Algebraic Curves
 An Elementary Introduction

Abhijit Das

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

August 23, 2011

Part I
Affine and Projective Curves

Part I

Affine and Projective Curves

- Rational Points on Curves
- Polynomial and Rational Functions on Curves
- Divisors and Jacobians on Curves

Affine Curves

Affine Curves

- K is a field.
\bar{K} is the algebraic closure of K.
It is often necessary to assume that K is algebraically closed.

Affine Curves

- K is a field.
\bar{K} is the algebraic closure of K.
It is often necessary to assume that K is algebraically closed.
Affine plane: $K^{2}=\{(h, k) \mid h, k \in K\}$.

Affine Curves

- K is a field.
\bar{K} is the algebraic closure of K.
It is often necessary to assume that K is algebraically closed.
Affine plane: $K^{2}=\{(h, k) \mid h, k \in K\}$.
For $(h, k) \in K^{2}$, the field elements h, k are called affine coordinates.

Affine Curves

- K is a field.
\bar{K} is the algebraic closure of K.
It is often necessary to assume that K is algebraically closed.
Affine plane: $K^{2}=\{(h, k) \mid h, k \in K\}$.
For $(h, k) \in K^{2}$, the field elements h, k are called affine coordinates.
Affine curve: Defined by a polynomial equation:

$$
C: f(X, Y)=0 .
$$

Affine Curves

- K is a field.
- \bar{K} is the algebraic closure of K.
- It is often necessary to assume that K is algebraically closed.
- Affine plane: $K^{2}=\{(h, k) \mid h, k \in K\}$.
- For $(h, k) \in K^{2}$, the field elements h, k are called affine coordinates.
- Affine curve: Defined by a polynomial equation:

$$
C: f(X, Y)=0
$$

It is customary to consider only irreducible polynomials $f(X, Y)$. If $f(X, Y)$ admits non-trivial factors, the curve C is the set-theoretic union of two (or more) curves of smaller degrees.

Affine Curves

- K is a field.
- \bar{K} is the algebraic closure of K.
- It is often necessary to assume that K is algebraically closed.
- Affine plane: $K^{2}=\{(h, k) \mid h, k \in K\}$.
- For $(h, k) \in K^{2}$, the field elements h, k are called affine coordinates.
- Affine curve: Defined by a polynomial equation:

$$
C: f(X, Y)=0
$$

It is customary to consider only irreducible polynomials $f(X, Y)$. If $f(X, Y)$ admits non-trivial factors, the curve C is the set-theoretic union of two (or more) curves of smaller degrees.
\square
Rational points on C : All points $(h, k) \in K^{2}$ such that $f(h, k)=0$.

Affine Curves

- K is a field.
- \bar{K} is the algebraic closure of K.
- It is often necessary to assume that K is algebraically closed.
- Affine plane: $K^{2}=\{(h, k) \mid h, k \in K\}$.

■
For $(h, k) \in K^{2}$, the field elements h, k are called affine coordinates.

- Affine curve: Defined by a polynomial equation:

$$
C: f(X, Y)=0
$$

It is customary to consider only irreducible polynomials $f(X, Y)$. If $f(X, Y)$ admits non-trivial factors, the curve C is the set-theoretic union of two (or more) curves of smaller degrees.
Rational points on C : All points $(h, k) \in K^{2}$ such that $f(h, k)=0$.
■ Rational points on C are called finite points.

Affine Curves: Examples

Affine Curves: Examples

Straight lines: $a X+b Y+c=0$.

Affine Curves: Examples

Straight lines: $a X+b Y+c=0$.
Circles: $(X-a)^{2}+(Y-b)^{2}-r^{2}=0$.

Affine Curves: Examples

- Straight lines: $a X+b Y+c=0$.

Circles: $(X-a)^{2}+(Y-b)^{2}-r^{2}=0$.
Conic sections: $a X^{2}+b X Y+c Y^{2}+d X+e Y+f=0$.

Affine Curves: Examples

- Straight lines: $a X+b Y+c=0$.

Circles: $(X-a)^{2}+(Y-b)^{2}-r^{2}=0$.
Conic sections: $a X^{2}+b X Y+c Y^{2}+d X+e Y+f=0$.
Elliptic curves: Defined by the Weierstrass equation: $Y^{2}+\left(a_{1} X+a_{3}\right) Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$.

Affine Curves: Examples

- Straight lines: $a X+b Y+c=0$.

Circles: $(X-a)^{2}+(Y-b)^{2}-r^{2}=0$.
Conic sections: $a X^{2}+b X Y+c Y^{2}+d X+e Y+f=0$.

- Elliptic curves: Defined by the Weierstrass equation:
$Y^{2}+\left(a_{1} X+a_{3}\right) Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$.
If char $K \neq 2,3$, this can be simplified as $Y^{2}=X^{3}+a X+b$.

Affine Curves: Examples

- Straight lines: $a X+b Y+c=0$.
- Circles: $(X-a)^{2}+(Y-b)^{2}-r^{2}=0$.
- Conic sections: $a X^{2}+b X Y+c Y^{2}+d X+e Y+f=0$.
- Elliptic curves: Defined by the Weierstrass equation:
$Y^{2}+\left(a_{1} X+a_{3}\right) Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$.
If char $K \neq 2,3$, this can be simplified as $Y^{2}=X^{3}+a X+b$.
Hyperelliptic curves of genus $g: Y^{2}+u(X) Y=v(X)$ with $\operatorname{deg} u \leqslant g$, $\operatorname{deg} v=2 g+1$, and v monic.

Affine Curves: Examples

- Straight lines: $a X+b Y+c=0$.
- Circles: $(X-a)^{2}+(Y-b)^{2}-r^{2}=0$.
- Conic sections: $a X^{2}+b X Y+c Y^{2}+d X+e Y+f=0$.
- Elliptic curves: Defined by the Weierstrass equation:
$Y^{2}+\left(a_{1} X+a_{3}\right) Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$.
If char $K \neq 2,3$, this can be simplified as $Y^{2}=X^{3}+a X+b$.
Hyperelliptic curves of genus $g: Y^{2}+u(X) Y=v(X)$ with $\operatorname{deg} u \leqslant g$, $\operatorname{deg} v=2 g+1$, and v monic.
If char $K \neq 2$, this can be simplified as $Y^{2}=w(X)$ with $\operatorname{deg} w=2 g+1$ and w monic.

Affine Curves: Examples

Straight lines: $a X+b Y+c=0$.

- Circles: $(X-a)^{2}+(Y-b)^{2}-r^{2}=0$.
- Conic sections: $a X^{2}+b X Y+c Y^{2}+d X+e Y+f=0$.
- Elliptic curves: Defined by the Weierstrass equation:
$Y^{2}+\left(a_{1} X+a_{3}\right) Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$.
If char $K \neq 2,3$, this can be simplified as $Y^{2}=X^{3}+a X+b$.
Hyperelliptic curves of genus $g: Y^{2}+u(X) Y=v(X)$ with $\operatorname{deg} u \leqslant g$, $\operatorname{deg} v=2 g+1$, and v monic.
If char $K \neq 2$, this can be simplified as $Y^{2}=w(X)$ with $\operatorname{deg} w=2 g+1$ and w monic.

Parabolas are hyperelliptic curves of genus 0 .

Affine Curves: Examples

Straight lines: $a X+b Y+c=0$.
Circles: $(X-a)^{2}+(Y-b)^{2}-r^{2}=0$.

- Conic sections: $a X^{2}+b X Y+c Y^{2}+d X+e Y+f=0$.
- Elliptic curves: Defined by the Weierstrass equation:
$Y^{2}+\left(a_{1} X+a_{3}\right) Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$.
If char $K \neq 2,3$, this can be simplified as $Y^{2}=X^{3}+a X+b$.

Hyperelliptic curves of genus $g: Y^{2}+u(X) Y=v(X)$ with $\operatorname{deg} u \leqslant g$, $\operatorname{deg} v=2 g+1$, and v monic.
If char $K \neq 2$, this can be simplified as $Y^{2}=w(X)$ with $\operatorname{deg} w=2 g+1$ and w monic.

■
Parabolas are hyperelliptic curves of genus 0 .
■
Elliptic curves are hyperelliptic curves of genus 1.

Projective Plane

Projective Plane

- Define a relation \sim on $K^{3} \backslash\{(0,0,0)\}$ as $(h, k, l) \sim\left(h^{\prime}, k^{\prime}, l^{\prime}\right)$ if $h^{\prime}=\lambda h$, $k^{\prime}=\lambda k$ and $l^{\prime}=\lambda l$ for some non-zero $\lambda \in K$.

Projective Plane

- Define a relation \sim on $K^{3} \backslash\{(0,0,0)\}$ as $(h, k, l) \sim\left(h^{\prime}, k^{\prime}, l^{\prime}\right)$ if $h^{\prime}=\lambda h$, $k^{\prime}=\lambda k$ and $l^{\prime}=\lambda l$ for some non-zero $\lambda \in K$.
- \sim is an equivalence relation on $K^{3} \backslash\{(0,0,0)\}$.

Projective Plane

- Define a relation \sim on $K^{3} \backslash\{(0,0,0)\}$ as $(h, k, l) \sim\left(h^{\prime}, k^{\prime}, l^{\prime}\right)$ if $h^{\prime}=\lambda h$, $k^{\prime}=\lambda k$ and $l^{\prime}=\lambda l$ for some non-zero $\lambda \in K$.
- \sim is an equivalence relation on $K^{3} \backslash\{(0,0,0)\}$.

The equivalence class of (h, k, l) is denoted by $[h, k, l]$.

Projective Plane

- Define a relation \sim on $K^{3} \backslash\{(0,0,0)\}$ as $(h, k, l) \sim\left(h^{\prime}, k^{\prime}, l^{\prime}\right)$ if $h^{\prime}=\lambda h$, $k^{\prime}=\lambda k$ and $l^{\prime}=\lambda l$ for some non-zero $\lambda \in K$.
- \sim is an equivalence relation on $K^{3} \backslash\{(0,0,0)\}$.
- The equivalence class of (h, k, l) is denoted by $[h, k, l]$.
[$h, k, l]$ can be identified with the line in K^{3} passing through the origin and the point (h, k, l).

Projective Plane

- Define a relation \sim on $K^{3} \backslash\{(0,0,0)\}$ as $(h, k, l) \sim\left(h^{\prime}, k^{\prime}, l^{\prime}\right)$ if $h^{\prime}=\lambda h$, $k^{\prime}=\lambda k$ and $l^{\prime}=\lambda l$ for some non-zero $\lambda \in K$.
- \sim is an equivalence relation on $K^{3} \backslash\{(0,0,0)\}$.
- The equivalence class of (h, k, l) is denoted by $[h, k, l]$.
- $\quad[h, k, l]$ can be identified with the line in K^{3} passing through the origin and the point (h, k, l).

■
The set of all these equivalence classes is the projective plane over K.

Projective Plane

Define a relation \sim on $K^{3} \backslash\{(0,0,0)\}$ as $(h, k, l) \sim\left(h^{\prime}, k^{\prime}, l^{\prime}\right)$ if $h^{\prime}=\lambda h$, $k^{\prime}=\lambda k$ and $l^{\prime}=\lambda l$ for some non-zero $\lambda \in K$.

- \sim is an equivalence relation on $K^{3} \backslash\{(0,0,0)\}$.

The equivalence class of (h, k, l) is denoted by $[h, k, l]$.

- $\quad[h, k, l]$ can be identified with the line in K^{3} passing through the origin and the point (h, k, l).
- The set of all these equivalence classes is the projective plane over K.
- The projective plane is denoted as $\mathbb{P}^{2}(K)$.

Projective Plane

Define a relation \sim on $K^{3} \backslash\{(0,0,0)\}$ as $(h, k, l) \sim\left(h^{\prime}, k^{\prime}, l^{\prime}\right)$ if $h^{\prime}=\lambda h$, $k^{\prime}=\lambda k$ and $l^{\prime}=\lambda l$ for some non-zero $\lambda \in K$.
\sim is an equivalence relation on $K^{3} \backslash\{(0,0,0)\}$.
The equivalence class of (h, k, l) is denoted by $[h, k, l]$.
■
[$h, k, l]$ can be identified with the line in K^{3} passing through the origin and the point (h, k, l).

- The set of all these equivalence classes is the projective plane over K.
- The projective plane is denoted as $\mathbb{P}^{2}(K)$.
- h, k, l in $[h, k, l]$ are called projective coordinates.

Projective Plane

Define a relation \sim on $K^{3} \backslash\{(0,0,0)\}$ as $(h, k, l) \sim\left(h^{\prime}, k^{\prime}, l^{\prime}\right)$ if $h^{\prime}=\lambda h$, $k^{\prime}=\lambda k$ and $l^{\prime}=\lambda l$ for some non-zero $\lambda \in K$.
\sim is an equivalence relation on $K^{3} \backslash\{(0,0,0)\}$.
The equivalence class of (h, k, l) is denoted by $[h, k, l]$.
[$h, k, l]$ can be identified with the line in K^{3} passing through the origin and the point (h, k, l).

The set of all these equivalence classes is the projective plane over K. The projective plane is denoted as $\mathbb{P}^{2}(K)$.

- h, k, l in $[h, k, l]$ are called projective coordinates.

Projective coordinates are unique up to multiplication by non-zero elements of K.

Projective Plane

Define a relation \sim on $K^{3} \backslash\{(0,0,0)\}$ as $(h, k, l) \sim\left(h^{\prime}, k^{\prime}, l^{\prime}\right)$ if $h^{\prime}=\lambda h$, $k^{\prime}=\lambda k$ and $l^{\prime}=\lambda l$ for some non-zero $\lambda \in K$.
\sim is an equivalence relation on $K^{3} \backslash\{(0,0,0)\}$.
The equivalence class of (h, k, l) is denoted by $[h, k, l]$.
[$h, k, l]$ can be identified with the line in K^{3} passing through the origin and the point (h, k, l).

- The set of all these equivalence classes is the projective plane over K. The projective plane is denoted as $\mathbb{P}^{2}(K)$.
h, k, l in $[h, k, l]$ are called projective coordinates.
Projective coordinates are unique up to multiplication by non-zero elements of K.

The three projective coordinates cannot be simultaneously 0 .

Relation Between the Affine and the Projective Planes

Relation Between the Affine and the Projective Planes

■
$\mathbb{P}^{2}(K)$ is the affine plane K^{2} plus the points at infinity.

Relation Between the Affine and the Projective Planes

$\mathbb{P}^{2}(K)$ is the affine plane K^{2} plus the points at infinity.
Take $P=[h, k, l] \in \mathbb{P}^{2}(K)$.

Relation Between the Affine and the Projective Planes

$\mathbb{P}^{2}(K)$ is the affine plane K^{2} plus the points at infinity.
Take $P=[h, k, l] \in \mathbb{P}^{2}(K)$.
Case 1: $l \neq 0$.

Relation Between the Affine and the Projective Planes

$\mathbb{P}^{2}(K)$ is the affine plane K^{2} plus the points at infinity.
Take $P=[h, k, l] \in \mathbb{P}^{2}(K)$.
Case 1: $l \neq 0$.
$P=[h / l, k / l, 1]$ is identified with the point $(h / l, k / l) \in K^{2}$.

Relation Between the Affine and the Projective Planes

$\mathbb{P}^{2}(K)$ is the affine plane K^{2} plus the points at infinity.
Take $P=[h, k, l] \in \mathbb{P}^{2}(K)$.

Case 1: $l \neq 0$.

$P=[h / l, k / l, 1]$ is identified with the point $(h / l, k / l) \in K^{2}$.
The line in K^{3} corresponding to P meets $Z=1$ at $(h / l, k / l, 1)$.

Relation Between the Affine and the Projective Planes

$\mathbb{P}^{2}(K)$ is the affine plane K^{2} plus the points at infinity.
Take $P=[h, k, l] \in \mathbb{P}^{2}(K)$.

Case 1: $l \neq 0$.

$P=[h / l, k / l, 1]$ is identified with the point $(h / l, k / l) \in K^{2}$.
The line in K^{3} corresponding to P meets $Z=1$ at $(h / l, k / l, 1)$.
P is called a finite point.

Relation Between the Affine and the Projective Planes

$\mathbb{P}^{2}(K)$ is the affine plane K^{2} plus the points at infinity.
Take $P=[h, k, l] \in \mathbb{P}^{2}(K)$.
Case 1: $l \neq 0$.
$P=[h / l, k / l, 1]$ is identified with the point $(h / l, k / l) \in K^{2}$.
The line in K^{3} corresponding to P meets $Z=1$ at $(h / l, k / l, 1)$.
P is called a finite point.
Case 2: $l=0$.

Relation Between the Affine and the Projective Planes

$\mathbb{P}^{2}(K)$ is the affine plane K^{2} plus the points at infinity.
Take $P=[h, k, l] \in \mathbb{P}^{2}(K)$.
Case 1: $l \neq 0$.
$P=[h / l, k / l, 1]$ is identified with the point $(h / l, k / l) \in K^{2}$.
The line in K^{3} corresponding to P meets $Z=1$ at $(h / l, k / l, 1)$.
P is called a finite point.
Case 2: $l=0$.
The line in K^{3} corresponding to P does not meet $Z=1$.

Relation Between the Affine and the Projective Planes

$\mathbb{P}^{2}(K)$ is the affine plane K^{2} plus the points at infinity.
Take $P=[h, k, l] \in \mathbb{P}^{2}(K)$.
Case 1: $l \neq 0$.
$P=[h / l, k / l, 1]$ is identified with the point $(h / l, k / l) \in K^{2}$.
The line in K^{3} corresponding to P meets $Z=1$ at $(h / l, k / l, 1)$.
P is called a finite point.
Case 2: $l=0$.
The line in K^{3} corresponding to P does not meet $Z=1$.
P does not correspond to a point in K^{2}.

Relation Between the Affine and the Projective Planes

$\mathbb{P}^{2}(K)$ is the affine plane K^{2} plus the points at infinity.
Take $P=[h, k, l] \in \mathbb{P}^{2}(K)$.
Case 1: $l \neq 0$.
$P=[h / l, k / l, 1]$ is identified with the point $(h / l, k / l) \in K^{2}$.
The line in K^{3} corresponding to P meets $Z=1$ at $(h / l, k / l, 1)$.
P is called a finite point.
Case 2: $l=0$.
The line in K^{3} corresponding to P does not meet $Z=1$.
P does not correspond to a point in K^{2}.
P is a point at infinity.

Relation Between the Affine and the Projective Planes

$\mathbb{P}^{2}(K)$ is the affine plane K^{2} plus the points at infinity.
Take $P=[h, k, l] \in \mathbb{P}^{2}(K)$.
Case 1: $l \neq 0$.
$P=[h / l, k / l, 1]$ is identified with the point $(h / l, k / l) \in K^{2}$.
The line in K^{3} corresponding to P meets $Z=1$ at $(h / l, k / l, 1)$.
P is called a finite point.
Case 2: $l=0$.
The line in K^{3} corresponding to P does not meet $Z=1$.
P does not correspond to a point in K^{2}.
P is a point at infinity.
For every slope of lines in the X, Y-plane, there exists exactly one point at infinity.

Relation Between the Affine and the Projective Planes

$\mathbb{P}^{2}(K)$ is the affine plane K^{2} plus the points at infinity.
Take $P=[h, k, l] \in \mathbb{P}^{2}(K)$.
Case 1: $l \neq 0$.
$P=[h / l, k / l, 1]$ is identified with the point $(h / l, k / l) \in K^{2}$.
The line in K^{3} corresponding to P meets $Z=1$ at $(h / l, k / l, 1)$.
P is called a finite point.
Case 2: $l=0$.
The line in K^{3} corresponding to P does not meet $Z=1$.
P does not correspond to a point in K^{2}.
P is a point at infinity.
For every slope of lines in the X, Y-plane, there exists exactly one point at infinity.

- A line passes through all the points at infinity. It is the line at infinity.

Relation Between the Affine and the Projective Planes

$\mathbb{P}^{2}(K)$ is the affine plane K^{2} plus the points at infinity.
Take $P=[h, k, l] \in \mathbb{P}^{2}(K)$.
Case 1: $l \neq 0$.
$P=[h / l, k / l, 1]$ is identified with the point $(h / l, k / l) \in K^{2}$.
The line in K^{3} corresponding to P meets $Z=1$ at $(h / l, k / l, 1)$.
P is called a finite point.
Case 2: $l=0$.
The line in K^{3} corresponding to P does not meet $Z=1$.
P does not correspond to a point in K^{2}.
P is a point at infinity.
For every slope of lines in the X, Y-plane, there exists exactly one point at infinity.

A line passes through all the points at infinity. It is the line at infinity. Two distinct lines (parallel or not) in $\mathbb{P}^{2}(K)$ always meet at a unique point (consistent with Bézout's theorem).

Relation Between the Affine and the Projective Planes

$\mathbb{P}^{2}(K)$ is the affine plane K^{2} plus the points at infinity.
Take $P=[h, k, l] \in \mathbb{P}^{2}(K)$.
Case 1: $l \neq 0$.
$P=[h / l, k / l, 1]$ is identified with the point $(h / l, k / l) \in K^{2}$.
The line in K^{3} corresponding to P meets $Z=1$ at $(h / l, k / l, 1)$.
P is called a finite point.
Case 2: $l=0$.
The line in K^{3} corresponding to P does not meet $Z=1$.
P does not correspond to a point in K^{2}.
P is a point at infinity.
For every slope of lines in the X, Y-plane, there exists exactly one point at infinity.

A line passes through all the points at infinity. It is the line at infinity. Two distinct lines (parallel or not) in $\mathbb{P}^{2}(K)$ always meet at a unique point (consistent with Bézout's theorem).
Through any two distinct points in $\mathbb{P}^{2}(K)$ passes a unique line.

Passage from Affine to Projective Curves

Passage from Affine to Projective Curves

- A (multivariate) polynomial is called homogeneous if every non-zero term in the polynomial has the same degree.

Passage from Affine to Projective Curves

- A (multivariate) polynomial is called homogeneous if every non-zero term in the polynomial has the same degree.
- Example: $X^{3}+2 X Y Z-3 Z^{3}$ is homogeneous of degree 3. $X^{3}+2 X Y-3 Z$ is not homogeneous. The zero polynomial is homogeneous of any degree.

Passage from Affine to Projective Curves

- A (multivariate) polynomial is called homogeneous if every non-zero term in the polynomial has the same degree.
■
Example: $X^{3}+2 X Y Z-3 Z^{3}$ is homogeneous of degree 3. $X^{3}+2 X Y-3 Z$ is not homogeneous. The zero polynomial is homogeneous of any degree.
- Let $C: f(X, Y)=0$ be an affine curve of degree d.

Passage from Affine to Projective Curves

- A (multivariate) polynomial is called homogeneous if every non-zero term in the polynomial has the same degree.
Example: $X^{3}+2 X Y Z-3 Z^{3}$ is homogeneous of degree 3. $X^{3}+2 X Y-3 Z$ is not homogeneous. The zero polynomial is homogeneous of any degree.
- Let $C: f(X, Y)=0$ be an affine curve of degree d.
- $f^{(h)}(X, Y, Z)=Z^{d} f(X / Z, Y / Z)$ is the homogenization of f.

Passage from Affine to Projective Curves

- A (multivariate) polynomial is called homogeneous if every non-zero term in the polynomial has the same degree.
Example: $X^{3}+2 X Y Z-3 Z^{3}$ is homogeneous of degree 3. $X^{3}+2 X Y-3 Z$ is not homogeneous. The zero polynomial is homogeneous of any degree.
- Let $C: f(X, Y)=0$ be an affine curve of degree d.
- $f^{(h)}(X, Y, Z)=Z^{d} f(X / Z, Y / Z)$ is the homogenization of f.
$C^{(h)}: f^{(h)}(X, Y, Z)=0$ is the projective curve corresponding to C.

Passage from Affine to Projective Curves

- A (multivariate) polynomial is called homogeneous if every non-zero term in the polynomial has the same degree.
Example: $X^{3}+2 X Y Z-3 Z^{3}$ is homogeneous of degree 3. $X^{3}+2 X Y-3 Z$ is not homogeneous. The zero polynomial is homogeneous of any degree.

Let $C: f(X, Y)=0$ be an affine curve of degree d.

- $f^{(h)}(X, Y, Z)=Z^{d} f(X / Z, Y / Z)$ is the homogenization of f. $C^{(h)}: f^{(h)}(X, Y, Z)=0$ is the projective curve corresponding to C. For any non-zero $\lambda \in K$, we have $f^{(h)}(\lambda h, \lambda k, \lambda l)=\lambda^{d} f^{(h)}(h, k, l)$. So $f^{(h)}(\lambda h, \lambda k, \lambda l)=0$ if and only if $f^{(h)}(h, k, l)=0$.

Passage from Affine to Projective Curves

A (multivariate) polynomial is called homogeneous if every non-zero term in the polynomial has the same degree.

Example: $X^{3}+2 X Y Z-3 Z^{3}$ is homogeneous of degree 3 . $X^{3}+2 X Y-3 Z$ is not homogeneous. The zero polynomial is homogeneous of any degree.

Let $C: f(X, Y)=0$ be an affine curve of degree d. $f^{(h)}(X, Y, Z)=Z^{d} f(X / Z, Y / Z)$ is the homogenization of f. $C^{(h)}: f^{(h)}(X, Y, Z)=0$ is the projective curve corresponding to C. For any non-zero $\lambda \in K$, we have $f^{(h)}(\lambda h, \lambda k, \lambda l)=\lambda^{d} f^{(h)}(h, k, l)$. So $f^{(h)}(\lambda h, \lambda k, \lambda l)=0$ if and only if $f^{(h)}(h, k, l)=0$. The rational points of $C^{(h)}$ are all $[h, k, l]$ with $f^{(h)}(h, k, l)=0$.

Passage from Affine to Projective Curves

A (multivariate) polynomial is called homogeneous if every non-zero term in the polynomial has the same degree.
Example: $X^{3}+2 X Y Z-3 Z^{3}$ is homogeneous of degree 3. $X^{3}+2 X Y-3 Z$ is not homogeneous. The zero polynomial is homogeneous of any degree.
Let $C: f(X, Y)=0$ be an affine curve of degree d.
$f^{(h)}(X, Y, Z)=Z^{d} f(X / Z, Y / Z)$ is the homogenization of f.
$C^{(h)}: f^{(h)}(X, Y, Z)=0$ is the projective curve corresponding to C. $f^{(h)}(\lambda h, \lambda k, \lambda l)=0$ if and only if $f^{(h)}(h, k, l)=0$.
The rational points of $C^{(h)}$ are all $[h, k, l]$ with $f^{(h)}(h, k, l)=0$.
Finite points on $C^{(h)}$: Put $Z=1$ to get $f^{(h)}(X, Y, 1)=f(X, Y)$. These are the points on C.

Passage from Affine to Projective Curves

A (multivariate) polynomial is called homogeneous if every non-zero term in the polynomial has the same degree.
Example: $X^{3}+2 X Y Z-3 Z^{3}$ is homogeneous of degree 3. $X^{3}+2 X Y-3 Z$ is not homogeneous. The zero polynomial is homogeneous of any degree.
Let $C: f(X, Y)=0$ be an affine curve of degree d.

- $f^{(h)}(X, Y, Z)=Z^{d} f(X / Z, Y / Z)$ is the homogenization of f.
$C^{(h)}: f^{(h)}(X, Y, Z)=0$ is the projective curve corresponding to C. $f^{(h)}(\lambda h, \lambda k, \lambda l)=0$ if and only if $f^{(h)}(h, k, l)=0$.
The rational points of $C^{(h)}$ are all $[h, k, l]$ with $f^{(h)}(h, k, l)=0$.
Finite points on $C^{(h)}$: Put $Z=1$ to get $f^{(h)}(X, Y, 1)=f(X, Y)$. These are the points on C.
Points at infinity on $C^{(h)}$: Put $Z=0$ and solve for $f^{(h)}(X, Y, 0)=0$. These points do not belong to C.

Examples of Projective Curves

Examples of Projective Curves

Straight Line

Circle

- Straight line: $a X+b Y+c Z=0$.

Examples of Projective Curves

Straight Line

Circle

- Straight line: $a X+b Y+c Z=0$.

Finite points: Solutions of $a X+b Y+c=0$.

Examples of Projective Curves

Straight Line

Circle

- Straight line: $a X+b Y+c Z=0$.

Finite points: Solutions of $a X+b Y+c=0$.
Points at infinity: Solve for $a X+b Y=0$.

Examples of Projective Curves

Straight Line

Circle

- Straight line: $a X+b Y+c Z=0$.

Finite points: Solutions of $a X+b Y+c=0$.
Points at infinity: Solve for $a X+b Y=0$.
If $b \neq 0$, we have $Y=-(a / b) X$. So $[1,-(a / b), 0]$ is the only point at infinity.

Examples of Projective Curves

Straight Line

Circle

- Straight line: $a X+b Y+c Z=0$.

Finite points: Solutions of $a X+b Y+c=0$.
Points at infinity: Solve for $a X+b Y=0$.
If $b \neq 0$, we have $Y=-(a / b) X$. So $[1,-(a / b), 0]$ is the only point at infinity. If $b=0$, we have $a X=0$, that is, $X=0$. So $[0,1,0]$ is the only point at infinity.

Examples of Projective Curves

Straight Line

Circle

- Straight line: $a X+b Y+c Z=0$.

Finite points: Solutions of $a X+b Y+c=0$.
Points at infinity: Solve for $a X+b Y=0$.
If $b \neq 0$, we have $Y=-(a / b) X$. So $[1,-(a / b), 0]$ is the only point at infinity.
If $b=0$, we have $a X=0$, that is, $X=0$. So $[0,1,0]$ is the only point at infinity.

- Circle: $(X-a Z)^{2}+(Y-b Z)^{2}=r^{2} Z^{2}$.

Examples of Projective Curves

Straight Line

Circle

- Straight line: $a X+b Y+c Z=0$.

Finite points: Solutions of $a X+b Y+c=0$.
Points at infinity: Solve for $a X+b Y=0$.
If $b \neq 0$, we have $Y=-(a / b) X$. So $[1,-(a / b), 0]$ is the only point at infinity. If $b=0$, we have $a X=0$, that is, $X=0$. So $[0,1,0]$ is the only point at infinity.

- Circle: $(X-a Z)^{2}+(Y-b Z)^{2}=r^{2} Z^{2}$.

Finite points: Solutions of $(X-a)^{2}+(Y-b)^{2}=r^{2}$.

Examples of Projective Curves

Straight Line

Circle

- Straight line: $a X+b Y+c Z=0$.

Finite points: Solutions of $a X+b Y+c=0$.
Points at infinity: Solve for $a X+b Y=0$.
If $b \neq 0$, we have $Y=-(a / b) X$. So $[1,-(a / b), 0]$ is the only point at infinity. If $b=0$, we have $a X=0$, that is, $X=0$. So $[0,1,0]$ is the only point at infinity.

- Circle: $(X-a Z)^{2}+(Y-b Z)^{2}=r^{2} Z^{2}$.

Finite points: Solutions of $(X-a)^{2}+(Y-b)^{2}=r^{2}$.
Points at infinity: Solve for $X^{2}+Y^{2}=0$.

Examples of Projective Curves

Straight Line

Circle

Straight line: $a X+b Y+c Z=0$.
Finite points: Solutions of $a X+b Y+c=0$.
Points at infinity: Solve for $a X+b Y=0$.
If $b \neq 0$, we have $Y=-(a / b) X$. So $[1,-(a / b), 0]$ is the only point at infinity. If $b=0$, we have $a X=0$, that is, $X=0$. So $[0,1,0]$ is the only point at infinity.
Circle: $(X-a Z)^{2}+(Y-b Z)^{2}=r^{2} Z^{2}$.
Finite points: Solutions of $(X-a)^{2}+(Y-b)^{2}=r^{2}$.
Points at infinity: Solve for $X^{2}+Y^{2}=0$.
For $K=\mathbb{R}$, the only solution is $X=Y=0$, so there is no point at infinity.

Examples of Projective Curves

Straight Line

Circle

Straight line: $a X+b Y+c Z=0$.
Finite points: Solutions of $a X+b Y+c=0$.
Points at infinity: Solve for $a X+b Y=0$.
If $b \neq 0$, we have $Y=-(a / b) X$. So $[1,-(a / b), 0]$ is the only point at infinity. If $b=0$, we have $a X=0$, that is, $X=0$. So $[0,1,0]$ is the only point at infinity.
Circle: $(X-a Z)^{2}+(Y-b Z)^{2}=r^{2} Z^{2}$.
Finite points: Solutions of $(X-a)^{2}+(Y-b)^{2}=r^{2}$.
Points at infinity: Solve for $X^{2}+Y^{2}=0$.
For $K=\mathbb{R}$, the only solution is $X=Y=0$, so there is no point at infinity.
For $K=\mathbb{C}$, the solutions are $Y= \pm \mathrm{i} X$, so there are two points at infinity:
$[1, \mathrm{i}, 0]$ and $[1,-\mathrm{i}, 0]$.

Examples of Projective Curves (contd.)

Parabola

Hyperbola

Examples of Projective Curves (contd.)

Parabola

Hyperbola

- Parabola: $Y^{2}=X Z$.

Examples of Projective Curves (contd.)

Parabola

Hyperbola

- Parabola: $Y^{2}=X Z$.

Finite points: Solutions of $Y^{2}=X$.

Examples of Projective Curves (contd.)

Parabola

Hyperbola

- Parabola: $Y^{2}=X Z$.

Finite points: Solutions of $Y^{2}=X$.
Points at infinity: Solve for $Y^{2}=0$.

Examples of Projective Curves (contd.)

Parabola

Hyperbola

- Parabola: $Y^{2}=X Z$.

Finite points: Solutions of $Y^{2}=X$.
Points at infinity: Solve for $Y^{2}=0$.
$Y=0$, so $[1,0,0]$ is the only point at infinity.

Examples of Projective Curves (contd.)

Parabola

Hyperbola

- Parabola: $Y^{2}=X Z$.

Finite points: Solutions of $Y^{2}=X$.
Points at infinity: Solve for $Y^{2}=0$.
$Y=0$, so $[1,0,0]$ is the only point at infinity.
Hyperbola: $X^{2}-Y^{2}=Z^{2}$.

Examples of Projective Curves (contd.)

Parabola

Hyperbola

- Parabola: $Y^{2}=X Z$.

Finite points: Solutions of $Y^{2}=X$.
Points at infinity: Solve for $Y^{2}=0$.
$Y=0$, so $[1,0,0]$ is the only point at infinity.
Hyperbola: $X^{2}-Y^{2}=Z^{2}$.
Finite points: Solutions of $X^{2}-Y^{2}=1$.

Examples of Projective Curves (contd.)

Parabola

Hyperbola

- Parabola: $Y^{2}=X Z$.

Finite points: Solutions of $Y^{2}=X$.
Points at infinity: Solve for $Y^{2}=0$.
$Y=0$, so $[1,0,0]$ is the only point at infinity.

- Hyperbola: $X^{2}-Y^{2}=Z^{2}$.

Finite points: Solutions of $X^{2}-Y^{2}=1$.
Points at infinity: Solve for $X^{2}-Y^{2}=0$.

Examples of Projective Curves (contd.)

Parabola

Hyperbola

- Parabola: $Y^{2}=X Z$.

Finite points: Solutions of $Y^{2}=X$.
Points at infinity: Solve for $Y^{2}=0$.
$Y=0$, so $[1,0,0]$ is the only point at infinity.

- Hyperbola: $X^{2}-Y^{2}=Z^{2}$.

Finite points: Solutions of $X^{2}-Y^{2}=1$.
Points at infinity: Solve for $X^{2}-Y^{2}=0$.
$Y= \pm X$, so there are two points at infinity: $[1,1,0]$ and $[1,-1,0]$.

Examples of Projective Curves (contd.)

$Y^{2}=X^{3}-X+1$

$Y^{2}=X^{3}-X$

Examples of Projective Curves (contd.)

$$
Y^{2}=X^{3}-X+1
$$

$Y^{2}=X^{3}-X$

Elliptic curve: $Y^{2} Z+a_{1} X Y Z+a_{3} Y Z^{2}=X^{3}+a_{2} X^{2} Z+a_{4} X Z^{2}+a_{6} Z^{3}$.

Examples of Projective Curves (contd.)

$$
Y^{2}=X^{3}-X+1
$$

$Y^{2}=X^{3}-X$

Elliptic curve: $Y^{2} Z+a_{1} X Y Z+a_{3} Y Z^{2}=X^{3}+a_{2} X^{2} Z+a_{4} X Z^{2}+a_{6} Z^{3}$.
Finite points: Solutions of $Y^{2}+a_{1} X Y+a_{3} Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$.

Examples of Projective Curves (contd.)

$$
Y^{2}=X^{3}-X+1
$$

$Y^{2}=X^{3}-X$

Elliptic curve: $Y^{2} Z+a_{1} X Y Z+a_{3} Y Z^{2}=X^{3}+a_{2} X^{2} Z+a_{4} X Z^{2}+a_{6} Z^{3}$.
Finite points: Solutions of $Y^{2}+a_{1} X Y+a_{3} Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$.
Points at infinity: Solve for $X^{3}=0$.

Examples of Projective Curves (contd.)

$$
Y^{2}=X^{3}-X+1
$$

$Y^{2}=X^{3}-X$
Elliptic curve: $Y^{2} Z+a_{1} X Y Z+a_{3} Y Z^{2}=X^{3}+a_{2} X^{2} Z+a_{4} X Z^{2}+a_{6} Z^{3}$.
Finite points: Solutions of $Y^{2}+a_{1} X Y+a_{3} Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$.
Points at infinity: Solve for $X^{3}=0$.
$X=0$, that is, $[0,1,0]$ is the only point at infinity.

