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Affine Curves

K is a field.

K is the algebraic closure &.

It is often necessary to assume tKais algebraically closed.
Affine plane: K2 = {(h,k) | h,k € K}.

For (h, k) € K2, the field elementh, k are calledaffine coordinates

Affine curve: Defined by a polynomial equation:
C:f(X,Y)=0.

It is customary to consider only irreducible polynomi&(X, Y). If f(X,Y)
admits non-trivial factors, the cur¥@is the set-theoretic union of two (or
more) curves of smaller degrees.

Rational points on C: All points (h, k) € K? such thaf (h,k) = 0.

Rational points orC are calledinite points.




Affine Curves: Examples

Straight lines: aX+bY+c=0.
Circles: (X —a)? + (Y —b)2—r2=0.
Conic sections:aX? + bXY+ cY? + dX+eY+f = 0.

Elliptic curves: Defined by theMeierstrass equation

Y2 4 (agX + ag)Y = X3 + apX? + ayX + as.

If charK # 2, 3, this can be simplified 8¢ = X3 + aX + b.
Hyperelliptic curves of genusg: Y? + u(X)Y = v(X) with degu < g,
degv = 2g + 1, andv monic.

If charK # 2, this can be simplified a¢? = w(X) with degw = 2g + 1
andw monic.

Parabolas are hyperelliptic curves of genus 0.

Elliptic curves are hyperelliptic curves of genus 1.




Projective Plane

Define a relation~ onK3\ {(0,0,0)} as(h,k,1) ~ (h’,k’,1") if h" = Ah,
k' = Mk andl’ = Al for some non-zero € K.

~ is an equivalence relation a¢® \ {(0,0,0)}.
The equivalence class @, k, 1) is denoted byh, k;I].

[h, k, 1] can be identified with the line iK® passing through the origin and
the point(h, k,I).

The set of all these equivalence classes iptiogective plane overK.
The projective plane is denoted B K).
h,k,1'in [h,k, |] are calledorojective coordinates

Projective coordinates are unique up to multiplication by non-zero elerr
of K.

The three projective coordinates cannot be simultaneously 0.



Relation Between the Affine and the Projective Planes

P?(K) is the affine plané&? plus the points at infinity.
TakeP = [h,k, 1] € P?(K).
Case 1:| # 0.
P = [h/1,k/I, 1] is identified with the pointh/I, k/1) € K.
The line inK3 corresponding t® meetsZ = 1 at(h/I, k/I, 1).
P is called &finite point.
Case 2:1 = 0.
The line inK?3 corresponding t® does not meet = 1.
P does not correspond to a pointH.
P is apoint at infinity .
For every slope of lines in th¥, Y-plane, there exists exactly one point at
infinity.
A line passes through all the points at infinity. It is fire at infinity .
Two distinct lines (parallel or not) if*?(K) always meet at a unique point
(consistent with Bzout's theorem).

Through any two distinct points iB?(K) passes a unique line.



Passage from Affine to Projective Curves
A (multivariate) polynomial is calleilomogeneousf every non-zero term
in the polynomial has the same degree.

Example:X3 4+ 2XYZ — 3Z% is homogeneous of degree)8® + 2XY — 3Z
is not homogeneous. The zero polynomial is homogeneous of any deg

LetC: f(X,Y) = 0 be an affine curve of degrele
f(W(X,Y,2Z) = 29 (X/Z,Y/Z) is thehomogenizationof f.
cM . f((X Y, Z) = 0 is theprojective curve corresponding te.

For any non-zera € K, we havef W (Ah, Xk, Al) = A4 (" (h k 1). So
£ (A, Ak, Al) = 0 if and only iff ™ (h, k, 1) = 0.

The rational points o€ are all[h, k, 1] with " (h k1) = 0.
Finite points on C": PutZ = 1to getf W (X,Y,1) = f(X,Y). These are
the points orC.

Points at infinity on C": PutZ = 0 and solve fof "W (X,Y,0) = 0. These
points do not belong t€.



Examples of Projective Curves

aX+bY+c=0

.- aX+bY=0

Straight Line Circle

Straight line: aX+ bY+cZ=0.
Finite points: Solutions cdX + bY +c = 0.
Points at infinity: Solve foaX + bY = 0.
If b # 0, we haveY = —(a/b)X. So[1, —(a/b), 0] is the only point at infinity.
If b= 0, we haveaX = 0, that is,X = 0. So[0, 1, 0] is the only point at infinity.
Circle: (X —az)? + (Y — bz)? = r2z>2.
Finite points: Solutions ofX — a)2 + (Y — b)2 =r2.
Points at infinity: Solve foX? + Y2 = 0.
ForK = R, the only solution i = Y = 0, so there is no point at infinity.
ForK = C, the solutions ar¥ = +iX, so there are two points at infinity:
[1,i,0] and[1, —i,0].



Examples of Projective Curves (contd.)
Y=-X | Y=X

/A X2-y2=1
Y2:X va "N\

Parabola Hyperbola

Parabola: Y2 = XZ.

Finite points: Solutions of? = X

Points at infinity: Solve folv? = 0.

Y =0, so[1, 0, 0] is the only point at infinity.
Hyperbola: X? — Y2 = Z2.

Finite points: Solutions oX? — Y? = 1.

Points at infinity: Solve foX? — Y2 = 0.
Y = +X, so there are two points at infinitj, 1, 0] and[1, —1, 0].



Examples of Projective Curves (contd.)

