficient for all practical purposes. Therdiedogarithm
problem, on the other hand, continues to remain an outstanding open prdtiiem.
advent of cryptography to exploit human inability to solve the problem effityie
(even with randomization) only intensifies the intellectual challenge. Crygpdgyr
is a negative application in a broad sense, but it has practical usefulhissrather
debatable if an efficient solution of the DLP does any good to mankind. RBat th
as A. K. Lenstra and H. W. Lenstra, Jr. say [77Wlost number theorists consid-
ered the small group of colleagues that occupied themselves with theserpsob
as being inflicted with an incurable but harmless obsession.”
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An obsession or scientific inquisitiveness, the need for further relséasolve
the DLP can hardly be denied. Our study of the DLP in this thesis is motivated
by this need. The question of solvability or otherwise of the DLP in polynomial
time is a hard one to answer. We point out a few easier and more dowmtto-ea
guestions, the solutions of which can augment our study:

e Randomness df'(ci,c2) and R(A, B,C): We showed that the integers
T(c1,c2) and R(A, B, C) do not follow uniform distribution. The ques-
tion that remains unanswered is whether these integers behave randomly as
a sample of integers drawn according to the distributions they follow.

e Comparison with the number field sieve methdde number field sieve
(NFS) method is currently known to be the fastest method to solve the DLP,
both theoretically and experimentally. Our study reveals that the cubic sieve
method holds promise. It is, therefore, necessary to calibrate the perfor
mance of the cubic sieve method against the NFS method. The NFS method
is asymptotically faster than the cubic sieve method. But it demands exper-
imentation to settle from which sizes pf the NFS method starts perform-
ing better than the cubic sieve. Similarly, albeit somewhat less importantly,
we need to compare the performance of the cubic sieve method with the
Gaussian integer method (though the Gaussian integer method is asymptot-
ically slower than the other two methods discussed in this paragraph). It is
imortant to note here that for primes close to a cube, the number field sieve
method also gets efficient, that is, one should use the special number field
sieve method instead of the general number field sieve method.

e More about the cubic sieve congruendd®e need a proof for the existence
of suitable solutions of the congruen&€ = Y2Z (mod p). More impor-
tantly, we need ‘good’ algorithms for calculating a solution.

e Further enhancements of the algorithm¥ve need further improvements
(heuristic or otherwise) over the existing methods for solving the DLP. In
particular, the second stage of the cubic sieve method is known to be quite
slow. Any improvement in the running time of this stage makes the cubic
sieve method more usable.

The integer factorization problem is known to be yet another difficult open
problem and is widely believed to be equivalent to the DLP. There are rmdde
in favor of the equivalence; see, for example, [85, Section 6.9].dadeave a few
exceptions, most algorithms we use nowadays for solving the DLP are ditep-
tations of the algorithms for solving the integer factorization problem. Any new
algorithm to solve one of these problems is expected to apply to the othermproble
as well. We end this section with the following sobering quote by A. K. Lenstra
and H. W. Lenstra, Jr. [77], which though meant to address the intagirization
problem is equally applicable for the DLP.

“It is important to point out that there is only historical evidence that fazation is an intrinsically
hard problem. Generations of number theorists, a small army of computetisisieand legions of cryptol-
ogists spent a considerable amount of energy on it, and the best theyipamit are (the) relatively poor
algorithms. . . Of course, as long as the widely believeg fP-conjecture remains unproved, complexity
theory will not have fulfilled its originally intended mission of proving certaincaithmic problems to be
intrinsically hard; but with factorization the situation is worse, since even éfebcated conjecture just
mentioned has no implications about its intractability. Factorization is considasgel ¢han NP-complete
and although the optimistic conjecture that it might be doable in polynomial time is ardyyrpublicly
voiced, it is not an illegitimate hope to foster.”
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safe multiplication, 33, 35
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MAGMA, 35 prime number theorem, 50, 52
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Ta”k o'f,'32' random number generator, 20
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addition, 30 T
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algorithm for square, 29

arithmetic, 27 Shank’s baby-step-giant-step method, 10, 48
binary gcd, 27, 30 sieving, 50, 52, 66, 95
division, 30 interval, 50, 52, 80
factorization, 30, 97 SIMATH, 35
ged, 27, 30 square-free factorization, 32
left shift, 30
modular exponentiation, 27, 47, 64, 68 timing
modular inverse, 74, 80 comparison of, 36
multiplication, 30 cubic sieve, 76, 81
primality testing, 30 field arithmetic, 34
right shift, 30 linear sieve, 75
smooth, 12, 49, 50, 52, 53, 64, 73, 77, 79 heuristic L1, 79
square, 30 heuristic L2, 79
square root, 27, 52, 80 multi-precision integer arithmetic, 29, 31, 34
subtraction, 30 polynomial arithmetic, 35
_ trace, 2, 31
N-polynomial, 45 trial division, 50, 64
next divisibility index, 67, 68
nonresidue, 8 xedni calculus method, 11, 48
norm, 2, 31
normal element, 31, 45 Zech's |Ogarithm table, 2,33, 34, 45
NTL, 12, 35, 94 ZEN, 12, 35, 94

number field sieve, 10, 49, 97

packed representation, 17, 37
Pohlig-Hellman method, 10, 48
Pollard’s rho heuristic, 10, 48
polynomial
arithmetic, 3, 32, 35, 41
characteristic, 32
discriminant of, 32
factorization, 4, 5, 32, 44
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