Examples of Projective Curves (contd.)

A hyperelliptic curve of genus 2: $Y^{2}=X\left(X^{2}-1\right)\left(X^{2}-2\right)$

Examples of Projective Curves (contd.)

A hyperelliptic curve of genus 2: $Y^{2}=X\left(X^{2}-1\right)\left(X^{2}-2\right)$
Hyperelliptic curve: $Y^{2} Z^{2 g-1}+Z^{g} u(X / Z) Y Z^{g}=Z^{2 g+1} v(X / Z)$.

Examples of Projective Curves (contd.)

A hyperelliptic curve of genus 2: $Y^{2}=X\left(X^{2}-1\right)\left(X^{2}-2\right)$

- Hyperelliptic curve: $Y^{2} Z^{2 g-1}+Z^{g} u(X / Z) Y Z^{g}=Z^{2 g+1} v(X / Z)$.

Finite points: Solutions of $Y^{2}+u(X) Y=v(X)$.

Examples of Projective Curves (contd.)

A hyperelliptic curve of genus 2: $Y^{2}=X\left(X^{2}-1\right)\left(X^{2}-2\right)$

- Hyperelliptic curve: $Y^{2} Z^{2 g-1}+Z^{g} u(X / Z) Y Z^{g}=Z^{2 g+1} v(X / Z)$.

Finite points: Solutions of $Y^{2}+u(X) Y=v(X)$.
Points at infinity: The only Z-free term is $X^{2 g+1}$ (in $Z^{2 g+1} v(X / Z)$). So $[0,1,0]$ is the only point at infinity.

Bézout's Theorem

Bézout's Theorem

- A curve of degree m and a curve of degree n intersect at exactly $m n$ points.

Bézout's Theorem

- A curve of degree m and a curve of degree n intersect at exactly $m n$ points.
- The intersection points must be counted with proper multiplicity.

Bézout's Theorem

- A curve of degree m and a curve of degree n intersect at exactly $m n$ points.
- The intersection points must be counted with proper multiplicity. It is necessary to work in algebraically closed fields.

Bézout's Theorem

- A curve of degree m and a curve of degree n intersect at exactly $m n$ points.
- The intersection points must be counted with proper multiplicity. It is necessary to work in algebraically closed fields.
Still, the theorem is not true. For example, two parallel lines or two concentric circles never intersect.

Bézout's Theorem

- A curve of degree m and a curve of degree n intersect at exactly $m n$ points.
- The intersection points must be counted with proper multiplicity.
- It is necessary to work in algebraically closed fields.
- Still, the theorem is not true. For example, two parallel lines or two concentric circles never intersect.
- Passage to the projective plane makes Bézout's theorem true.

Bézout's Theorem

A curve of degree m and a curve of degree n intersect at exactly $m n$ points.
The intersection points must be counted with proper multiplicity. It is necessary to work in algebraically closed fields.

Still, the theorem is not true. For example, two parallel lines or two concentric circles never intersect.

Passage to the projective plane makes Bézout's theorem true.

(a)

(b)

(c)

(d)

Bézout's Theorem

A curve of degree m and a curve of degree n intersect at exactly $m n$ points.
The intersection points must be counted with proper multiplicity. It is necessary to work in algebraically closed fields.

Still, the theorem is not true. For example, two parallel lines or two concentric circles never intersect.

Passage to the projective plane makes Bézout's theorem true.

(a)

(b)

(c)

(d)
(a) and (b): Two simple intersections at the points at infinity

Bézout's Theorem

A curve of degree m and a curve of degree n intersect at exactly $m n$ points.
The intersection points must be counted with proper multiplicity. It is necessary to work in algebraically closed fields.

Still, the theorem is not true. For example, two parallel lines or two concentric circles never intersect.

Passage to the projective plane makes Bézout's theorem true.

(a)

(b)

(c)

(d)
(a) and (b): Two simple intersections at the points at infinity
(c): Two tangents at the points at infinity

Bézout's Theorem

A curve of degree m and a curve of degree n intersect at exactly $m n$ points.
The intersection points must be counted with proper multiplicity. It is necessary to work in algebraically closed fields.

Still, the theorem is not true. For example, two parallel lines or two concentric circles never intersect.

Passage to the projective plane makes Bézout's theorem true.

(a)

(b)

(c)

(d)
(a) and (b): Two simple intersections at the points at infinity
(c): Two tangents at the points at infinity
(d): No intersections at the points at infinity

Smooth Curves

Let $C: f(X, Y, Z)=0$ be a projective curve, and $P=[h, k, l]$ a rational point on C.

Smooth Curves

Let $C: f(X, Y, Z)=0$ be a projective curve, and $P=[h, k, l]$ a rational point on C.

- P is called a smooth point on C if the tangent to C at P is uniquely defined.

Smooth Curves

Let $C: f(X, Y, Z)=0$ be a projective curve, and $P=[h, k, l]$ a rational point on C.

- $\quad P$ is called a smooth point on C if the tangent to C at P is uniquely defined.

Case 1: P is a finite point.

Smooth Curves

Let $C: f(X, Y, Z)=0$ be a projective curve, and $P=[h, k, l]$ a rational point on C.

- P is called a smooth point on C if the tangent to C at P is uniquely defined.

Case 1: P is a finite point.
Now, $l \neq 0$. Consider the affine equation $f(X, Y)=0$.
Both $\frac{\partial f}{\partial X}$ and $\frac{\partial f}{\partial Y}$ do not vanish simultaneously at $(h / l, k / l)$.

Smooth Curves

Let $C: f(X, Y, Z)=0$ be a projective curve, and $P=[h, k, l]$ a rational point on C.

- P is called a smooth point on C if the tangent to C at P is uniquely defined.

Case 1: P is a finite point.
Now, $l \neq 0$. Consider the affine equation $f(X, Y)=0$.
Both $\frac{\partial f}{\partial X}$ and $\frac{\partial f}{\partial Y}$ do not vanish simultaneously at $(h / l, k / l)$.

- Case 2: P is a point at infinity.

Smooth Curves

Let $C: f(X, Y, Z)=0$ be a projective curve, and $P=[h, k, l]$ a rational point on C.

- P is called a smooth point on C if the tangent to C at P is uniquely defined.

Case 1: P is a finite point.
Now, $l \neq 0$. Consider the affine equation $f(X, Y)=0$.
Both $\frac{\partial f}{\partial X}$ and $\frac{\partial f}{\partial Y}$ do not vanish simultaneously at $(h / l, k / l)$.

- Case 2: P is a point at infinity.

Now, $l=0$, so at least one of h, k must be non-zero.

Smooth Curves

Let $C: f(X, Y, Z)=0$ be a projective curve, and $P=[h, k, l]$ a rational point on C.
P is called a smooth point on C if the tangent to C at P is uniquely defined.

- Case 1: P is a finite point.

Now, $l \neq 0$. Consider the affine equation $f(X, Y)=0$.
Both $\frac{\partial f}{\partial X}$ and $\frac{\partial f}{\partial Y}$ do not vanish simultaneously at $(h / l, k / l)$.

- Case 2: P is a point at infinity.

Now, $l=0$, so at least one of h, k must be non-zero.
If $h \neq 0$, view C as the homogenization of $f_{X}(Y, Z)=f(1, Y, Z)$.
$(k / h, l / h)$ is a finite point on f_{X}. Apply Case 1 .

Smooth Curves

Let $C: f(X, Y, Z)=0$ be a projective curve, and $P=[h, k, l]$ a rational point on C.
P is called a smooth point on C if the tangent to C at P is uniquely defined.
■
Case 1: P is a finite point.
Now, $l \neq 0$. Consider the affine equation $f(X, Y)=0$.
Both $\frac{\partial f}{\partial X}$ and $\frac{\partial f}{\partial Y}$ do not vanish simultaneously at $(h / l, k / l)$.

- Case 2: P is a point at infinity.

Now, $l=0$, so at least one of h, k must be non-zero.
If $h \neq 0$, view C as the homogenization of $f_{X}(Y, Z)=f(1, Y, Z)$.
$(k / h, l / h)$ is a finite point on f_{X}. Apply Case 1 .
If $k \neq 0$, view C as the homogenization of $f_{Y}(X, Z)=f(X, 1, Z)$.
$(h / k, l / k)$ is a finite point on f_{Y}. Apply Case 1.

Smooth Curves

Let $C: f(X, Y, Z)=0$ be a projective curve, and $P=[h, k, l]$ a rational point on C.
P is called a smooth point on C if the tangent to C at P is uniquely defined.
■
Case 1: P is a finite point.
Now, $l \neq 0$. Consider the affine equation $f(X, Y)=0$.
Both $\frac{\partial f}{\partial X}$ and $\frac{\partial f}{\partial Y}$ do not vanish simultaneously at $(h / l, k / l)$.

- Case 2: P is a point at infinity.

Now, $l=0$, so at least one of h, k must be non-zero.
If $h \neq 0$, view C as the homogenization of $f_{X}(Y, Z)=f(1, Y, Z)$.
$(k / h, l / h)$ is a finite point on f_{X}. Apply Case 1 .
If $k \neq 0$, view C as the homogenization of $f_{Y}(X, Z)=f(X, 1, Z)$.
$(h / k, l / k)$ is a finite point on f_{Y}. Apply Case 1.

- C is a smooth curve if it is smooth at every rational point on it.

Types of Singularity

(a)

(b)

(c)

Types of Singularity

(a)

(b)

(c)

- (a) A cusp or a spinode: $Y^{2}=X^{3}$.

Types of Singularity

(a)

(b)

(c)

- (a) A cusp or a spinode: $Y^{2}=X^{3}$.
(b) A loop or a double-point or a crunode: $Y^{2}=X^{3}+X^{2}$.

Types of Singularity

(a)

(b)

(c)

■ (a) A cusp or a spinode: $Y^{2}=X^{3}$.
(b) A loop or a double-point or a crunode: $Y^{2}=X^{3}+X^{2}$.
(c) An isolated point or an acnode: $Y^{2}=X^{3}-X^{2}$

Types of Singularity

(a)

(b)

(c)
(a) A cusp or a spinode: $Y^{2}=X^{3}$.
(b) A loop or a double-point or a crunode: $Y^{2}=X^{3}+X^{2}$.
(c) An isolated point or an acnode: $Y^{2}=X^{3}-X^{2}$

For a real curve $f(X, Y)=0$, the type of singularity is determined by the matrix $\operatorname{Hessian}(f)=\left(\begin{array}{cc}\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} \\ \frac{\partial^{2} f}{\partial y \partial x} & \frac{\partial^{2} f}{\partial y^{2}}\end{array}\right)$.

Examples of Smooth Curves

Examples of Smooth Curves

An elliptic or hyperelliptic curve is needed to be smooth by definition.

Examples of Smooth Curves

- An elliptic or hyperelliptic curve is needed to be smooth by definition.
- A curve of the form $Y^{2}=v(X)$ is smooth if and only if $v(X)$ does not contain repeated roots.

Examples of Smooth Curves

- An elliptic or hyperelliptic curve is needed to be smooth by definition.
- A curve of the form $Y^{2}=v(X)$ is smooth if and only if $v(X)$ does not contain repeated roots.

The point at infinity on an elliptic or hyperelliptic curve is never a point of singularity.

Polynomial and Rational Functions on Curves

Let $C: f(X, Y)=0$ be a curve defined by an irreducible polynomial $f(X, Y) \in K[X, Y]$.

Polynomial and Rational Functions on Curves

Let $C: f(X, Y)=0$ be a curve defined by an irreducible polynomial $f(X, Y) \in K[X, Y]$.

- Let $G(X, Y), H(X, Y) \in K[X, Y]$ with $f \mid(G-H)$. Then, $G(P)=H(P)$ for every rational point P on C (since $f(P)=0$). Thus, G and H represent the same function on C.

Polynomial and Rational Functions on Curves

Let $C: f(X, Y)=0$ be a curve defined by an irreducible polynomial $f(X, Y) \in K[X, Y]$.

- Let $G(X, Y), H(X, Y) \in K[X, Y]$ with $f \mid(G-H)$. Then, $G(P)=H(P)$ for every rational point P on C (since $f(P)=0$). Thus, G and H represent the same function on C.
- Define $G(X, Y) \equiv H(X, Y)(\bmod f(X, Y))$ if and only if $f \mid(G-H)$.

Polynomial and Rational Functions on Curves

Let $C: f(X, Y)=0$ be a curve defined by an irreducible polynomial $f(X, Y) \in K[X, Y]$.

- Let $G(X, Y), H(X, Y) \in K[X, Y]$ with $f \mid(G-H)$. Then, $G(P)=H(P)$ for every rational point P on C (since $f(P)=0$). Thus, G and H represent the same function on C.

Define $G(X, Y) \equiv H(X, Y)(\bmod f(X, Y))$ if and only if $f \mid(G-H)$.
Congruence modulo f is an equivalence relation on $K[X, Y]$.

Polynomial and Rational Functions on Curves

Let $C: f(X, Y)=0$ be a curve defined by an irreducible polynomial $f(X, Y) \in K[X, Y]$.

- Let $G(X, Y), H(X, Y) \in K[X, Y]$ with $f \mid(G-H)$. Then, $G(P)=H(P)$ for every rational point P on C (since $f(P)=0$). Thus, G and H represent the same function on C.

Define $G(X, Y) \equiv H(X, Y)(\bmod f(X, Y))$ if and only if $f \mid(G-H)$.
Congruence modulo f is an equivalence relation on $K[X, Y]$.

- Call the equivalence classes of X and Y by x and y.

Polynomial and Rational Functions on Curves

Let $C: f(X, Y)=0$ be a curve defined by an irreducible polynomial $f(X, Y) \in K[X, Y]$.

- Let $G(X, Y), H(X, Y) \in K[X, Y]$ with $f \mid(G-H)$. Then, $G(P)=H(P)$ for every rational point P on C (since $f(P)=0$). Thus, G and H represent the same function on C.

Define $G(X, Y) \equiv H(X, Y)(\bmod f(X, Y))$ if and only if $f \mid(G-H)$.
Congruence modulo f is an equivalence relation on $K[X, Y]$.

- Call the equivalence classes of X and Y by x and y.

The equivalence class of $G(X, Y)$ is $G(x, y)$.

Polynomial and Rational Functions on Curves

Let $C: f(X, Y)=0$ be a curve defined by an irreducible polynomial $f(X, Y) \in K[X, Y]$.

- Let $G(X, Y), H(X, Y) \in K[X, Y]$ with $f \mid(G-H)$. Then, $G(P)=H(P)$ for every rational point P on C (since $f(P)=0$). Thus, G and H represent the same function on C.

Define $G(X, Y) \equiv H(X, Y)(\bmod f(X, Y))$ if and only if $f \mid(G-H)$.
Congruence modulo f is an equivalence relation on $K[X, Y]$.

- Call the equivalence classes of X and Y by x and y.
- The equivalence class of $G(X, Y)$ is $G(x, y)$.
- $K[C]=K[X, Y] /\langle f(X, Y)\rangle=K[x, y]$ is an integral domain.

Polynomial and Rational Functions on Curves

Let $C: f(X, Y)=0$ be a curve defined by an irreducible polynomial $f(X, Y) \in K[X, Y]$.

Let $G(X, Y), H(X, Y) \in K[X, Y]$ with $f \mid(G-H)$. Then, $G(P)=H(P)$ for every rational point P on C (since $f(P)=0$). Thus, G and H represent the same function on C.

Define $G(X, Y) \equiv H(X, Y)(\bmod f(X, Y))$ if and only if $f \mid(G-H)$.
Congruence modulo f is an equivalence relation on $K[X, Y]$.

- Call the equivalence classes of X and Y by x and y.
- The equivalence class of $G(X, Y)$ is $G(x, y)$.
- $K[C]=K[X, Y] /\langle f(X, Y)\rangle=K[x, y]$ is an integral domain.
- The field of fractions of $K[C]$ is
$K(C)=\{G(x, y) / H(x, y) \mid H(x, y) \neq 0\}=K(x, y)$.

Polynomial and Rational Functions on Elliptic and Hyperelliptic Curves

Consider the elliptic curve $Y^{2}+u(X) Y=v(X)$, where $u(X)=a_{1} X+a_{3}$ and $v(X)=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$.

Polynomial and Rational Functions on Elliptic and Hyperelliptic Curves

Consider the elliptic curve $Y^{2}+u(X) Y=v(X)$, where $u(X)=a_{1} X+a_{3}$ and $v(X)=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$.

- $y^{2}=-u(x) y+v(x)$.

Polynomial and Rational Functions on Elliptic and Hyperelliptic Curves

Consider the elliptic curve $Y^{2}+u(X) Y=v(X)$, where $u(X)=a_{1} X+a_{3}$ and $v(X)=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$.

- $y^{2}=-u(x) y+v(x)$.

Every polynomial function on C can be represented uniquely as $a(x)+y b(x)$ with $a(x), b(x) \in K[x]$.

Polynomial and Rational Functions on Elliptic and Hyperelliptic Curves

Consider the elliptic curve $Y^{2}+u(X) Y=v(X)$, where $u(X)=a_{1} X+a_{3}$ and $v(X)=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$.

- $y^{2}=-u(x) y+v(x)$.
- Every polynomial function on C can be represented uniquely as $a(x)+y b(x)$ with $a(x), b(x) \in K[x]$.
- For $G(x, y)=a(x)+y b(x) \in K[C]$, define:

Polynomial and Rational Functions on Elliptic and Hyperelliptic Curves

Consider the elliptic curve $Y^{2}+u(X) Y=v(X)$, where $u(X)=a_{1} X+a_{3}$ and $v(X)=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$.

- $y^{2}=-u(x) y+v(x)$.
- Every polynomial function on C can be represented uniquely as $a(x)+y b(x)$ with $a(x), b(x) \in K[x]$.
- For $G(x, y)=a(x)+y b(x) \in K[C]$, define:

Conjugate of $G: \hat{G}(x, y)=a(x)-b(x)(u(x)+y)$.

Polynomial and Rational Functions on Elliptic and Hyperelliptic Curves

Consider the elliptic curve $Y^{2}+u(X) Y=v(X)$, where $u(X)=a_{1} X+a_{3}$ and $v(X)=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$.

- $y^{2}=-u(x) y+v(x)$.

Every polynomial function on C can be represented uniquely as $a(x)+y b(x)$ with $a(x), b(x) \in K[x]$.

- For $G(x, y)=a(x)+y b(x) \in K[C]$, define:

Conjugate of $G: \hat{G}(x, y)=a(x)-b(x)(u(x)+y)$.
Norm of $G: \mathrm{N}(G)=G \hat{G}$.

Polynomial and Rational Functions on Elliptic and Hyperelliptic Curves

Consider the elliptic curve $Y^{2}+u(X) Y=v(X)$, where $u(X)=a_{1} X+a_{3}$ and $v(X)=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$.

- $y^{2}=-u(x) y+v(x)$.

Every polynomial function on C can be represented uniquely as $a(x)+y b(x)$ with $a(x), b(x) \in K[x]$.

- For $G(x, y)=a(x)+y b(x) \in K[C]$, define:

Conjugate of $G: \hat{G}(x, y)=a(x)-b(x)(u(x)+y)$.
Norm of $G: \mathrm{N}(G)=G \hat{G}$.
$\mathrm{N}(G)=a(x)^{2}-a(x) b(x) u(x)-v(x) b(x)^{2} \in K[x]$.

Polynomial and Rational Functions on Elliptic and Hyperelliptic Curves

Consider the elliptic curve $Y^{2}+u(X) Y=v(X)$, where $u(X)=a_{1} X+a_{3}$ and $v(X)=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$.
$y^{2}=-u(x) y+v(x)$.
Every polynomial function on C can be represented uniquely as $a(x)+y b(x)$ with $a(x), b(x) \in K[x]$.

- For $G(x, y)=a(x)+y b(x) \in K[C]$, define:

Conjugate of $G: \hat{G}(x, y)=a(x)-b(x)(u(x)+y)$.
Norm of $G: \mathrm{N}(G)=G \hat{G}$.
$\mathrm{N}(G)=a(x)^{2}-a(x) b(x) u(x)-v(x) b(x)^{2} \in K[x]$.
Every rational function on C can be represented as $s(x)+y t(x)$ with $s(x), t(x) \in K(x)$.

Polynomial and Rational Functions on Elliptic and Hyperelliptic Curves

Consider the elliptic curve $Y^{2}+u(X) Y=v(X)$, where $u(X)=a_{1} X+a_{3}$ and $v(X)=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$.
$y^{2}=-u(x) y+v(x)$.
Every polynomial function on C can be represented uniquely as $a(x)+y b(x)$ with $a(x), b(x) \in K[x]$.
For $G(x, y)=a(x)+y b(x) \in K[C]$, define:
Conjugate of $G: \hat{G}(x, y)=a(x)-b(x)(u(x)+y)$.
Norm of $G: \mathrm{N}(G)=G \hat{G}$.
$\mathrm{N}(G)=a(x)^{2}-a(x) b(x) u(x)-v(x) b(x)^{2} \in K[x]$.
Every rational function on C can be represented as $s(x)+y t(x)$ with $s(x), t(x) \in K(x)$.
$K(C)$ is the quadratic extension of $K(X)$ obtained by adjoining a root of the irreducible polynomial $Y^{2}+u(X) Y-v(X) \in K(X)[Y]$. The current notion of conjugacy coincides with the standard notion for field extensions.

Polynomial and Rational Functions on Elliptic and Hyperelliptic Curves

Consider the elliptic curve $Y^{2}+u(X) Y=v(X)$, where $u(X)=a_{1} X+a_{3}$ and $v(X)=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$.
$y^{2}=-u(x) y+v(x)$.
Every polynomial function on C can be represented uniquely as
$a(x)+y b(x)$ with $a(x), b(x) \in K[x]$.
For $G(x, y)=a(x)+y b(x) \in K[C]$, define:
Conjugate of $G: \hat{G}(x, y)=a(x)-b(x)(u(x)+y)$.
Norm of $G: \mathrm{N}(G)=G \hat{G}$.
$\mathrm{N}(G)=a(x)^{2}-a(x) b(x) u(x)-v(x) b(x)^{2} \in K[x]$.
Every rational function on C can be represented as $s(x)+y t(x)$ with $s(x), t(x) \in K(x)$.
$K(C)$ is the quadratic extension of $K(X)$ obtained by adjoining a root of the irreducible polynomial $Y^{2}+u(X) Y-v(X) \in K(X)[Y]$. The current notion of conjugacy coincides with the standard notion for field extensions.

These results hold equally well for hyperelliptic curves too.

Poles and Zeros of Rational Functions

Let $C: f(X, Y)=0$ be a plane (irreducible) curve, and $P=(h, k)$ a finite point on C.

Poles and Zeros of Rational Functions

Let $C: f(X, Y)=0$ be a plane (irreducible) curve, and $P=(h, k)$ a finite point on C.

- Let $G(x, y) \in K[C]$. The value of G at P is $G(P)=G(h, k) \in K$.

Poles and Zeros of Rational Functions

Let $C: f(X, Y)=0$ be a plane (irreducible) curve, and $P=(h, k)$ a finite point on C.

Let $G(x, y) \in K[C]$. The value of G at P is $G(P)=G(h, k) \in K$.
A rational function $R(x, y) \in K(C)$ is defined at P if there is a representation $R(x, y)=G(x, y) / H(x, y)$ for some polynomials G, H with $H(P)=H(h, k) \neq 0$. In that case, the value of R at P is defined as $R(P)=G(P) / H(P)=G(h, k) / H(h, k) \in K$.

Poles and Zeros of Rational Functions

Let $C: f(X, Y)=0$ be a plane (irreducible) curve, and $P=(h, k)$ a finite point on C.

Let $G(x, y) \in K[C]$. The value of G at P is $G(P)=G(h, k) \in K$.
A rational function $R(x, y) \in K(C)$ is defined at P if there is a representation $R(x, y)=G(x, y) / H(x, y)$ for some polynomials G, H with $H(P)=H(h, k) \neq 0$. In that case, the value of R at P is defined as $R(P)=G(P) / H(P)=G(h, k) / H(h, k) \in K$.

- If $R(x, y)$ is not defined at P, we take $R(P)=\infty$.

Poles and Zeros of Rational Functions

Let $C: f(X, Y)=0$ be a plane (irreducible) curve, and $P=(h, k)$ a finite point on C.

Let $G(x, y) \in K[C]$. The value of G at P is $G(P)=G(h, k) \in K$.
A rational function $R(x, y) \in K(C)$ is defined at P if there is a representation $R(x, y)=G(x, y) / H(x, y)$ for some polynomials G, H with $H(P)=H(h, k) \neq 0$. In that case, the value of R at P is defined as $R(P)=G(P) / H(P)=G(h, k) / H(h, k) \in K$.

- If $R(x, y)$ is not defined at P, we take $R(P)=\infty$.
- Let $R(x, y) \in K(C)$ and P a finite point on C.

Poles and Zeros of Rational Functions

Let $C: f(X, Y)=0$ be a plane (irreducible) curve, and $P=(h, k)$ a finite point on C.

Let $G(x, y) \in K[C]$. The value of G at P is $G(P)=G(h, k) \in K$.
A rational function $R(x, y) \in K(C)$ is defined at P if there is a representation $R(x, y)=G(x, y) / H(x, y)$ for some polynomials G, H with $H(P)=H(h, k) \neq 0$. In that case, the value of R at P is defined as $R(P)=G(P) / H(P)=G(h, k) / H(h, k) \in K$.

- If $R(x, y)$ is not defined at P, we take $R(P)=\infty$.
- Let $R(x, y) \in K(C)$ and P a finite point on C.

■
P is a zero of R is $R(P)=0$.

Poles and Zeros of Rational Functions

Let $C: f(X, Y)=0$ be a plane (irreducible) curve, and $P=(h, k)$ a finite point on C.

Let $G(x, y) \in K[C]$. The value of G at P is $G(P)=G(h, k) \in K$.
A rational function $R(x, y) \in K(C)$ is defined at P if there is a representation $R(x, y)=G(x, y) / H(x, y)$ for some polynomials G, H with $H(P)=H(h, k) \neq 0$. In that case, the value of R at P is defined as $R(P)=G(P) / H(P)=G(h, k) / H(h, k) \in K$.

If $R(x, y)$ is not defined at P, we take $R(P)=\infty$.

- Let $R(x, y) \in K(C)$ and P a finite point on C.
P is a zero of R is $R(P)=0$.
P is a pole of R is $R(P)=\infty$.

Poles and Zeros of Rational Functions

Let $C: f(X, Y)=0$ be a plane (irreducible) curve, and $P=(h, k)$ a finite point on C.

Let $G(x, y) \in K[C]$. The value of G at P is $G(P)=G(h, k) \in K$.
A rational function $R(x, y) \in K(C)$ is defined at P if there is a representation $R(x, y)=G(x, y) / H(x, y)$ for some polynomials G, H with $H(P)=H(h, k) \neq 0$. In that case, the value of R at P is defined as $R(P)=G(P) / H(P)=G(h, k) / H(h, k) \in K$.
If $R(x, y)$ is not defined at P, we take $R(P)=\infty$.
Let $R(x, y) \in K(C)$ and P a finite point on C.
P is a zero of R is $R(P)=0$.
P is a pole of R is $R(P)=\infty$.
The set of rational functions on C defined at P is a local ring with the unique maximal ideal comprising functions that evaluate to 0 at P.

Poles and Zeros of Rational Functions

Let $C: f(X, Y)=0$ be a plane (irreducible) curve, and $P=(h, k)$ a finite point on C.

Let $G(x, y) \in K[C]$. The value of G at P is $G(P)=G(h, k) \in K$.
A rational function $R(x, y) \in K(C)$ is defined at P if there is a representation $R(x, y)=G(x, y) / H(x, y)$ for some polynomials G, H with $H(P)=H(h, k) \neq 0$. In that case, the value of R at P is defined as $R(P)=G(P) / H(P)=G(h, k) / H(h, k) \in K$.
If $R(x, y)$ is not defined at P, we take $R(P)=\infty$.
Let $R(x, y) \in K(C)$ and P a finite point on C.
P is a zero of R is $R(P)=0$.
P is a pole of R is $R(P)=\infty$.
The set of rational functions on C defined at P is a local ring with the unique maximal ideal comprising functions that evaluate to 0 at P.

The notion of value of a rational function can be extended to the points at infinity on C.

Value of a Rational Function at \mathcal{O} : Example

Let C be an elliptic curve with \mathcal{O} the point at infinity.

Value of a Rational Function at \mathcal{O} : Example

Let C be an elliptic curve with \mathcal{O} the point at infinity.

- Neglecting lower-degree terms gives $Y^{2} \approx X^{3}$.

Value of a Rational Function at \mathcal{O} : Example

Let C be an elliptic curve with \mathcal{O} the point at infinity.

- Neglecting lower-degree terms gives $Y^{2} \approx X^{3}$.
- $\quad X$ is given a weight 2 , and Y a weight 3 .

Value of a Rational Function at \mathcal{O} : Example

Let C be an elliptic curve with \mathcal{O} the point at infinity.

- Neglecting lower-degree terms gives $Y^{2} \approx X^{3}$.
- $\quad X$ is given a weight 2 , and Y a weight 3 .
- Let $G(x, y)=a(x)+y b(x) \in K[C]$. Define the degree of G as $\operatorname{deg} G=\max \left(2 \operatorname{deg}_{x}(a), 3+2 \operatorname{deg}_{x}(b)\right)$.

Value of a Rational Function at \mathcal{O} : Example

Let C be an elliptic curve with \mathcal{O} the point at infinity.

- Neglecting lower-degree terms gives $Y^{2} \approx X^{3}$.
- X is given a weight 2 , and Y a weight 3 .
- Let $G(x, y)=a(x)+y b(x) \in K[C]$. Define the degree of G as $\operatorname{deg} G=\max \left(2 \operatorname{deg}_{x}(a), 3+2 \operatorname{deg}_{x}(b)\right)$.

The leading coefficient of G is that of a or b depending upon whether $2 \operatorname{deg}_{x}(a)>3+2 \operatorname{deg}_{x}(b)$ or not.

Value of a Rational Function at \mathcal{O} : Example

Let C be an elliptic curve with \mathcal{O} the point at infinity.

- Neglecting lower-degree terms gives $Y^{2} \approx X^{3}$.
- X is given a weight 2 , and Y a weight 3 .
- Let $G(x, y)=a(x)+y b(x) \in K[C]$. Define the degree of G as $\operatorname{deg} G=\max \left(2 \operatorname{deg}_{x}(a), 3+2 \operatorname{deg}_{x}(b)\right)$.

The leading coefficient of G is that of a or b depending upon whether $2 \operatorname{deg}_{x}(a)>3+2 \operatorname{deg}_{x}(b)$ or not.

- Let $R(x, y)=G(x, y) / H(x, y) \in K(C)$. Define $R(\mathcal{O})$ as:

Value of a Rational Function at \mathcal{O} : Example

Let C be an elliptic curve with \mathcal{O} the point at infinity.

- Neglecting lower-degree terms gives $Y^{2} \approx X^{3}$.
- X is given a weight 2 , and Y a weight 3 .
- Let $G(x, y)=a(x)+y b(x) \in K[C]$. Define the degree of G as $\operatorname{deg} G=\max \left(2 \operatorname{deg}_{x}(a), 3+2 \operatorname{deg}_{x}(b)\right)$.

The leading coefficient of G is that of a or b depending upon whether $2 \operatorname{deg}_{x}(a)>3+2 \operatorname{deg}_{x}(b)$ or not.

- Let $R(x, y)=G(x, y) / H(x, y) \in K(C)$. Define $R(\mathcal{O})$ as:

■
0 if $\operatorname{deg} G<\operatorname{deg} H$.

Value of a Rational Function at \mathcal{O} : Example

Let C be an elliptic curve with \mathcal{O} the point at infinity.

- Neglecting lower-degree terms gives $Y^{2} \approx X^{3}$.
- X is given a weight 2 , and Y a weight 3 .
- Let $G(x, y)=a(x)+y b(x) \in K[C]$. Define the degree of G as $\operatorname{deg} G=\max \left(2 \operatorname{deg}_{x}(a), 3+2 \operatorname{deg}_{x}(b)\right)$.

The leading coefficient of G is that of a or b depending upon whether $2 \operatorname{deg}_{x}(a)>3+2 \operatorname{deg}_{x}(b)$ or not.

- Let $R(x, y)=G(x, y) / H(x, y) \in K(C)$. Define $R(\mathcal{O})$ as:
-

0 if $\operatorname{deg} G<\operatorname{deg} H$.
∞ if $\operatorname{deg} G>\operatorname{deg} H$.

Value of a Rational Function at \mathcal{O} : Example

Let C be an elliptic curve with \mathcal{O} the point at infinity.

- Neglecting lower-degree terms gives $Y^{2} \approx X^{3}$.
X is given a weight 2 , and Y a weight 3 .
- Let $G(x, y)=a(x)+y b(x) \in K[C]$. Define the degree of G as $\operatorname{deg} G=\max \left(2 \operatorname{deg}_{x}(a), 3+2 \operatorname{deg}_{x}(b)\right)$.

The leading coefficient of G is that of a or b depending upon whether $2 \operatorname{deg}_{x}(a)>3+2 \operatorname{deg}_{x}(b)$ or not.
Let $R(x, y)=G(x, y) / H(x, y) \in K(C)$. Define $R(\mathcal{O})$ as:
0 if $\operatorname{deg} G<\operatorname{deg} H$.
∞ if $\operatorname{deg} G>\operatorname{deg} H$.
The ratio of the leading coefficients of G and H, if $\operatorname{deg} G=\operatorname{deg} H$.

Value of a Rational Function at \mathcal{O} : Example

Let C be an elliptic curve with \mathcal{O} the point at infinity.
Neglecting lower-degree terms gives $Y^{2} \approx X^{3}$.
X is given a weight 2, and Y a weight 3 .
Let $G(x, y)=a(x)+y b(x) \in K[C]$. Define the degree of G as $\operatorname{deg} G=\max \left(2 \operatorname{deg}_{x}(a), 3+2 \operatorname{deg}_{x}(b)\right)$.

The leading coefficient of G is that of a or b depending upon whether $2 \operatorname{deg}_{x}(a)>3+2 \operatorname{deg}_{x}(b)$ or not.
Let $R(x, y)=G(x, y) / H(x, y) \in K(C)$. Define $R(\mathcal{O})$ as:
0 if $\operatorname{deg} G<\operatorname{deg} H$.
∞ if $\operatorname{deg} G>\operatorname{deg} H$.
The ratio of the leading coefficients of G and H, if $\operatorname{deg} G=\operatorname{deg} H$.

For hyperelliptic curves, analogous results hold. Now, X and Y are given weights 2 and $2 g+1$ respectively.

Multiplicities of Poles and Zeros

Let C be a curve, and P a rational point on C.

Multiplicities of Poles and Zeros

Let C be a curve, and P a rational point on C.

- There exists a rational function $U_{P}(x, y)$ (depending on P) such that:

Multiplicities of Poles and Zeros

Let C be a curve, and P a rational point on C.

- There exists a rational function $U_{P}(x, y)$ (depending on P) such that: $1 \quad U_{P}(P)=0$, and

Multiplicities of Poles and Zeros

Let C be a curve, and P a rational point on C.

- There exists a rational function $U_{P}(x, y)$ (depending on P) such that:
$U_{P}(P)=0$, and
every rational function $R(x, y) \in K(C)$ can be expressed as $R=U_{P}^{d} S$ with S having neither a pole nor a zero at P.

Multiplicities of Poles and Zeros

Let C be a curve, and P a rational point on C.

- There exists a rational function $U_{P}(x, y)$ (depending on P) such that:
$U_{P}(P)=0$, and
every rational function $R(x, y) \in K(C)$ can be expressed as $R=U_{P}^{d} S$ with S having neither a pole nor a zero at P.
U_{P} is called a uniformizer.

Multiplicities of Poles and Zeros

Let C be a curve, and P a rational point on C.

- There exists a rational function $U_{P}(x, y)$ (depending on P) such that:
$U_{P}(P)=0$, and
every rational function $R(x, y) \in K(C)$ can be expressed as $R=U_{P}^{d} S$ with S having neither a pole nor a zero at P.
- U_{P} is called a uniformizer.
- The integer d is independent of the choice of U_{P}.

Multiplicities of Poles and Zeros

Let C be a curve, and P a rational point on C.

- There exists a rational function $U_{P}(x, y)$ (depending on P) such that:
$U_{P}(P)=0$, and
every rational function $R(x, y) \in K(C)$ can be expressed as $R=U_{P}^{d} S$ with S having neither a pole nor a zero at P.
U_{P} is called a uniformizer.
The integer d is independent of the choice of U_{P}.
- Define the order of R at P as $\operatorname{ord}_{P}(R)=d$.

Multiplicities of Poles and Zeros

Let C be a curve, and P a rational point on C.

- There exists a rational function $U_{P}(x, y)$ (depending on P) such that:
$U_{P}(P)=0$, and
every rational function $R(x, y) \in K(C)$ can be expressed as $R=U_{P}^{d} S$ with S having neither a pole nor a zero at P.
U_{P} is called a uniformizer.
The integer d is independent of the choice of U_{P}.
- Define the order of R at P as $\operatorname{ord}_{P}(R)=d$.
- $\quad P$ is a zero of R if and only if $\operatorname{ord}_{P}(R)>0$. Multiplicity is $\operatorname{ord}_{P}(R)$.