Y2=Xx3-x+1 Y2=x3-x

Elliptic curve: Y2Z + aiXYZ+ azYZ2 = X3 + apX?Z + asXZ? + agZ®.
Finite points: Solutions o¥? + a; XY + agY = X3 + ayX? + ayX + as.

Points at infinity: Solve foX® = 0.
X =0, thatis,[0, 1, 0] is the only point at infinity.



Examples of Projective Curves (contd.)

AN
%

A hyperelliptic curve of genus 2¥? = X(X? — 1)(X? — 2)
Hyperelliptic curve: Y2291 + Z9u(X/Z)YZ® = Z29+1v(X/Z).

Finite points: Solutions of2 + u(X)Y = v(X).

Points at infinity: The onl\Z-free term isX?+1 (in Z29t1v(X/Z)). So[0, 1,0] is
the only point at infinity.




Bézout’'s Theorem

A curve of degreen and a curve of degraeintersect at exactlynnpoints.
The intersection points must be counted with proper multiplicity.
It is necessary to work in algebraically closed fields.

Still, the theorem is not true. For example, two parallel lines or two
concentric circles never intersect.

Passage to the projective plane makégdit's theorem true.
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(a) and (b): Two simple intersections at the points at infinity
(c): Two tangents at the points at infinity
(d): No intersections at the points at infinity




Smooth Curves

LetC: f(X,Y,Z) = 0 be a projective curve, artl= [h, k, ] a rational
point onC.

P is called asmooth pointon C if the tangent taC at P is uniquely defined.

Case 1:Pis a finite point.

Now, | # 0. Consider the affine equatid(X, Y) = 0.

Both % and% do not vanish simultaneously ét/I, k/I).
Case 2:Pis a point at infinity.

Now, | = 0, so at least one df, k must be non-zero.

If h # 0, viewC as the homogenization &f(Y,Z) = f(1,Y, Z).
(k/h,1/h) is a finite point orfx. Apply Case 1.

If k # 0, viewC as the homogenization &f(X,Z) = f(X,1,2).
(h/k,1/k) is a finite point orfy. Apply Case 1.

C is asmooth curveif it is smooth at every rational point on it.



Types of Singularity
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Examples of Smooth Curves

2 4 4
1 2 2
(@ Y2=X3-X b) Y2=X3-X+1 (c) Y2 =X3+ X

An elliptic or hyperelliptic curve is needed to be smooth by definition.

A curve of the formY? = v(X) is smooth if and only if/(X) does not
contain repeated roots.

The point at infinity on an elliptic or hyperelliptic curve is never a point ¢
singularity.




Polynomial and Rational Functions on Curves

LetC: f(X,Y) = 0 be a curve defined by ameducible polynomial
f(X,Y) € KIX,Y].

Let G(X,Y),H(X,Y) € K[X, Y] with f|(G — H). Then,G(P) = H(P) for
every rational poinP on C (sincef (P) = 0). Thus,G andH represent the
same function orC.

DefineG(X,Y) = H(X,Y) (modf (X,Y)) ifand only if f| (G — H).
Congruence modulbis an equivalence relation d€iX, Y].

Call the equivalence classesXfandY by x andy.

The equivalence class &(X,Y) is G(x, y).

K[C] = K[X,Y]/{f(X,Y)) = K[x,y] is an integral domain.

The field of fractions oK|[C] is
K(C) = {G(x,y)/H(xy) | H(xy) # 0} = K(xy).



Polynomial and Rational Functions on Elliptic and

Hyperelliptic Curves
Consider the elliptic curv&? + u(X)Y = v(X), whereu(X) = a1 X + ag
andv(X) = X3 + apX? 4 agX + as.
y? = —u(x)y + v(x).
Every polynomial function o€ can be represented uniquely as
a(x) + yb(x) with a(x), b(x) € KI[x].
ForG(x,y) = a(x) + yb(x) € K[C], define:
Conjugate of G: G(x,y) = a(x) — b(x)(u(x) +y).
Norm of G: N(G) = GG.
N(G) = a(x)? — a(x)b(x)u(x) — v(x)b(x)? € KI[x].
Every rational function o€ can be represented 8) + yt(x) with
s(x), t(x) € K(x).
K(C) is the quadratic extension &f(X) obtained by adjoining a root of the
irreducible polynomialr? + u(X)Y — v(X) € K(X)[Y]. The current notion
of conjugacy coincides with the standard notion for field extensions.

These results hold equally well for hyperelliptic curves too.



Poles and Zeros of Rational Functions

LetC: f(X,Y) = 0 be a plane (irreducible) curve, aRd= (h, k) a finite
point onC.

Let G(x,y) € K[C]. Thevalueof GatPis G(P) = G(h,k) € K.

A rational functionR(x, y) € K(C) is definedatP if there is a
representatioR(x, y) = G(x,y)/H(x, y) for some polynomial§&, H with
H(P) = H(h,k) # 0. In that case, thealue of RatP is defined as
R(P) = G(P)/H(P) = G(h,k)/H(h,k) € K.

If R(x,Yy) is not defined aP, we takeR(P) = cc.
Let R(x,y) € K(C) andP a finite point onC.

Pisazeroof RisR(P) = 0.
Pis apoleof Ris R(P) = oc.

The set of rational functions o defined aP is a local ring with the
unique maximal ideal comprising functions that evaluate tof®. at

The notion of value of a rational function can be extended to the points
infinity on C.




