
Contents

1 INTRODUCTION 4

1.1 Introduction to Load Balancing . 4

1.2 Our Approach to Load Balancing . 6

1.3 State-of-the-Art in Load Balancing 7

1.4 Organization of the report . 9

2 LOAD BALANCING ON EXTENDED HYPERCUBE : AN OVER-

VIEW 10

2.1 The Topology of EH . 10

2.2 Addressing of Nodes in an EH . 16

2.3 Message Routing between two Servers 19

2.4 Load Balancing on an EH . 21

2.4.1 Static load balancing . 22

2.4.2 Dynamic load balancing . 23

2.5 Conclusions . 25

3 STATIC LOAD BALANCING ALGORITHMS ON AN EH 26

3.1 Introduction . 26

3.2 Some Notations . 26

1

3.3 Cost Functions . 27

3.4 Two Approaches to Load Balancing 31

3.4.1 Unified (or Centralized) Approach 31

3.4.2 Level-by-level Approach . 31

3.5 Local Search Algorithm . 32

3.6 Simulated Annealing Algorithm . 39

3.7 A Greedy Algorithm . 45

3.8 Comparison among the Algorithms 50

3.8.1 Solution Quality . 50

3.8.2 Run Time of the algorithms 61

3.8.3 Consistency of the Results . 61

3.8.4 Susceptibility of the solution to the local optima problem . . . 61

3.8.5 Comparison between the Unified and Level-by-Level Approaches 62

3.9 Conclusions . 65

4 THRESHOLD ALGORITHMS FOR DYNAMIC LOAD BALANC-

ING 66

4.1 Introduction . 66

4.2 Threshold Algorithm . 67

4.2.1 Sender-Initiated Threshold Algorithm 67

4.2.2 Receiver-Initiated Threshold Algorithm 68

4.3 Dynamic Load Balancing on EH . 69

4.3.1 Information maintained by each NC 70

4.3.2 Thresholds at NCs . 70

4.3.3 Relation between arrival and deperture rates in equilibrium . . 71

2

4.3.4 Load balancing in an EH(k,1) 73

4.3.5 Load balancing in an EH(k, l) 73

4.4 Conclusions . 74

5 MULTI-LEVEL THRESHOLD ALGORITHM 75

5.1 Introduction . 75

5.2 Motivation Behind MLTA . 75

5.3 Applying MLTA on Mesh and Binary Hypercube 77

5.4 Applying MLTA to Extended Hypercube 78

5.4.1 Thresholds maintained at different processors 78

5.4.2 The least-loaded-child path 80

5.4.3 The probing heuristics . 80

5.4.4 The migration decision . 81

5.4.5 Complexity of MLTA . 82

5.4.6 Modifications for the receiver-initiated MLTA 83

5.5 Simulation Results . 83

5.6 Conclusions . 88

6 CONCLUSIONS 89

3

Chapter 1

INTRODUCTION

Minimizing the execution time of a job through load balancing in a network of pro-

cessors is a current research topic in parallel and distributed computing. In this

project, load balancing schemes for a hierarchical interconnection network of hyper-

cubes, called Extended Hypercube, have been studied. Modifications and improve-

ments over some popular load balancing algorithms are also proposed in this project.

1.1 Introduction to Load Balancing

In a distributed multiprocessor system, load balancing refers to the equitable distri-

bution of work load among all the processors in the network. Work load of a processor

element (PE) at a particular instant is defined as the total time needed to complete

execution of all the tasks waiting at that PE at that instant (including the task, if

any, that is currently being executed on the PE). This time includes the total com-

putation time of all these tasks and the various delays such as communication delay,

synchronization delay and network queueing delay associated with the execution of

the tasks. Often the interaction patterns of these tasks with tasks on other PEs are

not known in advance. Again, we may not have apriori estimates of the computation

times of these tasks. As a result, calculation of work load using the above definition

is not possible. In such cases, we have to adopt heuristic definitions of work load. For

4

example, work load of a PE is often defined by the number of tasks waiting at that

PE. In what follows, we shall use the terms task and job interchangably to denote a

unit of work, for example, the execution of a program.

Load balancing schemes may be distinguished according to two criteria. The

first criterion refers to the site(s) where load balancing decisions are taken. In a

centralized scheme, the decisions are carried out in one (or more) central processor(s)

or controller(s) in the network. The central processor(s) must have global information,

i.e. information about work loads of all the PEs in the network. In a distributed

scheme, each PE takes part in the load balancing activity. The information each PE

uses for making a load balancing decision are local to the PE, for example, the loads

of PEs adjacent to it in the network.

The second criterion is based on the knowledge of the apriori estimates of work

distribution. In case we have this knowledge, we can use an off-line algorithm a priori

to secure the goal of load balancing. This is called static load balancing. In most

practical situations, however, we cannot make apriori estimates of load distribution.

We must, therefore, have algorithms to work in a dynamic environment of continual

and unpredictable arrival of new jobs to the PEs and departure of load through

execution of jobs. Such algorithms are called dynamic or adaptive load balancing

algorithms [11].

The static load balancing scheme consists of two parts. The first part is called

task partitioning which involves breaking the task into subtasks or computation mod-

ules. Since the subtasks are dependent on one another, there must be interaction

among them. This interaction pattern can be depicted by a directed acyclic graph,

called task graph (TG), with the nodes representing the subtasks and the edges rep-

resenting the precedence relations, i.e. communications, among them. If a subtask

needs communication of some data from another subtask, we say that there exists

a precedence relation between the two subtasks. In the second part of the static

load balancing problem, we have to map the subtasks onto the different PEs in the

network. This is called static task mapping and should satisfy the objective of min-

imizing the completion time, called the makespan, of the total task. The optimal

5

solution of the static task allocation problem depends on the task graph, the network

interconnection pattern of the PEs, the speeds of the network and of the PEs and

also on the order in which the subtasks mapped on each PE are executed (the de-

termination of this order is called static task scheduling). An optimal solution to the

static task mapping and scheduling problems has been proved to be NP-complete. As

a result, heuristic algorithms are used to obtain suboptimal solutions. Sometimes it

is possible to construct polynomial time optimal algorithms under several constraints

on the general problem.

The working of a dynamic load balancing scheme is based on the idea of

migration of excess load from heavily loaded PEs to lightly loaded ones. The first

problem is to determine when to migrate a task. This decision is typically based on

local load situation, for example, a comparison of a processor load with the load of

the neighboring PEs. After this decision is complete, we have to determine the PE

to which the task is to be migrated. As an example, the excess load may be migrated

from the PE to the least loaded adjacent PE. Dynamic load balancing schemes may

be further classified according to the initiator of the load balancing activities, viz.

sender-initiated, receiver- initiated and combined.

1.2 Our Approach to Load Balancing

In what follows, we shall assume that tasks arrive randomly at the PEs in the network.

These tasks are independent of one another, i.e. there is no communication among

these tasks. Each task can, however, be split up into subtasks. We will not deal with

the problem of task partitioning and shall assume that the task graph is provided to

us. We, therefore, have a combination of the static and dynamic load balancing cases.

Whenever a new task arrives, we have to use some static load balancing algorithm

to map the subtasks of the corresponding task graph to the PEs of the network.