Multiplicities of Poles and Zeros

Let C be a curve, and P a rational point on C.

- There exists a rational function $U_{P}(x, y)$ (depending on P) such that:
$U_{P}(P)=0$, and
every rational function $R(x, y) \in K(C)$ can be expressed as $R=U_{P}^{d} S$ with S having neither a pole nor a zero at P.
U_{P} is called a uniformizer.
The integer d is independent of the choice of U_{P}.
- Define the order of R at P as $\operatorname{ord}_{P}(R)=d$.
- $\quad P$ is a zero of R if and only if $\operatorname{ord}_{P}(R)>0$. Multiplicity is $\operatorname{ord}_{P}(R)$.
- $\quad P$ is a pole of R if and only if $\operatorname{ord}_{P}(R)<0$. Multiplicity is $-\operatorname{ord}_{P}(R)$.

Multiplicities of Poles and Zeros

Let C be a curve, and P a rational point on C.
There exists a rational function $U_{P}(x, y)$ (depending on P) such that:
$U_{P}(P)=0$, and
every rational function $R(x, y) \in K(C)$ can be expressed as $R=U_{P}^{d} S$ with S having neither a pole nor a zero at P.
U_{P} is called a uniformizer.
The integer d is independent of the choice of U_{P}.

- Define the order of R at P as $\operatorname{ord}_{P}(R)=d$.
- $\quad P$ is a zero of R if and only if $\operatorname{ord}_{P}(R)>0$. Multiplicity is $\operatorname{ord}_{P}(R)$.
- $\quad P$ is a pole of R if and only if $\operatorname{ord}_{P}(R)<0$. Multiplicity is $-\operatorname{ord}_{P}(R)$.
- P is neither a pole nor a zero of R if and only if $\operatorname{ord}_{P}(R)=0$.

Multiplicities of Poles and Zeros

Let C be a curve, and P a rational point on C.
There exists a rational function $U_{P}(x, y)$ (depending on P) such that:
$U_{P}(P)=0$, and
every rational function $R(x, y) \in K(C)$ can be expressed as $R=U_{P}^{d} S$ with S having neither a pole nor a zero at P.
U_{P} is called a uniformizer.
The integer d is independent of the choice of U_{P}.

- Define the order of R at P as $\operatorname{ord}_{P}(R)=d$.
- $\quad P$ is a zero of R if and only if $\operatorname{ord}_{P}(R)>0$. Multiplicity is $\operatorname{ord}_{P}(R)$.
P is a pole of R if and only if $\operatorname{ord}_{P}(R)<0$. Multiplicity is $-\operatorname{ord}_{P}(R)$.
P is neither a pole nor a zero of R if and only if $\operatorname{ord}_{P}(R)=0$.
Any (non-zero) rational function has only finitely many poles and zeros.

Multiplicities of Poles and Zeros

Let C be a curve, and P a rational point on C.
There exists a rational function $U_{P}(x, y)$ (depending on P) such that:
$U_{P}(P)=0$, and
every rational function $R(x, y) \in K(C)$ can be expressed as $R=U_{P}^{d} S$ with S having neither a pole nor a zero at P.
U_{P} is called a uniformizer.
The integer d is independent of the choice of U_{P}.

- Define the order of R at P as $\operatorname{ord}_{P}(R)=d$.
- $\quad P$ is a zero of R if and only if $\operatorname{ord}_{P}(R)>0$. Multiplicity is $\operatorname{ord}_{P}(R)$.
P is a pole of R if and only if $\operatorname{ord}_{P}(R)<0$. Multiplicity is $-\operatorname{ord}_{P}(R)$.
P is neither a pole nor a zero of R if and only if $\operatorname{ord}_{P}(R)=0$.
Any (non-zero) rational function has only finitely many poles and zeros.
For a projective curve over an algebraically closed field, the sum of the orders of the poles and zeros of a (non-zero) rational function is 0 .

Poles and Zeros for Elliptic Curves

Let $C: Y^{2}+u(X) Y=v(X)$ be an elliptic curve with \mathcal{O} the point at infinity, and $P=(h, k)$ a finite point on C.

Poles and Zeros for Elliptic Curves

Let $C: Y^{2}+u(X) Y=v(X)$ be an elliptic curve with \mathcal{O} the point at infinity, and $P=(h, k)$ a finite point on C.

- The opposite of P is defined as $\tilde{P}=(h,-k-u(h)) . P$ and \tilde{P} are the only points on C with X-coordinate equal to h.

Poles and Zeros for Elliptic Curves

Let $C: Y^{2}+u(X) Y=v(X)$ be an elliptic curve with \mathcal{O} the point at infinity, and $P=(h, k)$ a finite point on C.

- The opposite of P is defined as $\tilde{P}=(h,-k-u(h)) . P$ and \tilde{P} are the only points on C with X-coordinate equal to h.
- The opposite of \mathcal{O} is \mathcal{O} itself.

Poles and Zeros for Elliptic Curves

Let $C: Y^{2}+u(X) Y=v(X)$ be an elliptic curve with \mathcal{O} the point at infinity, and $P=(h, k)$ a finite point on C.

- The opposite of P is defined as $\tilde{P}=(h,-k-u(h)) . P$ and \tilde{P} are the only points on C with X-coordinate equal to h.
- The opposite of \mathcal{O} is \mathcal{O} itself.
- $\quad P$ is called an ordinary point if $\tilde{P} \neq P$.

Poles and Zeros for Elliptic Curves

Let $C: Y^{2}+u(X) Y=v(X)$ be an elliptic curve with \mathcal{O} the point at infinity, and $P=(h, k)$ a finite point on C.

- The opposite of P is defined as $\tilde{P}=(h,-k-u(h)) . P$ and \tilde{P} are the only points on C with X-coordinate equal to h.
- The opposite of \mathcal{O} is \mathcal{O} itself.
- $\quad P$ is called an ordinary point if $\tilde{P} \neq P$.
- $\quad P$ is called a special point if $\tilde{P}=P$.

Poles and Zeros for Elliptic Curves

Let $C: Y^{2}+u(X) Y=v(X)$ be an elliptic curve with \mathcal{O} the point at infinity, and $P=(h, k)$ a finite point on C.

- The opposite of P is defined as $\tilde{P}=(h,-k-u(h)) . P$ and \tilde{P} are the only points on C with X-coordinate equal to h.
- The opposite of \mathcal{O} is \mathcal{O} itself.
- $\quad P$ is called an ordinary point if $\tilde{P} \neq P$.
- $\quad P$ is called a special point if $\tilde{P}=P$.
- Any line passing through P but not a tangent to C at P can be taken as a uniformizer U_{P} at P.

Poles and Zeros for Elliptic Curves

Let $C: Y^{2}+u(X) Y=v(X)$ be an elliptic curve with \mathcal{O} the point at infinity, and $P=(h, k)$ a finite point on C.

- The opposite of P is defined as $\tilde{P}=(h,-k-u(h)) . P$ and \tilde{P} are the only points on C with X-coordinate equal to h.
- The opposite of \mathcal{O} is \mathcal{O} itself.
- $\quad P$ is called an ordinary point if $\tilde{P} \neq P$.
- $\quad P$ is called a special point if $\tilde{P}=P$.
- Any line passing through P but not a tangent to C at P can be taken as a uniformizer U_{P} at P.
- For example, we may take $U_{P}= \begin{cases}x-h & \text { if } P \text { is an ordinary point, } \\ y-k & \text { if } P \text { is a special point. }\end{cases}$

Poles and Zeros for Elliptic Curves

Let $C: Y^{2}+u(X) Y=v(X)$ be an elliptic curve with \mathcal{O} the point at infinity, and $P=(h, k)$ a finite point on C.

- The opposite of P is defined as $\tilde{P}=(h,-k-u(h)) . P$ and \tilde{P} are the only points on C with X-coordinate equal to h.
- The opposite of \mathcal{O} is \mathcal{O} itself.
- $\quad P$ is called an ordinary point if $\tilde{P} \neq P$.
- $\quad P$ is called a special point if $\tilde{P}=P$.
- Any line passing through P but not a tangent to C at P can be taken as a uniformizer U_{P} at P.
\square
For example, we may take $U_{P}= \begin{cases}x-h & \text { if } P \text { is an ordinary point, } \\ y-k & \text { if } P \text { is a special point. }\end{cases}$
- A uniformizer at \mathcal{O} is x / y.

Poles and Zeros for Elliptic Curves

Let $C: Y^{2}+u(X) Y=v(X)$ be an elliptic curve with \mathcal{O} the point at infinity, and $P=(h, k)$ a finite point on C.

The opposite of P is defined as $\tilde{P}=(h,-k-u(h)) . P$ and \tilde{P} are the only points on C with X-coordinate equal to h.

- The opposite of \mathcal{O} is \mathcal{O} itself.
- $\quad P$ is called an ordinary point if $\tilde{P} \neq P$.
- $\quad P$ is called a special point if $\tilde{P}=P$.
- Any line passing through P but not a tangent to C at P can be taken as a uniformizer U_{P} at P.

■
For example, we may take $U_{P}= \begin{cases}x-h & \text { if } P \text { is an ordinary point, } \\ y-k & \text { if } P \text { is a special point. }\end{cases}$
A uniformizer at \mathcal{O} is x / y.

For hyperelliptic curves, identical results hold. A uniformizer at \mathcal{O} is x^{g} / y.

Multiplicities of Poles and Zeros for Elliptic Curves

Multiplicities of Poles and Zeros for Elliptic Curves

- Let $G(x, y)=a(x)+y b(x) \in K[C]$.

Multiplicities of Poles and Zeros for Elliptic Curves

- Let $G(x, y)=a(x)+y b(x) \in K[C]$.

Let e be the largest exponent for which $(x-h)^{e}$ divides both $a(x)$ and $b(x)$.

Multiplicities of Poles and Zeros for Elliptic Curves

- Let $G(x, y)=a(x)+y b(x) \in K[C]$.

Let e be the largest exponent for which $(x-h)^{e}$ divides both $a(x)$ and $b(x)$. Write $G(x, y)=(x-h)^{e} G_{1}(x, y)$.

Multiplicities of Poles and Zeros for Elliptic Curves

- Let $G(x, y)=a(x)+y b(x) \in K[C]$.

Let e be the largest exponent for which $(x-h)^{e}$ divides both $a(x)$ and $b(x)$.
Write $G(x, y)=(x-h)^{e} G_{1}(x, y)$.
Take $l=0$ if $G_{1}(h, k) \neq 0$.

Multiplicities of Poles and Zeros for Elliptic Curves

- Let $G(x, y)=a(x)+y b(x) \in K[C]$.
- Let e be the largest exponent for which $(x-h)^{e}$ divides both $a(x)$ and $b(x)$.
- Write $G(x, y)=(x-h)^{e} G_{1}(x, y)$.
- Take $l=0$ if $G_{1}(h, k) \neq 0$.
- If $G_{1}(h, k)=0$, take l to be the largest exponent for which $(x-h)^{l} \mid \mathrm{N}\left(G_{1}\right)$.

Multiplicities of Poles and Zeros for Elliptic Curves

- Let $G(x, y)=a(x)+y b(x) \in K[C]$.
- Let e be the largest exponent for which $(x-h)^{e}$ divides both $a(x)$ and $b(x)$.
- Write $G(x, y)=(x-h)^{e} G_{1}(x, y)$.
- Take $l=0$ if $G_{1}(h, k) \neq 0$.
- If $G_{1}(h, k)=0$, take l to be the largest exponent for which $(x-h)^{l} \mid \mathrm{N}\left(G_{1}\right)$.
$\operatorname{ord}_{P}(G)= \begin{cases}e+l & \text { if } P \text { is an ordinary point, }, \\ 2 e+l & \text { if } P \text { is a special point. }\end{cases}$

Multiplicities of Poles and Zeros for Elliptic Curves

- Let $G(x, y)=a(x)+y b(x) \in K[C]$.
- Let e be the largest exponent for which $(x-h)^{e}$ divides both $a(x)$ and $b(x)$.
- Write $G(x, y)=(x-h)^{e} G_{1}(x, y)$.
- Take $l=0$ if $G_{1}(h, k) \neq 0$.
- If $G_{1}(h, k)=0$, take l to be the largest exponent for which $(x-h)^{l} \mid \mathrm{N}\left(G_{1}\right)$.
$\operatorname{ord}_{P}(G)= \begin{cases}e+l & \text { if } P \text { is an ordinary point, }, \\ 2 e+l & \text { if } P \text { is a special point. }\end{cases}$
$\operatorname{ord}_{\mathcal{O}}(G)=-\max \left(2 \operatorname{deg}_{x} a, 3+2 \operatorname{deg}_{x} b\right)$.

Multiplicities of Poles and Zeros for Elliptic Curves

Let $G(x, y)=a(x)+y b(x) \in K[C]$.
Let e be the largest exponent for which $(x-h)^{e}$ divides both $a(x)$ and $b(x)$.
Write $G(x, y)=(x-h)^{e} G_{1}(x, y)$.
Take $l=0$ if $G_{1}(h, k) \neq 0$.
■
If $G_{1}(h, k)=0$, take l to be the largest exponent for which $(x-h)^{l} \mid \mathrm{N}\left(G_{1}\right)$.
$\operatorname{ord}_{P}(G)= \begin{cases}e+l & \text { if } P \text { is an ordinary point, } \\ 2 e+l & \text { if } P \text { is a special point. }\end{cases}$
$\operatorname{ord}_{\mathcal{O}}(G)=-\max \left(2 \operatorname{deg}_{x} a, 3+2 \operatorname{deg}_{x} b\right)$.
For a rational function $R(x, y)=G(x, y) / H(x, y) \in K(C)$, we have $\operatorname{ord}_{P}(R)=\operatorname{ord}_{P}(G)-\operatorname{ord}_{P}(H)$.

Multiplicities of Poles and Zeros for Elliptic Curves

-

Let $G(x, y)=a(x)+y b(x) \in K[C]$.
Let e be the largest exponent for which $(x-h)^{e}$ divides both $a(x)$ and $b(x)$.
■
Write $G(x, y)=(x-h)^{e} G_{1}(x, y)$.
Take $l=0$ if $G_{1}(h, k) \neq 0$.
■
If $G_{1}(h, k)=0$, take l to be the largest exponent for which $(x-h)^{l} \mid \mathrm{N}\left(G_{1}\right)$.
$\operatorname{ord}_{P}(G)= \begin{cases}e+l & \text { if } P \text { is an ordinary point, } \\ 2 e+l & \text { if } P \text { is a special point. }\end{cases}$
$\operatorname{ord}_{\mathcal{O}}(G)=-\max \left(2 \operatorname{deg}_{x} a, 3+2 \operatorname{deg}_{x} b\right)$.
For a rational function $R(x, y)=G(x, y) / H(x, y) \in K(C)$, we have $\operatorname{ord}_{P}(R)=\operatorname{ord}_{P}(G)-\operatorname{ord}_{P}(H)$.

For hyperelliptic curves, identical results hold. The order of G at \mathcal{O} is $\operatorname{ord}_{\mathcal{O}}(G)=-\max \left(2 \operatorname{deg}_{x} a, 2 g+1+2 \operatorname{deg}_{x} b\right)$.

Poles and Zeros on Elliptic Curves: Examples

Consider the elliptic curve $C: Y^{2}=X^{3}-X$.

Poles and Zeros on Elliptic Curves: Examples

Consider the elliptic curve $C: Y^{2}=X^{3}-X$.
Rational functions involving only x are simpler. $R_{1}=\frac{(x-1)(x+1)}{x^{3}(x-2)}$ has simple zeros at $x= \pm 1$, a simple pole at $x=2$, and a pole of multiplicity three at $x=0$. The points on C with these x-coordinates are $P_{1}=(0,0)$, $P_{2}=(1,0), P_{3}=(-1,0), P_{4}=(2, \sqrt{6})$ and $P_{5}=(2,-\sqrt{6}) . P_{1}, P_{2}, P_{3}$ are special points, so $\operatorname{ord}_{P_{1}}\left(R_{1}\right)=-6, \operatorname{ord}_{P_{2}}\left(R_{1}\right)=\operatorname{ord}_{P_{3}}\left(R_{1}\right)=2 . P_{4}$ and P_{5} are ordinary points, so $\operatorname{ord}_{P_{4}}\left(R_{1}\right)=\operatorname{ord}_{P_{5}}\left(R_{1}\right)=-1$. Finally, note that $R_{1} \rightarrow \frac{1}{x^{2}}$ as $x \rightarrow \infty$. But x has a weight of 2 , so R_{1} has a zero of order 4 at \mathcal{O}. The sum of these orders is $-6+2+2-1-1+4=0$.

Poles and Zeros on Elliptic Curves: Examples

Consider the elliptic curve $C: Y^{2}=X^{3}-X$.
Rational functions involving only x are simpler. $R_{1}=\frac{(x-1)(x+1)}{x^{3}(x-2)}$ has simple zeros at $x= \pm 1$, a simple pole at $x=2$, and a pole of multiplicity three at $x=0$. The points on C with these x-coordinates are $P_{1}=(0,0)$, $P_{2}=(1,0), P_{3}=(-1,0), P_{4}=(2, \sqrt{6})$ and $P_{5}=(2,-\sqrt{6}) . P_{1}, P_{2}, P_{3}$ are special points, so $\operatorname{ord}_{P_{1}}\left(R_{1}\right)=-6, \operatorname{ord}_{P_{2}}\left(R_{1}\right)=\operatorname{ord}_{P_{3}}\left(R_{1}\right)=2 . P_{4}$ and P_{5} are ordinary points, so $\operatorname{ord}_{P_{4}}\left(R_{1}\right)=\operatorname{ord}_{P_{5}}\left(R_{1}\right)=-1$. Finally, note that $R_{1} \rightarrow \frac{1}{x^{2}}$ as $x \rightarrow \infty$. But x has a weight of 2 , so R_{1} has a zero of order 4 at \mathcal{O}. The sum of these orders is $-6+2+2-1-1+4=0$.

Now, consider the rational function $R_{2}=\frac{x}{y}$ involving y. At the point $P_{1}=(0,0), R_{2}$ appears to be undefined. But $y^{2}=x^{3}-x$, so $R_{2}=\frac{y}{x^{2}-1}$ too, and $R_{2}\left(P_{1}\right)=0$, that is, R_{2} has a zero at P_{1}. Using the explicit formula on y, show that $e=0$ and $l=1$. So $\operatorname{ord}_{P_{1}}\left(R_{2}\right)=1$. On the other hand, the denominator $x^{2}-1$ has neither a pole nor a zero at P_{1}. So ord $P_{1}\left(R_{2}\right)=1$.

Poles and Zeros on Elliptic Curves: Examples

Consider the elliptic curve $C: Y^{2}=X^{3}-X$.
Rational functions involving only x are simpler. $R_{1}=\frac{(x-1)(x+1)}{x^{3}(x-2)}$ has simple zeros at $x= \pm 1$, a simple pole at $x=2$, and a pole of multiplicity three at $x=0$. The points on C with these x-coordinates are $P_{1}=(0,0)$, $P_{2}=(1,0), P_{3}=(-1,0), P_{4}=(2, \sqrt{6})$ and $P_{5}=(2,-\sqrt{6}) . P_{1}, P_{2}, P_{3}$ are special points, so $\operatorname{ord}_{P_{1}}\left(R_{1}\right)=-6, \operatorname{ord}_{P_{2}}\left(R_{1}\right)=\operatorname{ord}_{P_{3}}\left(R_{1}\right)=2 . P_{4}$ and P_{5} are ordinary points, so $\operatorname{ord}_{P_{4}}\left(R_{1}\right)=\operatorname{ord}_{P_{5}}\left(R_{1}\right)=-1$. Finally, note that $R_{1} \rightarrow \frac{1}{x^{2}}$ as $x \rightarrow \infty$. But x has a weight of 2 , so R_{1} has a zero of order 4 at \mathcal{O}. The sum of these orders is $-6+2+2-1-1+4=0$.

Now, consider the rational function $R_{2}=\frac{x}{y}$ involving y. At the point $P_{1}=(0,0), R_{2}$ appears to be undefined. But $y^{2}=x^{3}-x$, so $R_{2}=\frac{y}{x^{2}-1}$ too, and $R_{2}\left(P_{1}\right)=0$, that is, R_{2} has a zero at P_{1}. Using the explicit formula on y, show that $e=0$ and $l=1$. So $\operatorname{ord}_{P_{1}}\left(R_{2}\right)=1$. On the other hand, the denominator $x^{2}-1$ has neither a pole nor a zero at P_{1}. So $\operatorname{ord}_{P_{1}}\left(R_{2}\right)=1$. $\operatorname{ord}_{P_{1}}(x)=2$ (since $e=1, l=0$, and P_{1} is a special point), so the representation $R_{2}=\frac{x}{y}$ also gives $\operatorname{ord}_{P_{1}}\left(R_{2}\right)=2-1=1$.

Poles and Zeros of a Line: Example

(a)

(b)

(c)

Poles and Zeros of a Line: Example

(a) $\operatorname{ord}_{P}(l)=\operatorname{ord}_{Q}(l)=\operatorname{ord}_{R}(l)=1$ and $\operatorname{ord}_{\mathcal{O}}(l)=-3$.

Poles and Zeros of a Line: Example

(a)

(b)

(c)
(a) $\operatorname{ord}_{P}(l)=\operatorname{ord}_{Q}(l)=\operatorname{ord}_{R}(l)=1$ and $\operatorname{ord}_{\mathcal{O}}(l)=-3$.
(b) $\operatorname{ord}_{P}(t)=2, \operatorname{ord}_{Q}(t)=1$ and $\operatorname{ord}_{\mathcal{O}}(t)=-3$.

Poles and Zeros of a Line: Example

(a)

(b)

(c)

- (a) $\operatorname{ord}_{P}(l)=\operatorname{ord}_{Q}(l)=\operatorname{ord}_{R}(l)=1$ and $\operatorname{ord}_{\mathcal{O}}(l)=-3$.
(b) $\operatorname{ord}_{P}(t)=2, \operatorname{ord}_{Q}(t)=1$ and $\operatorname{ord}_{\mathcal{O}}(t)=-3$.
(c) $\operatorname{ord}_{P}(v)=\operatorname{ord}_{Q}(v)=1$ and $\operatorname{ord}_{\mathcal{O}}(v)=-2$.

Formal Sums and Free Abelian Groups

Formal Sums and Free Abelian Groups

- Let $a_{i}, i \in I$, be symbols indexed by I.

Formal Sums and Free Abelian Groups

- Let $a_{i}, i \in I$, be symbols indexed by I.

A finite formal sum of $a_{i}, i \in I$, is an expression of the form $\sum_{i \in I} m_{i} a_{i}$ with $m_{i} \in \mathbb{Z}$ such that $m_{i}=0$ except for only finitely many $i \in I$.

Formal Sums and Free Abelian Groups

- Let $a_{i}, i \in I$, be symbols indexed by I.
- A finite formal sum of $a_{i}, i \in I$, is an expression of the form $\sum_{i \in I} m_{i} a_{i}$ with $m_{i} \in \mathbb{Z}$ such that $m_{i}=0$ except for only finitely many $i \in I$.

The sum $\sum_{i \in I} m_{i} a_{i}$ is formal in the sense that the symbols a_{i} are not meant to be evaluated. They act as placeholders.

Formal Sums and Free Abelian Groups

- Let $a_{i}, i \in I$, be symbols indexed by I.
- A finite formal sum of $a_{i}, i \in I$, is an expression of the form $\sum_{i \in I} m_{i} a_{i}$ with $m_{i} \in \mathbb{Z}$ such that $m_{i}=0$ except for only finitely many $i \in I$.
- The sum $\sum_{i \in I} m_{i} a_{i}$ is formal in the sense
be evaluated. They act as placeholders.
- Define $\sum_{i \in I} m_{i} a_{i}+\sum_{i \in I} n_{i} a_{i}=\sum_{i \in I}\left(m_{i}+n_{i}\right) a_{i}$

Formal Sums and Free Abelian Groups

- Let $a_{i}, i \in I$, be symbols indexed by I.

■
A finite formal sum of $a_{i}, i \in I$, is an expression of the form $\sum_{i \in I} m_{i} a_{i}$ with $m_{i} \in \mathbb{Z}$ such that $m_{i}=0$ except for only finitely many $i \in I$.

The sum $\sum_{i \in I} m_{i} a_{i}$ is formal in the sense that the symbols a_{i} are not meant to be evaluated. They act as placeholders.

- Define $\sum_{i \in I} m_{i} a_{i}+\sum_{i \in I} n_{i} a_{i}=\sum_{i \in I}\left(m_{i}+n_{i}\right) a_{i}$
- Also define $-\sum_{i \in I} m_{i} a_{i}=\sum_{i \in I}\left(-m_{i}\right) a_{i}$

Formal Sums and Free Abelian Groups

- Let $a_{i}, i \in I$, be symbols indexed by I.

■
A finite formal sum of $a_{i}, i \in I$, is an expression of the form $\sum_{i \in I} m_{i} a_{i}$ with $m_{i} \in \mathbb{Z}$ such that $m_{i}=0$ except for only finitely many $i \in I$.

The sum $\sum_{i \in I} m_{i} a_{i}$ is formal in the sense that the symbols a_{i} are not meant to be evaluated. They act as placeholders.

- Define $\sum_{i \in I} m_{i} a_{i}+\sum_{i \in I} n_{i} a_{i}=\sum_{i \in I}\left(m_{i}+n_{i}\right) a_{i}$
- Also define $-\sum_{i \in I} m_{i} a_{i}=\sum_{i \in I}\left(-m_{i}\right) a_{i}$
- The set of all finite formal sums is an Abelian group called the free Abelian group generated by $a_{i}, i \in I$.

Divisors on Curves

Let C be a projective curve defined over K. K is assumed to be algebraically closed.

Divisors on Curves

Let C be a projective curve defined over K. K is assumed to be algebraically closed.

A divisor is a formal sum of the K-rational points on C.

Divisors on Curves

Let C be a projective curve defined over K.
K is assumed to be algebraically closed.

- A divisor is a formal sum of the K-rational points on C.
- Notation: $D=\sum_{P} m_{P}[P]$.

Divisors on Curves

Let C be a projective curve defined over K.
K is assumed to be algebraically closed.

- A divisor is a formal sum of the K-rational points on C.
- Notation: $D=\sum_{P} m_{P}[P]$.
\square
The support of D is the set of points P for which $m_{P} \neq 0$.

Divisors on Curves

Let C be a projective curve defined over K.
K is assumed to be algebraically closed.

- A divisor is a formal sum of the K-rational points on C.
- Notation: $D=\sum_{P} m_{P}[P]$.
- The support of D is the set of points P for which $m_{P} \neq 0$.

The degree of D is the sum $\sum_{P} m_{P}$.

Divisors on Curves

Let C be a projective curve defined over K.
K is assumed to be algebraically closed.

- A divisor is a formal sum of the K-rational points on C.
- Notation: $D=\sum_{P} m_{P}[P]$.
- The support of D is the set of points P for which $m_{P} \neq 0$.
- The degree of D is the sum $\sum_{P} m_{P}$.
- All divisors on C form a group denoted by $\operatorname{Div}_{K}(C)$ or $\operatorname{Div}(C)$.

Divisors on Curves

Let C be a projective curve defined over K.
K is assumed to be algebraically closed.

- A divisor is a formal sum of the K-rational points on C.
- Notation: $D=\sum_{P} m_{P}[P]$.
- The support of D is the set of points P for which $m_{P} \neq 0$.
- The degree of D is the sum $\sum_{P} m_{P}$.
- All divisors on C form a group denoted by $\operatorname{Div}_{K}(C)$ or $\operatorname{Div}(C)$.

All divisors on C of degree 0 form a subgroup denoted by $\operatorname{Div}_{K}^{0}(C)$ or $\operatorname{Div}^{0}(C)$.

Divisors on Curves

Let C be a projective curve defined over K.
K is assumed to be algebraically closed.

- A divisor is a formal sum of the K-rational points on C.
- Notation: $D=\sum_{P} m_{P}[P]$.
- The support of D is the set of points P for which $m_{P} \neq 0$.
- The degree of D is the sum $\sum_{P} m_{P}$.
- All divisors on C form a group denoted by $\operatorname{Div}_{K}(C)$ or $\operatorname{Div}(C)$.
- All divisors on C of degree 0 form a subgroup denoted by $\operatorname{Div}_{K}^{0}(C)$ or $\operatorname{Div}^{0}(C)$.
- Divisor of a rational function $R(x, y)$ is $\operatorname{Div}(R)=\sum_{P} \operatorname{ord}_{P}(R)[P]$.

Divisors on Curves

Let C be a projective curve defined over K.
K is assumed to be algebraically closed.

- A divisor is a formal sum of the K-rational points on C.
- Notation: $D=\sum_{P} m_{P}[P]$.
- The support of D is the set of points P for which $m_{P} \neq 0$.
- The degree of D is the sum $\sum_{P} m_{P}$.
- All divisors on C form a group denoted by $\operatorname{Div}_{K}(C)$ or $\operatorname{Div}(C)$.

■
All divisors on C of degree 0 form a subgroup denoted by $\operatorname{Div}_{K}^{0}(C)$ or $\operatorname{Div}^{0}(C)$.

Divisor of a rational function $R(x, y)$ is $\operatorname{Div}(R)=\sum_{P} \operatorname{ord}_{P}(R)[P]$.

- A principal divisor is the divisor of a rational function.

Divisors on Curves

Let C be a projective curve defined over K.
K is assumed to be algebraically closed.

- A divisor is a formal sum of the K-rational points on C.
- Notation: $D=\sum_{P} m_{P}[P]$.
- The support of D is the set of points P for which $m_{P} \neq 0$.
- The degree of D is the sum $\sum_{P} m_{P}$.
- All divisors on C form a group denoted by $\operatorname{Div}_{K}(C)$ or $\operatorname{Div}(C)$.

All divisors on C of degree 0 form a subgroup denoted by $\operatorname{Div}_{K}^{0}(C)$ or $\operatorname{Div}^{0}(C)$.

Divisor of a rational function $R(x, y)$ is $\operatorname{Div}(R)=\sum_{P} \operatorname{ord}_{P}(R)[P]$.

- A principal divisor is the divisor of a rational function.

Principal divisors satisfy: $\operatorname{Div}(R)+\operatorname{Div}(S)=\operatorname{Div}(R S)$ and $\operatorname{Div}(R)-\operatorname{Div}(S)=\operatorname{Div}(R / S)$.

Divisor of a line: Example

Divisor of a line: Example

(a) $\operatorname{Div}(l)=[P]+[Q]+[R]-3[\mathcal{O}]$.

Divisor of a line: Example

(a) $\operatorname{Div}(l)=[P]+[Q]+[R]-3[\mathcal{O}]$.
(b) $\operatorname{Div}(t)=2[P]+[Q]-3[\mathcal{O}]$.

Divisor of a line: Example

(a)

(b)

(c)
(a) $\operatorname{Div}(l)=[P]+[Q]+[R]-3[\mathcal{O}]$.
(b) $\operatorname{Div}(t)=2[P]+[Q]-3[\mathcal{O}]$.
(c) $\operatorname{Div}(v)=[P]+[Q]-2[\mathcal{O}]$.

Picard Groups and Jacobians

Picard Groups and Jacobians

Suppose that K is algebraically closed.

Picard Groups and Jacobians

- Suppose that K is algebraically closed.
- Every principal divisor belongs to $\operatorname{Div}_{K}^{0}(C)$.

Picard Groups and Jacobians

- Suppose that K is algebraically closed.
- Every principal divisor belongs to $\operatorname{Div}_{K}^{0}(C)$.

The set of all principal divisors is a subgroup of $\operatorname{Div}_{K}^{0}(C)$, denoted by $\operatorname{Prin}_{K}(C)$ or $\operatorname{Prin}(C)$.

Picard Groups and Jacobians

- Suppose that K is algebraically closed.
- Every principal divisor belongs to $\operatorname{Div}_{K}^{0}(C)$.
- The set of all principal divisors is a subgroup of $\operatorname{Div}_{K}^{0}(C)$, denoted by $\operatorname{Prin}_{K}(C)$ or $\operatorname{Prin}(C)$.
- Two divisors in $\operatorname{Div}_{K}(C)$ are called equivalent if they differ by the divisor of a rational function.

Picard Groups and Jacobians

Suppose that K is algebraically closed.
Every principal divisor belongs to $\operatorname{Div}_{K}^{0}(C)$.
The set of all principal divisors is a subgroup of $\operatorname{Div}_{K}^{0}(C)$, denoted by $\operatorname{Prin}_{K}(C)$ or $\operatorname{Prin}(C)$.

- Two divisors in $\operatorname{Div}_{K}(C)$ are called equivalent if they differ by the divisor of a rational function.
- The quotient group $\operatorname{Div}_{K}(C) / \operatorname{Prin}_{K}(C)$ is called the divisor class group or the Picard group, denoted $\mathrm{Pic}_{K}(C)$ or $\operatorname{Pic}(C)$.

Picard Groups and Jacobians

Suppose that K is algebraically closed.
Every principal divisor belongs to $\operatorname{Div}_{K}^{0}(C)$.
The set of all principal divisors is a subgroup of $\operatorname{Div}_{K}^{0}(C)$, denoted by $\operatorname{Prin}_{K}(C)$ or $\operatorname{Prin}(C)$.
Two divisors in $\operatorname{Div}_{K}(C)$ are called equivalent if they differ by the divisor of a rational function.
■
The quotient group $\operatorname{Div}_{K}(C) / \operatorname{Prin}_{K}(C)$ is called the divisor class group or the Picard group, denoted $\mathrm{Pic}_{K}(C)$ or $\operatorname{Pic}(C)$.
■ The quotient group $\operatorname{Div}_{K}^{0}(C) / \operatorname{Prin}_{K}(C)$ is called the Jacobian of C, denoted $\operatorname{Pic}_{K}^{0}(C)$ or $\operatorname{Pic}^{0}(C)$ or $\mathbb{J}_{K}(C)$ or $\mathbb{J}(C)$.

Picard Groups and Jacobians

Suppose that K is algebraically closed.
Every principal divisor belongs to $\operatorname{Div}_{K}^{0}(C)$.
The set of all principal divisors is a subgroup of $\operatorname{Div}_{K}^{0}(C)$, denoted by $\operatorname{Prin}_{K}(C)$ or $\operatorname{Prin}(C)$.
Two divisors in $\operatorname{Div}_{K}(C)$ are called equivalent if they differ by the divisor of a rational function.
The quotient group $\operatorname{Div}_{K}(C) / \operatorname{Prin}_{K}(C)$ is called the divisor class group or the Picard group, denoted $\mathrm{Pic}_{K}(C)$ or $\operatorname{Pic}(C)$.
■ The quotient group $\operatorname{Div}_{K}^{0}(C) / \operatorname{Prin}_{K}(C)$ is called the Jacobian of C, denoted $\operatorname{Pic}_{K}^{0}(C)$ or $\operatorname{Pic}^{0}(C)$ or $\mathbb{J}_{K}(C)$ or $\mathbb{J}(C)$.
■ If K is not algebraically closed, $\mathbb{J}_{K}(C)$ is a particular subgroup of $\mathbb{J}_{\bar{K}}(C)$.

Picard Groups and Jacobians

Suppose that K is algebraically closed.
Every principal divisor belongs to $\operatorname{Div}_{K}^{0}(C)$.
The set of all principal divisors is a subgroup of $\operatorname{Div}_{K}^{0}(C)$, denoted by $\operatorname{Prin}_{K}(C)$ or $\operatorname{Prin}(C)$.
Two divisors in $\operatorname{Div}_{K}(C)$ are called equivalent if they differ by the divisor of a rational function.
The quotient group $\operatorname{Div}_{K}(C) / \operatorname{Prin}_{K}(C)$ is called the divisor class group or the Picard group, denoted $\mathrm{Pic}_{K}(C)$ or $\operatorname{Pic}(C)$.
The quotient group $\operatorname{Div}_{K}^{0}(C) / \operatorname{Prin}_{K}(C)$ is called the Jacobian of C, denoted $\operatorname{Pic}_{K}^{0}(C)$ or $\operatorname{Pic}^{0}(C)$ or $\mathbb{J}_{K}(C)$ or $\mathbb{J}(C)$.
■
If K is not algebraically closed, $\mathbb{J}_{K}(C)$ is a particular subgroup of $\mathbb{J}_{\bar{K}}(C)$.

Elliptic- and hyperelliptic-curve cryptography deals with the Jacobian of elliptic and hyperelliptic curves.

Picard Groups and Jacobians

Suppose that K is algebraically closed.
Every principal divisor belongs to $\operatorname{Div}_{K}^{0}(C)$.
The set of all principal divisors is a subgroup of $\operatorname{Div}_{K}^{0}(C)$, denoted by $\operatorname{Prin}_{K}(C)$ or $\operatorname{Prin}(C)$.
Two divisors in $\operatorname{Div}_{K}(C)$ are called equivalent if they differ by the divisor of a rational function.
The quotient group $\operatorname{Div}_{K}(C) / \operatorname{Prin}_{K}(C)$ is called the divisor class group or the Picard group, denoted $\mathrm{Pic}_{K}(C)$ or $\operatorname{Pic}(C)$.
The quotient group $\operatorname{Div}_{K}^{0}(C) / \operatorname{Prin}_{K}(C)$ is called the Jacobian of C, denoted $\operatorname{Pic}_{K}^{0}(C)$ or $\operatorname{Pic}^{0}(C)$ or $\mathbb{J}_{K}(C)$ or $\mathbb{J}(C)$.
If K is not algebraically closed, $\mathbb{J}_{K}(C)$ is a particular subgroup of $\mathbb{J}_{\bar{K}}(C)$.