Value of a Rational Function at O: Example
Let C be an elliptic curve withO the point at infinity.
Neglecting lower-degree terms giveé ~ X3.

X'is given a weight 2, and a weight 3.

Let G(x,y) = a(x) + yb(x) € K[C]. Define thedegreeof G as
degG = max(2deg(a), 3+ 2deg(b)).
Theleading coefficientof G is that ofa or b depending upon whether
2deg(a) > 3+ 2deg(b) or not.
LetR(x,y) = G(x,y)/H(X,y) € K(C). DefineR(O) as:
0 if degG < degH.

oo if degG > degH.
The ratio of the leading coefficients & andH, if degG = degH.

For hyperelliptic curves, analogous results hold. N&wandY are given
weights 2 and @ + 1 respectively.



Multiplicities of Poles and Zeros

Let C be a curve, an® a rational point orC.

There exists a rational functidip (X, y) (depending or®) such that:
Up(P) =0, and

every rational functiorR(x, y) € K(C) can be expressed &= UgSwith S
having neither a pole nor a zeroRt

[

2

Up is called auniformizer.

The integed is independent of the choice bb.

Define theorder of RatP as org(R) = d.

Pis azeroof Rif and only if ordb(R) > 0. Multiplicity is ords(R).

P is apole of Rif and only if ordb(R) < 0. Multiplicity is — ords(R).

P is neither a pole nor a zero &if and only if ords(R) = 0.

Any (non-zero) rational function has only finitely many poles and zeros

For aprojectivecurve over aralgebraically closedield, the sum of the
orders of the poles and zeros of a (non-zero) rational function is 0.




Poles and Zeros for Elliptic Curves
LetC : Y2 + u(X)Y = v(X) be an elliptic curve witt© the point at infinity,
andP = (h, k) a finite point onC.

Theoppositeof P is defined a® = (h, —k — u(h)). P andP are the only
points onC with X-coordinate equal th.

The opposite 00 is O itself.
P is called arordinary point if P # P.
P is called aspecial pointif P = P.

Any line passing througR but not a tangent t€ at P can be taken as a
uniformizer Up atP.

x —h if Pis an ordinary point,

For example, we may takdp = o _ .
y—k if Pis a special point.

A uniformizer atO is x/y.

For hyperelliptic curves, identical results hold. A uniformizetis x9/y.



Multiplicities of Poles and Zeros for Elliptic Curves

Let G(x,y) = a(x) + yb(x) € K[C].

Let e be the largest exponent for whi¢k— h)® divides botha(x) andb(x).
Write G(x,y) = (X — h)*G1(X,y).

Takel = 0if Gy(h, k) # 0.

If G1(h, k) = 0, takel to be the largest exponent for whi¢h— h)'| N(Gy).

e+ | if Pis an ordinary point,
2e+1 if Pis aspecial point.

orde(G) = {
ordp(G) = —max(2deg a, 3+ 2degb).

For a rational functiofR(x,y) = G(x,y)/H(X,y) € K(C), we have
orde(R) = ordp(G) — orde(H).

For hyperelliptic curves, identical results hold.
The order ofG at O is ordyp (G) = —max(2deg a, 29+ 1+ 2degb).



Poles and Zeros on Elliptic Curves: Examples
Consider the elliptic curv€ : Y2 = X3 — X.

Rational functions involving onlx are simplerR; = % has simple

zeros ak = +1, a simple pole at = 2, and a pole of multiplicity three at

x = 0. The points orC with thesex-coordinates ar®; = (0, 0),

P, = (1,0), P3 = (—1,0), P4 = (2,/6) andPs = (2, —/6). P1, P2, P3

are special points, so asdR;) = —6, orth,(R;) = ordp,(R1) = 2. P4 and

Ps are ordinary points, so opf{ Ry) = ordp,(R1) = —1. Finally, note that
1

R; — % asx — oo. Butx has a weight of 2, sB; has a zero of order 4 at

O. The sum of these ordersis+2+2—-1-1+4=0.

Now, consider the rational functid, = § involving y. At the point
P; = (0,0), R; appears to be undefined. Bidt= x* — x, SOR, = Y= too,

x2—1
andRy(P1) = 0, that is,R; has a zero &®;. Using the explicit formula on
y, show thate = 0 andl = 1. So org, (Rz) = 1. On the other hand, the

denominatox? — 1 has neither a pole nor a zeroRat So orgh, (Ry) = 1.

ordp, (X) = 2 (sincee = 1,1 = 0, andP; is a special point), so the
representatioR; = § also givesorgd (R)) =2—-1=1.



Poles and Zeros of a Line: Example

L7 |
SANANES

(a) orch(l) = ordg(l) = ordgr(l) = 1 and orgh(l) = —3.
(b) orcb(t) = 2, ordp(t) = 1 and orgh(t) = —3.
(c) ordb(v) = ordg(v) = 1 and orgh(v) = —2.




Formal Sums and Free Abelian Groups

Leta,i € |, besymboldndexed byl.

A finite formal sum of g, i € 1, is an expression of the forE mia with
il

my € Z such thatm = 0 except for only finitely many € I.

The sumz m;g; is formal in the sense that the symbeajsare not meant to
il
be evaluated. They act ptaceholders

Define “mai + > may = > (M +n)a

icl icl icl
Also define— Z ma = Z(—m)a;
i€l iel
The set of all finite formal sums is an Abelian group calledftke
Abelian group generated bg;, i € 1.



