Algebraic Curves An Elementary Introduction

Abhijit Das

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

August 22, 2011

Part I

Affine and Projective Curves

- Rational Points on Curves
- Polynomial and Rational Functions on Curves
- Divisors and Jacobians on Curves

Affine Curves

- K is a field.
- \overline{K} is the algebraic closure of K.
- It is often necessary to assume that *K* is algebraically closed.
- **Affine plane:** $K^2 = \{(h, k) \mid h, k \in K\}.$
- For $(h, k) \in K^2$, the field elements h, k are called **affine coordinates**.
 - **Affine curve:** Defined by a polynomial equation:

$$C: f(X,Y) = 0.$$

- It is customary to consider only irreducible polynomials f(X, Y). If f(X, Y) admits non-trivial factors, the curve C is the set-theoretic union of two (or more) curves of smaller degrees.
- **Rational points on C:** All points $(h, k) \in K^2$ such that f(h, k) = 0.
- Rational points on C are called **finite points**.

Affine Curves: Examples

- Straight lines: aX + bY + c = 0.
- Circles: $(X a)^2 + (Y b)^2 r^2 = 0$.
- Conic sections: $aX^2 + bXY + cY^2 + dX + eY + f = 0$.
- **Elliptic curves:** Defined by the *Weierstrass equation*:

$$Y^2 + (a_1X + a_3)Y = X^3 + a_2X^2 + a_4X + a_6.$$

If char $K \neq 2, 3$, this can be simplified as $Y^2 = X^3 + aX + b$.

- **Hyperelliptic curves of genus** g: $Y^2 + u(X)Y = v(X)$ with deg $u \le g$, deg v = 2g + 1, and v monic.
 - If char $K \neq 2$, this can be simplified as $Y^2 = w(X)$ with deg w = 2g + 1 and w monic.
- Parabolas are hyperelliptic curves of genus 0.
- Elliptic curves are hyperelliptic curves of genus 1.

Projective Plane

- Define a relation \sim on $K^3 \setminus \{(0,0,0)\}$ as $(h,k,l) \sim (h',k',l')$ if $h' = \lambda h$, $k' = \lambda k$ and $l' = \lambda l$ for some non-zero $\lambda \in K$.
- \sim is an equivalence relation on $K^3 \setminus \{(0,0,0)\}.$
- The equivalence class of (h, k, l) is denoted by [h, k, l].
- [h, k, l] can be identified with the line in K^3 passing through the origin and the point (h, k, l).
- The set of all these equivalence classes is the **projective plane** over K.
- The projective plane is denoted as $\mathbb{P}^2(K)$.
- h, k, l in [h, k, l] are called **projective coordinates**.
 - Projective coordinates are unique up to multiplication by non-zero elements of K.
- The three projective coordinates cannot be simultaneously 0.

Relation Between the Affine and the Projective Planes $\mathbb{P}^2(K)$ is the affine plane K^2 plus the points at infinity.

Take $P = [h, k, l] \in \mathbb{P}^2(K)$.

Take $P = [n, k, t] \in \mathbb{P}^{-}(K)$

Case 1: $l \neq 0$.

P = [h/l, k/l, 1] is identified with the point $(h/l, k/l) \in K^2$.

The line in K^3 corresponding to P meets Z = 1 at (h/l, k/l, 1).

P is called a **finite point**.

Case 2: l = 0.

The line in K^3 corresponding to P does not meet Z = 1.

P does not correspond to a point in K^2 .

P is a **point at infinity**.

For every slope of lines in the X, Y-plane, there exists exactly one point at infinity.

A line passes through all the points at infinity. It is the **line at infinity**.

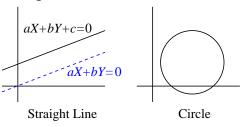
Two distinct lines (parallel or not) in $\mathbb{P}^2(K)$ always meet at a unique point (consistent with Bézout's theorem).

Through any two distinct points in $\mathbb{P}^2(K)$ passes a unique line.

Passage from Affine to Projective Curves

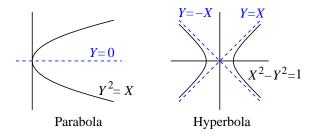
- A (multivariate) polynomial is called **homogeneous** if every non-zero term in the polynomial has the same degree.
- Example: $X^3 + 2XYZ 3Z^3$ is homogeneous of degree 3. $X^3 + 2XY 3Z$ is not homogeneous. The zero polynomial is homogeneous of any degree.
- Let C: f(X, Y) = 0 be an affine curve of degree d.
- $f^{(h)}(X,Y,Z) = Z^d f(X/Z,Y/Z)$ is the **homogenization** of f. $C^{(h)}: f^{(h)}(X,Y,Z) = 0$ is the **projective curve** corresponding to C.
- For any non-zero $\lambda \in K$, we have $f^{(h)}(\lambda h, \lambda k, \lambda l) = \lambda^d f^{(h)}(h, k, l)$. So
- $f^{(h)}(\lambda h, \lambda k, \lambda l) = 0$ if and only if $f^{(h)}(h, k, l) = 0$.
- The rational points of $C^{(h)}$ are all [h, k, l] with $f^{(h)}(h, k, l) = 0$.
- **Finite points on** $C^{(h)}$: Put Z = 1 to get $f^{(h)}(X, Y, 1) = f(X, Y)$. These are the points on C.
- **Points at infinity on** $C^{(h)}$: Put Z = 0 and solve for $f^{(h)}(X, Y, 0) = 0$. These points do not belong to C.

Examples of Projective Curves



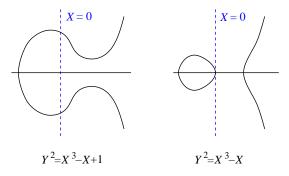
- **Straight line:** aX + bY + cZ = 0.
 - Finite points: Solutions of aX + bY + c = 0.
 - Points at infinity: Solve for aX + bY = 0.
 - If $b \neq 0$, we have Y = -(a/b)X. So [1, -(a/b), 0] is the only point at infinity. If b = 0, we have aX = 0, that is, X = 0. So [0, 1, 0] is the only point at infinity.
- Circle: $(X aZ)^2 + (Y bZ)^2 = r^2Z^2$.
 - Finite points: Solutions of $(X a)^2 + (Y b)^2 = r^2$.
 - Points at infinity: Solve for $X^2 + Y^2 = 0$.
 - For $K = \mathbb{R}$, the only solution is X = Y = 0, so there is no point at infinity.
 - For $K = \mathbb{C}$, the solutions are $Y = \pm iX$, so there are two points at infinity: [1, i, 0] and [1, -i, 0].

Examples of Projective Curves (contd.)



- Parabola: $Y^2 = XZ$.
- Finite points: Solutions of $Y^2 = X$.
 - Points at infinity: Solve for $Y^2 = 0$.
 - Y = 0, so [1, 0, 0] is the only point at infinity.
- **Hyperbola:** $X^2 Y^2 = Z^2$.
 - Finite points: Solutions of $X^2 Y^2 = 1$.
 - Points at infinity: Solve for $X^2 Y^2 = 0$.
 - $Y = \pm X$, so there are two points at infinity: [1, 1, 0] and [1, -1, 0].

Examples of Projective Curves (contd.)



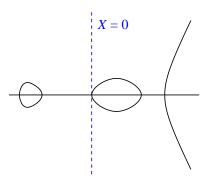
Elliptic curve: $Y^2Z + a_1XYZ + a_3YZ^2 = X^3 + a_2X^2Z + a_4XZ^2 + a_6Z^3$.

Finite points: Solutions of $Y^2 + a_1XY + a_3Y = X^3 + a_2X^2 + a_4X + a_6$.

Points at infinity: Solve for $X^3 = 0$.

X = 0, that is, [0, 1, 0] is the only point at infinity.

Examples of Projective Curves (contd.)