Secondly, considering each task (or alternatively, each subtask) as a unit of load we

have to achieve dynamic load balancing. Obviously the two problems are dependent

on one another. However, for the sake of simplicity, we will consider the two problems

6

separately. The assumption of independence of the tasks of one another proves vital

in this respect. In the dynamic case, it implies that the tasks can be executed in any

order with each of these tasks mapped onto any PE of the network. Also each task has

an independendent entity with its own encapsulated data. In order to migrate a task

from one PE to another, it is only necessary communicate the data associated with

the task. Similarly, for static allocation of the subtasks of a task, we can disregard

the existence of other tasks in the PEs and can map the subtasks assuming that the

PEs are initially empty (i.e. unloaded).

1.3 State-of-the-Art in Load Balancing

A variety of static and dynamic load balancing algorithms have been proposed in the

literature. They widely vary in complexity, techniques adopted, system modelling,

and so on. In this section we intend to survey some of the work reported in this area

in the recent past.

One very common approach to static task scheduling is called priority-list

scheduling [3-5]. Here all the schedulable nodes of the task graph are placed on a

list which is sorted according to some priority function associated with each node.

The node with the highest priority is scheduled on a PE that seems to be the most

appropriate one for carrying out the task. Three different heuristic functions to

determine the priority of a subtask are described in detail in [3,4]. A brief descriptions

of these three heuristic functions is as follows. The heaviest node first heuristic assigns

the subtasks of the task graph level by level and at each level it assigns the heaviest

node (i.e. the node with the largest execution time) to the lightest PE (i.e. the PE

for which the total time needed to finish all the subtasks currently assigned to it is

minimum). The critical path method (CPM) works on the determination of the longest

path (called the exit path) from each node to an exit point (i.e. a node of outdegree

zero) of the task graph. The weighted length algorithm is a modification over the CPM

algorithm, because the weighted length algorithm, unlike the CPM, takes into account

the branching factor of each node (a term depending on the children of the node).

7

These three algorithms neglect the communication among the subtasks. [5] describes

modified CPM algorithms which take into account the inter-module delays. Other

modifications of the priority-list scheduling method include the LAST algorithm [6]

and the PDTS algorithm [7].

[8] depicts a divide-and-conquer strategy to minimize the total interprocessor

communication cost within specified tolerance limits of lack of balance of work load

among the PEs. The authors also delineate simulated annealing as a tool for solving

the problem of static task mapping. We will refer to this paper again in chapter 3.

In [9] a linear time algorithm, called the join latest predecessor algorithm, has

been proposed to optimally solve the static task scheduling problem in linear time

under several assumptions and constraints, like in-forest or out-forest precedence (the

task graph has the form of a forest of in-trees or out-trees), sufficient processors

(i.e. there are enough processors to run any available task at any moment), short

communication delays, fully connected network topology etc. In [10] the static load

balancing problem is formulated as a non-linear, non-convex, non-separable, minimax,

resource allocation mathematical programming problem for which the authors have

provided an analytical solution.

The literature for dynamic load balancing algorithms is equally rich and full

of a number of ideas and techniques. The diffusion scheme [11] works on exchange of

work load among each pair of adjacent PEs by an amount proportional to the work

load difference in the PEs of the pair. A similar algorithm based on edge coloring of

graphs has been proposed in [12]. The basic gradient model [13] migrates load units

to direct neighbors in the direction of the nearest low loaded processor. The control

information is gathered by the approximation of a gradient field. An extension of

this basic gradient model has been proposed in [14], where analogous to the pressure

surface, a suction surface is also defined. A unit capacity network flow model to solve

the load balancing problem for a hypercube has been suggested in [15].

Bidd-average algorithm [16] works on the calculation of the average of the local

load of a PE and the loads of all neighbors (adjacent PEs). If the local load is greater

than the average, a task is sent to a randomly selected neighbor. In the threshold

8

algorithm [17], on the other hand, a PE probes some other PEs in the network (not

necessarily neighbors) whenever certain threshold values are exceeded by the local

load. If any probed PE is found suitable for a task transfer, a task is migrated.

[18] proposes a variation of the threshold algorithm in which a PE always tends to

transfer a newly arrived task irrespective of the local load. A special algorithm for a

hypercube is described in [19] which achieves load sharing by balancing across pairs

of PEs along each of the dimensions of the hypercube.

Another class of dynamic processor allocation algorithms, called partitioned

allocation algorithms, has attracted much research attention. In a partitionable hy-

percube [21-24] or mesh connected [20] system, a subcube or a rectangular submesh

is assigned to a newly arrived job. These algorithms are designed to achieve dy-

namic maintainence of the subcubes and the submeshes under continual arrival and

departure of tasks.

1.4 Organization of the report

This project work deals with the study of static and dynamic load balancing algo-

rithms for an Extended Hypercube. In the next chapter, we shall describe the Ex-

tended Hypercube (EH), a hierarchical interconnection network of hypercubes, and

address the issues of the load balancing schemes to work on this network. The chap-

ters following the next one describe algorithms for load balancing on this architecture.

The algorithms which we use for the EH are modified and improved versions of some

well-known algorithms. The modifications are intended to improve the performance

of the algorithms in terms of speedup and to give the algorithms a hierarchical struc-

ture so as to exploit the multi-level connection among the processors of an EH. In

chapter 3, we discuss three algorithms for static task allocation on an EH. Chapter

4 describes in detail the threshold algorithms for dynamic load balancing. Chapter 5

deals with a modification of the conventional threshold algorithm that is suitable for

the EH. We conclude the report in Chapter 6.

9

Chapter 2

LOAD BALANCING ON
EXTENDED HYPERCUBE : AN
OVERVIEW

2.1 The Topology of EH

An extended hypercube EH(k,l) [1,2] with parameters k and l can be defined recur-

sively in terms of 2k EH(k,l–1)’s. The second parameter l is called the level of the

EH(k,l). An EH(k,0), that is, an extended hypercube of level 0, comprises of a single

computation processor. This processor is also called the root of the EH(k,0). The

basic interconnection module among the roots of EH(k,l) and EH(k,l–1), for l ≥ 1,

is shown in Fig 2.1. The roots of 2k EH(k,l–1)s are connected in the form of a k-

dimensional binary hypercube (k=3 in the figure). The links forming the binary cube

are called hypercube links. The EH(k,l) comprises of the 2k EH(k,l–1)s, the binary

cube formed by the roots of the EH(k,l–1)s, an additional processor which forms the

root of the EH(k,l) a link from this processor to the root of each of the 2k EH(k,l–1)s.

The links connecting the root of the EH(k,l) to the roots of the 2k EH(k,l–1)s are

called control links. Fig 2.1 also shows the complete topology of an EH(3,1), since as

mentioned earlier, an EH(3,0) comprises of a single processor forming the root of the

EH(3,0). Fig 2.2 shows the interconnection network of an EH(3,2). As per definition,

10

Figure 2.1: The basic interconnection module of an EH

11

Figure 2.2: The interconnection network of EH(3,2)

12

EH(3,2) consists of 23 = 8 EH(3,1)s with their roots connected as a 3-dimensional

binary cube, a processor labelled 0 at the root of the EH(3,2) and 8 links from this

root processor to the roots of the EH(3,1)s. All tasks that come to the network are

serviced only by the computation processors at level 0. These processors are, there-

fore, called servers. All other processors, i.e. processors at levels 1 through l, are

communication processors that take part in coordinating the activities of the servers

and hence these are called network controllers (NCs).

As follows from the above description of EH, the conrol links of an EH(k,l)

form a complete 2k-ary tree of level l. Hypercube links connect sets of 2k nodes such

that all of the 2k nodes in a set are at the same level of the tree and have the same

parent. This is illustrated in Fig 2.3. A lot of important topological properties of

EH(k,l) follow from this description.