Divisors on Curves

Let C be a projective curve defined ouer
K is assumed to balgebraically closed

A divisor is a formal sum of th&-rational points orC.
Notation:D = ), mp[P].

Thesupport of D is the set of point® for whichmp # 0.
Thedegreeof D is the sum)_, mp.

All divisors onC form a group denoted by Di(C) or Div(C).

All divisors onC of degree 0 form a subgroup denoted by Hi€) or
Divo(C).

Divisor of a rational function R(x,y) is Div(R) = >, orde(R)[P].
A principal divisor is the divisor of a rational function.

Principal divisors satisfy: DiR) + Div(S) = Div(RS and
Div(R) — Div(S) = Div(R/S).




Divisor of a line: Example




Picard Groups and Jacobians

Suppose th& is algebraically closed.

Every principal divisor belongs to D(C).

The set of all principal divisors is a subgroup of @(@), denoted by
Pring (C) or Prin(C).

Two divisors in Dik (C) are calledequivalentif they differ by the divisor
of a rational function.

The quotient group Diy(C)/ Prink (C) is called thedivisor class groupor
the Picard group, denoted Pig(C) or PiqC).

The quotient group DR(C)/ Pring (C) is called theJacobianof C,
denoted Pig(C) or Pid(C) or Jk(C) or J(C).

If K is not algebraically closedk (C) is a particular subgroup di (C).

Elliptic- and hyperelliptic-curve cryptography deals with the Jacobian o
elliptic and hyperelliptic curves.

For elliptic curves, the Jacobian can be expressed by a more explicit
chord-and-tangentrule.



Divisors and the Chord-and-Tangent Rule

Let C be an elliptic curve over an algebraically closed fi€ld

For everyD € DivY(C), there exist a unique rational poiRtand a rational
functionR such thaD = [P] — [O] + Div(R).

D is equivalent tdP] — [O] in Jk (C).

Identify P with the equivalence class @] — [O] in Jk(C).

This identification yields a bijection between the set of rational pointS o
and its Jacobialfik (C).

This bijection also leads to the chord-and-tangent rule in the following
sense:
LetD = ), mp[P] € Divk(C). Then,D is a principal divisor if and only if
> pMmp = 0 (integer sum), and
Zp mpP = O (sum under the chord-and-tangent rule).



lllustrations of the Chord-and-Tangent Rule

EYRNCARY
SANEANLA

(a) (©)

Identity: O is identified with[O] — [O] = 0 = Div(1).

Opposite: By Part (c), Di\v) = ([P] — [O]) + (|Q] — [0]) is0inJ(C). By
the correspondencB,+ Q = O, that is,Q = —P.

Sum: By Part (a), Divl) = ([P] — [O]) + ([Q] — [O]) + (R — [0]) is 0in
J(C), thatis,P+ Q+ R= O, thatis,P+ Q= —R.

Double: By Part (b), Dit) = ([P] — [O]) + ([P] — [O]) + (IQ] — [O]) is O
in J(C), thatis,P+ P+ Q= O, thatis, P = —Q.
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Elliptic Curves

Rational Maps and Endomorphisms on Elliptic Curves
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Weil and Tate Pairing




Notations and Assumptions

K is a field.
K is the algebraic closure ¢f.
Quite often, we will havK = Fq with p = chark.

E: Y24 (X +ag)Y = X3 + apX? + a4 X + ag is an elliptic curve defined
overK (thatis,g € K).

If L is any field withK C L C K, thenE is defined ovet. as well.
E, denotes the set df-rational points ork.

E. always contains the poi@ at infinity.

If L = Fqk, we writeEqk as a shorthand fdg, .

E (without any subscript) meark.

A rational functionR on E is an element oK (E).

Ris defined ovetL if Rhas a representatidh= G(x,y)/H(X,y) with
G,H € L[xy].



Elliptic Curves Over Finite Fields

Let K be not algebraically closed (lik€ = ).
The groupEy is isomorphic talk (E).

The one-to-one correspondencelgfE) with Eg allows us to use the
chord-and-tangent rule.

If P andQ areK-rational, then the chord-and-tangent rule guarantees tf
P + Qis K-rational too.

All K-rational points irEg together withO constitute a subgroup & .
Denote this subgroup b .

Ex can be identified with a subgrod (E) of Jk (E).

SinceK is not algebraically closedk (E) cannot be defined likég (E).

Thanks to the chord-and-tangent rule, we do not need to worry too muc
aboutJk (E) (at least so long as computational issues are of only conce



Discriminants and j-invariants

Define the following quantities fdE:

d, = a+4a

dy = 2a4+aiag

dg = a% + 4ag

ds = alag+ daras — ajagay + aas — a3
cs = d5—24d,

A(E) = —d3dg— 8d3 — 27dZ + 9dydads
j(E) = c3/A(E), if A(E)#0.

A(E) is called thediscriminant of E.

Jj(E) is called thg-invariant of E.

E is smooth (that is, an elliptic curve) if and onlyX(E) # 0.
j(E) is defined for every elliptic curve.

For two elliptic curves, E/, we have (E) = j(E') if and only if E andE’
are isomorphic.




Addition Formula for the General Weierstrass

Equation
Let P = (hy, ki) andQ = (hy, k2) be points orE. Assume thaP, Q,P + Q
are notO. LetR = (hz,k3) =P+ Q.

h3:)\2+a1)\—a2—h1—h2, and
ks = — (A + a;)hs — u — ag, where

ko — kg .
Py —hy if P#£Q,
A=

3h? 4 2a0hy +aq —atky o 5
2k, + aih; + ag ifP=Q and

=k — Ahg.