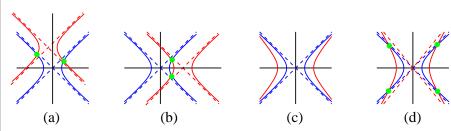


A hyperelliptic curve of genus 2: $Y^2 = X(X^2 - 1)(X^2 - 2)$

- **Hyperelliptic curve:** $Y^2Z^{2g-1} + Z^gu(X/Z)YZ^g = Z^{2g+1}v(X/Z)$.
 - Finite points: Solutions of $Y^2 + u(X)Y = v(X)$.
 - Points at infinity: The only Z-free term is X^{2g+1} (in $Z^{2g+1}v(X/Z)$). So [0, 1, 0] is the only point at infinity.

Bézout's Theorem

- A curve of degree m and a curve of degree n intersect at exactly mn points.
- The intersection points must be counted with proper multiplicity.
- It is necessary to work in algebraically closed fields.
- Still, the theorem is not true. For example, two parallel lines or two concentric circles never intersect.
- Passage to the projective plane makes Bézout's theorem true.



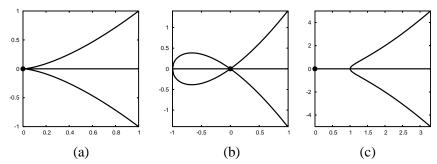
- (a) and (b): Two simple intersections at the points at infinity
- (c): Two tangents at the points at infinity
- (d): No intersections at the points at infinity

Smooth Curves

Let C: f(X, Y, Z) = 0 be a projective curve, and P = [h, k, l] a rational point on C.

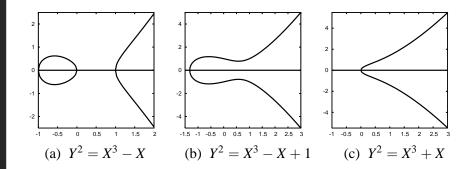
- *P* is called a **smooth point** on *C* if the tangent to *C* at *P* is uniquely defined.
- **Case 1:** P is a finite point.
 - Now, $l \neq 0$. Consider the affine equation f(X, Y) = 0.
 - Both $\frac{\partial f}{\partial X}$ and $\frac{\partial f}{\partial Y}$ do not vanish simultaneously at (h/l, k/l).
- **Case 2:** *P* is a point at infinity.
 - Now, l = 0, so at least one of h, k must be non-zero.
 - If $h \neq 0$, view *C* as the homogenization of $f_X(Y, Z) = f(1, Y, Z)$.
 - (k/h, l/h) is a finite point on f_X . Apply Case 1.
 - If $k \neq 0$, view C as the homogenization of $f_Y(X, Z) = f(X, 1, Z)$. (h/k, l/k) is a finite point on f_Y . Apply Case 1.
- C is a **smooth curve** if it is smooth at every rational point on it.

Types of Singularity



- (a) A cusp or a spinode: $Y^2 = X^3$.
- (b) A **loop** or a **double-point** or a **crunode**: $Y^2 = X^3 + X^2$.
- (c) An **isolated point** or an **acnode**: $Y^2 = X^3 X^2$
- For a *real* curve f(X, Y) = 0, the type of singularity is determined by the matrix $\operatorname{Hessian}(f) = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x^2} \end{pmatrix}$.

Examples of Smooth Curves



- An elliptic or hyperelliptic curve is needed to be smooth by definition.
- A curve of the form $Y^2 = v(X)$ is smooth if and only if v(X) does not contain repeated roots.
- The point at infinity on an elliptic or hyperelliptic curve is never a point of singularity.

Polynomial and Rational Functions on Curves

Let C: f(X, Y) = 0 be a curve defined by an *irreducible polynomial* $f(X, Y) \in K[X, Y]$.

- Let G(X, Y), $H(X, Y) \in K[X, Y]$ with f|(G H). Then, G(P) = H(P) for every rational point P on C (since f(P) = 0). Thus, G and H represent the same function on C.
- Define $G(X,Y) \equiv H(X,Y) \pmod{f(X,Y)}$ if and only if f|(G-H).
- Congruence modulo f is an equivalence relation on K[X, Y].
- \blacksquare Call the equivalence classes of *X* and *Y* by *x* and *y*.
 - The equivalence class of G(X, Y) is G(x, y).
- $K[C] = K[X,Y]/\langle f(X,Y)\rangle = K[x,y]$ is an integral domain.
- The field of fractions of K[C] is $K(C) = \{G(x, y)/H(x, y) \mid H(x, y) \neq 0\} = K(x, y).$

Polynomial and Rational Functions on Elliptic and Hyperelliptic Curves

Consider the elliptic curve $Y^2 + u(X)Y = v(X)$, where $u(X) = a_1X + a_3$ and $v(X) = X^3 + a_2X^2 + a_4X + a_6$. $v^2 = -u(x)v + v(x)$.

Every polynomial function on C can be represented uniquely as a(x) + yb(x) with $a(x), b(x) \in K[x]$.

Conjugate of *G*: $\hat{G}(x, y) = a(x) - b(x)(u(x) + y)$.

Norm of *G*: $N(G) = G\hat{G}$. $N(G) = a(x)^2 - a(x)b(x)u(x) - v(x)b(x)^2 \in K[x]$.

For $G(x, y) = a(x) + yb(x) \in K[C]$, define:

Every rational function on C can be represented as s(x) + yt(x) with $s(x), t(x) \in K(x)$.

K(C) is the quadratic extension of K(X) obtained by adjoining a root of the irreducible polynomial $Y^2 + u(X)Y - v(X) \in K(X)[Y]$. The current notion of conjugacy coincides with the standard notion for field extensions.

These results hold equally well for hyperelliptic curves too.

Poles and Zeros of Rational Functions

Let C: f(X, Y) = 0 be a plane (irreducible) curve, and P = (h, k) a finite point on C.

- Let $G(x, y) \in K[C]$. The **value** of G at P is $G(P) = G(h, k) \in K$.
- A rational function $R(x, y) \in K(C)$ is **defined** at P if there is a representation R(x, y) = G(x, y)/H(x, y) for some polynomials G, H with $H(P) = H(h, k) \neq 0$. In that case, the **value** of R at P is defined as $R(P) = G(P)/H(P) = G(h, k)/H(h, k) \in K$.
- If R(x, y) is not defined at P, we take $R(P) = \infty$.
- Let $R(x, y) \in K(C)$ and P a finite point on C.
 - P is a **zero** of R is R(P) = 0.
 - *P* is a **pole** of *R* is $R(P) = \infty$.
- The set of rational functions on C defined at P is a local ring with the unique maximal ideal comprising functions that evaluate to 0 at P.
- The notion of value of a rational function can be extended to the points at infinity on *C*.

Value of a Rational Function at \mathcal{O} : Example

Let C be an elliptic curve with \mathcal{O} the point at infinity.

- Neglecting lower-degree terms gives $Y^2 \approx X^3$.
- \blacksquare X is given a weight 2, and Y a weight 3.
- Let $G(x, y) = a(x) + yb(x) \in K[C]$. Define the **degree** of G as $\deg G = \max(2 \deg_x(a), 3 + 2 \deg_x(b))$.
- The **leading coefficient** of G is that of a or b depending upon whether $2 \deg_x(a) > 3 + 2 \deg_x(b)$ or not.
- Let $R(x, y) = G(x, y)/H(x, y) \in K(C)$. Define $R(\mathcal{O})$ as:
 - 0 if $\deg G < \deg H$.
- ∞ if deg $G > \deg H$.
 - The ratio of the leading coefficients of G and H, if $\deg G = \deg H$.
- For hyperelliptic curves, analogous results hold. Now, X and Y are given weights 2 and 2g + 1 respectively.

Multiplicities of Poles and Zeros

Let C be a curve, and P a rational point on C.

- There exists a rational function $U_P(x, y)$ (depending on P) such that:
- 1 $U_P(P) = 0$, and

- every rational function $R(x, y) \in K(C)$ can be expressed as $R = U_p^d S$ with S having neither a pole nor a zero at P.
- U_P is called a **uniformizer**.
 - The integer d is independent of the choice of U_P .
 - Define the **order** of R at P as $ord_P(R) = d$.
 - *P* is a **zero** of *R* if and only if $ord_P(R) > 0$. **Multiplicity** is $ord_P(R)$.
 - *P* is a **pole** of *R* if and only if $\operatorname{ord}_P(R) < 0$. **Multiplicity** is $-\operatorname{ord}_P(R)$.
 - *P* is neither a pole nor a zero of *R* if and only if $ord_P(R) = 0$.
- Any (non-zero) rational function has only finitely many poles and zeros.
 - For a *projective* curve over an *algebraically closed* field, the sum of the orders of the poles and zeros of a (non-zero) rational function is 0.