Total number of interior nodes in the tree

= Total number of NCs in the EH(k,l)

= 1 + 2k + 22k + · · ·+ 2(l−1)k

= (2lk − 1)/(2k − 1)

Total number of exterior nodes in the tree

= total number of servers in the EH(k,l)

= 2lk

Hence,

Total number of nodes in the tree

= Total number of processors in the EH(k,l)

= (2lk − 1)/(2k − 1) + 2lk

= (2(l+1)k − 1)/(2k − 1)

This implies that

Total number of arcs in the tree

13

Figure 2.3: The interconnection network of EH(3,3)

14

= Total number of control links in the EH(k,l)

= (2(l+1)k − 1)/(2k − 1)− 1

We also observe that

Total number of hypercubes in the EK(k,l)

= 1 + 2k + 22k + · · ·+ 2(l−1)k

= (2lk − 1)/(2k − 1)

Total number of links in each k-dimensional hypercube

= k.2k − 1

Hence,

Total number of hypercube links in an EH(k,l)

= [(2lk − 1)/(2k − 1)](k.2k − 1)

Finally, we notice that

Total number of links incident on each server

= k + 1,

Total number of links incident on each NC at level 1 through (l–1)

= 2k + k + 1,

and

Total number of links incident on the NC at the root

= 2k

Before we describe addressing of nodes in an EH and routing among servers, let

us introduce some terms that we will use in later chapters. A subEH with parameters

k and i rooted at an ith level processor of the EH(k,l), for 0 ≤ i ≤ l, is an EH(k,i)

which is a subgraph of the EH(k,l) and which has the ith level NC at the root.

15

In analogy with the tree of control links, all processors (NCs as well as servers) at

levels 0 through (i–1) in this subEH are said to be beneath the root of the subEH

or the descendents of the same. Among those descendents, the processors at level

(i–1) are said to be directly beneath of or the children of the root of the subEH.

Conversely, the root of the EH(k,i) is called the ascendent or ancestor of all the nodes

that are beneath the root. Similarly, the root of the EH(k,i) is called the parent of

the nodes that are directly beneath the root. Two processors are said to have the

lowest level common ancestor (LLCA) at level j, iff the smallest subEH (i.e. the

subEH of minimum level) to which both of these processors belong, has a level of j.

For example, two servers having the same parent (respectively, grandparent) are said

to have the LLCA at level 1 (respectively, 2). For each node in an EH, there is a

unique path from the node to the root such that each edge of the path connects a

node with its parent. Therefore the LLCA of two nodes is a unique node in the EH.

Any communication of data or message from a node to its ascendent (respectively,

descendent) is called an upward (respectively, a downward) communication. On the

other hand, communication between processors belonging to the same binary cube is

called hypercube communication.

2.2 Addressing of Nodes in an EH

The root of an EH(k,l) is addressed as node 0. Any node of the EH other than the

root is the member of a hypercube and has a unique parent. We know that the nodes

in a k-dimensional binary hypercube can be numbered from 0 through (M–1) (where

M = 2k) such that each pair of two nodes adjacent along the ith dimension differ only

in the ith bit of the binary representations of their addresses. Suppose a node (not

at the root) of an EH(k,l) has a parent whose address is P. The node itself has an

address of N in the binary cube to which it belongs, where 0≤N≤ (2k − 1). Then the

node is addressed by concatenating N at the end of P, i.e. by PN. See Figs 2.2 and

2.3 for the illustration of this addressing mechanism. For an EH(3,1), the 8 children

of the root are addressed as 00, 01, . . . , 07, for example. The eight children of the

16

node 01 are addressed as 010, 011, . . . , 017, and so on. In general, a node at level i

(0≤ i ≤l) is addressed by a string DlDl−1 . . . Di, where

Dl = 0 and

0 ≤ Dj ≤ 2k − 1, for all j, i ≤ j < l.

In particular, a server at level 0 is addressed by DlDl−1Dl−2 . . . D0.

We can treat an address DlDl−1 . . . Di as an (l–i+1)-digit number of base 2k.

In decimal representation this corresponds to

DlDl−1 . . . Di ≡ 2(l−1)k ·Dl + 2(l−i−1)k ·Dl−1 + · · ·+ 2k ·Di+1 +Di (2.1)

Obviously, the decimal representations of any two nodes at the same level i cannot be

identical. But two nodes at different levels may have the same decimal representation.

For example, nodes addressed 0, 00, 000, . . . , all have the same decimal representation,

viz 0. Therefore, the decimal representation together with the level number of a node,

uniquely specifies the node. Fig 2.4 explains this addressing mechanism. In what

follows, we shall follow this addressing scheme. But we must remember that the two

addressing schemes are identical.

It follows that a node at level i with address N has 2k children at level (i–1)

whose addresses are

2k · n + j, for 0 ≤ j ≤ 2k − 1 Conversely, a node at level i with address N has the

parent at level (i+1) whose address is (N mod 2k).

Therefore, two different servers S1 and S2 have the same parent if S1 mod 2k

= S2 mod 2k. They have the same grandparent if S1 mod 22k = S2 mod 22k. In

particular, S1 and S2 have the LLCA at level i, iff S1 mod 2jk 6= S2 mod 2jk, for

j = 1, 2, · · · , (i− 1) and S1 mod 2ik = S2 mod 2ik. The level of the LLCA of two

servers with addresses S1 and S2 can, thus, be found using the following algorithm.

find level of LLCA (S1, S2)

begin

for i=1 to l do

17

Figure 2.4: Addrressing of nodes in an EH(3,2)

18

if (S1 mod 2ik = S2 mod 2ik)

then

return(i);

return(error);

end;

This is an O(l) algorithm, since the ”for” loop can be executed at most l times.

2.3 Message Routing between two Servers

Let us suppose that a server S1 wants to communicate with another server S2. If S1

and S2 are in the same k-cube (i.e. have the same parent), there are two ways by

which the communication can occur. First, the message may be sent using a routing

strategy for the k-cube. This mechanism does not involve the parent NC of S1 and

S2. The second strategy sends the message from S1 to its parent and then from the

parent of S1 (and also of S2) to S2. With the former strategy, the maximum number

of hops is k, whereas with the latter strategy, the number of hops is always 2. But

in the latter strategy, the parent has to take part in all communications within the

k-cube directly beneath it. As a result, congestion may occur at the parent NC. To

avoid this congestion, we will follow the former routing strategy, i.e. the hypercube

routing strategy.

Secondly, suppose that S1 and S2 have different parents P1 and P2, but the

same grandparent G. S1 and S2 are now in different k-cubes. If all edges incident on

P1 are removed from the EH, then the k-cube containing S1 gets disconnected from

the k-cube containing S2. Hence all paths connecting S2 to S1 must pass through P1

and similarly through P2. Hence S1 sends the message to P1. P1 and P2 are in the

same k-cube. Hence, as in the previous case, P1 can send the message to P2 either

by using k-cube routing algorithm or along the links P1 −G and G− P2. The latter

strategy involves G and may cause congestion at G. We, therefore, follow the former

routing strategy. After the message reaches P2, the link connecting P2 and S2 is used

19

to complete the communication.

In general, suppopse that S1 and S2 have the LLCA at level i. Let this

common ancestor of S1 and S2 be Pi. As stated in section 2.1, there are unique

paths PiPi−1,1Pi−2,1 . . . P1,1S1 and PiPi−1,2Pi−2,2 . . . P1,2S2 from Pi to S1 and S2 such

that each edge of the paths connects a node to its parent. All the nodes Pj,k, for

j = 1, 2, . . . , (i− 1) and k = 1, 2, must take part in the communication from S1 to S2.