The opposite ofh, k) is (h, =k — ayh — ag).




Choosing a Random Point on an Elliptic Curve
LetE : Y2 + (a;X + ag)Y = X3 + apX? 4 ayX + ag be defined oveK.
To obtain a random poiR = (h, k) € Ex.

Choose thé&-coordinateh randomly fromK.

The correspondiny-coordinates are roots of
Y? + (ath + a3)Y — (h® + aph? + ash + ag).

This polynomial is either irreducible ové&r or has two roots irK.
If K is algebraically closed, then this polynomial has rootk in

If K is a finite field, then, with probability abouy/'2, this polynomial has
roots inkK.

Use a root-finding algorithm to compute a réot
Output(h, k).



Rational Maps on Elliptic Curves

A rational map onE is a functionE — E.

A rational mapx is specified by two rational functions;, o, € K(E) such
that, for any poinP € E, a(P) = a(h,k) = (a1(h, k), a2(h,k)) is again a
point onE.

Since«(P) is a point onE, a1, ap satisfy the equation fdE and constitute
the elliptic curveEg g,.

Denote the point at infinity on this curve l6y . Define’(P) = O for all
PecE.

For a non-zerax € Eg gy and a poinP € E, either bothny (P), az(P) are
defined aP, or both are undefined & In the first case, we take
a(P) = (a1(P), a2(P)), and in the second case(P) = O.

The addition ofEg g is compatible with the addition d&, that is,
(o + B)(P) = a(P) + B(P) for all a, # € Eg ) andP € E.

A rational map is either constant or surjective.



Rational Maps: Examples

Thezeromap?®' : E — E,P— O.

Theidentity mapid: E— E,P — P.

Thetranslation map 7o : E — E, P— P + Q, for a fixedQ € E.
Themultiplication-by- mmap [m] : E — E, P +— mP, wherem € Z.
TheFrobenius map ¢:

E is defined oveK = Iy

Forae K, al =aifand only ifa € F,
ForP = (h,k) € E, the point(h9, k%) € E.
Definep(h, k) = (h9, k7).



Endomorphisms

A rational map ork, which is also a group homomorphismefis called
anendomorphismor anisogeny

The set of all endomorphisms Efis denoted by En(E).

Define addition in En¢E) as(«a + 3)(P) = a(P) + 5(P).

Define multiplication in En¢E) as(a o 3)(P) = «(5(P)).

EndE) is a ring under these operations. The additive identit{’isThe
multiplicative identity is id.

All multiplication-by-m maps[m] are endomorphisms. We hajrg| # [n]
form#£n.

The translation mapg is not an endomorphism unle§s= O.
The Frobenius map is an endomorphism witlr # [m]| for anym.

If End(E) contains a map other than the maps, E is called a curve with
complex multiplication.



The Multiplication-by- m Maps

Identify [m] as a paifgm, hm) of rational functions.

g1=Xhy=y.

Oo = —2X+ N+ a\ —aand

hy = —A(Q2 — X) —a1g2 — a3 — Y,

3X2 + 2aX + ag — ary
2y +ax+ag

Form > 3, we have the recursive definition:
Om= —Om-1— X+ A2+ a1\ — a and
him = =A(gm — X) — @10m — @z — ¥,

hm_1—Yy

Om-1—X

where)\ =

where)\ =



The Group of m-torsion Points

Form e N, defineEm = {P € E| mP= O}.
Recall thatp = charK.
If p=0orgcdp,m) = 1, thenE[m| = Zm x Zm, and SQE[mM]| = n?.

Suppose thgt > 0. Letm = p”mf with gcdm, p) = 1. Then,
Zny X Ly if E[p] = {O},
Zny X Zm  Otherwise

If gcd(m, n) = 1, we haveE[mn = E[m] x E|n].

E[m] =

For a subse$ C E, define the divisof§ = >y g[P].

If p#£ 2,3 andm,n,m-+ n,m— nare all coprime tg, we have
Div (gm — gn) = [E[m+ n]] 4 [E[m — n]] — 2[E[m]] — 2[E[n]].

If pe {2,3}, gcdm, p) = 1, andn = p”n’ with » > 1 and gcdn’, p) = 1,
we have DiNgm — gn) = [E[m+ n]] + [E[m — n]] — 2[E[m]] — 2a”[E[n]].



Division Polynomials

The rational functiongm,, hy have poles precisely at the pointsifm]. But
they have some zeros also.

We investigate polynomials having zeros precisely at the poirEsmf.
Assume that eithgy = 0 or gcdp, m) = 1.

E[m] contains exactlyn” points with - p gy P = O.

Consider the degree-zero divis&m|] — n?[O0] = > p gy [P] — NP[O).
There exists a rational functiay, with Div (ym) = [E[m]] — m?[0)].
Since the only pole of, is atO, ¥ is a polynomial function.

1m iS unique up to multiplication of elements Kf-.

If we arrange the leading coefficient ¢f, to bem, theny,, becomes
unique and is called tha-th division polynomial.