Poles and Zeros for Elliptic Curves

Let $C: Y^2 + u(X)Y = v(X)$ be an elliptic curve with \mathcal{O} the point at infinity, and P = (h, k) a finite point on C.

- The **opposite** of P is defined as $\tilde{P} = (h, -k u(h))$. P and \tilde{P} are the only points on C with X-coordinate equal to h.
- The opposite of \mathcal{O} is \mathcal{O} itself.

 P is called an **ordinary point** if $\tilde{P} \neq P$.
- *P* is called a **special point** if $\tilde{P} = P$.
 - P is called a **special point** if $P \equiv P$.
 - Any line passing through P but not a tangent to C at P can be taken as a **uniformizer** U_P at P.
 - For example, we may take $U_P = \begin{cases} x h & \text{if } P \text{ is an ordinary point,} \\ y k & \text{if } P \text{ is a special point.} \end{cases}$
 - A **uniformizer** at \mathcal{O} is x/y.
- For hyperelliptic curves, identical results hold. A uniformizer at \mathcal{O} is x^g/y .

Multiplicities of Poles and Zeros for Elliptic Curves

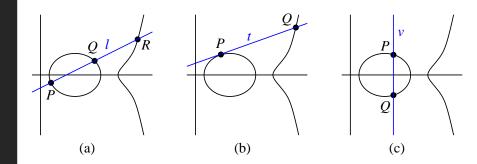
- Let $G(x, y) = a(x) + yb(x) \in K[C]$.
- Let *e* be the largest exponent for which $(x h)^e$ divides both a(x) and b(x).
- Write $G(x, y) = (x h)^e G_1(x, y)$.
- Take l = 0 if $G_1(h, k) \neq 0$.
- If $G_1(h,k) = 0$, take l to be the largest exponent for which $(x h)^l | N(G_1)$.
- $\operatorname{ord}_P(G) = egin{cases} e+l & ext{if } P ext{ is an ordinary point,} \ 2e+l & ext{if } P ext{ is a special point.} \end{cases}$
- $\operatorname{ord}_{\mathcal{O}}(G) = -\max(2\deg_x a, 3 + 2\deg_x b).$
- For a rational function $R(x, y) = G(x, y)/H(x, y) \in K(C)$, we have $\operatorname{ord}_P(R) = \operatorname{ord}_P(G) \operatorname{ord}_P(H)$.
- For hyperelliptic curves, identical results hold. The order of G at \mathcal{O} is $\operatorname{ord}_{\mathcal{O}}(G) = -\max(2\deg_x a, 2g + 1 + 2\deg_x b)$.

Poles and Zeros on Elliptic Curves: Examples

Consider the elliptic curve $C: Y^2 = X^3 - X$.

- Rational functions involving only x are simpler. $R_1 = \frac{(x-1)(x+1)}{x^3(x-2)}$ has simple zeros at $x = \pm 1$, a simple pole at x = 2, and a pole of multiplicity three at x = 0. The points on C with these x-coordinates are $P_1 = (0,0)$, $P_2 = (1,0)$, $P_3 = (-1,0)$, $P_4 = (2,\sqrt{6})$ and $P_5 = (2,-\sqrt{6})$. P_1,P_2,P_3 are special points, so $\operatorname{ord}_{P_1}(R_1) = -6$, $\operatorname{ord}_{P_2}(R_1) = \operatorname{ord}_{P_3}(R_1) = 2$. P_4 and P_5 are ordinary points, so $\operatorname{ord}_{P_4}(R_1) = \operatorname{ord}_{P_5}(R_1) = -1$. Finally, note that $R_1 \to \frac{1}{x^2}$ as $x \to \infty$. But x has a weight of 2, so R_1 has a zero of order 4 at C. The sum of these orders is -6 + 2 + 2 1 1 + 4 = 0.
- Now, consider the rational function $R_2 = \frac{x}{y}$ involving y. At the point $P_1 = (0,0)$, R_2 appears to be undefined. But $y^2 = x^3 x$, so $R_2 = \frac{y}{x^2 1}$ too, and $R_2(P_1) = 0$, that is, R_2 has a zero at P_1 . Using the explicit formula on y, show that e = 0 and l = 1. So $\operatorname{ord}_{P_1}(R_2) = 1$. On the other hand, the denominator $x^2 1$ has neither a pole nor a zero at P_1 . So $\operatorname{ord}_{P_1}(R_2) = 1$.
- $\operatorname{ord}_{P_1}(x) = 2$ (since e = 1, l = 0, and P_1 is a special point), so the representation $R_2 = \frac{x}{y}$ also gives $\operatorname{ord}_{P_1}(R_2) = 2 1 = 1$.

Poles and Zeros of a Line: Example



- (a) $\operatorname{ord}_{P}(l) = \operatorname{ord}_{Q}(l) = \operatorname{ord}_{R}(l) = 1$ and $\operatorname{ord}_{\mathcal{O}}(l) = -3$.
- (b) $\operatorname{ord}_P(t) = 2$, $\operatorname{ord}_Q(t) = 1$ and $\operatorname{ord}_Q(t) = -3$.
- (c) $\operatorname{ord}_{P}(v) = \operatorname{ord}_{Q}(v) = 1$ and $\operatorname{ord}_{\mathcal{O}}(v) = -2$.

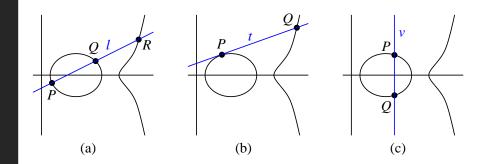
Formal Sums and Free Abelian Groups

- Let a_i , $i \in I$, be *symbols* indexed by I.
- A finite formal sum of a_i , $i \in I$, is an expression of the form $\sum_{i \in I} m_i a_i$ with $m_i \in \mathbb{Z}$ such that $m_i = 0$ except for only finitely many $i \in I$.
- The sum $\sum_{i \in I} m_i a_i$ is formal in the sense that the symbols a_i are not meant to be evaluated. They act as *placeholders*.
- Define $\sum_{i \in I} m_i a_i + \sum_{i \in I} n_i a_i = \sum_{i \in I} (m_i + n_i) a_i$
- Also define $-\sum_{i \in I} m_i a_i = \sum_{i \in I} (-m_i) a_i$
- The set of all finite formal sums is an Abelian group called the **free** Abelian group generated by a_i , $i \in I$.

Divisors on Curves

- Let C be a projective curve defined over K.
- *K* is assumed to be *algebraically closed*.
- A **divisor** is a formal sum of the *K*-rational points on *C*.
- Notation: $D = \sum_{P} m_{P}[P]$.
- The **support** of *D* is the set of points *P* for which $m_P \neq 0$.
- The **degree** of *D* is the sum $\sum_{P} m_{P}$.
- All divisors on C form a group denoted by $Div_K(C)$ or Div(C).
 - All divisors on C of degree 0 form a subgroup denoted by $\operatorname{Div}_K^0(C)$ or $\operatorname{Div}^0(C)$.
- **Divisor of a rational function** R(x, y) is $Div(R) = \sum_{P} ord_{P}(R)[P]$.
 - A **principal divisor** is the divisor of a rational function.
- Principal divisors satisfy: Div(R) + Div(S) = Div(RS) and Div(R) Div(S) = Div(R/S).

Divisor of a line: Example



- (a) Div(l) = [P] + [Q] + [R] 3[O].
- (b) Div(t) = 2[P] + [Q] 3[O].
- (c) Div(v) = [P] + [Q] 2[O].