Elliptic- and hyperelliptic-curve cryptography deals with the Jacobian of elliptic and hyperelliptic curves.
For elliptic curves, the Jacobian can be expressed by a more explicit chord-and-tangent rule.

Divisors and the Chord-and-Tangent Rule

Let C be an elliptic curve over an algebraically closed field K.

Divisors and the Chord-and-Tangent Rule

Let C be an elliptic curve over an algebraically closed field K.

- For every $D \in \operatorname{Div}_{K}^{0}(C)$, there exist a unique rational point P and a rational function R such that $D=[P]-[\mathcal{O}]+\operatorname{Div}(R)$.

Divisors and the Chord-and-Tangent Rule

Let C be an elliptic curve over an algebraically closed field K.

- For every $D \in \operatorname{Div}_{K}^{0}(C)$, there exist a unique rational point P and a rational function R such that $D=[P]-[\mathcal{O}]+\operatorname{Div}(R)$.
- D is equivalent to $[P]-[\mathcal{O}]$ in $\mathbb{J}_{K}(C)$.

Divisors and the Chord-and-Tangent Rule

Let C be an elliptic curve over an algebraically closed field K.

- For every $D \in \operatorname{Div}_{K}^{0}(C)$, there exist a unique rational point P and a rational function R such that $D=[P]-[\mathcal{O}]+\operatorname{Div}(R)$.
- D is equivalent to $[P]-[\mathcal{O}]$ in $\mathbb{J}_{K}(C)$.
- Identify P with the equivalence class of $[P]-[\mathcal{O}]$ in $\mathbb{J}_{K}(C)$.

Divisors and the Chord-and-Tangent Rule

Let C be an elliptic curve over an algebraically closed field K.

- For every $D \in \operatorname{Div}_{K}^{0}(C)$, there exist a unique rational point P and a rational function R such that $D=[P]-[\mathcal{O}]+\operatorname{Div}(R)$.
- D is equivalent to $[P]-[\mathcal{O}]$ in $\mathbb{J}_{K}(C)$.
- Identify P with the equivalence class of $[P]-[\mathcal{O}]$ in $\mathbb{J}_{K}(C)$.
- This identification yields a bijection between the set of rational points on C and its Jacobian $\mathbb{J}_{K}(C)$.

Divisors and the Chord-and-Tangent Rule

Let C be an elliptic curve over an algebraically closed field K.

- For every $D \in \operatorname{Div}_{K}^{0}(C)$, there exist a unique rational point P and a rational function R such that $D=[P]-[\mathcal{O}]+\operatorname{Div}(R)$.
- D is equivalent to $[P]-[\mathcal{O}]$ in $\mathbb{J}_{K}(C)$.
- Identify P with the equivalence class of $[P]-[\mathcal{O}]$ in $\mathbb{J}_{K}(C)$.

■
This identification yields a bijection between the set of rational points on C and its Jacobian $\mathbb{J}_{K}(C)$.

This bijection also leads to the chord-and-tangent rule in the following sense:

Divisors and the Chord-and-Tangent Rule

Let C be an elliptic curve over an algebraically closed field K.
For every $D \in \operatorname{Div}_{K}^{0}(C)$, there exist a unique rational point P and a rational function R such that $D=[P]-[\mathcal{O}]+\operatorname{Div}(R)$.

- D is equivalent to $[P]-[\mathcal{O}]$ in $\mathbb{J}_{K}(C)$.

Identify P with the equivalence class of $[P]-[\mathcal{O}]$ in $\mathbb{J}_{K}(C)$.
This identification yields a bijection between the set of rational points on C and its Jacobian $\mathbb{J}_{K}(C)$.

This bijection also leads to the chord-and-tangent rule in the following sense:

Let $D=\sum_{P} m_{P}[P] \in \operatorname{Div}_{K}(C)$. Then, D is a principal divisor if and only if

Divisors and the Chord-and-Tangent Rule

Let C be an elliptic curve over an algebraically closed field K.
For every $D \in \operatorname{Div}_{K}^{0}(C)$, there exist a unique rational point P and a rational function R such that $D=[P]-[\mathcal{O}]+\operatorname{Div}(R)$.

- D is equivalent to $[P]-[\mathcal{O}]$ in $\mathbb{J}_{K}(C)$.

Identify P with the equivalence class of $[P]-[\mathcal{O}]$ in $\mathbb{J}_{K}(C)$.
This identification yields a bijection between the set of rational points on C and its Jacobian $\mathbb{J}_{K}(C)$.

This bijection also leads to the chord-and-tangent rule in the following sense:
Let $D=\sum_{P} m_{P}[P] \in \operatorname{Div}_{K}(C)$. Then, D is a principal divisor if and only if
$\sum_{P} m_{P}=0$ (integer sum), and

Divisors and the Chord-and-Tangent Rule

Let C be an elliptic curve over an algebraically closed field K.
For every $D \in \operatorname{Div}_{K}^{0}(C)$, there exist a unique rational point P and a rational function R such that $D=[P]-[\mathcal{O}]+\operatorname{Div}(R)$.
D is equivalent to $[P]-[\mathcal{O}]$ in $\mathbb{J}_{K}(C)$.
Identify P with the equivalence class of $[P]-[\mathcal{O}]$ in $\mathbb{J}_{K}(C)$.
This identification yields a bijection between the set of rational points on C and its Jacobian $\mathbb{J}_{K}(C)$.

This bijection also leads to the chord-and-tangent rule in the following sense:
Let $D=\sum_{P} m_{P}[P] \in \operatorname{Div}_{K}(C)$. Then, D is a principal divisor if and only if
$\sum_{P} m_{P}=0$ (integer sum), and
$\sum_{p} m_{P} P=\mathcal{O}$ (sum under the chord-and-tangent rule).

Illustrations of the Chord-and-Tangent Rule

(a)

(b)

(c)

Illustrations of the Chord-and-Tangent Rule

(a)

(b)

(c)

Identity: \mathcal{O} is identified with $[\mathcal{O}]-[\mathcal{O}]=0=\operatorname{Div}(1)$.

Illustrations of the Chord-and-Tangent Rule

(a)

(b)

(c)

- Identity: \mathcal{O} is identified with $[\mathcal{O}]-[\mathcal{O}]=0=\operatorname{Div}(1)$.
- Opposite: By Part $(\mathrm{c}), \operatorname{Div}(v)=([P]-[\mathcal{O}])+([Q]-[\mathcal{O}])$ is 0 in $\mathbb{J}(C)$. By the correspondence, $P+Q=\mathcal{O}$, that is, $Q=-P$.

Illustrations of the Chord-and-Tangent Rule

(a)

(b)

(c)

- Identity: \mathcal{O} is identified with $[\mathcal{O}]-[\mathcal{O}]=0=\operatorname{Div}(1)$.
- Opposite: By Part (c), $\operatorname{Div}(v)=([P]-[\mathcal{O}])+([Q]-[\mathcal{O}])$ is 0 in $\mathbb{J}(C)$. By the correspondence, $P+Q=\mathcal{O}$, that is, $Q=-P$.
■
Sum: By Part $(\mathrm{a}), \operatorname{Div}(l)=([P]-[\mathcal{O}])+([Q]-[\mathcal{O}])+([R]-[\mathcal{O}])$ is 0 in $\mathbb{J}(C)$, that is, $P+Q+R=\mathcal{O}$, that is, $P+Q=-R$.

Illustrations of the Chord-and-Tangent Rule

(a)

(b)

(c)

- Identity: \mathcal{O} is identified with $[\mathcal{O}]-[\mathcal{O}]=0=\operatorname{Div}(1)$.
- Opposite: By Part (c), $\operatorname{Div}(v)=([P]-[\mathcal{O}])+([Q]-[\mathcal{O}])$ is 0 in $\mathbb{J}(C)$. By the correspondence, $P+Q=\mathcal{O}$, that is, $Q=-P$.

■
Sum: By Part $(\mathrm{a}), \operatorname{Div}(l)=([P]-[\mathcal{O}])+([Q]-[\mathcal{O}])+([R]-[\mathcal{O}])$ is 0 in $\mathbb{J}(C)$, that is, $P+Q+R=\mathcal{O}$, that is, $P+Q=-R$.

Double: By Part $(\mathrm{b}), \operatorname{Div}(t)=([P]-[\mathcal{O}])+([P]-[\mathcal{O}])+([Q]-[\mathcal{O}])$ is 0 in $\mathbb{J}(C)$, that is, $P+P+Q=\mathcal{O}$, that is, $2 P=-Q$.

References for Part I

Charlap, L. S. and D. P. Robbins, An Elementary Introduction to Elliptic Curves, CRD Expository Report 31, 1988.

Charlap, L. S. and R. Coley, An Elementary Introduction to Elliptic Curves II, CCR Expository Report 34, 1990.

DAS, A., Computational Number Theory, Manuscript under preparation.
Das, A. and C. E. Veni Madhavan, Public-key Cryptography: Theory and Practice, Pearson Education, 2009.

Enge, A., Elliptic Curves and Their Applications to Cryptography: An Introduction, Kluwer Academic Publishers, 1999.

Menezes, A. J., Y. Wu and R. Zuccherato, An Elementary Introduction to Hyperelliptic Curves, CACR technical report CORR 96-19, University of Waterloo, Canada, 1996.

Part II

Elliptic Curves

Part II

Elliptic Curves

- Rational Maps and Endomorphisms on Elliptic Curves
- Multiplication-by-m Maps and Division Polynomials
- Weil and Tate Pairing

Notations and Assumptions

Notations and Assumptions
K is a field.

Notations and Assumptions

K is a field.
\bar{K} is the algebraic closure of K.

Notations and Assumptions

K is a field.
\bar{K} is the algebraic closure of K.
Quite often, we will have $K=\mathbb{F}_{q}$ with $p=\operatorname{char} K$.

Notations and Assumptions

- K is a field.
\bar{K} is the algebraic closure of K.
Quite often, we will have $K=\mathbb{F}_{q}$ with $p=\operatorname{char} K$.
$E: Y^{2}+\left(a_{1} X+a_{3}\right) Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$ is an elliptic curve defined over K (that is, $a_{i} \in K$).

Notations and Assumptions

- K is a field.
\bar{K} is the algebraic closure of K.
Quite often, we will have $K=\mathbb{F}_{q}$ with $p=\operatorname{char} K$.
$E: Y^{2}+\left(a_{1} X+a_{3}\right) Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$ is an elliptic curve defined over K (that is, $a_{i} \in K$).

■
If L is any field with $K \subseteq L \subseteq \bar{K}$, then E is defined over L as well.

Notations and Assumptions

- K is a field.
- \bar{K} is the algebraic closure of K.
- Quite often, we will have $K=\mathbb{F}_{q}$ with $p=\operatorname{char} K$.
- $E: Y^{2}+\left(a_{1} X+a_{3}\right) Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$ is an elliptic curve defined over K (that is, $a_{i} \in K$).

■
If L is any field with $K \subseteq L \subseteq \bar{K}$, then E is defined over L as well.
E_{L} denotes the set of L-rational points on E.

Notations and Assumptions

- K is a field.
- \bar{K} is the algebraic closure of K.
- Quite often, we will have $K=\mathbb{F}_{q}$ with $p=\operatorname{char} K$.
- $E: Y^{2}+\left(a_{1} X+a_{3}\right) Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$ is an elliptic curve defined over K (that is, $a_{i} \in K$).

■
If L is any field with $K \subseteq L \subseteq \bar{K}$, then E is defined over L as well.
E_{L} denotes the set of L-rational points on E.
E_{L} always contains the point \mathcal{O} at infinity.

Notations and Assumptions

- K is a field.
- \bar{K} is the algebraic closure of K.
- Quite often, we will have $K=\mathbb{F}_{q}$ with $p=\operatorname{char} K$.
- $E: Y^{2}+\left(a_{1} X+a_{3}\right) Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$ is an elliptic curve defined over K (that is, $a_{i} \in K$).

If L is any field with $K \subseteq L \subseteq \bar{K}$, then E is defined over L as well.
E_{L} denotes the set of L-rational points on E.
E_{L} always contains the point \mathcal{O} at infinity.
If $L=\mathbb{F}_{q^{k}}$, we write $E_{q^{k}}$ as a shorthand for E_{L}.

Notations and Assumptions

- K is a field.
- \bar{K} is the algebraic closure of K.
- Quite often, we will have $K=\mathbb{F}_{q}$ with $p=\operatorname{char} K$.
- $E: Y^{2}+\left(a_{1} X+a_{3}\right) Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$ is an elliptic curve defined over K (that is, $a_{i} \in K$).

If L is any field with $K \subseteq L \subseteq \bar{K}$, then E is defined over L as well.

- E_{L} denotes the set of L-rational points on E.
- E_{L} always contains the point \mathcal{O} at infinity.
- If $L=\mathbb{F}_{q^{k}}$, we write $E_{q^{k}}$ as a shorthand for E_{L}.
- $\quad E$ (without any subscript) means $E_{\bar{K}}$.

Notations and Assumptions

- K is a field.
- \bar{K} is the algebraic closure of K.
- Quite often, we will have $K=\mathbb{F}_{q}$ with $p=\operatorname{char} K$.
- $E: Y^{2}+\left(a_{1} X+a_{3}\right) Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$ is an elliptic curve defined over K (that is, $a_{i} \in K$).
If L is any field with $K \subseteq L \subseteq \bar{K}$, then E is defined over L as well.
E_{L} denotes the set of L-rational points on E.
E_{L} always contains the point \mathcal{O} at infinity.
If $L=\mathbb{F}_{q^{k}}$, we write $E_{q^{k}}$ as a shorthand for E_{L}.
- $\quad E$ (without any subscript) means $E_{\bar{K}}$.
- A rational function R on E is an element of $\bar{K}(E)$.

Notations and Assumptions

- K is a field.
- \bar{K} is the algebraic closure of K.
- Quite often, we will have $K=\mathbb{F}_{q}$ with $p=\operatorname{char} K$.
- $E: Y^{2}+\left(a_{1} X+a_{3}\right) Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$ is an elliptic curve defined over K (that is, $a_{i} \in K$).

■

- E_{L} denotes the set of L-rational points on E.
- E_{L} always contains the point \mathcal{O} at infinity.
- If $L=\mathbb{F}_{q^{k}}$, we write $E_{q^{k}}$ as a shorthand for E_{L}.
- E (without any subscript) means $E_{\bar{K}}$.
- A rational function R on E is an element of $\bar{K}(E)$.
- R is defined over L if R has a representation $R=G(x, y) / H(x, y)$ with $G, H \in L[x, y]$.

Elliptic Curves Over Finite Fields

Elliptic Curves Over Finite Fields

Let K be not algebraically closed (like $K=\mathbb{F}_{q}$).

Elliptic Curves Over Finite Fields

- Let K be not algebraically closed (like $K=\mathbb{F}_{q}$). The group $E_{\bar{K}}$ is isomorphic to $\mathbb{J}_{\bar{K}}(E)$.

Elliptic Curves Over Finite Fields

- Let K be not algebraically closed (like $K=\mathbb{F}_{q}$).
- The group $E_{\bar{K}}$ is isomorphic to $\mathbb{J}_{\bar{K}}(E)$.
- The one-to-one correspondence of $\mathbb{D}_{\bar{K}}(E)$ with $E_{\bar{K}}$ allows us to use the chord-and-tangent rule.

Elliptic Curves Over Finite Fields

- Let K be not algebraically closed (like $K=\mathbb{F}_{q}$).
- The group $E_{\bar{K}}$ is isomorphic to $\mathbb{J}_{\bar{K}}(E)$.
- The one-to-one correspondence of $\mathbb{J}_{\bar{K}}(E)$ with $E_{\bar{K}}$ allows us to use the chord-and-tangent rule.
- If P and Q are K-rational, then the chord-and-tangent rule guarantees that $P+Q$ is K-rational too.

Elliptic Curves Over Finite Fields

- Let K be not algebraically closed (like $K=\mathbb{F}_{q}$).
- The group $E_{\bar{K}}$ is isomorphic to $\mathbb{J}_{\bar{K}}(E)$.
- The one-to-one correspondence of $\mathbb{J}_{\bar{K}}(E)$ with $E_{\bar{K}}$ allows us to use the chord-and-tangent rule.
-

If P and Q are K-rational, then the chord-and-tangent rule guarantees that $P+Q$ is K-rational too.

- All K-rational points in $E_{\bar{K}}$ together with \mathcal{O} constitute a subgroup of $E_{\bar{K}}$.

Elliptic Curves Over Finite Fields

- Let K be not algebraically closed (like $K=\mathbb{F}_{q}$).
- The group $E_{\bar{K}}$ is isomorphic to $\mathbb{J}_{\bar{K}}(E)$.
- The one-to-one correspondence of $\mathbb{J}_{\bar{K}}(E)$ with $E_{\bar{K}}$ allows us to use the chord-and-tangent rule.
-

If P and Q are K-rational, then the chord-and-tangent rule guarantees that $P+Q$ is K-rational too.

- All K-rational points in $E_{\bar{K}}$ together with \mathcal{O} constitute a subgroup of $E_{\bar{K}}$.
- Denote this subgroup by E_{K}.

Elliptic Curves Over Finite Fields

- Let K be not algebraically closed (like $K=\mathbb{F}_{q}$).
- The group $E_{\bar{K}}$ is isomorphic to $\mathbb{J}_{\bar{K}}(E)$.
- The one-to-one correspondence of $\mathbb{D}_{\bar{K}}(E)$ with $E_{\bar{K}}$ allows us to use the chord-and-tangent rule.

■
If P and Q are K-rational, then the chord-and-tangent rule guarantees that $P+Q$ is K-rational too.

- All K-rational points in $E_{\bar{K}}$ together with \mathcal{O} constitute a subgroup of $E_{\bar{K}}$.
- Denote this subgroup by E_{K}.
- E_{K} can be identified with a subgroup $\mathbb{J}_{K}(E)$ of $\mathbb{J}_{\bar{K}}(E)$.

Elliptic Curves Over Finite Fields

- Let K be not algebraically closed (like $K=\mathbb{F}_{q}$).
- The group $E_{\bar{K}}$ is isomorphic to $\mathbb{J}_{\bar{K}}(E)$.
- The one-to-one correspondence of $\mathbb{D}_{\bar{K}}(E)$ with $E_{\bar{K}}$ allows us to use the chord-and-tangent rule.

■
If P and Q are K-rational, then the chord-and-tangent rule guarantees that $P+Q$ is K-rational too.

All K-rational points in $E_{\bar{K}}$ together with \mathcal{O} constitute a subgroup of $E_{\bar{K}}$.

- Denote this subgroup by E_{K}.
- $\quad E_{K}$ can be identified with a subgroup $\mathbb{J}_{K}(E)$ of $\mathbb{J}_{\bar{K}}(E)$.
- Since K is not algebraically closed, $\mathbb{J}_{K}(E)$ cannot be defined like $\mathbb{J}_{\bar{K}}(E)$.

Elliptic Curves Over Finite Fields

- Let K be not algebraically closed (like $K=\mathbb{F}_{q}$).

The group $E_{\bar{K}}$ is isomorphic to $\mathbb{J}_{\bar{K}}(E)$.
■
The one-to-one correspondence of $\mathbb{J}_{\bar{K}}(E)$ with $E_{\bar{K}}$ allows us to use the chord-and-tangent rule.

If P and Q are K-rational, then the chord-and-tangent rule guarantees that $P+Q$ is K-rational too.

All K-rational points in $E_{\bar{K}}$ together with \mathcal{O} constitute a subgroup of $E_{\bar{K}}$.

- Denote this subgroup by E_{K}.
- E_{K} can be identified with a subgroup $\mathbb{J}_{K}(E)$ of $\mathbb{J}_{\bar{K}}(E)$.
- Since K is not algebraically closed, $\mathbb{J}_{K}(E)$ cannot be defined like $\mathbb{J}_{\bar{K}}(E)$.
- Thanks to the chord-and-tangent rule, we do not need to worry too much about $\mathbb{J}_{K}(E)$ (at least so long as computational issues are of only concern).

Discriminants and j-invariants

Discriminants and j-invariants

- Define the following quantities for E :

$$
\begin{aligned}
d_{2} & =a_{1}^{2}+4 a_{2} \\
d_{4} & =2 a_{4}+a_{1} a_{3} \\
d_{6} & =a_{3}^{2}+4 a_{6} \\
d_{8} & =a_{1}^{2} a_{6}+4 a_{2} a_{6}-a_{1} a_{3} a_{4}+a_{2} a_{3}^{2}-a_{4}^{2} \\
c_{4} & =d_{2}^{2}-24 d_{4} \\
\Delta(E) & =-d_{2}^{2} d_{8}-8 d_{4}^{3}-27 d_{6}^{2}+9 d_{2} d_{4} d_{6} \\
j(E) & =c_{4}^{3} / \Delta(E), \text { if } \Delta(E) \neq 0 .
\end{aligned}
$$

Discriminants and j-invariants

- Define the following quantities for E :

$$
\begin{aligned}
d_{2} & =a_{1}^{2}+4 a_{2} \\
d_{4} & =2 a_{4}+a_{1} a_{3} \\
d_{6} & =a_{3}^{2}+4 a_{6} \\
d_{8} & =a_{1}^{2} a_{6}+4 a_{2} a_{6}-a_{1} a_{3} a_{4}+a_{2} a_{3}^{2}-a_{4}^{2} \\
c_{4} & =d_{2}^{2}-24 d_{4} \\
\Delta(E) & =-d_{2}^{2} d_{8}-8 d_{4}^{3}-27 d_{6}^{2}+9 d_{2} d_{4} d_{6} \\
j(E) & =c_{4}^{3} / \Delta(E), \text { if } \Delta(E) \neq 0 .
\end{aligned}
$$

- $\Delta(E)$ is called the discriminant of E.

Discriminants and j-invariants

Define the following quantities for E :

$$
\begin{aligned}
d_{2} & =a_{1}^{2}+4 a_{2} \\
d_{4} & =2 a_{4}+a_{1} a_{3} \\
d_{6} & =a_{3}^{2}+4 a_{6} \\
d_{8} & =a_{1}^{2} a_{6}+4 a_{2} a_{6}-a_{1} a_{3} a_{4}+a_{2} a_{3}^{2}-a_{4}^{2} \\
c_{4} & =d_{2}^{2}-24 d_{4} \\
\Delta(E) & =-d_{2}^{2} d_{8}-8 d_{4}^{3}-27 d_{6}^{2}+9 d_{2} d_{4} d_{6} \\
j(E) & =c_{4}^{3} / \Delta(E), \text { if } \Delta(E) \neq 0 .
\end{aligned}
$$

$\Delta(E)$ is called the discriminant of E.
$j(E)$ is called the \boldsymbol{j}-invariant of E.

Discriminants and j-invariants

Define the following quantities for E :

$$
\begin{aligned}
d_{2} & =a_{1}^{2}+4 a_{2} \\
d_{4} & =2 a_{4}+a_{1} a_{3} \\
d_{6} & =a_{3}^{2}+4 a_{6} \\
d_{8} & =a_{1}^{2} a_{6}+4 a_{2} a_{6}-a_{1} a_{3} a_{4}+a_{2} a_{3}^{2}-a_{4}^{2} \\
c_{4} & =d_{2}^{2}-24 d_{4} \\
\Delta(E) & =-d_{2}^{2} d_{8}-8 d_{4}^{3}-27 d_{6}^{2}+9 d_{2} d_{4} d_{6} \\
j(E) & =c_{4}^{3} / \Delta(E), \text { if } \Delta(E) \neq 0 .
\end{aligned}
$$

- $\Delta(E)$ is called the discriminant of E.
- $j(E)$ is called the \boldsymbol{j}-invariant of E.
- E is smooth (that is, an elliptic curve) if and only if $\Delta(E) \neq 0$.

Discriminants and j-invariants

Define the following quantities for E :

$$
\begin{aligned}
d_{2} & =a_{1}^{2}+4 a_{2} \\
d_{4} & =2 a_{4}+a_{1} a_{3} \\
d_{6} & =a_{3}^{2}+4 a_{6} \\
d_{8} & =a_{1}^{2} a_{6}+4 a_{2} a_{6}-a_{1} a_{3} a_{4}+a_{2} a_{3}^{2}-a_{4}^{2} \\
c_{4} & =d_{2}^{2}-24 d_{4} \\
\Delta(E) & =-d_{2}^{2} d_{8}-8 d_{4}^{3}-27 d_{6}^{2}+9 d_{2} d_{4} d_{6} \\
j(E) & =c_{4}^{3} / \Delta(E), \text { if } \Delta(E) \neq 0 .
\end{aligned}
$$

- $\Delta(E)$ is called the discriminant of E.
- $j(E)$ is called the \boldsymbol{j}-invariant of E.
- E is smooth (that is, an elliptic curve) if and only if $\Delta(E) \neq 0$.
$j(E)$ is defined for every elliptic curve.

Discriminants and j-invariants

Define the following quantities for E :

$$
\begin{aligned}
d_{2} & =a_{1}^{2}+4 a_{2} \\
d_{4} & =2 a_{4}+a_{1} a_{3} \\
d_{6} & =a_{3}^{2}+4 a_{6} \\
d_{8} & =a_{1}^{2} a_{6}+4 a_{2} a_{6}-a_{1} a_{3} a_{4}+a_{2} a_{3}^{2}-a_{4}^{2} \\
c_{4} & =d_{2}^{2}-24 d_{4} \\
\Delta(E) & =-d_{2}^{2} d_{8}-8 d_{4}^{3}-27 d_{6}^{2}+9 d_{2} d_{4} d_{6} \\
j(E) & =c_{4}^{3} / \Delta(E), \text { if } \Delta(E) \neq 0 .
\end{aligned}
$$

- $\Delta(E)$ is called the discriminant of E.
- $j(E)$ is called the j-invariant of E.
- E is smooth (that is, an elliptic curve) if and only if $\Delta(E) \neq 0$.
- $j(E)$ is defined for every elliptic curve.

For two elliptic curves E, E^{\prime}, we have $j(E)=j\left(E^{\prime}\right)$ if and only if E and E^{\prime} are isomorphic.

Addition Formula for the General Weierstrass Equation

Let $P=\left(h_{1}, k_{1}\right)$ and $Q=\left(h_{2}, k_{2}\right)$ be points on E. Assume that $P, Q, P+Q$ are not \mathcal{O}. Let $R=\left(h_{3}, k_{3}\right)=P+Q$.

Addition Formula for the General Weierstrass Equation

Let $P=\left(h_{1}, k_{1}\right)$ and $Q=\left(h_{2}, k_{2}\right)$ be points on E. Assume that $P, Q, P+Q$ are not \mathcal{O}. Let $R=\left(h_{3}, k_{3}\right)=P+Q$.

$$
h_{3}=\lambda^{2}+a_{1} \lambda-a_{2}-h_{1}-h_{2}, \text { and }
$$

Addition Formula for the General Weierstrass Equation

Let $P=\left(h_{1}, k_{1}\right)$ and $Q=\left(h_{2}, k_{2}\right)$ be points on E. Assume that $P, Q, P+Q$ are not \mathcal{O}. Let $R=\left(h_{3}, k_{3}\right)=P+Q$.

$$
\begin{aligned}
& h_{3}=\lambda^{2}+a_{1} \lambda-a_{2}-h_{1}-h_{2}, \text { and } \\
& k_{3}=-\left(\lambda+a_{1}\right) h_{3}-\mu-a_{3}, \text { where }
\end{aligned}
$$

Addition Formula for the General Weierstrass Equation

Let $P=\left(h_{1}, k_{1}\right)$ and $Q=\left(h_{2}, k_{2}\right)$ be points on E. Assume that $P, Q, P+Q$ are not \mathcal{O}. Let $R=\left(h_{3}, k_{3}\right)=P+Q$.

$$
\begin{gathered}
h_{3}=\lambda^{2}+a_{1} \lambda-a_{2}-h_{1}-h_{2}, \text { and } \\
k_{3}=-\left(\lambda+a_{1}\right) h_{3}-\mu-a_{3}, \text { where } \\
\lambda= \begin{cases}\frac{k_{2}-k_{1}}{h_{2}-h_{1}} & \text { if } P \neq Q, \\
\frac{3 h_{1}^{2}+2 a_{2} h_{1}+a_{4}-a_{1} k_{1}}{2 k_{1}+a_{1} h_{1}+a_{3}} & \text { if } P=Q, \text { and }\end{cases}
\end{gathered}
$$

Addition Formula for the General Weierstrass Equation

Let $P=\left(h_{1}, k_{1}\right)$ and $Q=\left(h_{2}, k_{2}\right)$ be points on E. Assume that $P, Q, P+Q$ are not \mathcal{O}. Let $R=\left(h_{3}, k_{3}\right)=P+Q$.

$$
\begin{gathered}
h_{3}=\lambda^{2}+a_{1} \lambda-a_{2}-h_{1}-h_{2}, \text { and } \\
k_{3}=-\left(\lambda+a_{1}\right) h_{3}-\mu-a_{3}, \text { where } \\
\lambda= \begin{cases}\frac{k_{2}-k_{1}}{h_{2}-h_{1}} & \text { if } P \neq Q, \\
\frac{3 h_{1}^{2}+2 a_{2} h_{1}+a_{4}-a_{1} k_{1}}{2 k_{1}+a_{1} h_{1}+a_{3}} & \text { if } P=Q, \text { and } \\
\mu=k_{1}-\lambda h_{1} .\end{cases}
\end{gathered}
$$

Addition Formula for the General Weierstrass Equation

Let $P=\left(h_{1}, k_{1}\right)$ and $Q=\left(h_{2}, k_{2}\right)$ be points on E. Assume that $P, Q, P+Q$ are not \mathcal{O}. Let $R=\left(h_{3}, k_{3}\right)=P+Q$.

$$
\begin{gathered}
h_{3}=\lambda^{2}+a_{1} \lambda-a_{2}-h_{1}-h_{2}, \text { and } \\
k_{3}=-\left(\lambda+a_{1}\right) h_{3}-\mu-a_{3}, \text { where } \\
\lambda= \begin{cases}\frac{k_{2}-k_{1}}{h_{2}-h_{1}} & \text { if } P \neq Q, \\
\frac{3 h_{1}^{2}+2 a_{2} h_{1}+a_{4}-a_{1} k_{1}}{2 k_{1}+a_{1} h_{1}+a_{3}} & \text { if } P=Q, \text { and } \\
\mu=k_{1}-\lambda h_{1} .\end{cases}
\end{gathered}
$$

The opposite of (h, k) is $\left(h,-k-a_{1} h-a_{3}\right)$.

Choosing a Random Point on an Elliptic Curve

Let $E: Y^{2}+\left(a_{1} X+a_{3}\right) Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$ be defined over K. To obtain a random point $P=(h, k) \in E_{K}$.

Choosing a Random Point on an Elliptic Curve

Let $E: Y^{2}+\left(a_{1} X+a_{3}\right) Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$ be defined over K. To obtain a random point $P=(h, k) \in E_{K}$.

- Choose the X-coordinate h randomly from K.

Choosing a Random Point on an Elliptic Curve

Let $E: Y^{2}+\left(a_{1} X+a_{3}\right) Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$ be defined over K. To obtain a random point $P=(h, k) \in E_{K}$.

- Choose the X-coordinate h randomly from K.
- The corresponding Y-coordinates are roots of

$$
Y^{2}+\left(a_{1} h+a_{3}\right) Y-\left(h^{3}+a_{2} h^{2}+a_{4} h+a_{6}\right) .
$$

Choosing a Random Point on an Elliptic Curve

Let $E: Y^{2}+\left(a_{1} X+a_{3}\right) Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$ be defined over K. To obtain a random point $P=(h, k) \in E_{K}$.

- Choose the X-coordinate h randomly from K.

The corresponding Y-coordinates are roots of

$$
Y^{2}+\left(a_{1} h+a_{3}\right) Y-\left(h^{3}+a_{2} h^{2}+a_{4} h+a_{6}\right) .
$$

This polynomial is either irreducible over K or has two roots in K.

Choosing a Random Point on an Elliptic Curve

Let $E: Y^{2}+\left(a_{1} X+a_{3}\right) Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$ be defined over K. To obtain a random point $P=(h, k) \in E_{K}$.

- Choose the X-coordinate h randomly from K.

The corresponding Y-coordinates are roots of

$$
Y^{2}+\left(a_{1} h+a_{3}\right) Y-\left(h^{3}+a_{2} h^{2}+a_{4} h+a_{6}\right) .
$$

This polynomial is either irreducible over K or has two roots in K. If K is algebraically closed, then this polynomial has roots in K.

Choosing a Random Point on an Elliptic Curve

Let $E: Y^{2}+\left(a_{1} X+a_{3}\right) Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$ be defined over K. To obtain a random point $P=(h, k) \in E_{K}$.

Choose the X-coordinate h randomly from K.
The corresponding Y-coordinates are roots of

$$
Y^{2}+\left(a_{1} h+a_{3}\right) Y-\left(h^{3}+a_{2} h^{2}+a_{4} h+a_{6}\right) .
$$

This polynomial is either irreducible over K or has two roots in K. If K is algebraically closed, then this polynomial has roots in K. If K is a finite field, then, with probability about $1 / 2$, this polynomial has roots in K.

Choosing a Random Point on an Elliptic Curve

Let $E: Y^{2}+\left(a_{1} X+a_{3}\right) Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$ be defined over K.
To obtain a random point $P=(h, k) \in E_{K}$.
Choose the X-coordinate h randomly from K.
The corresponding Y-coordinates are roots of

$$
Y^{2}+\left(a_{1} h+a_{3}\right) Y-\left(h^{3}+a_{2} h^{2}+a_{4} h+a_{6}\right) .
$$

This polynomial is either irreducible over K or has two roots in K. If K is algebraically closed, then this polynomial has roots in K. If K is a finite field, then, with probability about $1 / 2$, this polynomial has roots in K.

- Use a root-finding algorithm to compute a root k.

Choosing a Random Point on an Elliptic Curve

Let $E: Y^{2}+\left(a_{1} X+a_{3}\right) Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}$ be defined over K.
To obtain a random point $P=(h, k) \in E_{K}$.
Choose the X-coordinate h randomly from K.
The corresponding Y-coordinates are roots of

$$
Y^{2}+\left(a_{1} h+a_{3}\right) Y-\left(h^{3}+a_{2} h^{2}+a_{4} h+a_{6}\right) .
$$

This polynomial is either irreducible over K or has two roots in K. If K is algebraically closed, then this polynomial has roots in K.

If K is a finite field, then, with probability about $1 / 2$, this polynomial has roots in K.

- Use a root-finding algorithm to compute a root k.
- Output (h, k).

Rational Maps on Elliptic Curves

Rational Maps on Elliptic Curves

- A rational map on E is a function $E \rightarrow E$.

Rational Maps on Elliptic Curves

- A rational map on E is a function $E \rightarrow E$.

A rational map α is specified by two rational functions $\alpha_{1}, \alpha_{2} \in \bar{K}(E)$ such that, for any point $P \in E, \alpha(P)=\alpha(h, k)=\left(\alpha_{1}(h, k), \alpha_{2}(h, k)\right)$ is again a point on E.

Rational Maps on Elliptic Curves

- A rational map on E is a function $E \rightarrow E$.

A rational map α is specified by two rational functions $\alpha_{1}, \alpha_{2} \in \bar{K}(E)$ such that, for any point $P \in E, \alpha(P)=\alpha(h, k)=\left(\alpha_{1}(h, k), \alpha_{2}(h, k)\right)$ is again a point on E.

- Since $\alpha(P)$ is a point on $E, \alpha_{1}, \alpha_{2}$ satisfy the equation for E and constitute the elliptic curve $E_{\bar{K}(E)}$.

Rational Maps on Elliptic Curves

- A rational map on E is a function $E \rightarrow E$.

A rational map α is specified by two rational functions $\alpha_{1}, \alpha_{2} \in \bar{K}(E)$ such that, for any point $P \in E, \alpha(P)=\alpha(h, k)=\left(\alpha_{1}(h, k), \alpha_{2}(h, k)\right)$ is again a point on E.

- Since $\alpha(P)$ is a point on $E, \alpha_{1}, \alpha_{2}$ satisfy the equation for E and constitute the elliptic curve $E_{\bar{K}(E)}$.
- Denote the point at infinity on this curve by \mathcal{O}^{\prime}. Define $\mathcal{O}^{\prime}(P)=\mathcal{O}$ for all $P \in E$.

Rational Maps on Elliptic Curves

- A rational map on E is a function $E \rightarrow E$.

- A rational map α is specified by two rational functions $\alpha_{1}, \alpha_{2} \in \bar{K}(E)$ such that, for any point $P \in E, \alpha(P)=\alpha(h, k)=\left(\alpha_{1}(h, k), \alpha_{2}(h, k)\right)$ is again a point on E.

Since $\alpha(P)$ is a point on $E, \alpha_{1}, \alpha_{2}$ satisfy the equation for E and constitute the elliptic curve $E_{\bar{K}(E)}$.

Denote the point at infinity on this curve by \mathcal{O}^{\prime}. Define $\mathcal{O}^{\prime}(P)=\mathcal{O}$ for all $P \in E$.

For a non-zero $\alpha \in E_{\bar{K}(E)}$ and a point $P \in E$, either both $\alpha_{1}(P), \alpha_{2}(P)$ are defined at P, or both are undefined at P. In the first case, we take $\alpha(P)=\left(\alpha_{1}(P), \alpha_{2}(P)\right)$, and in the second case, $\alpha(P)=\mathcal{O}$.