Therefore, (i–1) upward communication hops takes the message from S1 to Pi−1,1.

Pi−1,1 then communicates with Pi−1,2 using hypercube communication. Finally, (i–

1) downward hops transmit the message from Pi−1,2 to S2. The message routing

procedure is as folows :

Message Rout (S1,S2,msg)

begin

lev = find level of LLCA(S1,S2);

P1 = S1 mod 2(lev−1)k;

P2 = S2 mod 2(lev−1)k;

for i = 1 to (lev-1) do

send msg from node (S1 mod 2(i−1)k) at level (i–1) to

node (S1 mod 2ik) at level i;

hypercube communication of msg from P1 to P2;

for i = (lev–1) downto 1 do

send msg from node (S2 mod 2ik) at level i to node

(S2 mod 2(i−1)k) at level (i–1);

end;

With this routing procedure the distance between S1 and S2 in terms of num-

ber of hops is given by

20

distance(S1, S2) = 2(lev − 1) + hamming distance(P1, P2) (2.2)

where hamming distance between P1 and P2 is the number of bits in which binary

representations of P1 and P2 differ; this is the number of hops for the hypercube

communication from P1 to P2.

Since the maximum values of lev and hamming distance are l and k respec-

tively, in an EH(k,l), we have from Eqn (2.2),

distance ≤ 2(l − 1) + k (2.3)

2.4 Load Balancing on an EH

We recapitulate that the servers (processors at level 0) carry out all the tasks that

come to the network. It is the responsibility of the NCs at levels 1 through l to

coordinate the activities of the servers. The tasks of the NCs are the following :

i) NCs are used as I/O processors. External jobs come to the NCs and not to

the servers. The NCs distribute the tasks among the servers of the network.

ii) NCs take part in communication between two servers, as described in the

previous section.

iii) NCs perform load balancing, i.e. they ensure uniform and equitable distri-

bution of work load among all the servers of the network.

We mention that the load balancing activities are carried out in sites separate

from the sites of execution of jobs. This can increase the speedup in an EH as

compared to the nonhierarchical networks like meshes and binary cubes, since in a

mesh or a binary cube, no additional control processors are present and hence the

servers have to take load balancing decisions along with the execution of jobs.

Let us now address the issues of static and dynamic load balancing on an EH

separately.

21

Figure 2.5: A task graph

2.4.1 Static load balancing

The problem of static load balancing on an EH can be stated as follows :

Given a task graph showing the computation modules of a task and the depen-

dence relationship among them, it is desired to assign the subtasks to the servers of

an EH(k,l) such that the total communication overhead associated with the execution

of the task is minimized and such that congestion at higher level NCs can be avoided

or reduced as much as possible, subject to the constraint that the total work load is

uniformly distributed among the servers of the network.

If two subtasks need to comunicate, it is convenient to map the two subtasks

onto the same server, since communication overhead will be zero in that case. But this

does not take into account the load balancing constraint. As an example, consider the

task graph of Fig 2.5. Let T1 be mapped onto server 0. T2, T3 and T4 need data from

T1 and hence all of those subtasks should be mapped onto server 0. Proceeding in

this way, we can show that the communication overhead will be minimum, viz 0, if all

22

subtasks are mapped onto the same server. This is true for all task graphs. But this

mapping seriously violates the load balancing constraint. Hence a weighted sum of the

total communication cost and cost due to load imbalance should be minimized. While

communications are permitted by mapping different subtasks on different processors,

we must strive for reducing communication through higher levels of NCs, because

an NC at level i has to handle communications from and to 2ik servers — a number

which grows exponentially with i. As a result, the problem of congestion becomes

more serious with increase in the level of the NC. Communication costs must be

adjusted to reflect effects due to the congestion problem.

Static load balancing algorithms are off-line algorithms and hence are generally

centralized ones. These can be executed at the respective NCs at which the new tasks

arrive. The algorithms can, however, be parallelized and distributed over different

NCs. Tree structure algorithms (for example, divide-and-conquer algorithms) are

particularly mentionable in this respect. Suppose a task arrives at the root of an

EH. The root divides the task among its 2k (or less) children. Each child, in its turn,

divides the task among its children and so on. Algorithms that exploit this hierarchical

property of the network are very suitable as static load balancing algorithms on an

EH. We will describe these algorithms in detail in chapter 3.

2.4.2 Dynamic load balancing

While studying dynamic load balancing on an EH, we will, for the sake of simplic-

ity, consider each task as an independent and indivisible entity with encapsulated

data, that needs no interaction with other tasks existing in the system. With this

approximate model, the dynamic load balancing problem on an EH can be stated as :

In a dynamic environment of continual arrival of jobs to the NCs and of de-

parture of jobs through execution at the servers, the problem is to migrate tasks from

heavily loaded servers and NCs1 to lightly loaded servers and NCs so that at all times

1load of a server and an NC will be defined in Chapter 4.

23

the work load is uniformly distributed among all the servers in the network.

In case of dynamic load balancing, load situation changes with time at every

node in the network. It is, therefore, inconvenient, if not impossible, for a single

central processor to keep track of the varying load situations at all servers. Dynamic

load balancing algorithms are thus in general distributed ones and are executed at

every node. An EH on the other hand employs a combination of centralized and

distributed schemes to secure the goal of load balancing. All the 2k nodes in each

k-cube of servers at level 0 have the same parent NC at level 1. Since a connection

exists between an NC at level 1 and each server beneath it, it is possible for the NC

to keep track of the load situations of all the child servers. Moreover, for an EH,

management of these information is convenient, because new tasks arrive at the NCs

and the NCs distribute the jobs among the servers. As a result, each NC at level 1

employs some centralized scheme for dynamic task allocation among its 2k children.

But the NC is not connected by direct links to servers that do not belong to the

k-cube beneath it. As a result, it is not convenient for the NC to keep information

about all servers of the EH(k,l). Therefore, a distributed load balancing scheme is

required for the entire EH(k,l) as a whole.

24

2.5 Conclusions

An EH(k,l) is a recursively defined network consisting of computation processors

called servers, IO processors called network controllers (NCs) and a hierarchical in-

terconnection network among the processors. External tasks arrive at the NCs and

are distributed by the NCs for execution among the servers of the network. The NCs

in an EH take part in load balancing activities in parallel with the computation of

servers. A static load balancing algorithm for an EH should be designed to minimize

the sum of the communication overhead of the task and the cost due to load imbal-

ance. At the same time the algorithm must attempt to minimize the possibility of

congestion at higher levels. Static load balancing algorithms can be executed on a

single NC or may be distributed over the NCs. The EH employs a combination of

centralized and distributed schemes for dynamic load balancing.

25

Chapter 3

STATIC LOAD BALANCING
ALGORITHMS ON AN EH

3.1 Introduction

In this chapter we describe three different static load balancing algorithms which

have been implemented on an EH. Input to each algorithm is a task graph and

a given EH architecture. The algorithm outputs a mapping function that maps the

subtasks onto the servers of the given network. Associated with each mapping is a cost

reflecting the combined contribution of communication overhead and load imbalance

that correspond to the execution of the task in accordance with that mapping. Each

algorithm starts with an initial mapping (for example, a random one) and performs

changes on the mapping function so as to decrease the overall cost function. Before

describing the algorithms in detail let us introduce some notations in the next section.