Picard Groups and Jacobians

- Suppose that *K* is algebraically closed.
- Every principal divisor belongs to $Div_K^0(C)$.
- The set of all principal divisors is a subgroup of $Div_K^0(C)$, denoted by $Prin_K(C)$ or Prin(C).
 - Two divisors in $Div_K(C)$ are called **equivalent** if they differ by the divisor of a rational function.
 - The quotient group $\operatorname{Div}_K(C)/\operatorname{Prin}_K(C)$ is called the **divisor class group** or the **Picard group**, denoted $\operatorname{Pic}_K(C)$ or $\operatorname{Pic}(C)$.
 - The quotient group $\operatorname{Div}_K^0(C)/\operatorname{Prin}_K(C)$ is called the **Jacobian** of C, denoted $\operatorname{Pic}_K^0(C)$ or $\operatorname{Pic}^0(C)$ or $\mathbb{J}_K(C)$ or $\mathbb{J}(C)$.
 - If *K* is not algebraically closed, $\mathbb{J}_K(C)$ is a particular subgroup of $\mathbb{J}_{\bar{K}}(C)$.
- Elliptic- and hyperelliptic-curve cryptography deals with the Jacobian of elliptic and hyperelliptic curves.
 - For elliptic curves, the Jacobian can be expressed by a more explicit **chord-and-tangent** rule.

Divisors and the Chord-and-Tangent Rule

Let *C* be an elliptic curve over an algebraically closed field *K*.

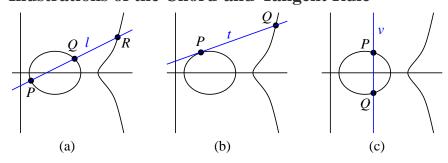
- For every $D \in \text{Div}_K^0(C)$, there exist a unique rational point P and a rational function R such that $D = [P] [\mathcal{O}] + \text{Div}(R)$.
- \square D is equivalent to $[P] [\mathcal{O}]$ in $\mathbb{J}_K(C)$.
- Identify *P* with the equivalence class of $[P] [\mathcal{O}]$ in $\mathbb{J}_K(C)$.
- This identification yields a bijection between the set of rational points on C and its Jacobian $\mathbb{J}_K(C)$.
- This bijection also leads to the chord-and-tangent rule in the following sense:

Let $D = \sum_{P} m_{P}[P] \in \text{Div}_{K}(C)$. Then, D is a principal divisor if and only if

$$\sum_{P} m_{P} = 0$$
 (integer sum), and

 $\sum_{p} m_{P}P = \mathcal{O}$ (sum under the chord-and-tangent rule).

Illustrations of the Chord-and-Tangent Rule



- **Identity:** \mathcal{O} is identified with $[\mathcal{O}] [\mathcal{O}] = 0 = \text{Div}(1)$.
- **Opposite:** By Part (c), $Div(v) = ([P] [\mathcal{O}]) + ([Q] [\mathcal{O}])$ is 0 in $\mathbb{J}(C)$. By the correspondence, $P + Q = \mathcal{O}$, that is, Q = -P.
- **Sum:** By Part (a), $Div(l) = ([P] [\mathcal{O}]) + ([Q] [\mathcal{O}]) + ([R] [\mathcal{O}])$ is 0 in $\mathbb{J}(C)$, that is, $P + Q + R = \mathcal{O}$, that is, P + Q = -R.
- **Double:** By Part (b), $Div(t) = ([P] [\mathcal{O}]) + ([P] [\mathcal{O}]) + ([Q] [\mathcal{O}])$ is 0 in $\mathbb{J}(C)$, that is, $P + P + Q = \mathcal{O}$, that is, 2P = -Q.

References for Part I

- CHARLAP, L. S. AND D. P. ROBBINS, *An Elementary Introduction to Elliptic Curves*, CRD Expository Report 31, 1988.
- CHARLAP, L. S. AND R. COLEY, *An Elementary Introduction to Elliptic Curves II*, CCR Expository Report 34, 1990.
- DAS, A., Computational Number Theory, Manuscript under preparation.
- DAS, A. AND C. E. VENI MADHAVAN, *Public-key Cryptography: Theory and Practice*, Pearson Education, 2009.
 - ENGE, A., Elliptic Curves and Their Applications to Cryptography: An Introduction, Kluwer Academic Publishers, 1999.
- MENEZES, A. J., Y. WU AND R. ZUCCHERATO, *An Elementary Introduction to Hyperelliptic Curves*, CACR technical report CORR 96-19, University of Waterloo, Canada, 1996.

Part II

Elliptic Curves

- Rational Maps and Endomorphisms on Elliptic Curves
- Multiplication-by-*m* Maps and Division Polynomials
- Weil and Tate Pairing

Notations and Assumptions

- K is a field.
- \bar{K} is the algebraic closure of K.
- Quite often, we will have $K = \mathbb{F}_q$ with $p = \operatorname{char} K$.
- $E: Y^2 + (a_1X + a_3)Y = X^3 + a_2X^2 + a_4X + a_6 \text{ is an elliptic curve defined over } K \text{ (that is, } a_i \in K).$
 - If *L* is any field with $K \subseteq L \subseteq \overline{K}$, then *E* is defined over *L* as well. E_L denotes the set of *L*-rational points on *E*.
 - E_L always contains the point \mathcal{O} at infinity.
 - If $L = \mathbb{F}_{a^k}$, we write E_{a^k} as a shorthand for E_L .
 - E (without any subscript) means $E_{\bar{k}}$.
 - A rational function R on E is an element of $\bar{K}(E)$.
 - *R* is defined over *L* if *R* has a representation R = G(x, y)/H(x, y) with $G, H \in L[x, y]$.

Elliptic Curves Over Finite Fields

- Let *K* be not algebraically closed (like $K = \mathbb{F}_q$).
- The group $E_{\bar{K}}$ is isomorphic to $\mathbb{J}_{\bar{K}}(E)$.
- The one-to-one correspondence of $\mathbb{J}_{\bar{K}}(E)$ with $E_{\bar{K}}$ allows us to use the chord-and-tangent rule.
- If P and Q are K-rational, then the chord-and-tangent rule guarantees that P + Q is K-rational too.
- All K-rational points in $E_{\bar{K}}$ together with \mathcal{O} constitute a subgroup of $E_{\bar{K}}$.
- Denote this subgroup by E_K .
- \blacksquare E_K can be identified with a subgroup $\mathbb{J}_K(E)$ of $\mathbb{J}_{\bar{K}}(E)$.
 - Since *K* is not algebraically closed, $\mathbb{J}_K(E)$ cannot be defined like $\mathbb{J}_{\bar{K}}(E)$.
- Thanks to the chord-and-tangent rule, we do not need to worry too much about $\mathbb{J}_K(E)$ (at least so long as computational issues are of only concern).

Discriminants and j-invariants

Define the following quantities for *E*:

$$d_2 = a_1^2 + 4a_2$$

$$d_4 = 2a_4 + a_1a_3$$

$$d_6 = a_3^2 + 4a_6$$

$$d_8 = a_1^2a_6 + 4a_2a_6 - a_1a_3a_4 + a_2a_3^2 - a_4^2$$

$$c_4 = d_2^2 - 24d_4$$

$$\Delta(E) = -d_2^2d_8 - 8d_4^3 - 27d_6^2 + 9d_2d_4d_6$$

$$j(E) = c_4^3/\Delta(E), \text{ if } \Delta(E) \neq 0.$$

- $\Delta(E)$ is called the **discriminant** of E.
 - j(E) is called the **j-invariant** of E.
 - E is smooth (that is, an elliptic curve) if and only if $\Delta(E) \neq 0$.
 - j(E) is defined for every elliptic curve.
 - For two elliptic curves E, E', we have j(E) = j(E') if and only if E and E' are isomorphic.

Addition Formula for the General Weierstrass Equation

Let $P = (h_1, k_1)$ and $Q = (h_2, k_2)$ be points on E. Assume that P, Q, P + Q are not \mathcal{O} . Let $R = (h_3, k_3) = P + Q$.

$$h_3 = \lambda^2 + a_1\lambda - a_2 - h_1 - h_2$$
, and $k_3 = -(\lambda + a_1)h_3 - \mu - a_3$, where

$$\lambda = egin{cases} rac{k_2 - k_1}{h_2 - h_1} & ext{if } P
eq Q, \ & & \\ rac{3h_1^2 + 2a_2h_1 + a_4 - a_1k_1}{2k_1 + a_1h_1 + a_3} & ext{if } P = Q, ext{and} \end{cases}$$

 $\mu = k_1 - \lambda h_1$.