Rational Maps on Elliptic Curves

- A rational map on E is a function $E \rightarrow E$.

■
A rational map α is specified by two rational functions $\alpha_{1}, \alpha_{2} \in \bar{K}(E)$ such that, for any point $P \in E, \alpha(P)=\alpha(h, k)=\left(\alpha_{1}(h, k), \alpha_{2}(h, k)\right)$ is again a point on E.

Since $\alpha(P)$ is a point on $E, \alpha_{1}, \alpha_{2}$ satisfy the equation for E and constitute the elliptic curve $E_{\bar{K}(E)}$.
Denote the point at infinity on this curve by \mathcal{O}^{\prime}. Define $\mathcal{O}^{\prime}(P)=\mathcal{O}$ for all $P \in E$.

For a non-zero $\alpha \in E_{\bar{K}(E)}$ and a point $P \in E$, either both $\alpha_{1}(P), \alpha_{2}(P)$ are defined at P, or both are undefined at P. In the first case, we take $\alpha(P)=\left(\alpha_{1}(P), \alpha_{2}(P)\right)$, and in the second case, $\alpha(P)=\mathcal{O}$.

The addition of $E_{\bar{K}(E)}$ is compatible with the addition of E, that is, $(\alpha+\beta)(P)=\alpha(P)+\beta(P)$ for all $\alpha, \beta \in E_{\bar{K}(E)}$ and $P \in E$.

Rational Maps on Elliptic Curves

- A rational map on E is a function $E \rightarrow E$.

A rational map α is specified by two rational functions $\alpha_{1}, \alpha_{2} \in \bar{K}(E)$ such that, for any point $P \in E, \alpha(P)=\alpha(h, k)=\left(\alpha_{1}(h, k), \alpha_{2}(h, k)\right)$ is again a point on E.

Since $\alpha(P)$ is a point on $E, \alpha_{1}, \alpha_{2}$ satisfy the equation for E and constitute the elliptic curve $E_{\bar{K}(E)}$.
Denote the point at infinity on this curve by \mathcal{O}^{\prime}. Define $\mathcal{O}^{\prime}(P)=\mathcal{O}$ for all $P \in E$.

For a non-zero $\alpha \in E_{\bar{K}(E)}$ and a point $P \in E$, either both $\alpha_{1}(P), \alpha_{2}(P)$ are defined at P, or both are undefined at P. In the first case, we take $\alpha(P)=\left(\alpha_{1}(P), \alpha_{2}(P)\right)$, and in the second case, $\alpha(P)=\mathcal{O}$.

The addition of $E_{\bar{K}(E)}$ is compatible with the addition of E, that is, $(\alpha+\beta)(P)=\alpha(P)+\beta(P)$ for all $\alpha, \beta \in E_{\bar{K}(E)}$ and $P \in E$.

- A rational map is either constant or surjective.

Rational Maps: Examples

Rational Maps: Examples

The zero map $\mathcal{O}^{\prime}: E \rightarrow E, P \mapsto \mathcal{O}$.

Rational Maps: Examples

- The zero map $\mathcal{O}^{\prime}: E \rightarrow E, P \mapsto \mathcal{O}$.

The identity map id $: E \rightarrow E, P \mapsto P$.

Rational Maps: Examples

- The zero map $\mathcal{O}^{\prime}: E \rightarrow E, P \mapsto \mathcal{O}$.

The identity map id : $E \rightarrow E, P \mapsto P$.
The translation map $\tau_{Q}: E \rightarrow E, P \mapsto P+Q$, for a fixed $Q \in E$.

Rational Maps: Examples

- The zero map $\mathcal{O}^{\prime}: E \rightarrow E, P \mapsto \mathcal{O}$.

The identity map id : $E \rightarrow E, P \mapsto P$.
The translation map $\tau_{Q}: E \rightarrow E, P \mapsto P+Q$, for a fixed $Q \in E$.
The multiplication-by- m map $[m]: E \rightarrow E, P \mapsto m P$, where $m \in \mathbb{Z}$.

Rational Maps: Examples

- The zero map $\mathcal{O}^{\prime}: E \rightarrow E, P \mapsto \mathcal{O}$.

The identity map id : $E \rightarrow E, P \mapsto P$.
The translation map $\tau_{Q}: E \rightarrow E, P \mapsto P+Q$, for a fixed $Q \in E$.
The multiplication-by- m map $[m]: E \rightarrow E, P \mapsto m P$, where $m \in \mathbb{Z}$. The Frobenius map φ :

Rational Maps: Examples

- The zero map $\mathcal{O}^{\prime}: E \rightarrow E, P \mapsto \mathcal{O}$.

The identity map id : $E \rightarrow E, P \mapsto P$.
The translation map $\tau_{Q}: E \rightarrow E, P \mapsto P+Q$, for a fixed $Q \in E$.
The multiplication-by- m map $[m]: E \rightarrow E, P \mapsto m P$, where $m \in \mathbb{Z}$. The Frobenius map φ :
E is defined over $K=\mathbb{F}_{q}$.

Rational Maps: Examples

- The zero map $\mathcal{O}^{\prime}: E \rightarrow E, P \mapsto \mathcal{O}$.

The identity map id : $E \rightarrow E, P \mapsto P$.
The translation map $\tau_{Q}: E \rightarrow E, P \mapsto P+Q$, for a fixed $Q \in E$.
The multiplication-by- m map $[m]: E \rightarrow E, P \mapsto m P$, where $m \in \mathbb{Z}$. The Frobenius map φ :
E is defined over $K=\mathbb{F}_{q}$.
For $a \in \bar{K}, a^{q}=a$ if and only if $a \in \mathbb{F}_{q}$.

Rational Maps: Examples

- The zero map $\mathcal{O}^{\prime}: E \rightarrow E, P \mapsto \mathcal{O}$.

The identity map id : $E \rightarrow E, P \mapsto P$.
The translation map $\tau_{Q}: E \rightarrow E, P \mapsto P+Q$, for a fixed $Q \in E$.
The multiplication-by- m map $[m]: E \rightarrow E, P \mapsto m P$, where $m \in \mathbb{Z}$. The Frobenius map φ :
E is defined over $K=\mathbb{F}_{q}$.
For $a \in \bar{K}, a^{q}=a$ if and only if $a \in \mathbb{F}_{q}$.
For $P=(h, k) \in E$, the point $\left(h^{q}, k^{q}\right) \in E$.

Rational Maps: Examples

- The zero map $\mathcal{O}^{\prime}: E \rightarrow E, P \mapsto \mathcal{O}$.

The identity map id : $E \rightarrow E, P \mapsto P$.
The translation map $\tau_{Q}: E \rightarrow E, P \mapsto P+Q$, for a fixed $Q \in E$.
The multiplication-by- m map $[m]: E \rightarrow E, P \mapsto m P$, where $m \in \mathbb{Z}$.
The Frobenius map φ :
E is defined over $K=\mathbb{F}_{q}$.
For $a \in \bar{K}, a^{q}=a$ if and only if $a \in \mathbb{F}_{q}$.
For $P=(h, k) \in E$, the point $\left(h^{q}, k^{q}\right) \in E$.
Define $\varphi(h, k)=\left(h^{q}, k^{q}\right)$.

Endomorphisms

Endomorphisms

- A rational map on E, which is also a group homomorphism of E, is called an endomorphism or an isogeny.

Endomorphisms

- A rational map on E, which is also a group homomorphism of E, is called an endomorphism or an isogeny.
- The set of all endomorphisms of E is denoted by $\operatorname{End}(E)$.

Endomorphisms

- A rational map on E, which is also a group homomorphism of E, is called an endomorphism or an isogeny.
- The set of all endomorphisms of E is denoted by $\operatorname{End}(E)$.
- Define addition in $\operatorname{End}(E)$ as $(\alpha+\beta)(P)=\alpha(P)+\beta(P)$.

Endomorphisms

- A rational map on E, which is also a group homomorphism of E, is called an endomorphism or an isogeny.
- The set of all endomorphisms of E is denoted by $\operatorname{End}(E)$.
- Define addition in $\operatorname{End}(E)$ as $(\alpha+\beta)(P)=\alpha(P)+\beta(P)$.
- Define multiplication in $\operatorname{End}(E)$ as $(\alpha \circ \beta)(P)=\alpha(\beta(P))$.

Endomorphisms

- A rational map on E, which is also a group homomorphism of E, is called an endomorphism or an isogeny.
- The set of all endomorphisms of E is denoted by $\operatorname{End}(E)$.
- Define addition in $\operatorname{End}(E)$ as $(\alpha+\beta)(P)=\alpha(P)+\beta(P)$.
- Define multiplication in $\operatorname{End}(E)$ as $(\alpha \circ \beta)(P)=\alpha(\beta(P))$.
- $\operatorname{End}(E)$ is a ring under these operations. The additive identity is \mathcal{O}^{\prime}. The multiplicative identity is id.

Endomorphisms

- A rational map on E, which is also a group homomorphism of E, is called an endomorphism or an isogeny.
- The set of all endomorphisms of E is denoted by $\operatorname{End}(E)$.
- Define addition in $\operatorname{End}(E)$ as $(\alpha+\beta)(P)=\alpha(P)+\beta(P)$.
- Define multiplication in $\operatorname{End}(E)$ as $(\alpha \circ \beta)(P)=\alpha(\beta(P))$.
\square
$\operatorname{End}(E)$ is a ring under these operations. The additive identity is \mathcal{O}^{\prime}. The multiplicative identity is id.

■ All multiplication-by- m maps $[m]$ are endomorphisms. We have $[m] \neq[n]$ for $m \neq n$.

Endomorphisms

- A rational map on E, which is also a group homomorphism of E, is called an endomorphism or an isogeny.
- The set of all endomorphisms of E is denoted by $\operatorname{End}(E)$.
- Define addition in $\operatorname{End}(E)$ as $(\alpha+\beta)(P)=\alpha(P)+\beta(P)$.
- Define multiplication in $\operatorname{End}(E)$ as $(\alpha \circ \beta)(P)=\alpha(\beta(P))$.
\square
$\operatorname{End}(E)$ is a ring under these operations. The additive identity is \mathcal{O}^{\prime}. The multiplicative identity is id.

All multiplication-by- m maps $[m]$ are endomorphisms. We have $[m] \neq[n]$ for $m \neq n$.

■ The translation map τ_{Q} is not an endomorphism unless $Q=\mathcal{O}$.

Endomorphisms

- A rational map on E, which is also a group homomorphism of E, is called an endomorphism or an isogeny.
- The set of all endomorphisms of E is denoted by $\operatorname{End}(E)$.
- \quad Define addition in $\operatorname{End}(E)$ as $(\alpha+\beta)(P)=\alpha(P)+\beta(P)$.
- Define multiplication in $\operatorname{End}(E)$ as $(\alpha \circ \beta)(P)=\alpha(\beta(P))$.
$■$
$\operatorname{End}(E)$ is a ring under these operations. The additive identity is \mathcal{O}^{\prime}. The multiplicative identity is id.

All multiplication-by- m maps $[m]$ are endomorphisms. We have $[m] \neq[n]$ for $m \neq n$.

The translation map τ_{Q} is not an endomorphism unless $Q=\mathcal{O}$.

- The Frobenius map φ is an endomorphism with $\varphi \neq[m]$ for any m.

Endomorphisms

A rational map on E, which is also a group homomorphism of E, is called an endomorphism or an isogeny.

- The set of all endomorphisms of E is denoted by $\operatorname{End}(E)$.
- Define addition in $\operatorname{End}(E)$ as $(\alpha+\beta)(P)=\alpha(P)+\beta(P)$.
- Define multiplication in $\operatorname{End}(E)$ as $(\alpha \circ \beta)(P)=\alpha(\beta(P))$.
$\operatorname{End}(E)$ is a ring under these operations. The additive identity is \mathcal{O}^{\prime}. The multiplicative identity is id.

All multiplication-by- m maps $[m]$ are endomorphisms. We have $[m] \neq[n]$ for $m \neq n$.

The translation map τ_{Q} is not an endomorphism unless $Q=\mathcal{O}$.

- The Frobenius map φ is an endomorphism with $\varphi \neq[m]$ for any m.

■
If $\operatorname{End}(E)$ contains a map other than the maps $[m], E$ is called a curve with complex multiplication.

The Multiplication-by-m Maps

The Multiplication-by-m Maps

Identify $[m]$ as a pair $\left(g_{m}, h_{m}\right)$ of rational functions.

The Multiplication-by-m Maps

- Identify $[m]$ as a pair $\left(g_{m}, h_{m}\right)$ of rational functions.
$g_{1}=x, h_{1}=y$.

The Multiplication-by-m Maps

- Identify $[m]$ as a pair $\left(g_{m}, h_{m}\right)$ of rational functions.

$$
\begin{aligned}
& g_{1}=x, h_{1}=y \\
& g_{2}=-2 x+\lambda^{2}+a_{1} \lambda-a_{2} \text { and }
\end{aligned}
$$

The Multiplication-by-m Maps

- Identify $[m]$ as a pair $\left(g_{m}, h_{m}\right)$ of rational functions.

$$
\begin{aligned}
& g_{1}=x, h_{1}=y \\
& g_{2}=-2 x+\lambda^{2}+a_{1} \lambda-a_{2} \text { and } \\
& h_{2}=-\lambda\left(g_{2}-x\right)-a_{1} g_{2}-a_{3}-y
\end{aligned}
$$

The Multiplication-by-m Maps

- Identify $[m]$ as a pair $\left(g_{m}, h_{m}\right)$ of rational functions.

$$
\begin{aligned}
& g_{1}=x, h_{1}=y \\
& g_{2}=-2 x+\lambda^{2}+a_{1} \lambda-a_{2} \text { and } \\
& h_{2}=-\lambda\left(g_{2}-x\right)-a_{1} g_{2}-a_{3}-y \\
& \text { where } \lambda=\frac{3 x^{2}+2 a_{2} x+a_{4}-a_{1} y}{2 y+a_{1} x+a_{3}} .
\end{aligned}
$$

The Multiplication-by-m Maps

- Identify $[m]$ as a pair $\left(g_{m}, h_{m}\right)$ of rational functions.

$$
\begin{aligned}
& g_{1}=x, h_{1}=y \\
& g_{2}=-2 x+\lambda^{2}+a_{1} \lambda-a_{2} \text { and } \\
& h_{2}=-\lambda\left(g_{2}-x\right)-a_{1} g_{2}-a_{3}-y \\
& \text { where } \lambda=\frac{3 x^{2}+2 a_{2} x+a_{4}-a_{1} y}{2 y+a_{1} x+a_{3}} .
\end{aligned}
$$

For $m \geqslant 3$, we have the recursive definition:

The Multiplication-by-m Maps

- Identify $[m]$ as a pair $\left(g_{m}, h_{m}\right)$ of rational functions.

$$
\begin{aligned}
& g_{1}=x, h_{1}=y \\
& g_{2}=-2 x+\lambda^{2}+a_{1} \lambda-a_{2} \text { and } \\
& h_{2}=-\lambda\left(g_{2}-x\right)-a_{1} g_{2}-a_{3}-y \\
& \text { where } \lambda=\frac{3 x^{2}+2 a_{2} x+a_{4}-a_{1} y}{2 y+a_{1} x+a_{3}} .
\end{aligned}
$$

For $m \geqslant 3$, we have the recursive definition:

$$
g_{m}=-g_{m-1}-x+\lambda^{2}+a_{1} \lambda-a_{2} \text { and }
$$

The Multiplication-by-m Maps

- Identify $[m]$ as a pair $\left(g_{m}, h_{m}\right)$ of rational functions.
$g_{1}=x, h_{1}=y$.
$g_{2}=-2 x+\lambda^{2}+a_{1} \lambda-a_{2}$ and
$h_{2}=-\lambda\left(g_{2}-x\right)-a_{1} g_{2}-a_{3}-y$,
where $\lambda=\frac{3 x^{2}+2 a_{2} x+a_{4}-a_{1} y}{2 y+a_{1} x+a_{3}}$.
For $m \geqslant 3$, we have the recursive definition:

$$
\begin{aligned}
& g_{m}=-g_{m-1}-x+\lambda^{2}+a_{1} \lambda-a_{2} \text { and } \\
& h_{m}=-\lambda\left(g_{m}-x\right)-a_{1} g_{m}-a_{3}-y,
\end{aligned}
$$

The Multiplication-by-m Maps

- Identify $[m]$ as a pair $\left(g_{m}, h_{m}\right)$ of rational functions.
$g_{1}=x, h_{1}=y$.
$g_{2}=-2 x+\lambda^{2}+a_{1} \lambda-a_{2}$ and
$h_{2}=-\lambda\left(g_{2}-x\right)-a_{1} g_{2}-a_{3}-y$,
where $\lambda=\frac{3 x^{2}+2 a_{2} x+a_{4}-a_{1} y}{2 y+a_{1} x+a_{3}}$.
For $m \geqslant 3$, we have the recursive definition:

$$
\begin{aligned}
& g_{m}=-g_{m-1}-x+\lambda^{2}+a_{1} \lambda-a_{2} \text { and } \\
& h_{m}=-\lambda\left(g_{m}-x\right)-a_{1} g_{m}-a_{3}-y,
\end{aligned}
$$

where $\lambda=\frac{h_{m-1}-y}{g_{m-1}-x}$.

The Group of \boldsymbol{m}-torsion Points

The Group of \boldsymbol{m}-torsion Points

For $m \in \mathbb{N}$, define $E[m]=\{P \in E \mid m P=\mathcal{O}\}$.

The Group of \boldsymbol{m}-torsion Points

- For $m \in \mathbb{N}$, define $E[m]=\{P \in E \mid m P=\mathcal{O}\}$.
- Recall that $p=\operatorname{char} K$.

The Group of \boldsymbol{m}-torsion Points

- For $m \in \mathbb{N}$, define $E[m]=\{P \in E \mid m P=\mathcal{O}\}$.
- Recall that $p=\operatorname{char} K$.

If $p=0$ or $\operatorname{gcd}(p, m)=1$, then $E[m] \cong \mathbb{Z}_{m} \times \mathbb{Z}_{m}$, and so $|E[m]|=m^{2}$.

The Group of \boldsymbol{m}-torsion Points

- For $m \in \mathbb{N}$, define $E[m]=\{P \in E \mid m P=\mathcal{O}\}$.
- Recall that $p=\operatorname{char} K$.
- If $p=0$ or $\operatorname{gcd}(p, m)=1$, then $E[m] \cong \mathbb{Z}_{m} \times \mathbb{Z}_{m}$, and so $|E[m]|=m^{2}$.
- Suppose that $p>0$. Let $m=p^{\nu} m^{\prime}$ with $\operatorname{gcd}\left(m^{\prime}, p\right)=1$. Then, $E[m] \cong \begin{cases}\mathbb{Z}_{m^{\prime}} \times \mathbb{Z}_{m^{\prime}} & \text { if } E[p]=\{\mathcal{O}\}, \\ \mathbb{Z}_{m^{\prime}} \times \mathbb{Z}_{m} & \text { otherwise } .\end{cases}$

The Group of \boldsymbol{m}-torsion Points

- For $m \in \mathbb{N}$, define $E[m]=\{P \in E \mid m P=\mathcal{O}\}$.
- Recall that $p=\operatorname{char} K$.
- If $p=0$ or $\operatorname{gcd}(p, m)=1$, then $E[m] \cong \mathbb{Z}_{m} \times \mathbb{Z}_{m}$, and so $|E[m]|=m^{2}$.
- Suppose that $p>0$. Let $m=p^{\nu} m^{\prime}$ with $\operatorname{gcd}\left(m^{\prime}, p\right)=1$. Then, $E[m] \cong \begin{cases}\mathbb{Z}_{m^{\prime}} \times \mathbb{Z}_{m^{\prime}} & \text { if } E[p]=\{\mathcal{O}\}, \\ \mathbb{Z}_{m^{\prime}} \times \mathbb{Z}_{m} & \text { otherwise } .\end{cases}$
- If $\operatorname{gcd}(m, n)=1$, we have $E[m n] \cong E[m] \times E[n]$.

The Group of \boldsymbol{m}-torsion Points

- For $m \in \mathbb{N}$, define $E[m]=\{P \in E \mid m P=\mathcal{O}\}$.
- Recall that $p=\operatorname{char} K$.
- If $p=0$ or $\operatorname{gcd}(p, m)=1$, then $E[m] \cong \mathbb{Z}_{m} \times \mathbb{Z}_{m}$, and so $|E[m]|=m^{2}$.
- Suppose that $p>0$. Let $m=p^{\nu} m^{\prime}$ with $\operatorname{gcd}\left(m^{\prime}, p\right)=1$. Then, $E[m] \cong \begin{cases}\mathbb{Z}_{m^{\prime}} \times \mathbb{Z}_{m^{\prime}} & \text { if } E[p]=\{\mathcal{O}\}, \\ \mathbb{Z}_{m^{\prime}} \times \mathbb{Z}_{m} & \text { otherwise } .\end{cases}$
- If $\operatorname{gcd}(m, n)=1$, we have $E[m n] \cong E[m] \times E[n]$.

For a subset $S \subseteq E$, define the divisor $[S]=\sum_{P \in S}[P]$.

The Group of \boldsymbol{m}-torsion Points

- For $m \in \mathbb{N}$, define $E[m]=\{P \in E \mid m P=\mathcal{O}\}$.
- Recall that $p=\operatorname{char} K$.
- If $p=0$ or $\operatorname{gcd}(p, m)=1$, then $E[m] \cong \mathbb{Z}_{m} \times \mathbb{Z}_{m}$, and so $|E[m]|=m^{2}$.
- Suppose that $p>0$. Let $m=p^{\nu} m^{\prime}$ with $\operatorname{gcd}\left(m^{\prime}, p\right)=1$. Then, $E[m] \cong \begin{cases}\mathbb{Z}_{m^{\prime}} \times \mathbb{Z}_{m^{\prime}} & \text { if } E[p]=\{\mathcal{O}\}, \\ \mathbb{Z}_{m^{\prime}} \times \mathbb{Z}_{m} & \text { otherwise. }\end{cases}$
If $\operatorname{gcd}(m, n)=1$, we have $E[m n] \cong E[m] \times E[n]$.

For a subset $S \subseteq E$, define the divisor $[S]=\sum_{P \in S}[P]$.

If $p \neq 2,3$ and $m, n, m+n, m-n$ are all coprime to p, we have $\operatorname{Div}\left(g_{m}-g_{n}\right)=[E[m+n]]+[E[m-n]]-2[E[m]]-2[E[n]]$.

The Group of \boldsymbol{m}-torsion Points

- For $m \in \mathbb{N}$, define $E[m]=\{P \in E \mid m P=\mathcal{O}\}$.
- Recall that $p=\operatorname{char} K$.
- If $p=0$ or $\operatorname{gcd}(p, m)=1$, then $E[m] \cong \mathbb{Z}_{m} \times \mathbb{Z}_{m}$, and so $|E[m]|=m^{2}$.
- Suppose that $p>0$. Let $m=p^{\nu} m^{\prime}$ with $\operatorname{gcd}\left(m^{\prime}, p\right)=1$. Then,
$E[m] \cong \begin{cases}\mathbb{Z}_{m^{\prime}} \times \mathbb{Z}_{m^{\prime}} & \text { if } E[p]=\{\mathcal{O}\}, \\ \mathbb{Z}_{m^{\prime}} \times \mathbb{Z}_{m} & \text { otherwise } .\end{cases}$
.
If $\operatorname{gcd}(m, n)=1$, we have $E[m n] \cong E[m] \times E[n]$.

For a subset $S \subseteq E$, define the divisor $[S]=\sum_{P \in S}[P]$.
If $p \neq 2,3$ and $m, n, m+n, m-n$ are all coprime to p, we have $\operatorname{Div}\left(g_{m}-g_{n}\right)=[E[m+n]]+[E[m-n]]-2[E[m]]-2[E[n]]$.
. If $p \in\{2,3\}, \operatorname{gcd}(m, p)=1$, and $n=p^{\nu} n^{\prime}$ with $\nu \geqslant 1$ and $\operatorname{gcd}\left(n^{\prime}, p\right)=1$, we have $\operatorname{Div}\left(g_{m}-g_{n}\right)=[E[m+n]]+[E[m-n]]-2[E[m]]-2 \alpha^{\nu}[E[n]]$.

Division Polynomials

Division Polynomials

The rational functions g_{m}, h_{m} have poles precisely at the points in $E[m]$. But they have some zeros also.

Division Polynomials

- The rational functions g_{m}, h_{m} have poles precisely at the points in $E[m]$. But they have some zeros also.
- We investigate polynomials having zeros precisely at the points of $E[m]$.

Division Polynomials

- The rational functions g_{m}, h_{m} have poles precisely at the points in $E[m]$. But they have some zeros also.
- We investigate polynomials having zeros precisely at the points of $E[m]$.
- Assume that either $p=0$ or $\operatorname{gcd}(p, m)=1$.

Division Polynomials

- The rational functions g_{m}, h_{m} have poles precisely at the points in $E[m]$. But they have some zeros also.

■
We investigate polynomials having zeros precisely at the points of $E[m]$.
Assume that either $p=0$ or $\operatorname{gcd}(p, m)=1$.
$E[m]$ contains exactly m^{2} points with $\sum_{P \in E[m]} P=\mathcal{O}$.

Division Polynomials

The rational functions g_{m}, h_{m} have poles precisely at the points in $E[m]$. But they have some zeros also.
We investigate polynomials having zeros precisely at the points of $E[m]$.
Assume that either $p=0$ or $\operatorname{gcd}(p, m)=1$.
$E[m]$ contains exactly m^{2} points with $\sum_{P \in E[m]} P=\mathcal{O}$.
Consider the degree-zero divisor $[E[m]]-m^{2}[\mathcal{O}]=\sum_{P \in E[m]}[P]-m^{2}[\mathcal{O}]$.

Division Polynomials

The rational functions g_{m}, h_{m} have poles precisely at the points in $E[m]$. But they have some zeros also.

We investigate polynomials having zeros precisely at the points of $E[m]$.
Assume that either $p=0$ or $\operatorname{gcd}(p, m)=1$.
$E[m]$ contains exactly m^{2} points with $\sum_{P \in E[m]} P=\mathcal{O}$.
Consider the degree-zero divisor $[E[m]]-m^{2}[\mathcal{O}]=\sum_{P \in E[m]}[P]-m^{2}[\mathcal{O}]$.
There exists a rational function ψ_{m} with $\operatorname{Div}\left(\psi_{m}\right)=[E[m]]-m^{2}[\mathcal{O}]$.

Division Polynomials

The rational functions g_{m}, h_{m} have poles precisely at the points in $E[m]$. But they have some zeros also.

We investigate polynomials having zeros precisely at the points of $E[m]$.

- Assume that either $p=0$ or $\operatorname{gcd}(p, m)=1$.
- $E[m]$ contains exactly m^{2} points with $\sum_{P \in E[m]} P=\mathcal{O}$.
- Consider the degree-zero divisor $[E[m]]-m^{2}[\mathcal{O}]=\sum_{P \in E[m]}[P]-m^{2}[\mathcal{O}]$.
- There exists a rational function ψ_{m} with $\operatorname{Div}\left(\psi_{m}\right)=[E[m]]-m^{2}[\mathcal{O}]$.
- Since the only pole of ψ_{m} is at \mathcal{O}, ψ_{m} is a polynomial function.

Division Polynomials

The rational functions g_{m}, h_{m} have poles precisely at the points in $E[m]$. But they have some zeros also.

We investigate polynomials having zeros precisely at the points of $E[m]$.

- Assume that either $p=0$ or $\operatorname{gcd}(p, m)=1$.
- $E[m]$ contains exactly m^{2} points with $\sum_{P \in E[m]} P=\mathcal{O}$.
- Consider the degree-zero divisor $[E[m]]-m^{2}[\mathcal{O}]=\sum_{P \in E[m]}[P]-m^{2}[\mathcal{O}]$.
- There exists a rational function ψ_{m} with $\operatorname{Div}\left(\psi_{m}\right)=[E[m]]-m^{2}[\mathcal{O}]$.
- Since the only pole of ψ_{m} is at \mathcal{O}, ψ_{m} is a polynomial function.

■ ψ_{m} is unique up to multiplication of elements of \bar{K}^{*}.

Division Polynomials

The rational functions g_{m}, h_{m} have poles precisely at the points in $E[m]$. But they have some zeros also.

We investigate polynomials having zeros precisely at the points of $E[m]$. Assume that either $p=0$ or $\operatorname{gcd}(p, m)=1$.

- $E[m]$ contains exactly m^{2} points with $\sum_{P \in E[m]} P=\mathcal{O}$.

Consider the degree-zero divisor $[E[m]]-m^{2}[\mathcal{O}]=\sum_{P \in E[m]}[P]-m^{2}[\mathcal{O}]$.
$■$
There exists a rational function ψ_{m} with $\operatorname{Div}\left(\psi_{m}\right)=[E[m]]-m^{2}[\mathcal{O}]$.

- Since the only pole of ψ_{m} is at \mathcal{O}, ψ_{m} is a polynomial function.

■ ψ_{m} is unique up to multiplication of elements of \bar{K}^{*}.

■ If we arrange the leading coefficient of ψ_{m} to be m, then ψ_{m} becomes unique and is called the \boldsymbol{m}-th division polynomial.

Division Polynomials: Explicit Formulas

Division Polynomials: Explicit Formulas
$\psi_{0}=0$

Division Polynomials: Explicit Formulas

$$
\begin{aligned}
& \psi_{0}=0 \\
& \psi_{1}=1
\end{aligned}
$$

Division Polynomials: Explicit Formulas

$$
\begin{aligned}
& \psi_{0}=0 \\
& \psi_{1}=1 \\
& \psi_{2}=2 y+a_{1} x+a_{3}
\end{aligned}
$$

Division Polynomials: Explicit Formulas

$$
\begin{aligned}
& \psi_{0}=0 \\
& \psi_{1}=1 \\
& \psi_{2}=2 y+a_{1} x+a_{3} \\
& \psi_{3}=3 x^{4}+d_{2} x^{3}+3 d_{4} x^{2}+3 d_{6} x+d_{8}
\end{aligned}
$$

Division Polynomials: Explicit Formulas

$$
\begin{aligned}
\psi_{0}= & 0 \\
\psi_{1}= & 1 \\
\psi_{2}= & 2 y+a_{1} x+a_{3} \\
\psi_{3}= & 3 x^{4}+d_{2} x^{3}+3 d_{4} x^{2}+3 d_{6} x+d_{8} \\
\psi_{4}= & {\left[2 x^{6}+d_{2} x^{5}+5 d_{4} x^{4}+10 d_{6} x^{3}+10 d_{8} x^{2}+\right.} \\
& \left.\quad\left(d_{2} d_{8}-d_{4} d_{6}\right) x+d_{4} d_{8}-d_{6}^{2}\right] \psi_{2}
\end{aligned}
$$

Division Polynomials: Explicit Formulas

$$
\begin{aligned}
\psi_{0} & =0 \\
\psi_{1} & =1 \\
\psi_{2} & =2 y+a_{1} x+a_{3} \\
\psi_{3} & =3 x^{4}+d_{2} x^{3}+3 d_{4} x^{2}+3 d_{6} x+d_{8} \\
\psi_{4} & =\left[2 x^{6}+d_{2} x^{5}+5 d_{4} x^{4}+10 d_{6} x^{3}+10 d_{8} x^{2}+\right. \\
& \left.\left(d_{2} d_{8}-d_{4} d_{6}\right) x+d_{4} d_{8}-d_{6}^{2}\right] \psi_{2} \\
\psi_{2 m} & =\frac{\left(\psi_{m+2} \psi_{m-1}^{2}-\psi_{m-2} \psi_{m+1}^{2}\right) \psi_{m}}{\psi_{2}} \text { for } m>2
\end{aligned}
$$

Division Polynomials: Explicit Formulas

$$
\begin{aligned}
\psi_{0}= & 0 \\
\psi_{1}= & 1 \\
\psi_{2}= & 2 y+a_{1} x+a_{3} \\
\psi_{3}= & 3 x^{4}+d_{2} x^{3}+3 d_{4} x^{2}+3 d_{6} x+d_{8} \\
\psi_{4}= & {\left[2 x^{6}+d_{2} x^{5}+5 d_{4} x^{4}+10 d_{6} x^{3}+10 d_{8} x^{2}+\right.} \\
& \left.\quad\left(d_{2} d_{8}-d_{4} d_{6}\right) x+d_{4} d_{8}-d_{6}^{2}\right] \psi_{2} \\
& \left(\psi_{m+2} \psi_{m-1}^{2}-\psi_{m-2} \psi_{m+1}^{2}\right) \psi_{m} \\
\psi_{2 m}= & \text { for } m>2 \\
\psi_{2 m+1}= & \psi_{m+2} \psi_{m}^{3}-\psi_{m-1} \psi_{m+1}^{3} \text { for } m \geqslant 2 .
\end{aligned}
$$

Division Polynomials: Explicit Formulas

$$
\begin{aligned}
& \psi_{0}= 0 \\
& \psi_{1}= 1 \\
& \psi_{2}= 2 y+a_{1} x+a_{3} \\
& \psi_{3}= 3 x^{4}+d_{2} x^{3}+3 d_{4} x^{2}+3 d_{6} x+d_{8} \\
& \psi_{4}= {\left[2 x^{6}+d_{2} x^{5}+5 d_{4} x^{4}+10 d_{6} x^{3}+10 d_{8} x^{2}+\right.} \\
&\left.\quad\left(d_{2} d_{8}-d_{4} d_{6}\right) x+d_{4} d_{8}-d_{6}^{2}\right] \psi_{2} \\
& \psi_{2 m}= \frac{\left(\psi_{m+2} \psi_{m-1}^{2}-\psi_{m-2} \psi_{m+1}^{2}\right) \psi_{m}}{\psi_{2}} \text { for } m>2 \\
& \psi_{2 m+1}= \psi_{m+2} \psi_{m}^{3}-\psi_{m-1} \psi_{m+1}^{3} \text { for } m \geqslant 2 . \\
& g_{m}-g_{n}=-\frac{\psi_{m+n} \psi_{m-n}}{\psi_{m}^{2} \psi_{n}^{2}} .
\end{aligned}
$$

Division Polynomials: Explicit Formulas

$$
\begin{aligned}
& \psi_{0}= 0 \\
& \psi_{1}= 1 \\
& \psi_{2}= 2 y+a_{1} x+a_{3} \\
& \psi_{3}= 3 x^{4}+d_{2} x^{3}+3 d_{4} x^{2}+3 d_{6} x+d_{8} \\
& \psi_{4}= {\left[2 x^{6}+d_{2} x^{5}+5 d_{4} x^{4}+10 d_{6} x^{3}+10 d_{8} x^{2}+\right.} \\
&\left.\quad\left(d_{2} d_{8}-d_{4} d_{6}\right) x+d_{4} d_{8}-d_{6}^{2}\right] \psi_{2} \\
& \psi_{2 m}= \frac{\left(\psi_{m+2} \psi_{m-1}^{2}-\psi_{m-2} \psi_{m+1}^{2}\right) \psi_{m}}{\psi_{2}} \text { for } m>2 \\
& \psi_{2 m+1}= \psi_{m+2} \psi_{m}^{3}-\psi_{m-1} \psi_{m+1}^{3} \text { for } m \geqslant 2 . \\
& g_{m}-g_{n}=-\frac{\psi_{m+n} \psi_{m-n}}{\psi_{m}^{2} \psi_{n}^{2}} . \text { Putting } n=1 \text { gives } g_{m}=x-\frac{\psi_{m+1} \psi_{m-1}}{\psi_{m}^{2}} .
\end{aligned}
$$

Division Polynomials: Explicit Formulas

$$
\begin{aligned}
\psi_{0}= & 0 \\
\psi_{1}= & 1 \\
\psi_{2}= & 2 y+a_{1} x+a_{3} \\
\psi_{3}= & 3 x^{4}+d_{2} x^{3}+3 d_{4} x^{2}+3 d_{6} x+d_{8} \\
\psi_{4}= & {\left[2 x^{6}+d_{2} x^{5}+5 d_{4} x^{4}+10 d_{6} x^{3}+10 d_{8} x^{2}+\right.} \\
& \left.\left(d_{2} d_{8}-d_{4} d_{6}\right) x+d_{4} d_{8}-d_{6}^{2}\right] \psi_{2} \\
\psi_{2 m}= & \frac{\left(\psi_{m+2} \psi_{m-1}^{2}-\psi_{m-2} \psi_{m+1}^{2}\right) \psi_{m}}{\psi_{2}} \text { for } m>2 \\
\psi_{2 m+1}= & \psi_{m+2} \psi_{m}^{3}-\psi_{m-1} \psi_{m+1}^{3} \text { for } m \geqslant 2 .
\end{aligned}
$$

$g_{m}-g_{n}=-\frac{\psi_{m+n} \psi_{m-n}}{\psi_{m}^{2} \psi_{n}^{2}}$. Putting $n=1$ gives $g_{m}=x-\frac{\psi_{m+1} \psi_{m-1}}{\psi_{m}^{2}}$.
$h_{m}=\frac{\psi_{m+2} \psi_{m-1}^{2}-\psi_{m-2} \psi_{m+1}^{2}}{2 \psi_{2} \psi_{m}^{3}}-\frac{1}{2}\left(a_{1} g_{m}+a_{3}\right)$
$=y+\frac{\psi_{m+2} \psi_{m-1}^{2}}{\psi_{2} \psi_{m}^{3}}+\left(3 x^{2}+2 a_{2} x+a_{4}-a_{1} y\right) \frac{\psi_{m-1} \psi_{m+1}}{\psi_{2} \psi_{m_{?}}^{2}}$.