Division Polynomials: Explicit Formulas
Yo = 0
P = 1
Yo = 2y+aiXx+as
Y3 = 3x*+ dpx® + 3dax® + 3dex + dg
Ya = [2C+ dpx® + 5dax* + 10dex® + 10dgx?+
(dadg — dgqds)X + dadg — dé] o
2 _ 2
Vom = (¢m+2¢m_1 w7/)m—2¢m+1)¢m forms 2
2
Yomi1l = Umi2tm — Umo1timg form>2
Ymintm-n
gm - gn = _W

Ymp2¥B_ 1 — Ym-200 1
= 211?21/1,3;1 L é(algm + a3)
Y21

(PYTA

Ym1¥m-1

Ui

. Puttingn = 1 givesgm = X —

him

Ym-1tmi1

+ (3% 4 28X+ a4 — &
( ? Rl




Size and Structure ofE,

Hasse’s Theorem:|Eg| = q+ 1 —twith -2,/ <t < 2,/G.

t is called therace of Frobeniusatq.

The Frobenius endomorphism satisfies ¢ — [t o ¢ + [q] = O'.
LetL = F be an extension df = Fy,.

LetW2 —tW + g = (W — a)(W — 3) with o, 3 € C.

Weil's Theorem: |Eq| = g+ 1— (ak+ 9.

Example: ConsiderE : Y2 = X3 + X + 1 defined oveFs. E5 contains the
nine pointsO, (0, +1), (2, £1), (3,£1) and(4, £2), so that

|Es| =9=(5+1) —t, thatis,t = —3.

ConsiderfW — o)(W — 3) = W? — tW 4 q = W? + 3W + 5, that is,
a4+ = —3anda3 = 5. Butthena? + 5% = (a + §)? — 2083 =
9—10= —1. Therefore|Ezs| = 25+ 1 — (—1) = 27.

Structure Theorem for Eg:

Eq is either cyclic or isomorphic té,, x Zn, with ng, ny > 2, ng|ny,
andng|(q— 1).



More on Divisors

/

\

Div(Lp,q) = [P] + [Q] + [R — 3[O].
Div(Lr —r) = [R + [-R — 2[0].
Dlv(Lp Q/Lr-r) = [P] +[Q = [-R - [0] = [P] + [Q] - [P+ Q] — [O].
[P] — [O] is equivalent tdP + Q] — [Q].
([P] = [O]) + (IQ] — [O)]) is equivalent tdP + Q] — [O].
For both these cases of equivalence, the pertinent rational function is

Lp,qo/Lp+0o,—(p+q) Which can be easily computed. We can force this
rational function to have leading coefficient 1.



More on Divisors (contd)

LetD = >, np[P] be divisor onE andf € K(E) a rational function such
that the supports dd and DiV(f) are disjoint. Define

fo)=[[fP™= ][ fP™.

P<E PeSupp(D)

Div(f) = Div(g) if and only if f = cgfor some non-zero constaot K*.

If D has degree 0, then
f(D) = g(D) [[pc™ = g(D)c2»™ = g(D)c® = g(D).

Weil reciprocity theorem: If f andg are two non-zero rational functions
on E such that Diyf ) and Div(g) have disjoint supports, then

f(Div(g)) = g(Div(f)).




Weil Pairing: Definition

Let E be an elliptic curve defined over a finite fisdd= IF.

Take a positive integan coprime top = chark.

Let ium denote than-th roots of unity inK.

We haveum C Fy, wherek = ordn(q) is called theembedding degree
Let E[m] be those points it = Eg, whose orders dividen.

Weil pairing is a function

em: E[M x E[m] — pim
defined as follows.
TakeP1, P, € E[m.

Let D, be a divisor equivalent t?1] — [O]. SincemPy = O, there exists a
rational functionf; such that Diyf;) = mDy = m[P1] — m[O].

Similarly, letD2 be a divisor equivalent tfP,] — [O]. There exists a
rational functionf, such that Diyf,) = mD, = m[P,] — m[O].

D; andD; are chosen to have disjoint supports.
Defineem(Pl, Pz) = fl(Dz)/fz(D1>.



Weil Pairing is Well-defined

f; andf, are unique up to multiplication by non-zero element&bdf So
f1(D2) andf,(D1) are independent of the choicesfofindf,.

Let D} = D; + Div(g) have disjoint support fror®,. But then
mD; = mD; + mDiv(g) = Div(f1) + Div(g™) = Div(fig™). Therefore,

f1g™(D2) /f2(D1 + Div(g)) = fzf(lé?;)z@(lgf\iz)))

fi(D2)g(mD,) _ fi(D2)g(Div(fz))  f1(D2)g(Div(fz))  fi(D2)

- f2(D1)f2(Div(g))  f2(Da)f2(Div(g))  f2(D1)g(Div(f2)) — f2(D1)’

Soen(P1, P2) is independent of the choice Bf, and likewise oD too.

It is customary to choos®, = [P2] — [O] andD; = [P1 + T] — [T] for a
point T different from—Py, P2, P2 — P1, andO. T need not be ifE[m|.
One can takd randomly fromE.

em(Pl, Pz)m = f]_(sz)/fz(le) = fl(DIV(fz))/fz(DIV(fl)) =1 (by Weil
reciprocity), that isem(P1, P2) is indeed amm-th root of unity.



Properties of Weil Pairing

Let P, Q, R be arbitrary points ife[m)].
Bilinearity:

em(P+QR) = en

Alternating: en(P,P) = 1.

Skew symmetry: em(Q, P) = en(P, Q).

Non-degeneracy:lf P # O, thenen(P, Q) # 1 for someQ € E[m|.
Compatibility: If Se E[mn andQ € E[n], thenemn(S, Q) = en(mS Q).