The opposite of (h, k) is $(h, -k - a_1h - a_3)$.

Choosing a Random Point on an Elliptic Curve

Let $E: Y^2 + (a_1X + a_3)Y = X^3 + a_2X^2 + a_4X + a_6$ be defined over K. To obtain a random point $P = (h, k) \in E_K$.

- Choose the X-coordinate h randomly from K.
- The corresponding *Y*-coordinates are roots of

$$Y^2 + (a_1h + a_3)Y - (h^3 + a_2h^2 + a_4h + a_6).$$

- This polynomial is either irreducible over K or has two roots in K.
- If K is algebraically closed, then this polynomial has roots in K.
- If K is a finite field, then, with probability about 1/2, this polynomial has roots in K.
- Use a root-finding algorithm to compute a root k.
- Output (h, k).

Rational Maps on Elliptic Curves

- A **rational map** on *E* is a function $E \rightarrow E$.
- A rational map α is specified by two rational functions $\alpha_1, \alpha_2 \in \overline{K}(E)$ such that, for any point $P \in E$, $\alpha(P) = \alpha(h, k) = (\alpha_1(h, k), \alpha_2(h, k))$ is again a point on E.
- Since $\alpha(P)$ is a point on E, α_1 , α_2 satisfy the equation for E and constitute the elliptic curve $E_{\bar{K}(E)}$.
- Denote the point at infinity on this curve by \mathcal{O}' . Define $\mathcal{O}'(P) = \mathcal{O}$ for all $P \in E$.
- For a non-zero $\alpha \in E_{\overline{K}(E)}$ and a point $P \in E$, either both $\alpha_1(P), \alpha_2(P)$ are defined at P, or both are undefined at P. In the first case, we take $\alpha(P) = (\alpha_1(P), \alpha_2(P))$, and in the second case, $\alpha(P) = \mathcal{O}$.
- The addition of $E_{\bar{K}(E)}$ is compatible with the addition of E, that is, $(\alpha + \beta)(P) = \alpha(P) + \beta(P)$ for all $\alpha, \beta \in E_{\bar{K}(E)}$ and $P \in E$.
- A rational map is either constant or surjective.

Rational Maps: Examples

- The **zero map** $\mathcal{O}': E \to E, P \mapsto \mathcal{O}$.
- The **identity map** id : $E \rightarrow E$, $P \mapsto P$.
- The **translation map** $\tau_Q : E \to E, P \mapsto P + Q$, for a fixed $Q \in E$.
- The **multiplication-by-**m **map** $[m]: E \to E, P \mapsto mP$, where $m \in \mathbb{Z}$.
- The **Frobenius map** φ :
- \blacksquare E is defined over $K = \mathbb{F}_q$.
- For $a \in \overline{K}$, $a^q = a$ if and only if $a \in \mathbb{F}_q$.
 - For $P = (h, k) \in E$, the point $(h^q, k^q) \in E$.
- Define $\varphi(h,k) = (h^q, k^q)$.

Endomorphisms

- A rational map on E, which is also a group homomorphism of E, is called an **endomorphism** or an **isogeny**.
- The set of all endomorphisms of E is denoted by End(E).
- Define addition in End(E) as $(\alpha + \beta)(P) = \alpha(P) + \beta(P)$.
- Define multiplication in End(E) as $(\alpha \circ \beta)(P) = \alpha(\beta(P))$.
- End(E) is a ring under these operations. The additive identity is \mathcal{O}' . The multiplicative identity is id.
 - All multiplication-by-m maps [m] are endomorphisms. We have $[m] \neq [n]$ for $m \neq n$.
- The translation map τ_Q is not an endomorphism unless $Q = \mathcal{O}$.
 - The Frobenius map φ is an endomorphism with $\varphi \neq [m]$ for any m.
- If End(E) contains a map other than the maps [m], E is called a curve with **complex multiplication**.

The Multiplication-by-m Maps

- Identify [m] as a pair (g_m, h_m) of rational functions.
- $g_1 = x, h_1 = y.$

$$g_2 = -2x + \lambda^2 + a_1\lambda - a_2$$
 and

$$h_2 = -\lambda(g_2 - x) - a_1g_2 - a_3 - y,$$

where
$$\lambda = \frac{3x^2 + 2a_2x + a_4 - a_1y}{2y + a_1x + a_3}$$
.

For $m \ge 3$, we have the recursive definition:

$$g_m = -g_{m-1} - x + \lambda^2 + a_1 \lambda - a_2$$
 and

$$h_m = -\lambda (g_m - x) - a_1 g_m - a_3 - y,$$

where
$$\lambda = \frac{h_{m-1} - y}{g_{m-1} - x}$$
.

The Group of *m*-torsion Points

- For $m \in \mathbb{N}$, define $E[m] = \{P \in E \mid mP = \mathcal{O}\}.$
- Recall that $p = \operatorname{char} K$.
- If p = 0 or gcd(p, m) = 1, then $E[m] \cong \mathbb{Z}_m \times \mathbb{Z}_m$, and so $|E[m]| = m^2$.
- Suppose that p > 0. Let $m = p^{\nu}m'$ with gcd(m', p) = 1. Then,

$$E[m] \cong \begin{cases} \mathbb{Z}_{m'} \times \mathbb{Z}_{m'} & \text{if } E[p] = \{\mathcal{O}\}, \\ \mathbb{Z}_{m'} \times \mathbb{Z}_{m} & \text{otherwise.} \end{cases}$$

- If gcd(m, n) = 1, we have $E[mn] \cong E[m] \times E[n]$.
- For a subset $S \subseteq E$, define the divisor $|S| = \sum_{P \in S} [P]$.
- If $p \neq 2, 3$ and m, n, m + n, m n are all coprime to p, we have $Div(g_m g_n) = [E[m + n]] + [E[m n]] 2[E[m]] 2[E[n]].$
- If $p \in \{2,3\}$, gcd(m,p) = 1, and $n = p^{\nu}n'$ with $\nu \ge 1$ and gcd(n',p) = 1, we have $Div(g_m g_n) = [E[m+n]] + [E[m-n]] 2[E[m]] 2\alpha^{\nu}[E[n]]$.

Division Polynomials

- The rational functions g_m , h_m have poles precisely at the points in E[m]. But they have some zeros also.
- We investigate polynomials having zeros precisely at the points of E[m].
- Assume that either p = 0 or gcd(p, m) = 1.
- E[m] contains exactly m^2 points with $\sum_{P \in E[m]} P = \mathcal{O}$.
- Consider the degree-zero divisor $[E[m]] m^2[\mathcal{O}] = \sum_{P \in E[m]} [P] m^2[\mathcal{O}].$
- There exists a rational function ψ_m with $\text{Div}(\psi_m) = [E[m]] m^2[\mathcal{O}]$.
- Since the only pole of ψ_m is at \mathcal{O} , ψ_m is a polynomial function.
- $lue{\psi}_m$ is unique up to multiplication of elements of \bar{K}^* .
- If we arrange the leading coefficient of ψ_m to be m, then ψ_m becomes unique and is called the m-th division polynomial.