Size and Structure of E_{q}

Size and Structure of E_{q}

Hasse's Theorem: $\left|E_{q}\right|=q+1-t$ with $-2 \sqrt{q} \leqslant t \leqslant 2 \sqrt{q}$.

Size and Structure of E_{q}

Hasse's Theorem: $\left|E_{q}\right|=q+1-t$ with $-2 \sqrt{q} \leqslant t \leqslant 2 \sqrt{q}$.
t is called the trace of Frobenius at q.

Size and Structure of E_{q}

- Hasse's Theorem: $\left|E_{q}\right|=q+1-t$ with $-2 \sqrt{q} \leqslant t \leqslant 2 \sqrt{q}$.
t is called the trace of Frobenius at q.
The Frobenius endomorphism satisfies $\varphi \circ \varphi-[t] \circ \varphi+[q]=\mathcal{O}^{\prime}$.

Size and Structure of E_{q}

- Hasse's Theorem: $\left|E_{q}\right|=q+1-t$ with $-2 \sqrt{q} \leqslant t \leqslant 2 \sqrt{q}$.
t is called the trace of Frobenius at q.
The Frobenius endomorphism satisfies $\varphi \circ \varphi-[t] \circ \varphi+[q]=\mathcal{O}^{\prime}$.
Let $L=\mathbb{F}_{q^{k}}$ be an extension of $K=\mathbb{F}_{q}$.

Size and Structure of E_{q}

- Hasse's Theorem: $\left|E_{q}\right|=q+1-t$ with $-2 \sqrt{q} \leqslant t \leqslant 2 \sqrt{q}$.
- t is called the trace of Frobenius at q.

The Frobenius endomorphism satisfies $\varphi \circ \varphi-[t] \circ \varphi+[q]=\mathcal{O}^{\prime}$.
Let $L=\mathbb{F}_{q^{k}}$ be an extension of $K=\mathbb{F}_{q}$.
Let $W^{2}-t W+q=(W-\alpha)(W-\beta)$ with $\alpha, \beta \in \mathbb{C}$.

Size and Structure of E_{q}

- Hasse's Theorem: $\left|E_{q}\right|=q+1-t$ with $-2 \sqrt{q} \leqslant t \leqslant 2 \sqrt{q}$.
- t is called the trace of Frobenius at q.

The Frobenius endomorphism satisfies $\varphi \circ \varphi-[t] \circ \varphi+[q]=\mathcal{O}^{\prime}$.

- Let $L=\mathbb{F}_{q^{k}}$ be an extension of $K=\mathbb{F}_{q}$.

Let $W^{2}-t W+q=(W-\alpha)(W-\beta)$ with $\alpha, \beta \in \mathbb{C}$.
Weil's Theorem: $\left|E_{q^{k}}\right|=q^{k}+1-\left(\alpha^{k}+\beta^{k}\right)$.

Size and Structure of E_{q}

Hasse's Theorem: $\left|E_{q}\right|=q+1-t$ with $-2 \sqrt{q} \leqslant t \leqslant 2 \sqrt{q}$.

- t is called the trace of Frobenius at q.

The Frobenius endomorphism satisfies $\varphi \circ \varphi-[t] \circ \varphi+[q]=\mathcal{O}^{\prime}$.

- Let $L=\mathbb{F}_{q^{k}}$ be an extension of $K=\mathbb{F}_{q}$.

Let $W^{2}-t W+q=(W-\alpha)(W-\beta)$ with $\alpha, \beta \in \mathbb{C}$.
Weil's Theorem: $\left|E_{q^{k}}\right|=q^{k}+1-\left(\alpha^{k}+\beta^{k}\right)$.
Example: Consider $E: Y^{2}=X^{3}+X+1$ defined over $\mathbb{F}_{5} . E_{5}$ contains the nine points $\mathcal{O},(0, \pm 1),(2, \pm 1),(3, \pm 1)$ and $(4, \pm 2)$, so that $\left|E_{5}\right|=9=(5+1)-t$, that is, $t=-3$.

Size and Structure of E_{q}

Hasse's Theorem: $\left|E_{q}\right|=q+1-t$ with $-2 \sqrt{q} \leqslant t \leqslant 2 \sqrt{q}$.
t is called the trace of Frobenius at q.
The Frobenius endomorphism satisfies $\varphi \circ \varphi-[t] \circ \varphi+[q]=\mathcal{O}^{\prime}$.

- Let $L=\mathbb{F}_{q^{k}}$ be an extension of $K=\mathbb{F}_{q}$.

Let $W^{2}-t W+q=(W-\alpha)(W-\beta)$ with $\alpha, \beta \in \mathbb{C}$.
Weil's Theorem: $\left|E_{q^{k}}\right|=q^{k}+1-\left(\alpha^{k}+\beta^{k}\right)$.
Example: Consider $E: Y^{2}=X^{3}+X+1$ defined over $\mathbb{F}_{5} . E_{5}$ contains the nine points $\mathcal{O},(0, \pm 1),(2, \pm 1),(3, \pm 1)$ and $(4, \pm 2)$, so that $\left|E_{5}\right|=9=(5+1)-t$, that is, $t=-3$.
Consider $(W-\alpha)(W-\beta)=W^{2}-t W+q=W^{2}+3 W+5$, that is, $\alpha+\beta=-3$ and $\alpha \beta=5$. But then $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=$ $9-10=-1$. Therefore, $\left|E_{25}\right|=25+1-(-1)=27$.

Size and Structure of E_{q}

Hasse's Theorem: $\left|E_{q}\right|=q+1-t$ with $-2 \sqrt{q} \leqslant t \leqslant 2 \sqrt{q}$.
t is called the trace of Frobenius at q.
The Frobenius endomorphism satisfies $\varphi \circ \varphi-[t] \circ \varphi+[q]=\mathcal{O}^{\prime}$.

- Let $L=\mathbb{F}_{q^{k}}$ be an extension of $K=\mathbb{F}_{q}$.

Let $W^{2}-t W+q=(W-\alpha)(W-\beta)$ with $\alpha, \beta \in \mathbb{C}$.
Weil's Theorem: $\left|E_{q^{k}}\right|=q^{k}+1-\left(\alpha^{k}+\beta^{k}\right)$.
\square
Example: Consider $E: Y^{2}=X^{3}+X+1$ defined over \mathbb{F}_{5}. E_{5} contains the nine points $\mathcal{O},(0, \pm 1),(2, \pm 1),(3, \pm 1)$ and $(4, \pm 2)$, so that $\left|E_{5}\right|=9=(5+1)-t$, that is, $t=-3$.
Consider $(W-\alpha)(W-\beta)=W^{2}-t W+q=W^{2}+3 W+5$, that is, $\alpha+\beta=-3$ and $\alpha \beta=5$. But then $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=$ $9-10=-1$. Therefore, $\left|E_{25}\right|=25+1-(-1)=27$.
Structure Theorem for E_{q} :

Size and Structure of E_{q}

Hasse's Theorem: $\left|E_{q}\right|=q+1-t$ with $-2 \sqrt{q} \leqslant t \leqslant 2 \sqrt{q}$.
t is called the trace of Frobenius at q.
The Frobenius endomorphism satisfies $\varphi \circ \varphi-[t] \circ \varphi+[q]=\mathcal{O}^{\prime}$.
Let $L=\mathbb{F}_{q^{k}}$ be an extension of $K=\mathbb{F}_{q}$.
Let $W^{2}-t W+q=(W-\alpha)(W-\beta)$ with $\alpha, \beta \in \mathbb{C}$.
Weil's Theorem: $\left|E_{q^{k}}\right|=q^{k}+1-\left(\alpha^{k}+\beta^{k}\right)$.
Example: Consider $E: Y^{2}=X^{3}+X+1$ defined over $\mathbb{F}_{5} . E_{5}$ contains the nine points $\mathcal{O},(0, \pm 1),(2, \pm 1),(3, \pm 1)$ and $(4, \pm 2)$, so that $\left|E_{5}\right|=9=(5+1)-t$, that is, $t=-3$.
Consider $(W-\alpha)(W-\beta)=W^{2}-t W+q=W^{2}+3 W+5$, that is, $\alpha+\beta=-3$ and $\alpha \beta=5$. But then $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=$ $9-10=-1$. Therefore, $\left|E_{25}\right|=25+1-(-1)=27$.

Structure Theorem for E_{q} :

E_{q} is either cyclic or isomorphic to $\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}}$ with $n_{1}, n_{2} \geqslant 2, n_{1} \mid n_{2}$, and $n_{1} \mid(q-1)$.

More on Divisors

More on Divisors

$\operatorname{Div}\left(L_{P, Q}\right)=[P]+[Q]+[R]-3[\mathcal{O}]$.

More on Divisors

$\operatorname{Div}\left(L_{P, Q}\right)=[P]+[Q]+[R]-3[\mathcal{O}]$.
$\operatorname{Div}\left(L_{R,-R}\right)=[R]+[-R]-2[\mathcal{O}]$.

More on Divisors

$\operatorname{Div}\left(L_{P, Q}\right)=[P]+[Q]+[R]-3[\mathcal{O}]$.
$\operatorname{Div}\left(L_{R,-R}\right)=[R]+[-R]-2[\mathcal{O}]$.
$\operatorname{Div}\left(L_{P, Q} / L_{R,-R}\right)=[P]+[Q]-[-R]-[\mathcal{O}]=[P]+[Q]-[P+Q]-[\mathcal{O}]$.

More on Divisors

$\operatorname{Div}\left(L_{P, Q}\right)=[P]+[Q]+[R]-3[\mathcal{O}]$.
$\operatorname{Div}\left(L_{R,-R}\right)=[R]+[-R]-2[\mathcal{O}]$.
$\operatorname{Div}\left(L_{P, Q} / L_{R,-R}\right)=[P]+[Q]-[-R]-[\mathcal{O}]=[P]+[Q]-[P+Q]-[\mathcal{O}]$.
$[P]-[\mathcal{O}]$ is equivalent to $[P+Q]-[Q]$.

More on Divisors

- $\operatorname{Div}\left(L_{P, Q}\right)=[P]+[Q]+[R]-3[\mathcal{O}]$.
$\operatorname{Div}\left(L_{R,-R}\right)=[R]+[-R]-2[\mathcal{O}]$.
$\operatorname{Div}\left(L_{P, Q} / L_{R,-R}\right)=[P]+[Q]-[-R]-[\mathcal{O}]=[P]+[Q]-[P+Q]-[\mathcal{O}]$.
$[P]-[\mathcal{O}]$ is equivalent to $[P+Q]-[Q]$.
$([P]-[\mathcal{O}])+([Q]-[\mathcal{O}])$ is equivalent to $[P+Q]-[\mathcal{O}]$.

More on Divisors

- $\operatorname{Div}\left(L_{P, Q}\right)=[P]+[Q]+[R]-3[\mathcal{O}]$.
$\operatorname{Div}\left(L_{R,-R}\right)=[R]+[-R]-2[\mathcal{O}]$.
$\operatorname{Div}\left(L_{P, Q} / L_{R,-R}\right)=[P]+[Q]-[-R]-[\mathcal{O}]=[P]+[Q]-[P+Q]-[\mathcal{O}]$.
$[P]-[\mathcal{O}]$ is equivalent to $[P+Q]-[Q]$.
$([P]-[\mathcal{O}])+([Q]-[\mathcal{O}])$ is equivalent to $[P+Q]-[\mathcal{O}]$.
For both these cases of equivalence, the pertinent rational function is $L_{P, Q} / L_{P+Q,-(P+Q)}$ which can be easily computed. We can force this rational function to have leading coefficient 1 .

More on Divisors (contd)

More on Divisors (contd)

- Let $D=\sum_{P} n_{P}[P]$ be divisor on E and $f \in \bar{K}(E)$ a rational function such that the supports of D and $\operatorname{Div}(f)$ are disjoint.

More on Divisors (contd)

- Let $D=\sum_{P} n_{P}[P]$ be divisor on E and $f \in \bar{K}(E)$ a rational function such that the supports of D and $\operatorname{Div}(f)$ are disjoint. Define

$$
f(D)=\prod_{P \in E} f(P)^{n_{P}}=\prod_{P \in \operatorname{Supp}(D)} f(P)^{n_{P}} .
$$

More on Divisors (contd)

- Let $D=\sum_{P} n_{P}[P]$ be divisor on E and $f \in \bar{K}(E)$ a rational function such that the supports of D and $\operatorname{Div}(f)$ are disjoint. Define

$$
f(D)=\prod_{P \in E} f(P)^{n_{P}}=\prod_{P \in \operatorname{Supp}(D)} f(P)^{n_{P}} .
$$

$\operatorname{Div}(f)=\operatorname{Div}(g)$ if and only if $f=c g$ for some non-zero constant $c \in \bar{K}^{*}$.

More on Divisors (contd)

- Let $D=\sum_{P} n_{P}[P]$ be divisor on E and $f \in \bar{K}(E)$ a rational function such that the supports of D and $\operatorname{Div}(f)$ are disjoint. Define

$$
f(D)=\prod_{P \in E} f(P)^{n_{P}}=\prod_{P \in \operatorname{Supp}(D)} f(P)^{n_{P}} .
$$

- $\operatorname{Div}(f)=\operatorname{Div}(g)$ if and only if $f=c g$ for some non-zero constant $c \in \bar{K}^{*}$.

If D has degree 0 , then
$f(D)=g(D) \prod_{P} c^{n_{P}}=g(D) c^{\sum_{P} n_{P}}=g(D) c^{0}=g(D)$.

More on Divisors (contd)

Let $D=\sum_{P} n_{P}[P]$ be divisor on E and $f \in \bar{K}(E)$ a rational function such that the supports of D and $\operatorname{Div}(f)$ are disjoint. Define

$$
f(D)=\prod_{P \in E} f(P)^{n_{P}}=\prod_{P \in \operatorname{Supp}(D)} f(P)^{n_{P}} .
$$

$\operatorname{Div}(f)=\operatorname{Div}(g)$ if and only if $f=c g$ for some non-zero constant $c \in \bar{K}^{*}$.
If D has degree 0 , then
$f(D)=g(D) \prod_{P} c^{n_{P}}=g(D) c^{\sum_{P} n_{P}}=g(D) c^{0}=g(D)$.
Weil reciprocity theorem: If f and g are two non-zero rational functions on E such that $\operatorname{Div}(f)$ and $\operatorname{Div}(g)$ have disjoint supports, then

$$
f(\operatorname{Div}(g))=g(\operatorname{Div}(f))
$$

Weil Pairing: Definition

Let E be an elliptic curve defined over a finite field $K=\mathbb{F}_{q}$. Take a positive integer m coprime to $p=\operatorname{char} K$.
Let μ_{m} denote the m-th roots of unity in \bar{K}.
We have $\mu_{m} \subseteq \mathbb{F}_{q^{k}}$, where $k=\operatorname{ord}_{m}(q)$ is called the embedding degree.
Let $E[m]$ be those points in $E=E_{\bar{K}}$, whose orders divide m.

Weil Pairing: Definition

Let E be an elliptic curve defined over a finite field $K=\mathbb{F}_{q}$.
Take a positive integer m coprime to $p=\operatorname{char} K$.
Let μ_{m} denote the m-th roots of unity in \bar{K}.
We have $\mu_{m} \subseteq \mathbb{F}_{q^{k}}$, where $k=\operatorname{ord}_{m}(q)$ is called the embedding degree. Let $E[m]$ be those points in $E=E_{\bar{K}}$, whose orders divide m.

- Weil pairing is a function

$$
e_{m}: E[m] \times E[m] \rightarrow \mu_{m}
$$

defined as follows.

Weil Pairing: Definition

Let E be an elliptic curve defined over a finite field $K=\mathbb{F}_{q}$.
Take a positive integer m coprime to $p=\operatorname{char} K$.
Let μ_{m} denote the m-th roots of unity in \bar{K}.
We have $\mu_{m} \subseteq \mathbb{F}_{q^{k}}$, where $k=\operatorname{ord}_{m}(q)$ is called the embedding degree.
Let $E[m]$ be those points in $E=E_{\bar{K}}$, whose orders divide m.

- Weil pairing is a function

$$
e_{m}: E[m] \times E[m] \rightarrow \mu_{m}
$$

defined as follows.

- Take $P_{1}, P_{2} \in E[m]$.

Weil Pairing: Definition

Let E be an elliptic curve defined over a finite field $K=\mathbb{F}_{q}$.
Take a positive integer m coprime to $p=\operatorname{char} K$.
Let μ_{m} denote the m-th roots of unity in \bar{K}.
We have $\mu_{m} \subseteq \mathbb{F}_{q^{k}}$, where $k=\operatorname{ord}_{m}(q)$ is called the embedding degree.
Let $E[m]$ be those points in $E=E_{\bar{K}}$, whose orders divide m.
Weil pairing is a function

$$
e_{m}: E[m] \times E[m] \rightarrow \mu_{m}
$$

defined as follows.

- Take $P_{1}, P_{2} \in E[m]$.
- Let D_{1} be a divisor equivalent to $\left[P_{1}\right]-[\mathcal{O}]$. Since $m P_{1}=\mathcal{O}$, there exists a rational function f_{1} such that $\operatorname{Div}\left(f_{1}\right)=m D_{1}=m\left[P_{1}\right]-m[\mathcal{O}]$.

Weil Pairing: Definition

Let E be an elliptic curve defined over a finite field $K=\mathbb{F}_{q}$.
Take a positive integer m coprime to $p=\operatorname{char} K$.
Let μ_{m} denote the m-th roots of unity in \bar{K}.
We have $\mu_{m} \subseteq \mathbb{F}_{q^{k}}$, where $k=\operatorname{ord}_{m}(q)$ is called the embedding degree.
Let $E[m]$ be those points in $E=E_{\bar{K}}$, whose orders divide m.
Weil pairing is a function

$$
e_{m}: E[m] \times E[m] \rightarrow \mu_{m}
$$

defined as follows.

- Take $P_{1}, P_{2} \in E[m]$.

■
Let D_{1} be a divisor equivalent to $\left[P_{1}\right]-[\mathcal{O}]$. Since $m P_{1}=\mathcal{O}$, there exists a rational function f_{1} such that $\operatorname{Div}\left(f_{1}\right)=m D_{1}=m\left[P_{1}\right]-m[\mathcal{O}]$. Similarly, let D_{2} be a divisor equivalent to $\left[P_{2}\right]-[\mathcal{O}]$. There exists a rational function f_{2} such that $\operatorname{Div}\left(f_{2}\right)=m D_{2}=m\left[P_{2}\right]-m[\mathcal{O}]$.

Weil Pairing: Definition

Let E be an elliptic curve defined over a finite field $K=\mathbb{F}_{q}$.
Take a positive integer m coprime to $p=\operatorname{char} K$.
Let μ_{m} denote the m-th roots of unity in \bar{K}.
We have $\mu_{m} \subseteq \mathbb{F}_{q^{k}}$, where $k=\operatorname{ord}_{m}(q)$ is called the embedding degree.
Let $E[m]$ be those points in $E=E_{\bar{K}}$, whose orders divide m.
Weil pairing is a function

$$
e_{m}: E[m] \times E[m] \rightarrow \mu_{m}
$$

defined as follows.
Take $P_{1}, P_{2} \in E[m]$.
Let D_{1} be a divisor equivalent to $\left[P_{1}\right]-[\mathcal{O}]$. Since $m P_{1}=\mathcal{O}$, there exists a rational function f_{1} such that $\operatorname{Div}\left(f_{1}\right)=m D_{1}=m\left[P_{1}\right]-m[\mathcal{O}]$.
Similarly, let D_{2} be a divisor equivalent to $\left[P_{2}\right]-[\mathcal{O}]$. There exists a rational function f_{2} such that $\operatorname{Div}\left(f_{2}\right)=m D_{2}=m\left[P_{2}\right]-m[\mathcal{O}]$.
D_{1} and D_{2} are chosen to have disjoint supports.

Weil Pairing: Definition

Let E be an elliptic curve defined over a finite field $K=\mathbb{F}_{q}$.
Take a positive integer m coprime to $p=\operatorname{char} K$.
Let μ_{m} denote the m-th roots of unity in \bar{K}.
We have $\mu_{m} \subseteq \mathbb{F}_{q^{k}}$, where $k=\operatorname{ord}_{m}(q)$ is called the embedding degree.
Let $E[m]$ be those points in $E=E_{\bar{K}}$, whose orders divide m.
Weil pairing is a function

$$
e_{m}: E[m] \times E[m] \rightarrow \mu_{m}
$$

defined as follows.
Take $P_{1}, P_{2} \in E[m]$.
Let D_{1} be a divisor equivalent to $\left[P_{1}\right]-[\mathcal{O}]$. Since $m P_{1}=\mathcal{O}$, there exists a rational function f_{1} such that $\operatorname{Div}\left(f_{1}\right)=m D_{1}=m\left[P_{1}\right]-m[\mathcal{O}]$.
Similarly, let D_{2} be a divisor equivalent to $\left[P_{2}\right]-[\mathcal{O}]$. There exists a rational function f_{2} such that $\operatorname{Div}\left(f_{2}\right)=m D_{2}=m\left[P_{2}\right]-m[\mathcal{O}]$.

- $\quad D_{1}$ and D_{2} are chosen to have disjoint supports.
- Define $e_{m}\left(P_{1}, P_{2}\right)=f_{1}\left(D_{2}\right) / f_{2}\left(D_{1}\right)$.

Weil Pairing is Well-defined

Weil Pairing is Well-defined

- f_{1} and f_{2} are unique up to multiplication by non-zero elements of \bar{K}^{*}. So $f_{1}\left(D_{2}\right)$ and $f_{2}\left(D_{1}\right)$ are independent of the choices of f_{1} and f_{2}.

Weil Pairing is Well-defined

- f_{1} and f_{2} are unique up to multiplication by non-zero elements of \bar{K}^{*}. So $f_{1}\left(D_{2}\right)$ and $f_{2}\left(D_{1}\right)$ are independent of the choices of f_{1} and f_{2}.
- Let $D_{1}^{\prime}=D_{1}+\operatorname{Div}(g)$ have disjoint support from D_{2}. But then $m D_{1}^{\prime}=m D_{1}+m \operatorname{Div}(g)=\operatorname{Div}\left(f_{1}\right)+\operatorname{Div}\left(g^{m}\right)=\operatorname{Div}\left(f_{1} g^{m}\right)$. Therefore,

$$
\begin{aligned}
& f_{1} g^{m}\left(D_{2}\right) / f_{2}\left(D_{1}+\operatorname{Div}(g)\right)=\frac{f_{1}\left(D_{2}\right) g^{m}\left(D_{2}\right)}{f_{2}\left(D_{1}\right) f_{2}(\operatorname{Div}(g))} \\
= & \frac{f_{1}\left(D_{2}\right) g\left(m D_{2}\right)}{f_{2}\left(D_{1}\right) f_{2}(\operatorname{Div}(g))}=\frac{f_{1}\left(D_{2}\right) g\left(\operatorname{Div}\left(f_{2}\right)\right)}{f_{2}\left(D_{1}\right) f_{2}(\operatorname{Div}(g))}=\frac{f_{1}\left(D_{2}\right) g\left(\operatorname{Div}\left(f_{2}\right)\right)}{f_{2}\left(D_{1}\right) g\left(\operatorname{Div}\left(f_{2}\right)\right)}=\frac{f_{1}\left(D_{2}\right)}{f_{2}\left(D_{1}\right)} .
\end{aligned}
$$

So $e_{m}\left(P_{1}, P_{2}\right)$ is independent of the choice of D_{1} and likewise of D_{2} too.

Weil Pairing is Well-defined

f_{1} and f_{2} are unique up to multiplication by non-zero elements of \bar{K}^{*}. So $f_{1}\left(D_{2}\right)$ and $f_{2}\left(D_{1}\right)$ are independent of the choices of f_{1} and f_{2}.
Let $D_{1}^{\prime}=D_{1}+\operatorname{Div}(g)$ have disjoint support from D_{2}. But then $m D_{1}^{\prime}=m D_{1}+m \operatorname{Div}(g)=\operatorname{Div}\left(f_{1}\right)+\operatorname{Div}\left(g^{m}\right)=\operatorname{Div}\left(f_{1} g^{m}\right)$. Therefore,

$$
\begin{aligned}
& f_{1} g^{m}\left(D_{2}\right) / f_{2}\left(D_{1}+\operatorname{Div}(g)\right)=\frac{f_{1}\left(D_{2}\right) g^{m}\left(D_{2}\right)}{f_{2}\left(D_{1}\right) f_{2}(\operatorname{Div}(g))} \\
= & \frac{f_{1}\left(D_{2}\right) g\left(m D_{2}\right)}{f_{2}\left(D_{1}\right) f_{2}(\operatorname{Div}(g))}=\frac{f_{1}\left(D_{2}\right) g\left(\operatorname{Div}\left(f_{2}\right)\right)}{f_{2}\left(D_{1}\right) f_{2}(\operatorname{Div}(g))}=\frac{f_{1}\left(D_{2}\right) g\left(\operatorname{Div}\left(f_{2}\right)\right)}{f_{2}\left(D_{1}\right) g\left(\operatorname{Div}\left(f_{2}\right)\right)}=\frac{f_{1}\left(D_{2}\right)}{f_{2}\left(D_{1}\right)} .
\end{aligned}
$$

So $e_{m}\left(P_{1}, P_{2}\right)$ is independent of the choice of D_{1} and likewise of D_{2} too.

- It is customary to choose $D_{2}=\left[P_{2}\right]-[\mathcal{O}]$ and $D_{1}=\left[P_{1}+T\right]-[T]$ for a point T different from $-P_{1}, P_{2}, P_{2}-P_{1}$, and $\mathcal{O} . T$ need not be in $E[m]$. One can take T randomly from E.

Weil Pairing is Well-defined

f_{1} and f_{2} are unique up to multiplication by non-zero elements of \bar{K}^{*}. So $f_{1}\left(D_{2}\right)$ and $f_{2}\left(D_{1}\right)$ are independent of the choices of f_{1} and f_{2}.
Let $D_{1}^{\prime}=D_{1}+\operatorname{Div}(g)$ have disjoint support from D_{2}. But then $m D_{1}^{\prime}=m D_{1}+m \operatorname{Div}(g)=\operatorname{Div}\left(f_{1}\right)+\operatorname{Div}\left(g^{m}\right)=\operatorname{Div}\left(f_{1} g^{m}\right)$. Therefore,

$$
\begin{aligned}
& f_{1} g^{m}\left(D_{2}\right) / f_{2}\left(D_{1}+\operatorname{Div}(g)\right)=\frac{f_{1}\left(D_{2}\right) g^{m}\left(D_{2}\right)}{f_{2}\left(D_{1}\right) f_{2}(\operatorname{Div}(g))} \\
= & \frac{f_{1}\left(D_{2}\right) g\left(m D_{2}\right)}{f_{2}\left(D_{1}\right) f_{2}(\operatorname{Div}(g))}=\frac{f_{1}\left(D_{2}\right) g\left(\operatorname{Div}\left(f_{2}\right)\right)}{f_{2}\left(D_{1}\right) f_{2}(\operatorname{Div}(g))}=\frac{f_{1}\left(D_{2}\right) g\left(\operatorname{Div}\left(f_{2}\right)\right)}{f_{2}\left(D_{1}\right) g\left(\operatorname{Div}\left(f_{2}\right)\right)}=\frac{f_{1}\left(D_{2}\right)}{f_{2}\left(D_{1}\right)} .
\end{aligned}
$$

So $e_{m}\left(P_{1}, P_{2}\right)$ is independent of the choice of D_{1} and likewise of D_{2} too.

- It is customary to choose $D_{2}=\left[P_{2}\right]-[\mathcal{O}]$ and $D_{1}=\left[P_{1}+T\right]-[T]$ for a point T different from $-P_{1}, P_{2}, P_{2}-P_{1}$, and $\mathcal{O} . T$ need not be in $E[m]$. One can take T randomly from E. $e_{m}\left(P_{1}, P_{2}\right)^{m}=f_{1}\left(m D_{2}\right) / f_{2}\left(m D_{1}\right)=f_{1}\left(\operatorname{Div}\left(f_{2}\right)\right) / f_{2}\left(\operatorname{Div}\left(f_{1}\right)\right)=1$ (by Weil reciprocity), that is, $e_{m}\left(P_{1}, P_{2}\right)$ is indeed an m-th root of unity.

Properties of Weil Pairing

Let P, Q, R be arbitrary points in $E[m]$.

Properties of Weil Pairing

Let P, Q, R be arbitrary points in $E[m]$.

- Bilinearity:

$$
\begin{aligned}
e_{m}(P+Q, R) & =e_{m}(P, R) e_{m}(Q, R) \\
e_{m}(P, Q+R) & =e_{m}(P, Q) e_{m}(P, R)
\end{aligned}
$$

Properties of Weil Pairing

Let P, Q, R be arbitrary points in $E[m]$.

- Bilinearity:

$$
\begin{aligned}
e_{m}(P+Q, R) & =e_{m}(P, R) e_{m}(Q, R) \\
e_{m}(P, Q+R) & =e_{m}(P, Q) e_{m}(P, R)
\end{aligned}
$$

- Alternating: $e_{m}(P, P)=1$.

Properties of Weil Pairing

Let P, Q, R be arbitrary points in $E[m]$.

- Bilinearity:

$$
\begin{aligned}
e_{m}(P+Q, R) & =e_{m}(P, R) e_{m}(Q, R), \\
e_{m}(P, Q+R) & =e_{m}(P, Q) e_{m}(P, R) .
\end{aligned}
$$

- Alternating: $e_{m}(P, P)=1$.

Skew symmetry: $e_{m}(Q, P)=e_{m}(P, Q)^{-1}$.

Properties of Weil Pairing

Let P, Q, R be arbitrary points in $E[m]$.

- Bilinearity:

$$
\begin{aligned}
e_{m}(P+Q, R) & =e_{m}(P, R) e_{m}(Q, R) \\
e_{m}(P, Q+R) & =e_{m}(P, Q) e_{m}(P, R)
\end{aligned}
$$

- Alternating: $e_{m}(P, P)=1$.
- Skew symmetry: $e_{m}(Q, P)=e_{m}(P, Q)^{-1}$.
- Non-degeneracy: If $P \neq \mathcal{O}$, then $e_{m}(P, Q) \neq 1$ for some $Q \in E[m]$.

Properties of Weil Pairing

Let P, Q, R be arbitrary points in $E[m]$.

- Bilinearity:

$$
\begin{aligned}
e_{m}(P+Q, R) & =e_{m}(P, R) e_{m}(Q, R) \\
e_{m}(P, Q+R) & =e_{m}(P, Q) e_{m}(P, R)
\end{aligned}
$$

- Alternating: $e_{m}(P, P)=1$.
- Skew symmetry: $e_{m}(Q, P)=e_{m}(P, Q)^{-1}$.
- Non-degeneracy: If $P \neq \mathcal{O}$, then $e_{m}(P, Q) \neq 1$ for some $Q \in E[m]$.
- Compatibility: If $S \in E[m n]$ and $Q \in E[n]$, then $e_{m n}(S, Q)=e_{n}(m S, Q)$.

Properties of Weil Pairing

Let P, Q, R be arbitrary points in $E[m]$.

Bilinearity:

$$
\begin{aligned}
e_{m}(P+Q, R) & =e_{m}(P, R) e_{m}(Q, R) \\
e_{m}(P, Q+R) & =e_{m}(P, Q) e_{m}(P, R)
\end{aligned}
$$

- Alternating: $e_{m}(P, P)=1$.
- Skew symmetry: $e_{m}(Q, P)=e_{m}(P, Q)^{-1}$.
- Non-degeneracy: If $P \neq \mathcal{O}$, then $e_{m}(P, Q) \neq 1$ for some $Q \in E[m]$.

■
Compatibility: If $S \in E[m n]$ and $Q \in E[n]$, then $e_{m n}(S, Q)=e_{n}(m S, Q)$.
■ If m is a prime and $P \neq \mathcal{O}$, then $e_{m}(P, Q)=1$ if and only if Q lies in the subgroup generated by P (that is, $Q=a P$ for some integer a).

Computing Weil Pairing: The Functions $f_{n, P}$

Computing Weil Pairing: The Functions $f_{n, P}$

Let $P \in E$.

Computing Weil Pairing: The Functions $f_{n, P}$

- Let $P \in E$.

For $n \in \mathbb{Z}$, define the rational functions $f_{n, P}$ as having the divisor

$$
\operatorname{Div}\left(f_{n, P}\right)=n[P]-[n P]-(n-1)[\mathcal{O}] .
$$

Computing Weil Pairing: The Functions $f_{n, P}$

- Let $P \in E$.

For $n \in \mathbb{Z}$, define the rational functions $f_{n, P}$ as having the divisor

$$
\operatorname{Div}\left(f_{n, P}\right)=n[P]-[n P]-(n-1)[\mathcal{O}] .
$$

$f_{n, P}$ are unique up to multiplication by elements of \bar{K}^{*}.

Computing Weil Pairing: The Functions $f_{n, P}$

- Let $P \in E$.

For $n \in \mathbb{Z}$, define the rational functions $f_{n, P}$ as having the divisor

$$
\operatorname{Div}\left(f_{n, P}\right)=n[P]-[n P]-(n-1)[\mathcal{O}] .
$$

$f_{n, P}$ are unique up to multiplication by elements of \bar{K}^{*}.
We may choose the unique monic polynomial for $f_{n, P}$.

Computing Weil Pairing: The Functions $f_{n, P}$

- Let $P \in E$.
- For $n \in \mathbb{Z}$, define the rational functions $f_{n, P}$ as having the divisor

$$
\operatorname{Div}\left(f_{n, P}\right)=n[P]-[n P]-(n-1)[\mathcal{O}] .
$$

$f_{n, P}$ are unique up to multiplication by elements of \bar{K}^{*}. We may choose the unique monic polynomial for $f_{n, P}$.

- $f_{n, P}$ satisfy the recurrence relation:

Computing Weil Pairing: The Functions $f_{n, P}$

- Let $P \in E$.
- For $n \in \mathbb{Z}$, define the rational functions $f_{n, P}$ as having the divisor

$$
\operatorname{Div}\left(f_{n, P}\right)=n[P]-[n P]-(n-1)[\mathcal{O}] .
$$

$f_{n, P}$ are unique up to multiplication by elements of \bar{K}^{*}. We may choose the unique monic polynomial for $f_{n, P}$.

- $f_{n, P}$ satisfy the recurrence relation:

$$
f_{0, P}=f_{1, P}=1
$$

Computing Weil Pairing: The Functions $f_{n, P}$

- Let $P \in E$.
- For $n \in \mathbb{Z}$, define the rational functions $f_{n, P}$ as having the divisor

$$
\operatorname{Div}\left(f_{n, P}\right)=n[P]-[n P]-(n-1)[\mathcal{O}] .
$$

$f_{n, P}$ are unique up to multiplication by elements of \bar{K}^{*}.
We may choose the unique monic polynomial for $f_{n, P}$.

- $f_{n, P}$ satisfy the recurrence relation:

$$
\begin{aligned}
f_{0, P} & =f_{1, P}=1 \\
f_{n+1, P} & =\left(\frac{L_{P, n P}}{L_{(n+1) P,-(n+1) P}}\right) f_{n, P} \text { for } n \geqslant 1,
\end{aligned}
$$

Computing Weil Pairing: The Functions $f_{n, P}$

- Let $P \in E$.
- For $n \in \mathbb{Z}$, define the rational functions $f_{n, P}$ as having the divisor

$$
\operatorname{Div}\left(f_{n, P}\right)=n[P]-[n P]-(n-1)[\mathcal{O}] .
$$

$f_{n, P}$ are unique up to multiplication by elements of \bar{K}^{*}.
We may choose the unique monic polynomial for $f_{n, P}$.

- $f_{n, P}$ satisfy the recurrence relation:

$$
\begin{aligned}
f_{0, P} & =f_{1, P}=1 \\
f_{n+1, P} & =\left(\frac{L_{P, n P}}{L_{(n+1) P,-(n+1) P}}\right) f_{n, P} \text { for } n \geqslant 1, \\
f_{-n, P} & =\frac{1}{f_{n, P}} \text { for } n \geqslant 1 .
\end{aligned}
$$

Computing Weil Pairing: The Functions $f_{n, P}$

- Let $P \in E$.
- For $n \in \mathbb{Z}$, define the rational functions $f_{n, P}$ as having the divisor

$$
\operatorname{Div}\left(f_{n, P}\right)=n[P]-[n P]-(n-1)[\mathcal{O}] .
$$

$f_{n, P}$ are unique up to multiplication by elements of \bar{K}^{*}.
We may choose the unique monic polynomial for $f_{n, P}$.

- $f_{n, P}$ satisfy the recurrence relation:

$$
\begin{aligned}
f_{0, P} & =f_{1, P}=1 \\
f_{n+1, P} & =\left(\frac{L_{P, n P}}{L_{(n+1) P,-(n+1) P}}\right) f_{n, P} \text { for } n \geqslant 1, \\
f_{-n, P} & =\frac{1}{f_{n, P}} \text { for } n \geqslant 1 .
\end{aligned}
$$

If $P \in E[m]$, then $\operatorname{Div}\left(f_{m, P}\right)=m[P]-[m P]-(m-1)[\mathcal{O}]=m[P]-m[\mathcal{O}]$.