3.2 Some Notations

Let the given task graph be G(V , E) where

| V | = total number of subtasks in the task graph

26

= N, say (3.1)

We can address the subtasks by the integers 0 through (N−1). The set of the subtasks

is then V = {0, 1, . . . , N-1}. The subtask addressed by j is labelled by the computa-

tion overhead of that subtask and we will denote this as compj, for j = 0, 1, . . . , N-1.

Each edge, on the other hand, is labelled by the amount of communication between

the subtasks connected by the edge. We shall denote the communication correspond-

ing to an edge (i, j)ǫE by commij.

The set of processors will be denoted by K = {0, 1, . . . , P-1} whose cardinal-

ity is

| K |= P = 2lk, (3.2)

for an EH(k,l).

The mapping function map : V → K maps each iǫV to some jǫK. This is

denoted as

map(i) = j (3.3)

For each iǫV , map(i) can take P different values, since the subtask i can be mapped

onto any one of the P processors of the network. Hence the total number of mappings

possible is PN which is an exponential function of N . Even for a reasonably small

task graph with 200 subtasks and EH(3,2) as the architecture, the total number

of mappings is 64200 = 10361. It is impractical to search the entire domain of the

mapping function. We should, therefore, seek for some heuristic algorithms that give

only suboptimal solutions within reasonable amount of time.

3.3 Cost Functions

The total computational work load of a processor j, denoted by loadj , is the sum of

computation overheads of all subtasks that map onto processor j. Thus loadj can be

27

written as

loadj =
∑

iǫV

and map(i)=j

compi (3.4)

for each jǫK.

The average load of a processor is given by

load∗ =
1

P

∑

jǫK

loadj =
1

P

∑

iǫV

compi (3.5)

In the ideal case

loadj = load∗ (3.6)

for all jǫK, that is, the total work load is perfectly balanced among all the servers.

In practice, however, the processor loads are scattered about the mean value (load∗).

The larger the deviations of the processor loads from load∗ are, the poorer is the

balance of load among the servers. Therefore, any measure of dispersion of loadj

about the mean value load∗ can be used as a metric of the amount of load imbalance

corresponding to the mapping function. One such measure is the variance of loadj,

which is, given by

1

P

∑

jǫV

(loadj − load∗)2 =
1

P

∑

jǫV

load2j − (load∗)2

For a given task graph load∗ is constant (i.e. independent of the map) and hence

C1 =

√

√

√

√

1

P

∑

jǫV

load2j (3.7)

can serve as a measure of cost due to load imbalance. The square root has been taken

to make the value of C1 of the same order of magnitude as load∗. This means that

the best and worst values of C1 are proportional to the value of load∗. In order to see

how this happens let us first consider the ideal case of perfect load balancing (Eqn

3.6). In this case

C1 = load∗ (3.8)

On the other hand, the worst value of C1 occurs when all subtasks are mapped onto

the same processor, say processor 0. That is, load0 = P · load∗ and loadj = 0 for 0 <

28

j < P . Therefore,

C1 =
√
P · load∗ (3.9)

We also notice that the standard deviation of loadj is the square root of variance of

loadj , and is given by,

σ =
√

C2
1 − (load∗)2 (3.10)

Another possible measure of dispersion of loadj is the arithmetic mean of the normal-

ized absolute deviation of loadj from load∗ given by,

δ =
1

P

∑

jǫV

(

| loadj − load∗ |
load∗

)

(3.11)

Let us now take the case of communication overhead associated with the map-

ping. Each edge (i, j)ǫE(G) corresponds to a communication of data or message of

amount equal to commij from subtask i to subtask j. The contribution of this com-

munication to the total communication cost is

penmap(i),map(j) · distancemap(i),map(j) · commij

where

distancemap(i),map(j)

= distance between the two servers on which the subtasks i and j are mapped accord-

ing to the routing strategy of section 2.3 (See Eqn 2.2),

and

penmap(i),map(j)

= a penalty factor included to reduce the possibility of congestion at higher levels of

NCs.

Since subtasks i and j are mapped onto processors map(i) and map(j) respectively,

any communication of message or data from subtask i to subtask j is a communica-

tion from the server map(i) to the server map(j). This communication follows the

routing strategy described in section 2.3. The higher the maximum level reached

by the communication is, the larger is the possibility of congestion incurred by the

communication, since an NC at level i has to handle communication from and to 2ik

29

servers beneath it (2ik increases exponentially with i). We have seen in section 2.3

that the communication between two servers reaches a maximum level equal to the

level of the LLCA of the servers minus 1. In other words, the level of the LLCA of two

servers dictates how far a message has to move up in the hierarchy of NCs to effect

any communication between these two servers. Since we want to minimize communi-

cation through higher levels in comparison with those at lower levels, we must assign

larger costs to communications through higher levels in comparison to those through

lower levels. The penalty factor is introduced to reflect the relative importance of the

attempt to reduce communications though different levels. Obviously, the penalty

factor should increase with the level of the LLCA of map(i) and map(j). We have

taken the value of the level of the LLCA of map(i) and map(j) as the penalty factor.

The total communication cost is, therefore, given by,

C2 =
∑

(i,j)ǫE(G)

penmap(i),map(j) · distancemap(i),map(j) · commij (3.12)

where,

penr,s = find level of LLCA(r, s) (3.13)

as described in section 2.2.

A weighted sum of C1 and C2 is our total cost function to be minimized, that

is,

cost = C1 + β C2 (3.14)

where β is a crucial parameter indicating the relative importance of the two terms

in the total cost function. If β is too large, the communication term will dominate

and this will lead to poor load balancing. On the other hand, if β is very small, the

communication term will be neglected in comparison with C1. We have chosen β such

that C1 and βC2 produce almost equal contributions to the total cost.

Now that we have defined our cost function, we can precisely state the opti-

mization problem as

min
map

(C1 + β C2) (3.15)

30

where C1 and C2 can be given as in Eqns (3.7), (3.12) and (3.13).

3.4 Two Approaches to Load Balancing

We mentioned in section 2.4.1 that the optimization problem of static load balancing

can be solved in a single processor or may be distributed over different NCs in the

network. A tree-like splitting of the problem can help in the second case. Let us now

discuss how these two approaches differ.

3.4.1 Unified (or Centralized) Approach

In this approach, the mapping function maps subtasks to servers of the EH(k,l), as

described in the previous section. Each iteration step of the algorithm tends to modify

the mapping function so as to decrease the cost associated with the mapping function.

When the algorithm terminates, the solution directly indicates the way the subtasks

are to be assigned to the servers at level 0 of the EH.

3.4.2 Level-by-level Approach

In this approach, the algorithm starts execution at the root of EH(k,l). The map-

ping function now maps the subtasks onto the 2k NCs at level (l–1) directly beneath

the root at level l. This algorithm works as if it tends to optimize the cost function

for an EH(k,1) instead of that for an EH(k,l). That is, the root NC considers the

NCs at level (l–1) as servers to which to map the subtasks. As a result, this step

of the algorithm minimizes the communcation through the hypercube at level (l–1)

and ensures load balance among the 2k subEHs directly beneath the root. When this

step of the algorithm terminates, we are left with 2k subgraphs of the original task

graph mapped onto the 2k NCs at level (l–1). In each subgraph, only those edges

of the original task graph are retained which connect pairs of subtasks belonging to

that subgraph only. The edges connecting subtasks in different subgraphs correspond

to communications through the hypercube at level (l–1), and the total communica-

31

tion through this hypercube has already been minimized by the root NC during the

execution of the first step of the algorithm.