Division Polynomials: Explicit Formulas

$$\psi_{0} = 0$$

$$\psi_{1} = 1$$

$$\psi_{2} = 2y + a_{1}x + a_{3}$$

$$\psi_{3} = 3x^{4} + d_{2}x^{3} + 3d_{4}x^{2} + 3d_{6}x + d_{8}$$

$$\psi_{4} = \left[2x^{6} + d_{2}x^{5} + 5d_{4}x^{4} + 10d_{6}x^{3} + 10d_{8}x^{2} + (d_{2}d_{8} - d_{4}d_{6})x + d_{4}d_{8} - d_{6}^{2}\right]\psi_{2}$$

$$\psi_{2m} = \frac{(\psi_{m+2}\psi_{m-1}^{2} - \psi_{m-2}\psi_{m+1}^{2})\psi_{m}}{\psi_{2}} \text{ for } m > 2$$

$$\psi_{2m+1} = \psi_{m+2}\psi_m^3 - \psi_{m-1}\psi_{m+1}^3 \text{ for } m \geqslant 2.$$

$$g_m - g_n = -\frac{\psi_{m+n}\psi_{m-n}}{\psi_{m}^2\psi_{m}^2}$$
. Putting $n = 1$ gives $g_m = x - \frac{\psi_{m+1}\psi_{m-1}}{\psi_{m}^2}$.

$$h_m = \frac{\psi_{m+2}\psi_{m-1}^2 - \psi_{m-2}\psi_{m+1}^2}{2\psi_2\psi_m^3} - \frac{1}{2}(a_1g_m + a_3)$$

$$\psi_{m+2}\psi_{m-1}^2 + a_3$$

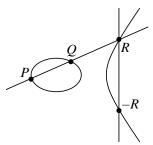
$$= y + \frac{\psi_{m+2}\psi_{m-1}^2}{\psi_2\psi_m^3} + (3x^2 + 2a_2x + a_4 - a_1y)\frac{\psi_{m-1}\psi_{m+1}}{\psi_2\psi_m^2}.$$

Size and Structure of E_q

- **Hasse's Theorem:** $|E_q| = q + 1 t$ with $-2\sqrt{q} \leqslant t \leqslant 2\sqrt{q}$.
- \blacksquare t is called the **trace of Frobenius** at q.
- The Frobenius endomorphism satisfies $\varphi \circ \varphi [t] \circ \varphi + [q] = \mathcal{O}'$.
- Let $L = \mathbb{F}_{q^k}$ be an extension of $K = \mathbb{F}_q$. Let $W^2 - tW + q = (W - \alpha)(W - \beta)$ with $\alpha, \beta \in \mathbb{C}$.
 - Let $w^2 tw + q = (w \alpha)(w \beta)$ with $\alpha, \beta \in \mathbb{C}$.
 - Weil's Theorem: $|E_{q^k}| = q^k + 1 (\alpha^k + \beta^k)$.
 - **Example:** Consider $E: Y^2 = X^3 + X + 1$ defined over \mathbb{F}_5 . E_5 contains the nine points \mathcal{O} , $(0, \pm 1)$, $(2, \pm 1)$, $(3, \pm 1)$ and $(4, \pm 2)$, so that $|E_5| = 9 = (5 + 1) t$, that is, t = -3.
 - Consider $(W \alpha)(W \beta) = W^2 tW + q = W^2 + 3W + 5$, that is, $\alpha + \beta = -3$ and $\alpha\beta = 5$. But then $\alpha^2 + \beta^2 = (\alpha + \beta)^2 2\alpha\beta = 9 10 = -1$. Therefore, $|E_{25}| = 25 + 1 (-1) = 27$.
 - **Structure Theorem for** E_q :

 E_q is either cyclic or isomorphic to $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}$ with $n_1, n_2 \ge 2$, $n_1|n_2$, and $n_1|(q-1)$.

More on Divisors



- Div $(L_{P,Q}) = [P] + [Q] + [R] 3[\mathcal{O}].$
 - $Div(L_{R,-R}) = [R] + [-R] 2[\mathcal{O}].$
- $Div(L_{P,Q}/L_{R,-R}) = [P] + [Q] [-R] [\mathcal{O}] = [P] + [Q] [P+Q] [\mathcal{O}].$
 - $[P] [\mathcal{O}]$ is equivalent to [P + Q] [Q].
 - $([P] [\mathcal{O}]) + ([Q] [\mathcal{O}])$ is equivalent to $[P + Q] [\mathcal{O}]$.
 - For both these cases of equivalence, the pertinent rational function is $L_{P,Q}/L_{P+Q,-(P+Q)}$ which can be easily computed. We can force this rational function to have leading coefficient 1.

More on Divisors (contd)

Let $D = \sum_{P} n_{P}[P]$ be divisor on E and $f \in \overline{K}(E)$ a rational function such that the supports of D and Div(f) are disjoint. Define

 $f(D) = \prod f(P)^{n_P} = \prod f(P)^{n_P}.$

$$P \in E$$
 $P \in \text{Supp}(D)$

- Div $(f) = \operatorname{Div}(g)$ if and only if f = cg for some non-zero constant $c \in \overline{K}^*$.
- If D has degree 0, then

$$f(D) = g(D) \prod_{P} c^{n_{P}} = g(D) c^{\sum_{P} n_{P}} = g(D) c^{0} = g(D).$$

Weil reciprocity theorem: If f and g are two non-zero rational functions on E such that Div(f) and Div(g) have disjoint supports, then

$$f(Div(g)) = g(Div(f)).$$

Weil Pairing: Definition

Let *E* be an elliptic curve defined over a finite field $K = \mathbb{F}_q$.

Take a positive integer m coprime to $p = \operatorname{char} K$.

Let μ_m denote the *m*-th roots of unity in \bar{K} .

We have $\mu_m \subseteq \mathbb{F}_{q^k}$, where $k = \operatorname{ord}_m(q)$ is called the **embedding degree**.

Let E[m] be those points in $E = E_{\bar{K}}$, whose orders divide m.

Weil pairing is a function

$$e_m: E[m] \times E[m] \to \mu_m$$

defined as follows.

- Take $P_1, P_2 \in E[m]$.
- Let D_1 be a divisor equivalent to $[P_1] [\mathcal{O}]$. Since $mP_1 = \mathcal{O}$, there exists a rational function f_1 such that $\text{Div}(f_1) = mD_1 = m[P_1] m[\mathcal{O}]$.
 - Similarly, let D_2 be a divisor equivalent to $[P_2] [\mathcal{O}]$. There exists a rational function f_2 such that $\text{Div}(f_2) = mD_2 = m[P_2] m[\mathcal{O}]$.
- D_1 and D_2 are chosen to have disjoint supports.
 - Define $e_m(P_1, P_2) = f_1(D_2)/f_2(D_1)$.

Weil Pairing is Well-defined

- f_1 and f_2 are unique up to multiplication by non-zero elements of \bar{K}^* . So $f_1(D_2)$ and $f_2(D_1)$ are independent of the choices of f_1 and f_2 .
- Let $D'_1 = D_1 + \text{Div}(g)$ have disjoint support from D_2 . But then $mD'_1 = mD_1 + m \text{Div}(g) = \text{Div}(f_1) + \text{Div}(g^m) = \text{Div}(f_1g^m)$. Therefore,

$$\begin{split} f_1 g^m(D_2) / f_2(D_1 + \mathrm{Div}(g)) &= \frac{f_1(D_2) g^m(D_2)}{f_2(D_1) f_2(\mathrm{Div}(g))} \\ &= \frac{f_1(D_2) g(mD_2)}{f_2(D_1) f_2(\mathrm{Div}(g))} = \frac{f_1(D_2) g(\mathrm{Div}(f_2))}{f_2(D_1) f_2(\mathrm{Div}(g))} = \frac{f_1(D_2) g(\mathrm{Div}(f_2))}{f_2(D_1) g(\mathrm{Div}(f_2))} = \frac{f_1(D_2)}{f_2(D_1)}. \end{split}$$

- So $e_m(P_1, P_2)$ is independent of the choice of D_1 and likewise of D_2 too.
- It is customary to choose $D_2 = [P_2] [\mathcal{O}]$ and $D_1 = [P_1 + T] [T]$ for a point T different from $-P_1$, P_2 , $P_2 P_1$, and \mathcal{O} . T need not be in E[m]. One can take T randomly from E.
- $e_m(P_1, P_2)^m = f_1(mD_2)/f_2(mD_1) = f_1(\text{Div}(f_2))/f_2(\text{Div}(f_1)) = 1$ (by Weil reciprocity), that is, $e_m(P_1, P_2)$ is indeed an m-th root of unity.

Properties of Weil Pairing

Let P, Q, R be arbitrary points in E[m].

Bilinearity:

$$e_m(P+Q,R) = e_m(P,R)e_m(Q,R),$$

 $e_m(P,Q+R) = e_m(P,Q)e_m(P,R).$

- **Alternating:** $e_m(P,P) = 1$.
- Skew symmetry: $e_m(Q,P) = e_m(P,Q)^{-1}$.
- **Non-degeneracy:** If $P \neq \mathcal{O}$, then $e_m(P,Q) \neq 1$ for some $Q \in E[m]$.
 - **Compatibility:** If $S \in E[mn]$ and $Q \in E[n]$, then $e_{mn}(S,Q) = e_n(mS,Q)$.
- If m is a prime and $P \neq \mathcal{O}$, then $e_m(P,Q) = 1$ if and only if Q lies in the subgroup generated by P (that is, Q = aP for some integer a).