Computing Weil Pairing: The Functions $f_{n, P}$

- Let $P \in E$.
- For $n \in \mathbb{Z}$, define the rational functions $f_{n, P}$ as having the divisor

$$
\operatorname{Div}\left(f_{n, P}\right)=n[P]-[n P]-(n-1)[\mathcal{O}] .
$$

$f_{n, P}$ are unique up to multiplication by elements of \bar{K}^{*}.
We may choose the unique monic polynomial for $f_{n, P}$.

- $f_{n, P}$ satisfy the recurrence relation:

$$
\begin{aligned}
f_{0, P} & =f_{1, P}=1 \\
f_{n+1, P} & =\left(\frac{L_{P, n P}}{L_{(n+1) P,-(n+1) P}}\right) f_{n, P} \text { for } n \geqslant 1, \\
f_{-n, P} & =\frac{1}{f_{n, P}} \text { for } n \geqslant 1 .
\end{aligned}
$$

If $P \in E[m]$, then $\operatorname{Div}\left(f_{m, P}\right)=m[P]-[m P]-(m-1)[\mathcal{O}]=m[P]-m[\mathcal{O}]$.
■
Computing $f_{m, P}$ using the above recursive formula is too inefficient.

Computing Weil Pairing: More about $f_{n, P}$

Computing Weil Pairing: More about $f_{n, P}$

The rational functions $f_{n, P}$ also satisfy

$$
f_{n+n^{\prime}, P}=f_{n, P} f_{n^{\prime}, P} \times\left(\frac{L_{n P, n^{\prime} P}}{L_{\left(n+n^{\prime}\right) P,-\left(n+n^{\prime}\right) P}}\right) .
$$

Computing Weil Pairing: More about $f_{n, P}$

- The rational functions $f_{n, P}$ also satisfy

$$
f_{n+n^{\prime}, P}=f_{n, P} f_{n^{\prime}, P} \times\left(\frac{L_{n P, n^{\prime} P}}{L_{\left(n+n^{\prime}\right) P,-\left(n+n^{\prime}\right) P}}\right) .
$$

In particular, for $n=n^{\prime}$, we have

$$
f_{2 n, P}=f_{n, P}^{2} \times\left(\frac{L_{n P, n P}}{L_{2 n P,-2 n P}}\right) .
$$

Here, $L_{n P, n P}$ is the line tangent to E at the point $n P$.

Computing Weil Pairing: More about $f_{n, P}$

- The rational functions $f_{n, P}$ also satisfy

$$
f_{n+n^{\prime}, P}=f_{n, P} f_{n^{\prime}, P} \times\left(\frac{L_{n P, n^{\prime} P}}{L_{\left(n+n^{\prime}\right) P,-\left(n+n^{\prime}\right) P}}\right) .
$$

In particular, for $n=n^{\prime}$, we have

$$
f_{2 n, P}=f_{n, P}^{2} \times\left(\frac{L_{n P, n P}}{L_{2 n P,-2 n P}}\right) .
$$

Here, $L_{n P, n P}$ is the line tangent to E at the point $n P$.
This and the recursive expression of $f_{n+1, P}$ in terms of $f_{n, P}$ yield a repeated double-and-add algorithm.

Computing Weil Pairing: More about $f_{n, P}$

- The rational functions $f_{n, P}$ also satisfy

$$
f_{n+n^{\prime}, P}=f_{n, P} f_{n^{\prime}, P} \times\left(\frac{L_{n P, n^{\prime} P}}{L_{\left(n+n^{\prime}\right) P,-\left(n+n^{\prime}\right) P}}\right) .
$$

In particular, for $n=n^{\prime}$, we have

$$
f_{2 n, P}=f_{n, P}^{2} \times\left(\frac{L_{n P, n P}}{L_{2 n P,-2 n P}}\right) .
$$

Here, $L_{n P, n P}$ is the line tangent to E at the point $n P$.
This and the recursive expression of $f_{n+1, P}$ in terms of $f_{n, P}$ yield a repeated double-and-add algorithm.

- The function $f_{n, P}$ is usually kept in the factored form.

Computing Weil Pairing: More about $f_{n, P}$

- The rational functions $f_{n, P}$ also satisfy

$$
f_{n+n^{\prime}, P}=f_{n, P} f_{n^{\prime}, P} \times\left(\frac{L_{n P, n^{\prime} P}}{L_{\left(n+n^{\prime}\right) P,-\left(n+n^{\prime}\right) P}}\right) .
$$

In particular, for $n=n^{\prime}$, we have

$$
f_{2 n, P}=f_{n, P}^{2} \times\left(\frac{L_{n P, n P}}{L_{2 n P,-2 n P}}\right) .
$$

Here, $L_{n P, n P}$ is the line tangent to E at the point $n P$.
This and the recursive expression of $f_{n+1, P}$ in terms of $f_{n, P}$ yield a repeated double-and-add algorithm.

The function $f_{n, P}$ is usually kept in the factored form.

- It is often not necessary to compute $f_{n, P}$ explicitly. The value of $f_{n, P}$ at some point Q is only needed.

Miller's Algorithm for Computing $f_{n, P}$

Miller's Algorithm for Computing $f_{n, P}$

- Input: A point $P \in E$ and a positive integer n.

Miller's Algorithm for Computing $f_{n, P}$

- Input: A point $P \in E$ and a positive integer n.

Output: The rational function $f_{n, P}$.

Miller's Algorithm for Computing $f_{n, P}$

- Input: A point $P \in E$ and a positive integer n.

Output: The rational function $f_{n, p}$.

Steps

Miller's Algorithm for Computing $f_{n, P}$

- Input: A point $P \in E$ and a positive integer n.
- Output: The rational function $f_{n, P}$.

Steps

Let $n=\left(n_{s} n_{s-1} \ldots n_{1} n_{0}\right)_{2}$ be the binary representation of n with $n_{s}=1$.

Miller's Algorithm for Computing $f_{n, P}$

- Input: A point $P \in E$ and a positive integer n.
- Output: The rational function $f_{n, P}$.

Steps
Let $n=\left(n_{s} n_{s-1} \ldots n_{1} n_{0}\right)_{2}$ be the binary representation of n with $n_{s}=1$. Initialize $f=1$ and $U=P$.

Miller's Algorithm for Computing $f_{n, P}$

- Input: A point $P \in E$ and a positive integer n.
- Output: The rational function $f_{n, P}$.

Steps

Let $n=\left(n_{s} n_{s-1} \ldots n_{1} n_{0}\right)_{2}$ be the binary representation of n with $n_{s}=1$.
Initialize $f=1$ and $U=P$.
For $i=s-1, s-2, \ldots, 1,0$, do the following:

Miller's Algorithm for Computing $f_{n, P}$

- Input: A point $P \in E$ and a positive integer n.
- Output: The rational function $f_{n, P}$.

Steps

Let $n=\left(n_{s} n_{s-1} \ldots n_{1} n_{0}\right)_{2}$ be the binary representation of n with $n_{s}=1$.
Initialize $f=1$ and $U=P$.
For $i=s-1, s-2, \ldots, 1,0$, do the following:
/* Doubling */
Update $f=f^{2} \times\left(\frac{L_{U, U}}{L_{2 U,-2 U}}\right)$ and $U=2 U$.

Miller's Algorithm for Computing $f_{n, P}$

Input: A point $P \in E$ and a positive integer n.
Output: The rational function $f_{n, P}$.

Steps

Let $n=\left(n_{s} n_{s-1} \ldots n_{1} n_{0}\right)_{2}$ be the binary representation of n with $n_{s}=1$.
Initialize $f=1$ and $U=P$.
For $i=s-1, s-2, \ldots, 1,0$, do the following:
/* Doubling */
Update $f=f^{2} \times\left(\frac{L_{U, U}}{L_{2 U,-2 U}}\right)$ and $U=2 U$.
$/ *$ Conditional adding */
If $\left(n_{i}=1\right)$, update $f=f \times\left(\frac{L_{U, P}}{L_{U+P,-(U+P)}}\right)$ and $U=U+P$.

Miller's Algorithm for Computing $f_{n, P}$

Input: A point $P \in E$ and a positive integer n.

- Output: The rational function $f_{n, P}$.

Steps

Let $n=\left(n_{s} n_{s-1} \ldots n_{1} n_{0}\right)_{2}$ be the binary representation of n with $n_{s}=1$.
Initialize $f=1$ and $U=P$.
For $i=s-1, s-2, \ldots, 1,0$, do the following:
/* Doubling */

$$
\text { Update } f=f^{2} \times\left(\frac{L_{U, U}}{L_{2 U,-2 U}}\right) \text { and } U=2 U
$$

/* Conditional adding */

$$
\text { If }\left(n_{i}=1\right) \text {, update } f=f \times\left(\frac{L_{U, P}}{L_{U+P,-(U+P)}}\right) \text { and } U=U+P \text {. }
$$

Return f.

Miller's Algorithm for Computing $f_{n, P}$

Input: A point $P \in E$ and a positive integer n.
Output: The rational function $f_{n, P}$.

Steps

Let $n=\left(n_{s} n_{s-1} \ldots n_{1} n_{0}\right)_{2}$ be the binary representation of n with $n_{s}=1$.
Initialize $f=1$ and $U=P$.
For $i=s-1, s-2, \ldots, 1,0$, do the following:
/* Doubling */

$$
\text { Update } f=f^{2} \times\left(\frac{L_{U, U}}{L_{2 U,-2 U}}\right) \text { and } U=2 U
$$

/* Conditional adding */

$$
\text { If }\left(n_{i}=1\right) \text {, update } f=f \times\left(\frac{L_{U, P}}{L_{U+P,-(U+P)}}\right) \text { and } U=U+P \text {. }
$$

Return f.
Note: One may supply a point $Q \in E$ and wish to compute the value $f_{n, P}(Q)$ (instead of the function $f_{n, P}$). In that case, the functions $L_{U, U} / L_{2 U,-2 U}$ and $L_{U, P} / L_{U+P,-(U+P)}$ should be evaluated at Q before multiplication with f.

Weil Pairing and the Functions $f_{n, P}$

Let $P_{1}, P_{2} \in E[m]$, and we want to compute $e_{m}\left(P_{1}, P_{2}\right)$.

Weil Pairing and the Functions $f_{n, P}$

Let $P_{1}, P_{2} \in E[m]$, and we want to compute $e_{m}\left(P_{1}, P_{2}\right)$.
Choose a point T not equal to $\pm P_{1},-P_{2}, P_{2}-P_{1}, \mathcal{O}$.

Weil Pairing and the Functions $f_{n, P}$

Let $P_{1}, P_{2} \in E[m]$, and we want to compute $e_{m}\left(P_{1}, P_{2}\right)$.

- Choose a point T not equal to $\pm P_{1},-P_{2}, P_{2}-P_{1}, \mathcal{O}$.

We have $e_{m}\left(P_{1}, P_{2}\right)=\frac{f_{m, P_{2}}(T) f_{m, P_{1}}\left(P_{2}-T\right)}{f_{m, P_{1}}(-T) f_{m, P_{2}}\left(P_{1}+T\right)}$.

Weil Pairing and the Functions $f_{n, P}$

Let $P_{1}, P_{2} \in E[m]$, and we want to compute $e_{m}\left(P_{1}, P_{2}\right)$.

- Choose a point T not equal to $\pm P_{1},-P_{2}, P_{2}-P_{1}, \mathcal{O}$.
- We have $e_{m}\left(P_{1}, P_{2}\right)=\frac{f_{m, P_{2}}(T) f_{m, P_{1}}\left(P_{2}-T\right)}{f_{m, P_{1}}(-T) f_{m, P_{2}}\left(P_{1}+T\right)}$.
- If $P_{1} \neq P_{2}$, then we also have $e_{m}\left(P_{1}, P_{2}\right)=(-1)^{m} \frac{f_{m, P_{1}}\left(P_{2}\right)}{\overline{f_{m, P_{2}}\left(P_{1}\right)}}$.

Weil Pairing and the Functions $f_{n, P}$

Let $P_{1}, P_{2} \in E[m]$, and we want to compute $e_{m}\left(P_{1}, P_{2}\right)$.

- Choose a point T not equal to $\pm P_{1},-P_{2}, P_{2}-P_{1}, \mathcal{O}$.
- We have $e_{m}\left(P_{1}, P_{2}\right)=\frac{f_{m, P_{2}}(T) f_{m, P_{1}}\left(P_{2}-T\right)}{f_{m, P_{1}}(-T) f_{m, P_{2}}\left(P_{1}+T\right)}$.
- If $P_{1} \neq P_{2}$, then we also have $e_{m}\left(P_{1}, P_{2}\right)=(-1)^{m} \frac{f_{m, P_{1}}\left(P_{2}\right)}{f_{m, P_{2}}\left(P_{1}\right)}$.
- Miller's algorithm for computing $f_{n, P}(Q)$ can be used.

Weil Pairing and the Functions $f_{n, P}$

Let $P_{1}, P_{2} \in E[m]$, and we want to compute $e_{m}\left(P_{1}, P_{2}\right)$.

- Choose a point T not equal to $\pm P_{1},-P_{2}, P_{2}-P_{1}, \mathcal{O}$.
- We have $e_{m}\left(P_{1}, P_{2}\right)=\frac{f_{m, P_{2}}(T) f_{m, P_{1}}\left(P_{2}-T\right)}{f_{m, P_{1}}(-T) f_{m, P_{2}}\left(P_{1}+T\right)}$.
- If $P_{1} \neq P_{2}$, then we also have $e_{m}\left(P_{1}, P_{2}\right)=(-1)^{m} \frac{f_{m, P_{1}}\left(P_{2}\right)}{f_{m, P_{2}}\left(P_{1}\right)}$.
- Miller's algorithm for computing $f_{n, P}(Q)$ can be used.
- All these invocations of Miller's algorithm have $n=m$.

Weil Pairing and the Functions $f_{n, P}$

Let $P_{1}, P_{2} \in E[m]$, and we want to compute $e_{m}\left(P_{1}, P_{2}\right)$.

- Choose a point T not equal to $\pm P_{1},-P_{2}, P_{2}-P_{1}, \mathcal{O}$.
- We have $e_{m}\left(P_{1}, P_{2}\right)=\frac{f_{m, P_{2}}(T) f_{m, P_{1}}\left(P_{2}-T\right)}{f_{m, P_{1}}(-T) f_{m, P_{2}}\left(P_{1}+T\right)}$.
- If $P_{1} \neq P_{2}$, then we also have $e_{m}\left(P_{1}, P_{2}\right)=(-1)^{m} \frac{f_{m, P_{1}}\left(P_{2}\right)}{f_{m, P_{2}}\left(P_{1}\right)}$.
- Miller's algorithm for computing $f_{n, P}(Q)$ can be used.
- All these invocations of Miller's algorithm have $n=m$.
- So a single double-and-add loop suffices.

Weil Pairing and the Functions $f_{n, P}$

Let $P_{1}, P_{2} \in E[m]$, and we want to compute $e_{m}\left(P_{1}, P_{2}\right)$.
Choose a point T not equal to $\pm P_{1},-P_{2}, P_{2}-P_{1}, \mathcal{O}$.
We have $e_{m}\left(P_{1}, P_{2}\right)=\frac{f_{m, P_{2}}(T) f_{m, P_{1}}\left(P_{2}-T\right)}{f_{m, P_{1}}(-T) f_{m, P_{2}}\left(P_{1}+T\right)}$.
If $P_{1} \neq P_{2}$, then we also have $e_{m}\left(P_{1}, P_{2}\right)=(-1)^{m} \frac{f_{m, P_{1}}\left(P_{2}\right)}{f_{m, P_{2}}\left(P_{1}\right)}$.
Miller's algorithm for computing $f_{n, P}(Q)$ can be used.

- All these invocations of Miller's algorithm have $n=m$.
- So a single double-and-add loop suffices.

For efficiency, one may avoid the division operations in Miller's loop by separately maintaining polynomial expressions for the numerator and the denominator of f. After the loop terminates, a single division is made.

Tate Pairing

Let E be an elliptic curve defined over $K=\mathbb{F}_{q}$ with $p=\operatorname{char} K$.
Let m be a positive integer coprime to p.
Let $k=\operatorname{ord}_{m}(q)$ (the embedding degree), and $L=\mathbb{F}_{q^{k}}$.
Let $E_{L}[m]=\left\{P \in E_{L} \mid m P=\mathcal{O}\right\}$, and $m E_{L}=\left\{m P \mid P \in E_{L}\right\}$.
Let $\left(L^{*}\right)^{m}=\left\{a^{m} \mid a \in L^{*}\right\}$ be the set of m-th powers in L^{*}.

Tate Pairing

Let E be an elliptic curve defined over $K=\mathbb{F}_{q}$ with $p=\operatorname{char} K$.
Let m be a positive integer coprime to p.
Let $k=\operatorname{ord}_{m}(q)$ (the embedding degree), and $L=\mathbb{F}_{q^{k}}$.
Let $E_{L}[m]=\left\{P \in E_{L} \mid m P=\mathcal{O}\right\}$, and $m E_{L}=\left\{m P \mid P \in E_{L}\right\}$.
Let $\left(L^{*}\right)^{m}=\left\{a^{m} \mid a \in L^{*}\right\}$ be the set of m-th powers in L^{*}.

- Let P be a point in $E_{L}[m]$, and Q a point in E_{L}.

Tate Pairing

Let E be an elliptic curve defined over $K=\mathbb{F}_{q}$ with $p=\operatorname{char} K$.
Let m be a positive integer coprime to p.
Let $k=\operatorname{ord}_{m}(q)$ (the embedding degree), and $L=\mathbb{F}_{q^{k}}$.
Let $E_{L}[m]=\left\{P \in E_{L} \mid m P=\mathcal{O}\right\}$, and $m E_{L}=\left\{m P \mid P \in E_{L}\right\}$.
Let $\left(L^{*}\right)^{m}=\left\{a^{m} \mid a \in L^{*}\right\}$ be the set of m-th powers in L^{*}.

- Let P be a point in $E_{L}[m]$, and Q a point in E_{L}.
- Since $m P=\mathcal{O}$, there is a rational function f with $\operatorname{Div}(f)=m[P]-m[\mathcal{O}]$.

Tate Pairing

Let E be an elliptic curve defined over $K=\mathbb{F}_{q}$ with $p=\operatorname{char} K$.
Let m be a positive integer coprime to p.
Let $k=\operatorname{ord}_{m}(q)$ (the embedding degree), and $L=\mathbb{F}_{q^{k}}$.
Let $E_{L}[m]=\left\{P \in E_{L} \mid m P=\mathcal{O}\right\}$, and $m E_{L}=\left\{m P \mid P \in E_{L}\right\}$.
Let $\left(L^{*}\right)^{m}=\left\{a^{m} \mid a \in L^{*}\right\}$ be the set of m-th powers in L^{*}.

- Let P be a point in $E_{L}[m]$, and Q a point in E_{L}.
- Since $m P=\mathcal{O}$, there is a rational function f with $\operatorname{Div}(f)=m[P]-m[\mathcal{O}]$.
- Let D be any divisor equivalent to $[Q]-[\mathcal{O}]$ with disjoint support from $\operatorname{Div}(f)$. It is customary to choose a point T different from $-P, Q, Q-P, \mathcal{O}$ and take $D=[Q+T]-[T]$.

Tate Pairing

Let E be an elliptic curve defined over $K=\mathbb{F}_{q}$ with $p=\operatorname{char} K$.
Let m be a positive integer coprime to p.
Let $k=\operatorname{ord}_{m}(q)$ (the embedding degree), and $L=\mathbb{F}_{q^{k}}$.
Let $E_{L}[m]=\left\{P \in E_{L} \mid m P=\mathcal{O}\right\}$, and $m E_{L}=\left\{m P \mid P \in E_{L}\right\}$.
Let $\left(L^{*}\right)^{m}=\left\{a^{m} \mid a \in L^{*}\right\}$ be the set of m-th powers in L^{*}.

- Let P be a point in $E_{L}[m]$, and Q a point in E_{L}.
- Since $m P=\mathcal{O}$, there is a rational function f with $\operatorname{Div}(f)=m[P]-m[\mathcal{O}]$.
- Let D be any divisor equivalent to $[Q]-[\mathcal{O}]$ with disjoint support from $\operatorname{Div}(f)$. It is customary to choose a point T different from $-P, Q, Q-P, \mathcal{O}$ and take $D=[Q+T]-[T]$.
The Tate pairing $\langle,\rangle_{m}: E_{L}[m] \times E_{L} / m E_{L} \rightarrow L^{*} /\left(L^{*}\right)^{m}$ of P and Q is

$$
\langle P, Q\rangle_{m}=f(D)
$$

Tate Pairing

Let E be an elliptic curve defined over $K=\mathbb{F}_{q}$ with $p=\operatorname{char} K$.
Let m be a positive integer coprime to p.
Let $k=\operatorname{ord}_{m}(q)$ (the embedding degree), and $L=\mathbb{F}_{q^{k}}$.
Let $E_{L}[m]=\left\{P \in E_{L} \mid m P=\mathcal{O}\right\}$, and $m E_{L}=\left\{m P \mid P \in E_{L}\right\}$.
Let $\left(L^{*}\right)^{m}=\left\{a^{m} \mid a \in L^{*}\right\}$ be the set of m-th powers in L^{*}.

- Let P be a point in $E_{L}[m]$, and Q a point in E_{L}.
- Since $m P=\mathcal{O}$, there is a rational function f with $\operatorname{Div}(f)=m[P]-m[\mathcal{O}]$.
- Let D be any divisor equivalent to $[Q]-[\mathcal{O}]$ with disjoint support from $\operatorname{Div}(f)$. It is customary to choose a point T different from $-P, Q, Q-P, \mathcal{O}$ and take $D=[Q+T]-[T]$.

The Tate pairing $\langle,\rangle_{m}: E_{L}[m] \times E_{L} / m E_{L} \rightarrow L^{*} /\left(L^{*}\right)^{m}$ of P and Q is

$$
\langle P, Q\rangle_{m}=f(D)
$$

Q should be regarded as a point in $E_{L} / m E_{L}$.

Tate Pairing

Let E be an elliptic curve defined over $K=\mathbb{F}_{q}$ with $p=$ char K.
Let m be a positive integer coprime to p.
Let $k=\operatorname{ord}_{m}(q)$ (the embedding degree), and $L=\mathbb{F}_{q^{k}}$.
Let $E_{L}[m]=\left\{P \in E_{L} \mid m P=\mathcal{O}\right\}$, and $m E_{L}=\left\{m P \mid P \in E_{L}\right\}$.
Let $\left(L^{*}\right)^{m}=\left\{a^{m} \mid a \in L^{*}\right\}$ be the set of m-th powers in L^{*}.

- Let P be a point in $E_{L}[m]$, and Q a point in E_{L}.
- Since $m P=\mathcal{O}$, there is a rational function f with $\operatorname{Div}(f)=m[P]-m[\mathcal{O}]$.
- Let D be any divisor equivalent to $[Q]-[\mathcal{O}]$ with disjoint support from $\operatorname{Div}(f)$. It is customary to choose a point T different from $-P, Q, Q-P, \mathcal{O}$ and take $D=[Q+T]-[T]$.

The Tate pairing $\langle,\rangle_{m}: E_{L}[m] \times E_{L} / m E_{L} \rightarrow L^{*} /\left(L^{*}\right)^{m}$ of P and Q is

$$
\langle P, Q\rangle_{m}=f(D) .
$$

Q should be regarded as a point in $E_{L} / m E_{L}$.
The value of $\langle P, Q\rangle_{m}$ is unique up to multiplication by an m-th power of a non-zero element of L, that is, $\langle P, Q\rangle_{m}$ is unique in $L^{*} /\left(L^{*}\right)^{m}$.

Properties of Tate Pairing

Properties of Tate Pairing

- Bilinearity:

$$
\begin{aligned}
\langle P+Q, R\rangle_{m} & =\langle P, R\rangle_{m}\langle Q, R\rangle_{m}, \\
\langle P, Q+R\rangle_{m} & =\langle P, Q\rangle_{m}\langle P, R\rangle_{m} .
\end{aligned}
$$

Properties of Tate Pairing

- Bilinearity:

$$
\begin{aligned}
\langle P+Q, R\rangle_{m} & =\langle P, R\rangle_{m}\langle Q, R\rangle_{m}, \\
\langle P, Q+R\rangle_{m} & =\langle P, Q\rangle_{m}\langle P, R\rangle_{m}
\end{aligned}
$$

Non-degeneracy: For every $P \in E_{L}[m], P \neq \mathcal{O}$, there exists Q with $\langle P, Q\rangle_{m} \neq 1$. For every $Q \notin m E_{L}$, there exists $P \in E_{L}[m]$ with $\langle P, Q\rangle_{m} \neq 1$.

Properties of Tate Pairing

- Bilinearity:

$$
\begin{aligned}
\langle P+Q, R\rangle_{m} & =\langle P, R\rangle_{m}\langle Q, R\rangle_{m}, \\
\langle P, Q+R\rangle_{m} & =\langle P, Q\rangle_{m}\langle P, R\rangle_{m}
\end{aligned}
$$

Non-degeneracy: For every $P \in E_{L}[m], P \neq \mathcal{O}$, there exists Q with $\langle P, Q\rangle_{m} \neq 1$. For every $Q \notin m E_{L}$, there exists $P \in E_{L}[m]$ with $\langle P, Q\rangle_{m} \neq 1$. The Weil pairing is related to the Tate pairing as

$$
e_{m}(P, Q)=\frac{\langle P, Q\rangle_{m}}{\langle Q, P\rangle_{m}}
$$

up to m-th powers.

Properties of Tate Pairing

Bilinearity:

$$
\begin{aligned}
\langle P+Q, R\rangle_{m} & =\langle P, R\rangle_{m}\langle Q, R\rangle_{m}, \\
\langle P, Q+R\rangle_{m} & =\langle P, Q\rangle_{m}\langle P, R\rangle_{m}
\end{aligned}
$$

Non-degeneracy: For every $P \in E_{L}[m], P \neq \mathcal{O}$, there exists Q with $\langle P, Q\rangle_{m} \neq 1$. For every $Q \notin m E_{L}$, there exists $P \in E_{L}[m]$ with $\langle P, Q\rangle_{m} \neq 1$. The Weil pairing is related to the Tate pairing as

$$
e_{m}(P, Q)=\frac{\langle P, Q\rangle_{m}}{\langle Q, P\rangle_{m}}
$$

up to m-th powers.
Let $k=\operatorname{ord}_{m}(q)$ be the embedding degree. The Tate pairing can be made unique by exponentiation to the power $\left(q^{k}-1\right) / m$:

$$
\hat{e}_{m}(P, Q)=\left(\langle P, Q\rangle_{m}\right)^{\frac{q^{k}-1}{m}}
$$

$\hat{e}_{m}(P, Q)$ is called the reduced Tate pairing. The reduced pairing continues to exhibit bilinearity and non-degeneracy.

Computing the Tate Pairing

Computing the Tate Pairing

Take $D=[Q+T]-[T]$, where $T \neq P,-Q, P-Q, \mathcal{O}$.

Computing the Tate Pairing

Take $D=[Q+T]-[T]$, where $T \neq P,-Q, P-Q, \mathcal{O}$.
We have $\langle P, Q\rangle_{m}=\frac{f_{m, P}(Q+T)}{f_{m, P}(T)}$.

Computing the Tate Pairing

- Take $D=[Q+T]-[T]$, where $T \neq P,-Q, P-Q, \mathcal{O}$.

We have $\langle P, Q\rangle_{m}=\frac{f_{m, P}(Q+T)}{f_{m, P}(T)}$.
Miller's algorithm is used to compute $\langle P, Q\rangle_{m}$.

Computing the Tate Pairing

- Take $D=[Q+T]-[T]$, where $T \neq P,-Q, P-Q, \mathcal{O}$.
- We have $\langle P, Q\rangle_{m}=\frac{f_{m, P}(Q+T)}{f_{m, P}(T)}$.
- Miller's algorithm is used to compute $\langle P, Q\rangle_{m}$.
- A single double-and-add loop suffices.

Computing the Tate Pairing

- Take $D=[Q+T]-[T]$, where $T \neq P,-Q, P-Q, \mathcal{O}$.
- We have $\langle P, Q\rangle_{m}=\frac{f_{m, P}(Q+T)}{f_{m, P}(T)}$.
- Miller's algorithm is used to compute $\langle P, Q\rangle_{m}$.
- A single double-and-add loop suffices.

For efficiency, the numerator and the denominator in f may be updated separately. After the loop, a single division is made.

Computing the Tate Pairing

- Take $D=[Q+T]-[T]$, where $T \neq P,-Q, P-Q, \mathcal{O}$.
- We have $\langle P, Q\rangle_{m}=\frac{f_{m, P}(Q+T)}{f_{m, P}(T)}$.

Miller's algorithm is used to compute $\langle P, Q\rangle_{m}$.

- A single double-and-add loop suffices.

For efficiency, the numerator and the denominator in f may be updated separately. After the loop, a single division is made.

- If the reduced pairing is desired, then a final exponentiation to the power $\left(q^{k}-1\right) / m$ is made on the value returned by Miller's algorithm.

Weil vs. Tate Pairing

Weil vs. Tate Pairing

The Miller loop for Tate pairing is more efficient than that for Weil pairing.

Weil vs. Tate Pairing

- The Miller loop for Tate pairing is more efficient than that for Weil pairing.
- The reduced Tate pairing demands an extra exponentiation.

Weil vs. Tate Pairing

- The Miller loop for Tate pairing is more efficient than that for Weil pairing.
- The reduced Tate pairing demands an extra exponentiation.
- Let $k=\operatorname{ord}_{m}(q)$ be the embedding degree, and $L=\mathbb{F}_{q^{k}}$.

Weil vs. Tate Pairing

- The Miller loop for Tate pairing is more efficient than that for Weil pairing.
- The reduced Tate pairing demands an extra exponentiation.
- Let $k=\operatorname{ord}_{m}(q)$ be the embedding degree, and $L=\mathbb{F}_{q^{k}}$.
- Tate pairing requires working in the field L.

Weil vs. Tate Pairing

- The Miller loop for Tate pairing is more efficient than that for Weil pairing.
- The reduced Tate pairing demands an extra exponentiation.
- Let $k=\operatorname{ord}_{m}(q)$ be the embedding degree, and $L=\mathbb{F}_{q^{k}}$.
- Tate pairing requires working in the field L.

Let L^{\prime} be the field obtained by adjoining to L all the coordinates of $E[m]=E_{\bar{K}}[m]$.

Weil vs. Tate Pairing

- The Miller loop for Tate pairing is more efficient than that for Weil pairing.
- The reduced Tate pairing demands an extra exponentiation.
- Let $k=\operatorname{ord}_{m}(q)$ be the embedding degree, and $L=\mathbb{F}_{q^{k}}$.
- Tate pairing requires working in the field L.
- Let L^{\prime} be the field obtained by adjoining to L all the coordinates of $E[m]=E_{\bar{K}}[m]$.
- Weil pairing requires working in the field L^{\prime}.

Weil vs. Tate Pairing

- The Miller loop for Tate pairing is more efficient than that for Weil pairing.
- The reduced Tate pairing demands an extra exponentiation.
- Let $k=\operatorname{ord}_{m}(q)$ be the embedding degree, and $L=\mathbb{F}_{q^{k}}$.
- Tate pairing requires working in the field L.
- Let L^{\prime} be the field obtained by adjoining to L all the coordinates of $E[m]=E_{\bar{K}}[m]$.
- Weil pairing requires working in the field L^{\prime}.
- $\quad L^{\prime}$ is potentially much larger than L.

Weil vs. Tate Pairing

- The Miller loop for Tate pairing is more efficient than that for Weil pairing.
- The reduced Tate pairing demands an extra exponentiation.
- Let $k=\operatorname{ord}_{m}(q)$ be the embedding degree, and $L=\mathbb{F}_{q^{k}}$.
- Tate pairing requires working in the field L.
- Let L^{\prime} be the field obtained by adjoining to L all the coordinates of $E[m]=E_{\bar{K}}[m]$.
- Weil pairing requires working in the field L^{\prime}.
- $\quad L^{\prime}$ is potentially much larger than L.

Special case: m is a prime divisor of $\left|E_{K}\right|$ with $m \nmid q$ and $m \nmid(q-1)$. Then, $L^{\prime}=L$. So it suffices to work in the field L only.

Weil vs. Tate Pairing

The Miller loop for Tate pairing is more efficient than that for Weil pairing.
The reduced Tate pairing demands an extra exponentiation.

- Let $k=\operatorname{ord}_{m}(q)$ be the embedding degree, and $L=\mathbb{F}_{q^{k}}$.
- Tate pairing requires working in the field L.

Let L^{\prime} be the field obtained by adjoining to L all the coordinates of $E[m]=E_{\bar{K}}[m]$.

- Weil pairing requires working in the field L^{\prime}.
- $\quad L^{\prime}$ is potentially much larger than L.
- Special case: m is a prime divisor of $\left|E_{K}\right|$ with $m \nmid q$ and $m \nmid(q-1)$. Then, $L^{\prime}=L$. So it suffices to work in the field L only.

For cryptographic applications, Tate pairing is used more often that Weil pairing.

Weil vs. Tate Pairing

The Miller loop for Tate pairing is more efficient than that for Weil pairing.
The reduced Tate pairing demands an extra exponentiation.

- Let $k=\operatorname{ord}_{m}(q)$ be the embedding degree, and $L=\mathbb{F}_{q^{k}}$.
- Tate pairing requires working in the field L.

Let L^{\prime} be the field obtained by adjoining to L all the coordinates of $E[m]=E_{\bar{K}}[m]$.

- Weil pairing requires working in the field L^{\prime}.
- $\quad L^{\prime}$ is potentially much larger than L.
- Special case: m is a prime divisor of $\left|E_{K}\right|$ with $m \nmid q$ and $m \nmid(q-1)$. Then, $L^{\prime}=L$. So it suffices to work in the field L only.

For cryptographic applications, Tate pairing is used more often that Weil pairing.

- One takes \mathbb{F}_{q} with $|q|$ about $160-300$ bits and $k \leqslant 12$. Larger embedding degrees are impractical for implementation.

Distortion Maps

Let m be a prime divisor of $\left|E_{K}\right|$.
Let P be a generator of a subgroup G of E_{K} of order m.
Goal: To define a pairing of the points in G.

Distortion Maps

Let m be a prime divisor of $\left|E_{K}\right|$.
Let P be a generator of a subgroup G of E_{K} of order m.
Goal: To define a pairing of the points in G.

- If $k=1$ (that is, $L=K$), then $\langle P, P\rangle_{m} \neq 1$.

Distortion Maps

Let m be a prime divisor of $\left|E_{K}\right|$.
Let P be a generator of a subgroup G of E_{K} of order m.
Goal: To define a pairing of the points in G.

- If $k=1$ (that is, $L=K$), then $\langle P, P\rangle_{m} \neq 1$.
- Bad news: If $k>1$, then $\langle P, P\rangle_{m}=1$.

Distortion Maps

Let m be a prime divisor of $\left|E_{K}\right|$.
Let P be a generator of a subgroup G of E_{K} of order m.
Goal: To define a pairing of the points in G.

- If $k=1$ (that is, $L=K$), then $\langle P, P\rangle_{m} \neq 1$.
- Bad news: If $k>1$, then $\langle P, P\rangle_{m}=1$.

But then, by bilinearity, $\left\langle Q, Q^{\prime}\right\rangle_{m}=1$ for all $Q, Q^{\prime} \in G$.

Distortion Maps

Let m be a prime divisor of $\left|E_{K}\right|$.
Let P be a generator of a subgroup G of E_{K} of order m.
Goal: To define a pairing of the points in G.

- If $k=1$ (that is, $L=K$), then $\langle P, P\rangle_{m} \neq 1$.
- Bad news: If $k>1$, then $\langle P, P\rangle_{m}=1$. But then, by bilinearity, $\left\langle Q, Q^{\prime}\right\rangle_{m}=1$ for all $Q, Q^{\prime} \in G$.
- A way out: If $k>1$ and $Q \in L$ is linearly independent of P (that is, $Q \notin G)$, then $\langle P, Q\rangle_{m} \neq 1$.

Distortion Maps

Let m be a prime divisor of $\left|E_{K}\right|$.
Let P be a generator of a subgroup G of E_{K} of order m.
Goal: To define a pairing of the points in G.

- If $k=1$ (that is, $L=K$), then $\langle P, P\rangle_{m} \neq 1$.
- Bad news: If $k>1$, then $\langle P, P\rangle_{m}=1$. But then, by bilinearity, $\left\langle Q, Q^{\prime}\right\rangle_{m}=1$ for all $Q, Q^{\prime} \in G$.
- A way out: If $k>1$ and $Q \in L$ is linearly independent of P (that is, $Q \notin G)$, then $\langle P, Q\rangle_{m} \neq 1$.
- Let $\phi: E_{L} \rightarrow E_{L}$ be an endomorphism of E_{L} with $\phi(P) \notin G$. ϕ is called a distortion map.

Distortion Maps

Let m be a prime divisor of $\left|E_{K}\right|$.
Let P be a generator of a subgroup G of E_{K} of order m.
Goal: To define a pairing of the points in G.

- If $k=1$ (that is, $L=K$), then $\langle P, P\rangle_{m} \neq 1$.
- Bad news: If $k>1$, then $\langle P, P\rangle_{m}=1$.

But then, by bilinearity, $\left\langle Q, Q^{\prime}\right\rangle_{m}=1$ for all $Q, Q^{\prime} \in G$.
A way out: If $k>1$ and $Q \in L$ is linearly independent of P (that is, $Q \notin G)$, then $\langle P, Q\rangle_{m} \neq 1$.