Each NC at level (l–1) now gets an identical problem as the root has got at the

start of the execution of the algorithm. Each NC then splits the subgraph assigned to

it into 2k subsubgraphs for the NCs at level (l–2) that are directly beneath it. In this

step of the algorithm also, the optimization algorithm for an EH(k,1) is used. This

step minimizes the communication through the hypercubes at level (l–2) and ensures

load balancing among the subEHs of level (l–2). This process is repeated level by

level, until the NCs at level 1 map the subtasks directly onto the servers, at which

stage no further splitting of the subgraphs is necessary. The β value of Eqn (3.14)

has to be adjusted at each level, since subgraphs at different levels are of different

sizes.

One benefit of the level-by-level approach over the unified approach is that

the task allocation algorithm is distributed over the entire network of NCs instead

of being executed at a single NC. Secondly, each NC, except the one at level l, gets

a subgraph smaller in size than the original graph. Moreover, the mapping function

now maps subtasks onto 2k processors unlike onto 2lk processors as in the unified

approach. In a later section, we will show that the overall execution time of the static

load balancing algorithm, as well as the total amount of computation, can be reduced

in the level-by- level approach in comparison with the unified approach.

3.5 Local Search Algorithm

The local search algorithm starts with an initial map. At each iteration step, the

mapping function is perturbed. If the perturbation leads to a mapping with lower

associated cost, the change is accepted, or else no change is done to the mapping

function. Formally the algorithm can be outlined as follows.

Local Search

begin

32

map := map0;

cost := cost0;

while (”equilibrium not reached”) do

begin

new map := perturb(map);

new cost := cost associated with new map;

if (new cost < cost) then

begin

map := new map;

cost := new cost;

end

end;

return(map);

end;

Let us now describe the details of the algorithm. The initial map (map0)

can be generated by randomly mapping the subtasks on the processors or by serially

mapping task i on processor (i mod P). The initial cost associated with map0 is

cost0. Within each iteration step of the ”while” loop, the current map function is

perturbed by randomly selecting a subtask and changing its map function value, that

is, by moving the subtask to a separate processor. If this perturbation results in a

decrease in the cost function, the map and cost function values are updated by the

new values. If the perturbation produces a map with increased cost, the effects of the

perturbation are discarded.

33

Now let us discuss how the equilibrium condition of the ”while” loop can be

checked. Since each of the N subtasks, mapped on a processor, can be moved to any

one of the other (P−1) processors, N(P−1) iterations move each task to a particular

processor one time on an average (since the probability that the particular task is

selected is 1/N and the probability that the task is moved to a particular processor

on which it is not currently mapped is 1/(P − 1)). So we can check the cost function

after each set of N(P − 1) iterations. If the cost function does not change or changes

by a very little value (that is, by a value less than a tolerance limit) after some set of

N(P −1) iterations, we assume that the equilibrium condition has been reached, that

is, no further sizable decrease of the cost is likely to be produced by the continuation

of the execution of the algorithm. The ”while” loop is thus executed MN(P − 1)

times for some integer M . Typically, equilibrium condition is reached for values of

M between 6 and 10 for the unified approach and between 15 and 20 for the level by

level approach.

We have experimented with four task graphs with 200, 400, 600 and 800 sub-

tasks respectively. We have started with different initial maps. We have considered

EH(3,2) and EH(2,3) as the extended hypercube architectures. Table 3.1 shows the

cost functions associated with the initial mapping (averaged over different map0) for

the four tasks on the two EH architectures. These cost values correspond to the

situation before the execution of any load balancing algorithm. COMj refers to the

total communication (without the penalty factor) that is routed through a jth level

node at the highest level. Thus, for an EH(2,3)

C2 = COM0 + 2 COM1 + 3 COM2.

Tables 3.2 and 3.3 show the cost function values after the local search algorithm is

run on the task graphs using the unified approach (M = 10) and the level-by-level

approach (M = 20) respectively. For these values of M we have reached equilibrium

for each of the four task graphs. We observe that both C1 and β C2 and hence the

total cost function have been reduced by the execution of the local search algorithm.

For an EH(3,2), COM0 has increased, whereas COM1 has decreased. For an EH(2,3),

both COM0 and COM1 have increased and COM2 has decreased. Thus the algo-

34

rithm has reduced communication through higher levels at the expense of increased

amount of communication through lower levels. The variations of the cost functions

with different values of M for the task graph with 800 subtasks are shown in Tables

3.4 and 3.5 for the unified and level-by-level approaches.

35

Table 3.1 Four task graphs and their initial cost

function values

200 tasks 400 tasks 600 tasks 800 tasks
EH(3,2) EH(2,3) EH(3,2) EH(2,3) EH(3,2) EH(2,3) EH(3,2) EH(2,3)

C1 189 189 352 352 514 514 664 664
βC2 184 185 380 379 593 588 787 785
cost 373 374 732 731 1107 1102 1451 1449
load∗ 168 168 330 330 491 491 640 640
σ 84 84 119 119 146 146 171 171
δ(%) 41 41 28 28 24 24 22 22
COM0 905 285 2096 682 3132 1135 4298 1334
COM1 17989 3178 36931 7127 57765 11155 76501 14766
COM2 22463 45494 70605 94341

36

Table 3.2 Cost function values after the execution of

the local search algorithm

(Unified approach with M = 10)

200 tasks 400 tasks 600 tasks 800 tasks
EH(3,2) EH(2,3) EH(3,2) EH(2,3) EH(3,2) EH(2,3) EH(3,2) EH(2,3)

C1 172 171 334 333 497 497 649 653
βC2 115 116 233 237 362 368 481 472
cost 289 287 567 570 859 865 1130 1125
load∗ 168 168 330 330 491 491 640 640
σ 37 33 55 44 71 74 101 124
δ(%) 16 16 13 11 11 12 12 16
COM0 2587 1341 4321 2502 6315 3672 7573 4650
COM1 10234 4873 21148 8075 33023 12306 44277 16642
COM2 11779 25317 39620 50310

Table 3.3 Cost function values after the execution of

the local search algorithm

(Level-by-level approach with M = 20)

200 tasks 400 tasks 600 tasks 800 tasks
EH(3,2) EH(2,3) EH(3,2) EH(2,3) EH(3,2) EH(2,3) EH(3,2) EH(2,3)

C1 174 170 336 332 505 495 651 644
βC2 107 114 230 231 343 358 479 489
cost 281 284 566 563 848 853 1130 1133
load∗ 168 168 330 330 491 491 640 640
σ 45 27 65 39 117 59 116 63
δ(%) 20 13 16 10 18 10 15 8
COM0 2249 1211 3485 2125 5667 2911 6187 3185
COM1 9582 4769 21306 8558 31507 13064 44787 16808
COM2 11579 24462 38031 52972

37

Table 3.4 Variation of the cost functions with M for

the 800 node task graph (load∗ = 640)

(Local Search Algorithm : Unified Approach)

EH(3,2) EH(2,3)
M=2 M=4 M=6 M=8 M=10 M=2 M=4 M=6 M=8 M=10

C1 648 649 649 649 649 650 649 651 652 653
βC2 494 485 482 481 481 496 487 480 474 472
cost 1142 1134 1131 1130 1130 1146 1136 1131 1126 1125
σ 97 102 105 103 101 109 108 115 123 124
δ(%) 12 12 13 12 12 14 14 15 16 16
COM0 8754 8000 7728 7636 7573 5349 4954 4750 4726 4650
COM1 44994 44471 44310 44285 44277 16652 16577 16514 16683 16642
COM2 53208 52220 51419 50533 50310

Table 3.5 Variation of the cost functions with M for

the 800 node task graph (load∗ = 640)