Computing Weil Pairing: The Functions $f_{n,P}$

- Let $P \in E$.
 - For $n \in \mathbb{Z}$, define the rational functions $f_{n,P}$ as having the divisor

$$Div(f_{n,P}) = n[P] - [nP] - (n-1)[\mathcal{O}].$$

 $f_{n,P}$ are unique up to multiplication by elements of \bar{K}^* .

We may choose the unique monic polynomial for $f_{n,P}$.

 \blacksquare $f_{n,P}$ satisfy the recurrence relation:

$$f_{0,P} = f_{1,P} = 1,$$

 $f_{n+1,P} = \left(\frac{L_{P,nP}}{L_{(n+1)P,-(n+1)P}}\right) f_{n,P} \text{ for } n \geqslant 1,$
 $f_{-n,P} = \frac{1}{f_{n,P}} \text{ for } n \geqslant 1.$

- If $P \in E[m]$, then $Div(f_{m,P}) = m[P] [mP] (m-1)[\mathcal{O}] = m[P] m[\mathcal{O}]$.
- Computing $f_{m,P}$ using the above recursive formula is too inefficient.

Computing Weil Pairing: More about $f_{n,P}$

The rational functions $f_{n,P}$ also satisfy

$$f_{n+n',P} = f_{n,P} f_{n',P} \times \left(\frac{L_{nP,n'P}}{L_{(n+n')P,-(n+n')P}} \right).$$

In particular, for n = n', we have

$$f_{2n,P} = f_{n,P}^2 \times \left(\frac{L_{nP,nP}}{L_{2nP,-2nP}}\right).$$

Here, $L_{nP,nP}$ is the line tangent to E at the point nP.

- This and the recursive expression of $f_{n+1,P}$ in terms of $f_{n,P}$ yield a repeated double-and-add algorithm.
- The function $f_{n,P}$ is usually kept in the factored form.
- It is often not necessary to compute $f_{n,P}$ explicitly. The value of $f_{n,P}$ at some point Q is only needed.

Miller's Algorithm for Computing $f_{n,P}$

- **Input:** A point $P \in E$ and a positive integer n.
- **Output:** The rational function $f_{n,P}$.
- Steps

- Let $n = (n_s n_{s-1} \dots n_1 n_0)_2$ be the binary representation of n with $n_s = 1$. Initialize f = 1 and U = P.
- For $i = s 1, s 2, \dots, 1, 0$, do the following:

Update
$$f = f^2 \times \left(\frac{L_{U,U}}{L_{2U,-2U}}\right)$$
 and $U = 2U$.

If
$$(n_i = 1)$$
, update $f = f \times \left(\frac{L_{U,P}}{L_{U,P}, U+P}\right)$ and $U = U + P$.

Return f.

Note: One may supply a point $Q \in E$ and wish to compute the value $f_{n,P}(Q)$ (instead of the function $f_{n,P}$). In that case, the functions $L_{U,U}/L_{2U,-2U}$ and $L_{U,P}/L_{U+P,-(U+P)}$ should be evaluated at Q before multiplication with f.

Weil Pairing and the Functions $f_{n,P}$

Let $P_1, P_2 \in E[m]$, and we want to compute $e_m(P_1, P_2)$.

- Choose a point *T* not equal to $\pm P_1, -P_2, P_2 P_1, \mathcal{O}$.
- We have $e_m(P_1, P_2) = \frac{f_{m, P_2}(T) f_{m, P_1}(P_2 T)}{f_{m, P_1}(-T) f_{m, P_2}(P_1 + T)}$.
 - If $P_1 \neq P_2$, then we also have $e_m(P_1, P_2) = (-1)^m \frac{f_{m, P_1}(P_2)}{f_{m, P_2}(P_1)}$.
- Miller's algorithm for computing $f_{n,P}(Q)$ can be used.
- All these invocations of Miller's algorithm have n = m.
- So a single double-and-add loop suffices.
 - For efficiency, one may avoid the division operations in Miller's loop by separately maintaining polynomial expressions for the numerator and the denominator of f. After the loop terminates, a single division is made.

Tate Pairing

Let *E* be an elliptic curve defined over $K = \mathbb{F}_q$ with $p = \operatorname{char} K$.

Let m be a positive integer coprime to p.

Let $k = \operatorname{ord}_m(q)$ (the **embedding degree**), and $L = \mathbb{F}_{q^k}$.

Let $E_L[m] = \{P \in E_L \mid mP = \mathcal{O}\}, \text{ and } mE_L = \{mP \mid P \in E_L\}.$

Let $(L^*)^m = \{a^m \mid a \in L^*\}$ be the set of *m*-th powers in L^* .

- Let P be a point in $E_L[m]$, and Q a point in E_L .
 - Since $mP = \mathcal{O}$, there is a rational function f with $Div(f) = m[P] m[\mathcal{O}]$.
 - Let D be any divisor equivalent to $[Q] [\mathcal{O}]$ with disjoint support from $\mathrm{Div}(f)$. It is customary to choose a point T different from $-P, Q, Q P, \mathcal{O}$ and take D = [Q + T] [T].
 - The **Tate pairing** $\langle \ , \ \rangle_m : E_L[m] \times E_L/mE_L \to L^*/(L^*)^m$ of P and Q is $\langle P, Q \rangle_m = f(D)$.
- Q should be regarded as a point in E_L/mE_L .
- The value of $\langle P, Q \rangle_m$ is unique up to multiplication by an m-th power of a non-zero element of L, that is, $\langle P, Q \rangle_m$ is unique in $L^*/(L^*)^m$.

Properties of Tate Pairing

Bilinearity:

$$\langle P + Q, R \rangle_m = \langle P, R \rangle_m \langle Q, R \rangle_m,$$

 $\langle P, Q + R \rangle_m = \langle P, Q \rangle_m \langle P, R \rangle_m.$

- **Non-degeneracy:** For every $P \in E_L[m]$, $P \neq \mathcal{O}$, there exists Q with $\langle P, Q \rangle_m \neq 1$. For every $Q \notin mE_L$, there exists $P \in E_L[m]$ with $\langle P, Q \rangle_m \neq 1$.
 - The Weil pairing is related to the Tate pairing as

$$e_m(P,Q) = \frac{\langle P,Q \rangle_m}{\langle Q,P \rangle_m}$$

up to *m*-th powers.

Let $k = \operatorname{ord}_m(q)$ be the embedding degree. The Tate pairing can be made unique by exponentiation to the power $(q^k - 1)/m$:

$$\hat{e}_m(P,Q) = (\langle P,Q \rangle_m)^{\frac{q^k-1}{m}}$$

 $\hat{e}_m(P,Q)$ is called the **reduced Tate pairing**. The reduced pairing continues to exhibit bilinearity and non-degeneracy.

Computing the Tate Pairing

- Take D = [Q + T] [T], where $T \neq P, -Q, P Q, \mathcal{O}$.
- We have $\langle P, Q \rangle_m = \frac{f_{m,P}(Q+T)}{f_{m,P}(T)}$.
- Miller's algorithm is used to compute $\langle P, Q \rangle_m$.
- A single double-and-add loop suffices.
- For efficiency, the numerator and the denominator in f may be updated separately. After the loop, a single division is made.
- If the reduced pairing is desired, then a final exponentiation to the power $(q^k 1)/m$ is made on the value returned by Miller's algorithm.

Weil vs. Tate Pairing

- The Miller loop for Tate pairing is more efficient than that for Weil pairing.
- The reduced Tate pairing demands an extra exponentiation.
- Let $k = \operatorname{ord}_m(q)$ be the embedding degree, and $L = \mathbb{F}_{q^k}$.
- Tate pairing requires working in the field L.
 - Let L' be the field obtained by adjoining to L all the coordinates of $E[m] = E_{\bar{K}}[m]$.
 - Weil pairing requires working in the field L'.
 - L' is potentially much larger than L.
 - **Special case:** m is a prime divisor of $|E_K|$ with $m \not\mid q$ and $m \not\mid (q-1)$. Then, L' = L. So it suffices to work in the field L only.
 - For cryptographic applications, Tate pairing is used more often that Weil pairing.
- One takes \mathbb{F}_q with |q| about 160–300 bits and $k \leq 12$. Larger embedding degrees are impractical for implementation.