If mis a prime and® # O, theney(P, Q) = 1 if and only ifQ lies in the
subgroup generated IB/(that is,Q = aP for some integea).



Computing Weil Pairing: The Functions f, p

LetP € E.
Forn € Z, define the rational functiorfgp as having the divisor
Div(fn,p) = n[P] — [nP] — (n—1)[O].

fn,p are unique up to multiplication by elementskof.
We may choose the unique monic polynomialffps.

fn, p satisfy the recurrence relation:

for = fop = 1,
L
farrp = <P’np> fap forn>1,
Lnr1)p, —(nt1)p
1
fonp = . forn> 1.
n,

If P € E[m], then Di(fm p) = mP] — [mP — (m— 1)[0] = m[P] — mO].

Computingfm p using the above recursive formula is too inefficient.



Computing Weil Pairing: More about f, p

The rational function, p also satisfy

. LnP,n/P
frrm,p = fop frv,p X L .
(n+n")P,—(n+n")P

In particular, forn = n’, we have

L

2 nP,nP

f2n7P == fn7p X <L .
2nP, —2nP

Here,Lnp np is the line tangent t& at the poinnP.

This and the recursive expressionf@f; p in terms off, p yield a repeated
double-and-add algorithm.

The functionf, p is usually kept in the factored form.

It is often not necessary to compue explicitly. The value of, p at
some poinQ is only needed.



Miller’s Algorithm for Computing f, p

Input: A point P € E and a positive integen.
Output: The rational functiori, p.
Steps
Letn = (nshs—1 ... N1No)2 be the binary representation mfvith ng = 1.
Initialize f = 1 andU = P.
Fori=s—1s—2,...,1,0, do the following:
/* Doubling */
Updatef = 2 x (Lz?iu) andU = 2U.
[* Conditional adding */
If (nj = 1), updatef =f x <L> andU =U + P.

Lu+p, —(U+P)

Returnf.

Note: One may supply a poir® € E and wish to compute the value
fn,p(Q) (instead of the functiofy, p). In that case, the functions
Lu,u/Lau,—2u andLU7P/Lu+p7_(U+p) should be evaluated gt before
multiplication withf.



Weil Pairing and the Functionsf, p

Let Py, P, € E[m], and we want to comput@n(P1, Py).

Choose a point not equal tot+Py, —P2, P2 — P1, O.

T, (T) fmp (P2 —T)
We haveen(P1, P2) = Fops(—T) fmm (Pt T)
m fmp, (P2)
fmp,(P1)

Miller’s algorithm for computing, p(Q) can be used.

If Py # P,, then we also haven(P1, P2) = (—1)

All these invocations of Miller's algorithm have= m.
So a single double-and-add loop suffices.

For efficiency, one may avoid the division operations in Miller's loop by
separately maintaining polynomial expressions for the numerator and t
denominator of . After the loop terminates, a single division is made.




Tate Pairing

Let E be an elliptic curve defined ové&r = [Fq with p = charK.

Let mbe a positive integer coprime o

Letk = ordm(q) (theembedding degreg andL = F.

LetE [m ={P € EL | mP= O}, andmb. = {mP| P € E_}.

Let (L*)™ = {@™ | a € L*} be the set ofn-th powers inL*.

Let P be a point inE_ [m], andQ a point inE .

SincemP = O, there is a rational functiohwith Div(f) = m[P] — m[O].

Let D be any divisor equivalent t®] — [O] with disjoint support from

Div(f). It is customary to choose a poihtdifferent from—P,Q,Q — P, O

and takeD = [Q+ T] — [T].

TheTate pairing (, )m: EL[m] x E./mB. — L*/(L*)™of PandQ s
(P,Q)m =f(D).

Q should be regarded as a pointin/mE_.

The value of(P, Q)m is unique up to multiplication by am-th power of a
non-zero element df, that is,(P, Q)m is unique inL* /(L*)™.



Properties of Tate Pairing
Bilinearity:

<P + Qa R)m = <P7 R>m<Q, R>ma

<P)Q+ R)m - <P) Q>m<P7 R>m
Non-degeneracy:For everyP € E [m], P # O, there exist®) with
(P,Q)m # 1. For everyQ ¢ mhE_, there exist® € E_[m] with (P, Q)m # 1.
The Weil pairing is related to the Tate pairing as

P9 = (5

up tom-th powers.

Letk = ordm(q) be the embedding degree. The Tate pairing can be max
unique by exponentiation to the poweK — 1)/m:

a1
én(P,Q) = ((P,Q)m) ™
én(P, Q) is called theaeduced Tate pairing. The reduced pairing
continues to exhibit bilinearity and non-degeneracy.




Computing the Tate Pairing

TakeD = [Q+ T] — [T], whereT # P,—Q,P — Q, O.

We have(P, Q)m = fm’fFr’:S(i)T)

Miller’'s algorithm is used to computé®, Q) m.

A single double-and-add loop suffices.

For efficiency, the numerator and the denominatdrimay be updated
separately. After the loop, a single division is made.

If the reduced pairing is desired, then a final exponentiation to the powe
(¢ — 1)/mis made on the value returned by Miller’s algorithm.



Weil vs. Tate Pairing

The Miller loop for Tate pairing is more efficient than that for Weil pairing
The reduced Tate pairing demands an extra exponentiation.

Letk = ordn(q) be the embedding degree, ane- F.

Tate pairing requires working in the field

Let L’ be the field obtained by adjoining toall the coordinates of
E[m| = Eg[m].