(Local Search Algorithm : Level-by-Level Approach)

EH(3,2) EH(2,3)
M=1 M=5 M=10 M=15 M=20 M=1 M=5 M=10 M=15 M=20

C1 643 648 651 651 651 641 643 644 644 644
βC2 589 496 485 480 479 613 517 495 490 489
cost 1232 1144 1136 1131 1130 1254 1160 1139 1134 1133
σ 53 99 114 115 116 32 52 60 63 63
δ(%) 7 13 14 15 15 4 7 8 8 8
COM0 5068 5798 6217 6236 6187 2830 3101 3427 3425 3185
COM1 56347 47637 45371 44892 44787 16141 15951 16399 16331 16808
COM2 69990 57248 53928 53239 52972

38

Figure 3.1: A one-variable function demonstrating the problem of local minima

3.6 Simulated Annealing Algorithm

The local search algorithm described in the previous section accepts moves only in

the direction that reduces the cost. A move increasing the cost is never accepted. As

a result, the solution may get stuck in a local minima. To explain this phenomenon

let us consider a function f of a single variable x to be minimized. The f(x) versus x

relationship is as shown in Fig 3.1. Suppose that we start at an initial value of x = x0,

i.e. at a point S. The domain of x for the search is xmin ≤ x ≤ xmax. We perturb

the situation by changing x by a small value from the current value. Since we are

initially at x0, any move decreasing x value cannot be accepted by the local search

algorithm, since such a move increases f(x). So our movement is restricted towards

right only. Suppose, after some number of iterations, we reach the point A. We note

that A is a point of local minima of the function f(x), since f(x) is an increasing

function on both sides of A. As a result, no small change of x at this point is accepted

by the local search algorithm. That is, the solution gets stuck at this point. The

39

global minima in the domain xmin ≤ x ≤ xmax is, however, at B. The solution can

never reach this global minima. This problem can be avoided to a great extent using

a simulated annealing algorithm [8].

The solution of Fig 3.1 can get out of the local minima at A, if moves increasing

f(x) are accepted so as to enable f(x) to climb the hill at C. This process is analogous

to the process of annealing in metallurgy in which a metal is melted and cooled down

very slowly. At high temperatures, thermal perturbations may lead the material from

lower to higher energy states. As temperature is reduced, hill climbing moves become

less and less likely. At very low temperatures, the metal accepts only those moves

that decrease its energy and the energy settles down to a minimum value.

Analogously, our optimization problem of load balancing should initially ac-

cept hill-climbing moves (i.e. moves increasing the cost function). As the process

continues, these moves are made less and less likely. The probability of acceptance of

hill climbing moves can be controlled by a parameter T analogous to the temperature

of the material in the annealing process. If a move increases the cost function by a

value ∆c ≥ 0, then the move is accepted with a probability of exp(−∆c/T). We see

that the probability decreases as we decrease T keeping ∆c constant. Hence we start

with a high value of T and decrease it gradually till the probability of hill climbing

moves becomes very low. The simulated annealing algorithm [8] can now be outlined

as follows :

Simulated Annealing

begin

T := T0;

map := map0;

cost := cost0;

while (T > Tfreeze) do

begin

40

while (”equilibrium is not

reached at current temperature”) do

begin

new map := perturb(map);

new cost := cost associated with new map;

∆c := new cost− cost;

if (∆c < 0) then

begin

map := new map;

cost := new cost

end

else

begin

r := random number between 0 and 1;

if (r < exp(−∆c/T)) then

begin

map := new map;

cost := new cost

end

end

end;

T := update(T)

end;

41

return(map)

end;

As in the local search algorithm, we start with an initial map (map0) and with

the corresponding associated cost (cost0). The initial temperature T0 is chosen such

that hill climbing moves have high probability of acceptance, say 0.9. Specifically,

we identify all the moves from the initial configuration (map0) that increase the cost,

calculate the average increase in cost (∆cav) for these moves, and use the equation

0.9 = exp(−∆cav/T0) to calculate T0.

The operation of the code segment within the inner ”while” loop is the same as

that of the local search algorithm except only that in the present case a perturbation

increasing the cost function is accepted with a probability of exp(−∆c/T). As in

the local search algorithm, the ”while” loop is executed MN(P − 1) times for some

integer M for each execution of the outer loop.

The temperature updation at the last line of the outer ”while” loop of the

simulated annealing algorithm presented earlier is called the cooling schedule. We use

the relation T := 0.9 T for the updation of T . The freezing point is reached when hill

climbing moves are very unlikely. Specifically, the freezing point temperature Tfreeze

is one at which a move increasing the cost by unit value has very low probability of

acceptance, say 2−32. After the freezing point is reached, the map is output as the

solution to the optimization problem.

As in the local search algorithm, we experimented with the four task graphs of

Table 3.1. The solutions obtained for these graphs using the unified and level-by-level

approaches are shown in Tables 3.6 and 3.7. The variations of the cost functions with

M for the 800 node task graph are shown in Tables 3.8 and 3.9.

42

Table 3.6 Cost function values after the execution of

the Simulated Annealing algorithm

(Unified approach with M = 3)

200 tasks 400 tasks 600 tasks 800 tasks
EH(3,2) EH(2,3) EH(3,2) EH(2,3) EH(3,2) EH(2,3) EH(3,2) EH(2,3)

C1 174 176 340 341 504 512 651 656
βC2 109 104 219 213 339 321 451 433
cost 283 280 559 554 843 833 1102 1089
load∗ 168 168 330 330 491 491 640 640
σ 47 52 83 88 109 142 119 145
δ(%) 20 24 20 21 18 25 19 23
COM0 3252 1743 6437 3725 9573 5685 12815 7861
COM1 9222 5604 18707 10114 29129 16408 38728 20978
COM2 9630 20446 29990 41192

Table 3.7 Cost function values after the execution of

the Simulated Annealing algorithm

(Level-by-Level approach with M = 3)

200 tasks 400 tasks 600 tasks 800 tasks
EH(3,2) EH(2,3) EH(3,2) EH(2,3) EH(3,2) EH(2,3) EH(3,2) EH(2,3)

C1 175 171 340 333 511 497 667 648
βC2 102 105 213 215 320 332 428 441
cost 277 276 553 548 831 829 1095 1089
load∗ 168 168 330 330 491 491 640 640
σ 49 32 85 50 139 72 185 99
δ(%) 21 14 20 12 22 12 23 12
COM0 2163 1237 3508 2039 5521 2701 7066 3536
COM1 9139 4703 19465 8443 29272 13216 39315 16724
COM2 10509 22403 34611 46477

43

Table 3.8 Variation of cost functions with M for

the 800 node task graph (load∗ = 640)

(Simulated Annealing Algorithm :

Unified Approach)

EH(3,2) EH(2,3)
M=1 M=2 M=3 M=1 M=2 M=3

C1 650 650 651 656 656 656
βC2 454 449 451 435 433 433
cost 1104 1099 1102 1091 1089 1089
σ 111 113 119 144 145 145
δ(%) 18 18 19 23 23 23
COM0 12655 12467 12815 7624 7503 7861
COM1 39104 38699 38728 21216 20695 20978
COM2 41268 41447 41192

Table 3.9 Variation of cost functions with M for

the 800 node task graph (load∗ = 640)

(Simulated Annealing Algorithm :

Level-by-level approach)

EH(3,2) EH(2,3)
M=1 M=2 M=3 M=1 M=2 M=3

C1 665 666 667 647 647 648
βC2 433 427 428 448 443 441
cost 1098 1093 1095 1095 1090 1089
σ 179 182 185 94 95 99
δ(%) 22 22 23 11 12 12
COM0 7109 6945 7066 3541 3445 3536
COM1 39757 39268 39315 17323 17009 16724
COM2 47012 46575 46477

44

3.7 A Greedy Algorithm

A greedy algorithm accepts moves that are locally optimal. Whenever a subtask is

moved, the algorithm selects the best processor to carry out the subtask and assigns

that subtask to that processor. In order to find out the best processor for the subtask,

we use the cost functions discussed in section 3.3. Suppose, a subtask iǫV has been

selected for a possible reassignment of a processor. The current map provides a

mapping for each subtask of the task graph. For all subtasks other than i, the mapping

function value is kept unchanged, whereas map(i) is varied. The cost function is

calculated for every possible value of map(i). The minimum value of the cost function

corresponds to the best processor for serving the subtask i. If the best processor is

different from the processor on which the subtask i is currently mapped, the subtask

is moved to the best processor. The algorithm can be formally stated as follows.