Distortion Maps

Let m be a prime divisor of $|E_K|$.

Let P be a generator of a subgroup G of E_K of order m.

Goal: To define a pairing of the points in *G*.

- If k = 1 (that is, L = K), then $\langle P, P \rangle_m \neq 1$.
 - **Bad news:** If k > 1, then $\langle P, P \rangle_m = 1$. But then, by bilinearity, $\langle Q, Q' \rangle_m = 1$ for all $Q, Q' \in G$.
 - **A way out:** If k > 1 and $Q \in L$ is linearly independent of P (that is, $Q \notin G$), then $\langle P, Q \rangle_m \neq 1$.
 - Let $\phi: E_L \to E_L$ be an endomorphism of E_L with $\phi(P) \notin G$. ϕ is called a **distortion map**.
- Define the **distorted Tate pairing** of $P,Q \in G$ as $\langle P,\phi(Q)\rangle_m$.
- Since $\phi(P)$ is linearly independent of P, we have $\langle P, \phi(P) \rangle_m \neq 1$.
 - Since ϕ is an endomorphism, bilinearity is preserved.
- **Symmetry:** We have $\langle Q, \phi(Q') \rangle_m = \langle Q', \phi(Q) \rangle_m$ for all $Q, Q' \in G$.
- Distortion maps exist only for supersingular curves.

Twists

Let *E* be defined by the short Weierstrass equation $Y^2 = X^3 + aX + b$. Let $d \ge 2$, and $v \in \mathbb{F}_a^*$ a *d*-th power non-residue.

- Consider the curve $E': Y^2 = X^3 + v^{4/d}aX + v^{6/d}b$ (defined over \mathbb{F}_{q^d}).
- If d = 2, then E' is defined over \mathbb{F}_q itself.
- \blacksquare E' is called a **twist of** E **of degree** d.
- E and E' are isomorphic over \mathbb{F}_{q^d} . An explicit isomorphism is given by the map $\phi_d: E' \to E$ taking $(h,k) \mapsto (v^{-2/d}h, v^{-3/d}k)$.
 - Let m be a prime divisor of $|E_q|$, G a subgroup of order m in E_{q^k} , and G' a subgroup of order m in E'_{q^k} . Let P, P' be generators of G and G'. Suppose that $\phi_d(P')$ is linearly independent of P.
- For d=2 (quadratic twist), a natural choice is $G\subseteq E_q$ and $G'\subseteq E'_q$.
- Define a pairing of points $Q \in G$ and $Q' \in G'$ as $\langle Q, \phi_d(Q') \rangle_m$.
- This is called the **twisted Tate pairing**.

Pairing-friendly Curves

- **Requirement for efficient computation:** Small embedding degree k.
- For general curves, k is quite high $(|k| \approx |m|)$.
 - Only some specific types of curves qualify as pairing-friendly.

Supersingular curves

- By Hasse's Theorem, $|E_q| = q + 1 t$ with $|t| \leq 2\sqrt{q}$.
- If p|t, we call E a supersingular curve.
- Curves of the form $Y^2 + aY = X^3 + bX + c$ are supersingular over fields of characteristic 2.
- All supersingular curves over a finite field K of characteristic 2 have j-invariant equal to 0, and so are isomorphic over \bar{K} . The same result holds for p=3.
- Supersingular curves have small embedding degrees. The only possibilities are 1, 2, 3, 4, 6.
- If \mathbb{F}_q is a prime field with $q \ge 5$, the only possibility is k = 2.
- Non-supersingular curves are called **ordinary curves**.
- It is difficult to locate ordinary curves with small embedding degrees.

- Let k be a positive integer, and Δ a small positive square-free integer.
- Search for integer-valued polynomials $t(x), m(x), q(x) \in \mathbb{Q}[x]$ to represent a family of elliptic curves of embedding degree k and discriminant Δ . The triple (t, m, q) should satisfy the following:
 - $q(x) = p(x)^n$ for some $n \in \mathbb{N}$ and $p(x) \in \mathbb{Q}[x]$ representing primes.
 - m(x) is irreducible with a positive leading coefficient.
 - m(x)|q(x)+1-t(x).

- $m(x)|\Phi_k(t(x)-1)$, where Φ_k is the k-th cyclotomic polynomial.
- There are infinitely many integers (x, y) satisfying $\Delta y^2 = 4q(x) t(x)^2$.
- If *y* in Condition 5 can be parameterized by a polynomial $y(x) \in \mathbb{Q}[x]$, the family is called **complete**, otherwise it is called **sparse**.
- For obtaining ordinary curves, we require gcd(q(x), m(x)) = 1.
- The **complex multiplication method** is used to obtain specific examples of elliptic curves E over \mathbb{F}_q with E_q having a subgroup of order m.

Some Families of Pairing-friendly Curves

- Some sparse families of ordinary pairing-friendly curves are:
- MNT (Miyaji-Nakabayashi-Takano) curves: These are curves of prime orders with embedding degrees 3, 4 or 6.
- **Freeman curves:** These curves have embedding degree 10.
- Some complete families of ordinary pairing-friendly curves are:
 - **BN** (**Barreto-Naehrig**) **curves:** These curves have embedding degree 12 and discriminant 3.
- SB (Scott-Barreto) curves
 - BLS (Barreto-Lynn-Scott) curves
 - **BW** (Brezing-Weng) curves

Efficient Implementation

- **Denominator elimination:** Let k be even. Take d = k/2.
- $f_{n,P}(Q)$ is computed by Miller's algorithm, where Q=(h,k) with $h\in\mathbb{F}_{q^d}$.
 - The denominators $L_{2U,-2U}(Q)$ and $L_{U+P,-(U+P)}(Q)$ correspond to vertical lines, evaluate to elements of \mathbb{F}_{q^d} , and can be discarded.
 - The final exponentiation guarantees correct computation of $\hat{e}_m(P,Q)$.
 - BMX (Blake-Murty-Xu) refinements use 2-bit windows in Miller's loop.
 - **Loop reduction:** With clever modifications to Tate pairing, the number of iterations in the Miller loop can be substantially reduced.
 - A typical reduction is by a factor of 2.
 - Examples η and η_T pairings
 - Ate pairing
 - R-ate pairing

References for Part II

- BLAKE, I. F., K. MURTY AND G. XU, Refinements of Miller's Algorithm for Computing Weil/Tate Pairing, http://eprint.iacr.org/2004/065, 2004.
- BLAKE, I. F., G. SEROUSSI AND N. P. SMART, *Advances in Elliptic Curve Cryptography*, Cambridge University Press, 2005.
- DAS, A., Computational Number Theory, Manuscript under preparation.
- DAS, A. AND C. E. VENI MADHAVAN, *Public-key Cryptography: Theory and Practice*, Pearson Education, 2009.
- ENGE, A., *Elliptic Curves and Their Applications to Cryptography: An Introduction*, Kluwer Academic Publishers, 1999.
- FREEMAN, D., M. SCOTT, AND E. TESKE, *A Taxonomy of Pairing-friendly Elliptic Curves*, Jl of Cryptology, 2010. (Also in Cryptology eprint archive: 2006/372.)
- MARTIN, L., *Introduction to Identity-Based Encryption*, Artech House, 2008.
- MILLER, V. S., *The Weil Pairing, and Its Efficient Calculation*, Jl of Cryptology, 17, 235–261, 2004.

Part III

Hyperelliptic Curves

Representation of the Jacobian

References for Part III

- DAS, A. AND C. E. VENI MADHAVAN, *Public-key Cryptography: Theory and Practice*, Pearson Education, 2009.
- MENEZES, A. J., Y. WU AND R. ZUCCHERATO, *An Elementary Introduction to Hyperelliptic Curves*, CACR technical report CORR 96-19, University of Waterloo, Canada, 1996.