Weil pairing requires working in the field'.
L’ is potentially much larger thaln.

Special casemis a prime divisor of Ex | with mfgandm/(q— 1). Then,
L’ = L. So it suffices to work in the field only.

For cryptographic applications, Tate pairing is used more often that We
pairing.

One take& q with |g| about 160-300 bits arld< 12. Larger embedding
degrees are impractical for implementation.



Distortion Maps

Let mbe a prime divisor ofEx|.
Let P be a generator of a subgro@of Ex of orderm.
Goal: To define a pairing of the points i@.

If k=1 (thatis,L = K), then(P,P)m # 1.

Bad news:If k > 1, then(P,P)y, = 1.
But then, by bilinearity{Q, Q') = 1 forallQ,Q’ € G.

A way out: If k> 1 andQ € L is linearly independent d? (that is,
Q ¢ G), then(P,Q)m # 1.

Let : E. — E_ be an endomorphism & with ¢(P) ¢ G.

¢ is called adistortion map.

Define thedistorted Tate pairing of P,Q € G as(P, ¢(Q))m.
Since¢(P) is linearly independent d?, we have(P, ¢(P))m # 1.
Sinceg¢ is an endomorphism, bilinearity is preserved.

Symmetry: We have(Q, ¢(Q'))m = (Q, ¢(Q))mforall Q, Q' € G.
Distortion maps exist only for supersingular curves.



Twists

Let E be defined by the short Weierstrass equaiénr= X3 4 aX + b.
Letd > 2, andv ¢ Fq ad-th power non-residue.

Consider the curve’ : Y2 = X3 4 v%/9aX + v/ (defined ovef ).
If d =2, thenE’ is defined ovef itself.
E' is called awist of E of degreed.

E andE’ are isomorphic oveFq. An explicit isomorphism is given by the
mapgq : E' — E taking (h, k) — (v-2/9h,v-3/k).

Letmbe a prime divisor ofEq|, G a subgroup of ordemin Eg, andG' a
subgroup of ordemin E(’qk. Let P, P’ be generators d6 andG'. Suppose

thatpq(P’) is linearly independent d?.

Ford = 2 (quadratic twist), a natural choice i& C Eq andG’ C E&.
Define a pairing of point® € G andQ’' € G’ as(Q, ¢4(Q'))m-

This is called thdwisted Tate pairing.



Pairing-friendly Curves

Requirement for efficient computation: Small embedding degrde
For general curves is quite high (k| ~ |m).
Only some specific types of curves qualify as pairing-friendly.
Supersingular curves

By Hasse’s TheoremE,| = q+ 1 — twith |t| < 2,/G.

If p|t, we callE asupersingular curve

Curves of the form¥? + aY = X3 + bX + c are supersingular over fields of
characteristic 2.

All supersingular curves over a finite fiekdof characteristic 2 haveinvariant
equal to 0, and so are isomorphic o#erThe same result holds for= 3.

Supersingular curves have small embedding degrees. Th@ossibilities are
1,2,3,4,6.

If Fy is a prime field withg > 5, the only possibility isk = 2.
Non-supersingular curves are calledinary curves.

It is difficult to locate ordinary curves with small embedglidegrees.




How to Find Pairing-friendly Curves

Let k be a positive integer, anfl a small positive square-free integer.

Search for integer-valued polynomia(s), m(x), q(X) € Q[x] to represent a
family of elliptic curves of embedding degr&eand discriminant\. The
triple (t,m, g) should satisfy the following:

g(x) = p(x)" for somen € N andp(x) € Q[x] representing primes.

m(x) is irreducible with a positive leading coefficient.

m(x)[q(x) + 1 t(x).

m(X)| Pk (t(x) — 1), wheredy is thek-th cyclotomic polynomial.

There are infinitely many intege(s, y) satisfyingAy? = 4q(x) — t(x)2.

1
2
3
4
5

If yin Condition 5 can be parameterized by a polynomia) € Q[x], the
family is calledcomplete otherwise it is calledparse

For obtaining ordinary curves, we require ggt), m(x)) = 1.

Thecomplex multiplication method is used to obtain specific examples
elliptic curveskE overFq with Eq having a subgroup of orden.




Some Families of Pairing-friendly Curves

Some sparse families of ordinary pairing-friendly curves are:
MNT (Miyaji-Nakabayashi-Takano) curves: These are curves of prime ordel
with embedding degrees 3, 4 or 6.
Freeman curves:These curves have embedding degree 10.

Some complete families of ordinary pairing-friendly curves are:
BN (Barreto-Naehrig) curves: These curves have embedding degree 12 and
discriminant 3.
SB (Scott-Barreto) curves
BLS (Barreto-Lynn-Scott) curves
BW (Brezing-Weng) curves



Efficient Implementation

Denominator elimination: Letk be even. Take = k/2.
fnp(Q) is computed by Miller’s algorithm, whei® = (h, k) with h € Fq.

The denominatorkay, —2u(Q) andLyp _u+p)(Q) correspond to vertical
lines, evaluate to elements }Egd, and can be discarded.

The final exponentiation guarantees correct computatiés @, Q).

BMX (Blake-Murty-Xu) refinements use 2-bit windows in Miller’s loop.

Loop reduction: With clever modifications to Tate pairing, the number o
iterations in the Miller loop can be substantially reduced.
A typical reduction is by a factor of 2.
Examples
n and nr pairings
Ate pairing
R-ate pairing
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