- Let $\phi: E_{L} \rightarrow E_{L}$ be an endomorphism of E_{L} with $\phi(P) \notin G$. ϕ is called a distortion map.
■
Define the distorted Tate pairing of $P, Q \in G$ as $\langle P, \phi(Q)\rangle_{m}$.

Distortion Maps

Let m be a prime divisor of $\left|E_{K}\right|$.
Let P be a generator of a subgroup G of E_{K} of order m.
Goal: To define a pairing of the points in G.

- If $k=1$ (that is, $L=K$), then $\langle P, P\rangle_{m} \neq 1$.
- Bad news: If $k>1$, then $\langle P, P\rangle_{m}=1$.

But then, by bilinearity, $\left\langle Q, Q^{\prime}\right\rangle_{m}=1$ for all $Q, Q^{\prime} \in G$.
A way out: If $k>1$ and $Q \in L$ is linearly independent of P (that is, $Q \notin G)$, then $\langle P, Q\rangle_{m} \neq 1$.

- Let $\phi: E_{L} \rightarrow E_{L}$ be an endomorphism of E_{L} with $\phi(P) \notin G$. ϕ is called a distortion map.
Define the distorted Tate pairing of $P, Q \in G$ as $\langle P, \phi(Q)\rangle_{m}$.
Since $\phi(P)$ is linearly independent of P, we have $\langle P, \phi(P)\rangle_{m} \neq 1$.

Distortion Maps

Let m be a prime divisor of $\left|E_{K}\right|$.
Let P be a generator of a subgroup G of E_{K} of order m.
Goal: To define a pairing of the points in G.

- If $k=1$ (that is, $L=K$), then $\langle P, P\rangle_{m} \neq 1$.
- Bad news: If $k>1$, then $\langle P, P\rangle_{m}=1$.

But then, by bilinearity, $\left\langle Q, Q^{\prime}\right\rangle_{m}=1$ for all $Q, Q^{\prime} \in G$.
A way out: If $k>1$ and $Q \in L$ is linearly independent of P (that is, $Q \notin G)$, then $\langle P, Q\rangle_{m} \neq 1$.
Let $\phi: E_{L} \rightarrow E_{L}$ be an endomorphism of E_{L} with $\phi(P) \notin G$. ϕ is called a distortion map.
Define the distorted Tate pairing of $P, Q \in G$ as $\langle P, \phi(Q)\rangle_{m}$.
Since $\phi(P)$ is linearly independent of P, we have $\langle P, \phi(P)\rangle_{m} \neq 1$.
Since ϕ is an endomorphism, bilinearity is preserved.

Distortion Maps

Let m be a prime divisor of $\left|E_{K}\right|$.
Let P be a generator of a subgroup G of E_{K} of order m.
Goal: To define a pairing of the points in G.

- If $k=1$ (that is, $L=K$), then $\langle P, P\rangle_{m} \neq 1$.
- Bad news: If $k>1$, then $\langle P, P\rangle_{m}=1$.

But then, by bilinearity, $\left\langle Q, Q^{\prime}\right\rangle_{m}=1$ for all $Q, Q^{\prime} \in G$.
A way out: If $k>1$ and $Q \in L$ is linearly independent of P (that is, $Q \notin G)$, then $\langle P, Q\rangle_{m} \neq 1$.
Let $\phi: E_{L} \rightarrow E_{L}$ be an endomorphism of E_{L} with $\phi(P) \notin G$. ϕ is called a distortion map.
Define the distorted Tate pairing of $P, Q \in G$ as $\langle P, \phi(Q)\rangle_{m}$.
Since $\phi(P)$ is linearly independent of P, we have $\langle P, \phi(P)\rangle_{m} \neq 1$.
Since ϕ is an endomorphism, bilinearity is preserved.

- Symmetry: We have $\left\langle Q, \phi\left(Q^{\prime}\right)\right\rangle_{m}=\left\langle Q^{\prime}, \phi(Q)\right\rangle_{m}$ for all $Q, Q^{\prime} \in G$.

Distortion Maps

Let m be a prime divisor of $\left|E_{K}\right|$.
Let P be a generator of a subgroup G of E_{K} of order m.
Goal: To define a pairing of the points in G.

- If $k=1$ (that is, $L=K$), then $\langle P, P\rangle_{m} \neq 1$.
- Bad news: If $k>1$, then $\langle P, P\rangle_{m}=1$.

But then, by bilinearity, $\left\langle Q, Q^{\prime}\right\rangle_{m}=1$ for all $Q, Q^{\prime} \in G$.
A way out: If $k>1$ and $Q \in L$ is linearly independent of P (that is, $Q \notin G)$, then $\langle P, Q\rangle_{m} \neq 1$.
Let $\phi: E_{L} \rightarrow E_{L}$ be an endomorphism of E_{L} with $\phi(P) \notin G$. ϕ is called a distortion map.
Define the distorted Tate pairing of $P, Q \in G$ as $\langle P, \phi(Q)\rangle_{m}$.
Since $\phi(P)$ is linearly independent of P, we have $\langle P, \phi(P)\rangle_{m} \neq 1$.
Since ϕ is an endomorphism, bilinearity is preserved.
Symmetry: We have $\left\langle Q, \phi\left(Q^{\prime}\right)\right\rangle_{m}=\left\langle Q^{\prime}, \phi(Q)\right\rangle_{m}$ for all $Q, Q^{\prime} \in G$. Distortion maps exist only for supersingular curves.

Twists

Let E be defined by the short Weierstrass equation $Y^{2}=X^{3}+a X+b$. Let $d \geqslant 2$, and $v \in \mathbb{F}_{q}^{*}$ a d-th power non-residue.

Twists

Let E be defined by the short Weierstrass equation $Y^{2}=X^{3}+a X+b$. Let $d \geqslant 2$, and $v \in \mathbb{F}_{q}^{*}$ a d-th power non-residue.

- Consider the curve $E^{\prime}: Y^{2}=X^{3}+v^{4 / d} a X+v^{6 / d} b\left(\right.$ defined over $\left.\mathbb{F}_{q^{d}}\right)$.

Twists

Let E be defined by the short Weierstrass equation $Y^{2}=X^{3}+a X+b$. Let $d \geqslant 2$, and $v \in \mathbb{F}_{q}^{*}$ a d-th power non-residue.

- Consider the curve $E^{\prime}: Y^{2}=X^{3}+v^{4 / d} a X+v^{6 / d} b\left(\right.$ defined over $\left.\mathbb{F}_{q^{d}}\right)$.
- If $d=2$, then E^{\prime} is defined over \mathbb{F}_{q} itself.

Twists

Let E be defined by the short Weierstrass equation $Y^{2}=X^{3}+a X+b$. Let $d \geqslant 2$, and $v \in \mathbb{F}_{q}^{*}$ a d-th power non-residue.

- Consider the curve $E^{\prime}: Y^{2}=X^{3}+v^{4 / d} a X+v^{6 / d} b\left(\right.$ defined over $\mathbb{F}_{q^{d}}$).
- If $d=2$, then E^{\prime} is defined over \mathbb{F}_{q} itself.
- E^{\prime} is called a twist of \boldsymbol{E} of degree \boldsymbol{d}.

Twists

Let E be defined by the short Weierstrass equation $Y^{2}=X^{3}+a X+b$. Let $d \geqslant 2$, and $v \in \mathbb{F}_{q}^{*}$ a d-th power non-residue.

- Consider the curve $E^{\prime}: Y^{2}=X^{3}+v^{4 / d} a X+v^{6 / d} b\left(\right.$ defined over $\mathbb{F}_{q^{d}}$).
- If $d=2$, then E^{\prime} is defined over \mathbb{F}_{q} itself.
- E^{\prime} is called a twist of \boldsymbol{E} of degree \boldsymbol{d}.
- E and E^{\prime} are isomorphic over $\mathbb{F}_{q^{d}}$. An explicit isomorphism is given by the $\operatorname{map} \phi_{d}: E^{\prime} \rightarrow E$ taking $(h, k) \mapsto\left(v^{-2 / d} h, v^{-3 / d} k\right)$.

Twists

Let E be defined by the short Weierstrass equation $Y^{2}=X^{3}+a X+b$. Let $d \geqslant 2$, and $v \in \mathbb{F}_{q}^{*}$ a d-th power non-residue.

- Consider the curve $E^{\prime}: Y^{2}=X^{3}+v^{4 / d} a X+v^{6 / d} b\left(\right.$ defined over $\left.\mathbb{F}_{q^{d}}\right)$.
- If $d=2$, then E^{\prime} is defined over \mathbb{F}_{q} itself.
- $\quad E^{\prime}$ is called a twist of \boldsymbol{E} of degree \boldsymbol{d}.
- E and E^{\prime} are isomorphic over $\mathbb{F}_{q^{d}}$. An explicit isomorphism is given by the map $\phi_{d}: E^{\prime} \rightarrow E$ taking $(h, k) \mapsto\left(v^{-2 / d} h, v^{-3 / d} k\right)$.
- Let m be a prime divisor of $\left|E_{q}\right|, G$ a subgroup of order m in $E_{q^{k}}$, and G^{\prime} a subgroup of order m in $E_{q^{k}}^{\prime}$. Let P, P^{\prime} be generators of G and G^{\prime}. Suppose that $\phi_{d}\left(P^{\prime}\right)$ is linearly independent of P.

Twists

Let E be defined by the short Weierstrass equation $Y^{2}=X^{3}+a X+b$. Let $d \geqslant 2$, and $v \in \mathbb{F}_{q}^{*}$ a d-th power non-residue.
Consider the curve $E^{\prime}: Y^{2}=X^{3}+v^{4 / d} a X+v^{6 / d} b$ (defined over $\mathbb{F}_{q^{d}}$).

- If $d=2$, then E^{\prime} is defined over \mathbb{F}_{q} itself.
- E^{\prime} is called a twist of \boldsymbol{E} of degree \boldsymbol{d}.

■
E and E^{\prime} are isomorphic over $\mathbb{F}_{q^{d}}$. An explicit isomorphism is given by the map $\phi_{d}: E^{\prime} \rightarrow E$ taking $(h, k) \mapsto\left(v^{-2 / d} h, v^{-3 / d} k\right)$.

- Let m be a prime divisor of $\left|E_{q}\right|, G$ a subgroup of order m in $E_{q^{k}}$, and G^{\prime} a subgroup of order m in $E_{q^{k}}^{\prime}$. Let P, P^{\prime} be generators of G and G^{\prime}. Suppose that $\phi_{d}\left(P^{\prime}\right)$ is linearly independent of P.

■
For $d=2$ (quadratic twist), a natural choice is $G \subseteq E_{q}$ and $G^{\prime} \subseteq E_{q}^{\prime}$.

Twists

Let E be defined by the short Weierstrass equation $Y^{2}=X^{3}+a X+b$. Let $d \geqslant 2$, and $v \in \mathbb{F}_{q}^{*}$ a d-th power non-residue.
Consider the curve $E^{\prime}: Y^{2}=X^{3}+v^{4 / d} a X+v^{6 / d} b$ (defined over $\mathbb{F}_{q^{d}}$).

- If $d=2$, then E^{\prime} is defined over \mathbb{F}_{q} itself.
- E^{\prime} is called a twist of \boldsymbol{E} of degree \boldsymbol{d}.
E and E^{\prime} are isomorphic over $\mathbb{F}_{q^{d}}$. An explicit isomorphism is given by the $\operatorname{map} \phi_{d}: E^{\prime} \rightarrow E$ taking $(h, k) \mapsto\left(v^{-2 / d} h, v^{-3 / d} k\right)$.

■
Let m be a prime divisor of $\left|E_{q}\right|, G$ a subgroup of order m in $E_{q^{k}}$, and G^{\prime} a subgroup of order m in $E_{q^{k}}^{\prime}$. Let P, P^{\prime} be generators of G and G^{\prime}. Suppose that $\phi_{d}\left(P^{\prime}\right)$ is linearly independent of P.

■
For $d=2$ (quadratic twist), a natural choice is $G \subseteq E_{q}$ and $G^{\prime} \subseteq E_{q}^{\prime}$.
■ Define a pairing of points $Q \in G$ and $Q^{\prime} \in G^{\prime}$ as $\left\langle Q, \phi_{d}\left(Q^{\prime}\right)\right\rangle_{m}$.

Twists

Let E be defined by the short Weierstrass equation $Y^{2}=X^{3}+a X+b$. Let $d \geqslant 2$, and $v \in \mathbb{F}_{q}^{*}$ a d-th power non-residue.
Consider the curve $E^{\prime}: Y^{2}=X^{3}+v^{4 / d} a X+v^{6 / d} b$ (defined over $\mathbb{F}_{q^{d}}$).

- If $d=2$, then E^{\prime} is defined over \mathbb{F}_{q} itself.
- E^{\prime} is called a twist of \boldsymbol{E} of degree \boldsymbol{d}.
E and E^{\prime} are isomorphic over $\mathbb{F}_{q^{d}}$. An explicit isomorphism is given by the map $\phi_{d}: E^{\prime} \rightarrow E$ taking $(h, k) \mapsto\left(v^{-2 / d} h, v^{-3 / d} k\right)$.

Let m be a prime divisor of $\left|E_{q}\right|, G$ a subgroup of order m in $E_{q^{k}}$, and G^{\prime} a subgroup of order m in $E_{q^{k}}^{\prime}$. Let P, P^{\prime} be generators of G and G^{\prime}. Suppose that $\phi_{d}\left(P^{\prime}\right)$ is linearly independent of P.

For $d=2$ (quadratic twist), a natural choice is $G \subseteq E_{q}$ and $G^{\prime} \subseteq E_{q}^{\prime}$.
■ Define a pairing of points $Q \in G$ and $Q^{\prime} \in G^{\prime}$ as $\left\langle Q, \phi_{d}\left(Q^{\prime}\right)\right\rangle_{m}$. This is called the twisted Tate pairing.

Pairing-friendly Curves

Pairing-friendly Curves

- Requirement for efficient computation: Small embedding degree k.

Pairing-friendly Curves

- Requirement for efficient computation: Small embedding degree k. For general curves, k is quite high $(|k| \approx|m|)$.

Pairing-friendly Curves

- Requirement for efficient computation: Small embedding degree k.

For general curves, k is quite high $(|k| \approx|m|)$.
Only some specific types of curves qualify as pairing-friendly.

Pairing-friendly Curves

- Requirement for efficient computation: Small embedding degree k.

For general curves, k is quite high $(|k| \approx|m|)$.

- Only some specific types of curves qualify as pairing-friendly.
- Supersingular curves

Pairing-friendly Curves

- Requirement for efficient computation: Small embedding degree k.
- For general curves, k is quite high $(|k| \approx|m|)$.
- Only some specific types of curves qualify as pairing-friendly.
- Supersingular curves

By Hasse's Theorem, $\left|E_{q}\right|=q+1-t$ with $|t| \leqslant 2 \sqrt{q}$.

Pairing-friendly Curves

- Requirement for efficient computation: Small embedding degree k.
- For general curves, k is quite high $(|k| \approx|m|)$.
- Only some specific types of curves qualify as pairing-friendly.
- Supersingular curves

By Hasse's Theorem, $\left|E_{q}\right|=q+1-t$ with $|t| \leqslant 2 \sqrt{q}$.
If $p \mid t$, we call E a supersingular curve.

Pairing-friendly Curves

- Requirement for efficient computation: Small embedding degree k.
- For general curves, k is quite high $(|k| \approx|m|)$.
- Only some specific types of curves qualify as pairing-friendly.
- Supersingular curves

By Hasse's Theorem, $\left|E_{q}\right|=q+1-t$ with $|t| \leqslant 2 \sqrt{q}$.
If $p \mid t$, we call E a supersingular curve.
Curves of the form $Y^{2}+a Y=X^{3}+b X+c$ are supersingular over fields of characteristic 2.

Pairing-friendly Curves

Requirement for efficient computation: Small embedding degree k.
For general curves, k is quite high $(|k| \approx|m|)$.

- Only some specific types of curves qualify as pairing-friendly.
- Supersingular curves

By Hasse's Theorem, $\left|E_{q}\right|=q+1-t$ with $|t| \leqslant 2 \sqrt{q}$.
If $p \mid t$, we call E a supersingular curve.
Curves of the form $Y^{2}+a Y=X^{3}+b X+c$ are supersingular over fields of characteristic 2.
All supersingular curves over a finite field K of characteristic 2 have j-invariant equal to 0 , and so are isomorphic over \bar{K}. The same result holds for $p=3$.

Pairing-friendly Curves

Requirement for efficient computation: Small embedding degree k.
For general curves, k is quite high $(|k| \approx|m|)$.
Only some specific types of curves qualify as pairing-friendly.

Supersingular curves

By Hasse's Theorem, $\left|E_{q}\right|=q+1-t$ with $|t| \leqslant 2 \sqrt{q}$.
If $p \mid t$, we call E a supersingular curve.
Curves of the form $Y^{2}+a Y=X^{3}+b X+c$ are supersingular over fields of characteristic 2.
All supersingular curves over a finite field K of characteristic 2 have j-invariant equal to 0 , and so are isomorphic over \bar{K}. The same result holds for $p=3$.
Supersingular curves have small embedding degrees. The only possibilities are $1,2,3,4,6$.

Pairing-friendly Curves

Requirement for efficient computation: Small embedding degree k.
For general curves, k is quite high $(|k| \approx|m|)$.
Only some specific types of curves qualify as pairing-friendly.

Supersingular curves

By Hasse's Theorem, $\left|E_{q}\right|=q+1-t$ with $|t| \leqslant 2 \sqrt{q}$.
If $p \mid t$, we call E a supersingular curve.
Curves of the form $Y^{2}+a Y=X^{3}+b X+c$ are supersingular over fields of characteristic 2.
All supersingular curves over a finite field K of characteristic 2 have j-invariant equal to 0 , and so are isomorphic over \bar{K}. The same result holds for $p=3$.
Supersingular curves have small embedding degrees. The only possibilities are $1,2,3,4,6$.
If \mathbb{F}_{q} is a prime field with $q \geqslant 5$, the only possibility is $k=2$.

Pairing-friendly Curves

Requirement for efficient computation: Small embedding degree k.
For general curves, k is quite high $(|k| \approx|m|)$.
Only some specific types of curves qualify as pairing-friendly.

Supersingular curves

By Hasse's Theorem, $\left|E_{q}\right|=q+1-t$ with $|t| \leqslant 2 \sqrt{q}$.
If $p \mid t$, we call E a supersingular curve.
Curves of the form $Y^{2}+a Y=X^{3}+b X+c$ are supersingular over fields of characteristic 2.

All supersingular curves over a finite field K of characteristic 2 have j-invariant equal to 0 , and so are isomorphic over \bar{K}. The same result holds for $p=3$.
Supersingular curves have small embedding degrees. The only possibilities are $1,2,3,4,6$.
If \mathbb{F}_{q} is a prime field with $q \geqslant 5$, the only possibility is $k=2$.
Non-supersingular curves are called ordinary curves.

Pairing-friendly Curves

Requirement for efficient computation: Small embedding degree k.
For general curves, k is quite high $(|k| \approx|m|)$.
Only some specific types of curves qualify as pairing-friendly.

Supersingular curves

By Hasse's Theorem, $\left|E_{q}\right|=q+1-t$ with $|t| \leqslant 2 \sqrt{q}$.
If $p \mid t$, we call E a supersingular curve.
Curves of the form $Y^{2}+a Y=X^{3}+b X+c$ are supersingular over fields of characteristic 2.

All supersingular curves over a finite field K of characteristic 2 have j-invariant equal to 0 , and so are isomorphic over \bar{K}. The same result holds for $p=3$.
Supersingular curves have small embedding degrees. The only possibilities are $1,2,3,4,6$.
If \mathbb{F}_{q} is a prime field with $q \geqslant 5$, the only possibility is $k=2$.
Non-supersingular curves are called ordinary curves.
It is difficult to locate ordinary curves with small embedding degrees.

How to Find Pairing-friendly Curves

How to Find Pairing-friendly Curves

- Let k be a positive integer, and Δ a small positive square-free integer.

How to Find Pairing-friendly Curves

- Let k be a positive integer, and Δ a small positive square-free integer.

Search for integer-valued polynomials $t(x), m(x), q(x) \in \mathbb{Q}[x]$ to represent a family of elliptic curves of embedding degree k and discriminant Δ. The triple (t, m, q) should satisfy the following:

How to Find Pairing-friendly Curves

- Let k be a positive integer, and Δ a small positive square-free integer.
- Search for integer-valued polynomials $t(x), m(x), q(x) \in \mathbb{Q}[x]$ to represent a family of elliptic curves of embedding degree k and discriminant Δ. The triple (t, m, q) should satisfy the following:
$q(x)=p(x)^{n}$ for some $n \in \mathbb{N}$ and $p(x) \in \mathbb{Q}[x]$ representing primes.

How to Find Pairing-friendly Curves

- Let k be a positive integer, and Δ a small positive square-free integer.
- Search for integer-valued polynomials $t(x), m(x), q(x) \in \mathbb{Q}[x]$ to represent a family of elliptic curves of embedding degree k and discriminant Δ. The triple (t, m, q) should satisfy the following:
$q(x)=p(x)^{n}$ for some $n \in \mathbb{N}$ and $p(x) \in \mathbb{Q}[x]$ representing primes.
$m(x)$ is irreducible with a positive leading coefficient.

How to Find Pairing-friendly Curves

- Let k be a positive integer, and Δ a small positive square-free integer.
- Search for integer-valued polynomials $t(x), m(x), q(x) \in \mathbb{Q}[x]$ to represent a family of elliptic curves of embedding degree k and discriminant Δ. The triple (t, m, q) should satisfy the following:
$q(x)=p(x)^{n}$ for some $n \in \mathbb{N}$ and $p(x) \in \mathbb{Q}[x]$ representing primes.
$m(x)$ is irreducible with a positive leading coefficient.
$m(x) \mid q(x)+1-t(x)$.

How to Find Pairing-friendly Curves

- Let k be a positive integer, and Δ a small positive square-free integer.
- Search for integer-valued polynomials $t(x), m(x), q(x) \in \mathbb{Q}[x]$ to represent a family of elliptic curves of embedding degree k and discriminant Δ. The triple (t, m, q) should satisfy the following:
$q(x)=p(x)^{n}$ for some $n \in \mathbb{N}$ and $p(x) \in \mathbb{Q}[x]$ representing primes.
$m(x)$ is irreducible with a positive leading coefficient.
$m(x) \mid q(x)+1-t(x)$.
$m(x) \mid \Phi_{k}(t(x)-1)$, where Φ_{k} is the k-th cyclotomic polynomial.

How to Find Pairing-friendly Curves

Let k be a positive integer, and Δ a small positive square-free integer.
Search for integer-valued polynomials $t(x), m(x), q(x) \in \mathbb{Q}[x]$ to represent a family of elliptic curves of embedding degree k and discriminant Δ. The triple (t, m, q) should satisfy the following:
$q(x)=p(x)^{n}$ for some $n \in \mathbb{N}$ and $p(x) \in \mathbb{Q}[x]$ representing primes.
$m(x)$ is irreducible with a positive leading coefficient.
$m(x) \mid q(x)+1-t(x)$.
$m(x) \mid \Phi_{k}(t(x)-1)$, where Φ_{k} is the k-th cyclotomic polynomial.
There are infinitely many integers (x, y) satisfying $\Delta y^{2}=4 q(x)-t(x)^{2}$.

How to Find Pairing-friendly Curves

Let k be a positive integer, and Δ a small positive square-free integer.
Search for integer-valued polynomials $t(x), m(x), q(x) \in \mathbb{Q}[x]$ to represent a family of elliptic curves of embedding degree k and discriminant Δ. The triple (t, m, q) should satisfy the following:
$q(x)=p(x)^{n}$ for some $n \in \mathbb{N}$ and $p(x) \in \mathbb{Q}[x]$ representing primes.
$m(x)$ is irreducible with a positive leading coefficient.
$m(x) \mid q(x)+1-t(x)$.
$m(x) \mid \Phi_{k}(t(x)-1)$, where Φ_{k} is the k-th cyclotomic polynomial.
There are infinitely many integers (x, y) satisfying $\Delta y^{2}=4 q(x)-t(x)^{2}$.
If y in Condition 5 can be parameterized by a polynomial $y(x) \in \mathbb{Q}[x]$, the family is called complete, otherwise it is called sparse.

How to Find Pairing-friendly Curves

Let k be a positive integer, and Δ a small positive square-free integer.
Search for integer-valued polynomials $t(x), m(x), q(x) \in \mathbb{Q}[x]$ to represent a family of elliptic curves of embedding degree k and discriminant Δ. The triple (t, m, q) should satisfy the following:
$q(x)=p(x)^{n}$ for some $n \in \mathbb{N}$ and $p(x) \in \mathbb{Q}[x]$ representing primes.
$m(x)$ is irreducible with a positive leading coefficient.
$m(x) \mid q(x)+1-t(x)$.
$m(x) \mid \Phi_{k}(t(x)-1)$, where Φ_{k} is the k-th cyclotomic polynomial.
There are infinitely many integers (x, y) satisfying $\Delta y^{2}=4 q(x)-t(x)^{2}$.
If y in Condition 5 can be parameterized by a polynomial $y(x) \in \mathbb{Q}[x]$, the family is called complete, otherwise it is called sparse.

For obtaining ordinary curves, we require $\operatorname{gcd}(q(x), m(x))=1$.

How to Find Pairing-friendly Curves

Let k be a positive integer, and Δ a small positive square-free integer.
Search for integer-valued polynomials $t(x), m(x), q(x) \in \mathbb{Q}[x]$ to represent a family of elliptic curves of embedding degree k and discriminant Δ. The triple (t, m, q) should satisfy the following:
$q(x)=p(x)^{n}$ for some $n \in \mathbb{N}$ and $p(x) \in \mathbb{Q}[x]$ representing primes.
$m(x)$ is irreducible with a positive leading coefficient.
$m(x) \mid q(x)+1-t(x)$.
$m(x) \mid \Phi_{k}(t(x)-1)$, where Φ_{k} is the k-th cyclotomic polynomial.
There are infinitely many integers (x, y) satisfying $\Delta y^{2}=4 q(x)-t(x)^{2}$.
If y in Condition 5 can be parameterized by a polynomial $y(x) \in \mathbb{Q}[x]$, the family is called complete, otherwise it is called sparse.

- For obtaining ordinary curves, we require $\operatorname{gcd}(q(x), m(x))=1$.

The complex multiplication method is used to obtain specific examples of elliptic curves E over \mathbb{F}_{q} with E_{q} having a subgroup of order m.

Some Families of Pairing-friendly Curves

Some Families of Pairing-friendly Curves

- Some sparse families of ordinary pairing-friendly curves are:

Some Families of Pairing-friendly Curves

- Some sparse families of ordinary pairing-friendly curves are: MNT (Miyaji-Nakabayashi-Takano) curves: These are curves of prime orders with embedding degrees 3,4 or 6 .

Some Families of Pairing-friendly Curves

Some sparse families of ordinary pairing-friendly curves are: MNT (Miyaji-Nakabayashi-Takano) curves: These are curves of prime orders with embedding degrees 3,4 or 6 .
Freeman curves: These curves have embedding degree 10.

Some Families of Pairing-friendly Curves

Some sparse families of ordinary pairing-friendly curves are:
MNT (Miyaji-Nakabayashi-Takano) curves: These are curves of prime orders with embedding degrees 3,4 or 6 .
Freeman curves: These curves have embedding degree 10.
Some complete families of ordinary pairing-friendly curves are:

Some Families of Pairing-friendly Curves

Some sparse families of ordinary pairing-friendly curves are:
MNT (Miyaji-Nakabayashi-Takano) curves: These are curves of prime orders with embedding degrees 3,4 or 6 .
Freeman curves: These curves have embedding degree 10.
Some complete families of ordinary pairing-friendly curves are:
BN (Barreto-Naehrig) curves: These curves have embedding degree 12 and discriminant 3.

Some Families of Pairing-friendly Curves

Some sparse families of ordinary pairing-friendly curves are:
MNT (Miyaji-Nakabayashi-Takano) curves: These are curves of prime orders with embedding degrees 3,4 or 6 .
Freeman curves: These curves have embedding degree 10.
Some complete families of ordinary pairing-friendly curves are:
BN (Barreto-Naehrig) curves: These curves have embedding degree 12 and discriminant 3.
SB (Scott-Barreto) curves

Some Families of Pairing-friendly Curves

Some sparse families of ordinary pairing-friendly curves are:
MNT (Miyaji-Nakabayashi-Takano) curves: These are curves of prime orders with embedding degrees 3,4 or 6 .
Freeman curves: These curves have embedding degree 10.
Some complete families of ordinary pairing-friendly curves are:
BN (Barreto-Naehrig) curves: These curves have embedding degree 12 and discriminant 3.
SB (Scott-Barreto) curves
BLS (Barreto-Lynn-Scott) curves

Some Families of Pairing-friendly Curves

Some sparse families of ordinary pairing-friendly curves are:
MNT (Miyaji-Nakabayashi-Takano) curves: These are curves of prime orders with embedding degrees 3,4 or 6 .
Freeman curves: These curves have embedding degree 10.
Some complete families of ordinary pairing-friendly curves are:
BN (Barreto-Naehrig) curves: These curves have embedding degree 12 and discriminant 3.
SB (Scott-Barreto) curves
BLS (Barreto-Lynn-Scott) curves
BW (Brezing-Weng) curves

Efficient Implementation

Efficient Implementation

- Denominator elimination: Let k be even. Take $d=k / 2$.

Efficient Implementation

- Denominator elimination: Let k be even. Take $d=k / 2$.
$f_{n, P}(Q)$ is computed by Miller's algorithm, where $Q=(h, k)$ with $h \in \mathbb{F}_{q^{d}}$.

Efficient Implementation

- Denominator elimination: Let k be even. Take $d=k / 2$.
- $f_{n, P}(Q)$ is computed by Miller's algorithm, where $Q=(h, k)$ with $h \in \mathbb{F}_{q^{d}}$. The denominators $L_{2 U,-2 U}(Q)$ and $L_{U+P,-(U+P)}(Q)$ correspond to vertical lines, evaluate to elements of $\mathbb{F}_{q^{d}}$, and can be discarded.

Efficient Implementation

- Denominator elimination: Let k be even. Take $d=k / 2$.
- $f_{n, P}(Q)$ is computed by Miller's algorithm, where $Q=(h, k)$ with $h \in \mathbb{F}_{q^{d}}$.
- The denominators $L_{2 U,-2 U}(Q)$ and $L_{U+P,-(U+P)}(Q)$ correspond to vertical lines, evaluate to elements of $\mathbb{F}_{q^{d}}$, and can be discarded.
- The final exponentiation guarantees correct computation of $\hat{e}_{m}(P, Q)$.

Efficient Implementation

- Denominator elimination: Let k be even. Take $d=k / 2$.
- $f_{n, P}(Q)$ is computed by Miller's algorithm, where $Q=(h, k)$ with $h \in \mathbb{F}_{q^{d}}$.
- The denominators $L_{2 U,-2 U}(Q)$ and $L_{U+P,-(U+P)}(Q)$ correspond to vertical lines, evaluate to elements of $\mathbb{F}_{q^{d}}$, and can be discarded.
■
The final exponentiation guarantees correct computation of $\hat{e}_{m}(P, Q)$.

BMX (Blake-Murty-Xu) refinements use 2-bit windows in Miller's loop.

Efficient Implementation

- Denominator elimination: Let k be even. Take $d=k / 2$.
- $f_{n, P}(Q)$ is computed by Miller's algorithm, where $Q=(h, k)$ with $h \in \mathbb{F}_{q^{d}}$.
- The denominators $L_{2 U,-2 U}(Q)$ and $L_{U+P,-(U+P)}(Q)$ correspond to vertical lines, evaluate to elements of $\mathbb{F}_{q^{d}}$, and can be discarded.
■
The final exponentiation guarantees correct computation of $\hat{e}_{m}(P, Q)$.

BMX (Blake-Murty-Xu) refinements use 2-bit windows in Miller's loop.

Loop reduction: With clever modifications to Tate pairing, the number of iterations in the Miller loop can be substantially reduced.

Efficient Implementation

- Denominator elimination: Let k be even. Take $d=k / 2$.
- $f_{n, P}(Q)$ is computed by Miller's algorithm, where $Q=(h, k)$ with $h \in \mathbb{F}_{q^{d}}$.
- The denominators $L_{2 U,-2 U}(Q)$ and $L_{U+P,-(U+P)}(Q)$ correspond to vertical lines, evaluate to elements of $\mathbb{F}_{q^{d}}$, and can be discarded.
The final exponentiation guarantees correct computation of $\hat{e}_{m}(P, Q)$.

BMX (Blake-Murty-Xu) refinements use 2-bit windows in Miller's loop.

Loop reduction: With clever modifications to Tate pairing, the number of iterations in the Miller loop can be substantially reduced.

- A typical reduction is by a factor of 2.

Efficient Implementation

- Denominator elimination: Let k be even. Take $d=k / 2$.
- $f_{n, P}(Q)$ is computed by Miller's algorithm, where $Q=(h, k)$ with $h \in \mathbb{F}_{q^{d}}$.
- The denominators $L_{2 U,-2 U}(Q)$ and $L_{U+P,-(U+P)}(Q)$ correspond to vertical lines, evaluate to elements of $\mathbb{F}_{q^{d}}$, and can be discarded.
The final exponentiation guarantees correct computation of $\hat{e}_{m}(P, Q)$.

BMX (Blake-Murty-Xu) refinements use 2-bit windows in Miller's loop.

Loop reduction: With clever modifications to Tate pairing, the number of iterations in the Miller loop can be substantially reduced.

- A typical reduction is by a factor of 2.
- Examples

Efficient Implementation

- Denominator elimination: Let k be even. Take $d=k / 2$.
- $f_{n, P}(Q)$ is computed by Miller's algorithm, where $Q=(h, k)$ with $h \in \mathbb{F}_{q^{d}}$.
- The denominators $L_{2 U,-2 U}(Q)$ and $L_{U+P,-(U+P)}(Q)$ correspond to vertical lines, evaluate to elements of $\mathbb{F}_{q^{d}}$, and can be discarded.
The final exponentiation guarantees correct computation of $\hat{e}_{m}(P, Q)$.

BMX (Blake-Murty-Xu) refinements use 2-bit windows in Miller's loop.

Loop reduction: With clever modifications to Tate pairing, the number of iterations in the Miller loop can be substantially reduced.

- A typical reduction is by a factor of 2.
- Examples
\square
η and η_{T} pairings

Efficient Implementation

- Denominator elimination: Let k be even. Take $d=k / 2$.
- $f_{n, P}(Q)$ is computed by Miller's algorithm, where $Q=(h, k)$ with $h \in \mathbb{F}_{q^{d}}$.
- The denominators $L_{2 U,-2 U}(Q)$ and $L_{U+P,-(U+P)}(Q)$ correspond to vertical lines, evaluate to elements of $\mathbb{F}_{q^{d}}$, and can be discarded.
The final exponentiation guarantees correct computation of $\hat{e}_{m}(P, Q)$.

BMX (Blake-Murty-Xu) refinements use 2-bit windows in Miller's loop.

Loop reduction: With clever modifications to Tate pairing, the number of iterations in the Miller loop can be substantially reduced.

A typical reduction is by a factor of 2 .

- Examples
η and η_{T} pairings
Ate pairing

Efficient Implementation

- Denominator elimination: Let k be even. Take $d=k / 2$.
- $f_{n, P}(Q)$ is computed by Miller's algorithm, where $Q=(h, k)$ with $h \in \mathbb{F}_{q^{d}}$.
- The denominators $L_{2 U,-2 U}(Q)$ and $L_{U+P,-(U+P)}(Q)$ correspond to vertical lines, evaluate to elements of $\mathbb{F}_{q^{d}}$, and can be discarded.
The final exponentiation guarantees correct computation of $\hat{e}_{m}(P, Q)$.

BMX (Blake-Murty-Xu) refinements use 2-bit windows in Miller's loop.

Loop reduction: With clever modifications to Tate pairing, the number of iterations in the Miller loop can be substantially reduced.

A typical reduction is by a factor of 2 .

- Examples
η and η_{T} pairings
Ate pairing
R -ate pairing

References for Part II

Blake, I. F., K. Murty and G. Xu, Refinements of Miller's Algorithm for Computing Weil/Tate Pairing, http://eprint.iacr.org/2004/065, 2004. Cryptography, Cambridge University Press, 2005.

DAS, A., Computational Number Theory, Manuscript under preparation.
Das, A. and C. E. Veni Madhavan, Public-key Cryptography: Theory and Practice, Pearson Education, 2009.

Enge, A., Elliptic Curves and Their Applications to Cryptography: An Introduction, Kluwer Academic Publishers, 1999.

Freeman, D., M. Scott, and E. Teske, A Taxonomy of Pairing-friendly Elliptic Curves, Jl of Cryptology, 2010. (Also in Cryptology eprint archive: 2006/372.)

Martin, L., Introduction to Identity-Based Encryption, Artech House, 2008.
Miller, V. S., The Weil Pairing, and Its Efficient Calculation, Jl of Cryptology, 17, 235-261, 2004.

Part III

Hyperelliptic Curves

Part III

Hyperelliptic Curves

- Representation of the Jacobian

References for Part III

- Das, A. and C. E. Veni Madhavan, Public-key Cryptography: Theory and Practice, Pearson Education, 2009.

Menezes, A. J., Y. Wu and R. Zuccherato, An Elementary Introduction to Hyperelliptic Curves, CACR technical report CORR 96-19, University of Waterloo, Canada, 1996.