Greedy

begin

map := map0;

cost := cost0;

while (”equilibrium is not reached”) do

begin

for each subtask iǫV in some order do

begin

best cost := cost;

best proc := map(i);

for proc = 0 to (P − 1) do

begin

45

if (proc 6= map(i)) then

begin

new map := map;

new map(i) := proc;

cost := cost associated with new map;

if (new cost < best cost) then

begin

best cost := new cost;

best proc := proc;

end;

end

end;

if (best proc 6= map(i)) then

begin

cost := best cost;

map(i) := best proc

end

end

end;

output(map)

end;

As in the two algorithms described before, we start with initial map and cost

functions. Each execution of the ”while” loop tends to move every subtask of the

task graph. The order in which the subtasks are considered for possible movement

is a predetermined one. For each subtask, the best processor is found out. The

46

map function value for that subtask is correspondingly changed. The ”while” loop

may be executed several times, because each execution begins with a different map

function and the best processor for the same subtask may be different for different

maps. Equilibrium condition is reached when all subtasks are currently assigned

to the respective best processors under the current map and hence no subtask can

further be moved. The algorithm perturbs the map (P − 1) times for each subtask

during each execution of the ”while” loop. Hence the ”if” clause of the innermost

”for” loop is executed MN(P − 1) times where M is an integer denoting the number

of times the ”while” loop is executed before the attainment of equilibrium. Typically

M varies from 8 to 15.

We experimented with the task graphs of Table 3.1. The results are listed

in tables 3.10 through 3.13. We have executed the greedy algorithm with several

initial maps and with different orders of selecting the subtasks for movement (in the

outer ”for” loop of the code). It has been observed that the quality of the solution

depends considerably on the initial map and the order of selecting the subtasks for

movemetnt. The best and worst solutions obtained for the 800 node task graph are

shown in tables 3.12 and 3.13.

47

Table 3.10 Cost function values after the execution of

the greedy algorithm

(Unified approach)

200 tasks 400 tasks 600 tasks 800 tasks
EH(3,2) EH(2,3) EH(3,2) EH(2,3) EH(3,2) EH(2,3) EH(3,2) EH(2,3)

C1 170 172 332 332 498 500 645 646
βC2 123 115 245 243 363 361 498 493
cost 293 287 577 575 861 861 1143 1139
load∗ 168 168 330 330 491 491 640 640
σ 26 37 39 39 80 86 72 76
δ(%) 12 17 9 9 13 14 9 10
COM0 2205 1354 3764 2394 5719 3445 6608 4081
COM1 11231 4600 22653 7744 33476 12134 46476 14936
COM2 11805 26403 38860 54387

Table 3.11 Cost function values after the execution of

the greedy algorithm

(Level-by-Level approach)

200 tasks 400 tasks 600 tasks 800 tasks
EH(3,2) EH(2,3) EH(3,2) EH(2,3) EH(3,2) EH(2,3) EH(3,2) EH(2,3)

C1 173 170 342 331 513 494 673 644
βC2 109 115 217 239 330 369 438 488
cost 282 285 559 570 843 863 1111 1132
load∗ 168 168 330 330 491 491 640 640
σ 43 25 90 33 147 46 208 67
δ(%) 19 12 21 8 23 8 25 9
COM0 2189 1175 3967 2052 6095 2840 7688 3497
COM1 9838 4810 19752 8162 29934 12650 39915 16718
COM2 11687 25769 39889 52714

48

Table 3.12 The best, worst and average solutions for

the 800 node task graph (load∗ = 640)

(Greedy Algorithm : Unified Approach)

EH(3,2) EH(2,3)
average best Worst average best worst

C1 645 648 642 646 654 641
βC2 498 474 522 493 455 525
cost 1143 1122 1164 1139 1109 1166
σ 72 96 39 76 133 28
δ(%) 9 11 5 10 17 4
COM0 6608 7253 6111 4081 4481 3957
COM1 46476 43812 49165 14936 16600 13206
COM2 54387 48135 59864

Table 3.13 The best, worst and average solutions for

the 800 node task graph (load∗ = 640)

(Greedy Algorithm :

Level-by-Level Approach)

EH(3,2) EH(2,3)
average best Worst average best worst

C1 673 673 667 644 647 641
βC2 438 433 450 488 470 520
cost 1111 1106 1117 1132 1117 1161
σ 208 206 187 67 88 30
δ(%) 25 25 24 9 11 4
COM0 7688 7533 7297 3497 3911 3261
COM1 39915 39537 41343 16718 18235 14261
COM2 52714 49252 58766

49

3.8 Comparison among the Algorithms

Now that we have described three algorithms for static load balancing on an EH, let

us discuss the relative performances of the algorithms in terms of solution quality and

run time. For the comparison, we will refer to the data obtained using the unified

approach. We will conclude this section by a comparison between the unified and the

level-by-level approaches.

3.8.1 Solution Quality

All of the three algorithms which we have pesented in the last three sections are sub-

optimal ones. As mentioned before, it is impractical to solve the static load balancing

problem optimally because of the unreasonably long run time of the algorithm that

gives the optimal solution after inspecting every possible map. The optimal value of

the cost function is therefore unknown to us and we cannot compare the performances

of the suboptimal algorithms with that of the optimal algorithm in terms of the value

of the cost function. However, we can compare the performances of the three subop-

timal algorithms among one another. The basis of the comparison is that the smaller

the value of the cost function output by an algorithm is, the closer the cost is to the

optimal value. As a result, if the cost output by an algorithm A is smaller than that

by algorithm B, we will say that algorithm A gives better solution than algorithm B.

In terms of the total cost function, the simulated annealing algorithm gives

best and the greedy algorithm gives worst solutions. The variation is within 1% of

the suboptimal cost obtained. It has been observed that better solutions are gener-

ally obtained by reductions in the communication cost at the expense of increased

load imbalance. The greedy algorithm provides the best load sharing but the highest

communication overhead. The simulated annealing algorithm, on the other hand,

provides the worst load balance but the least communication overhead. The perfor-

mance of the local search algorithm is in between the performances of the simulated

annealing and greedy algorithms in terms of both load balancing and communication

overhead. Figs 3.2 through 3.6 show pictorial comparison of the parameter values

50

obtained using the three algorithms. At the same time, the values are compared with

the initial values before the execution of any load balancing algorithm. Figs 3.2 and

3.3 show the values of C1, βC2 and the total cost function obtained by the execution

of the different algorithms. Fig 3.4 shows the values of δ (defined in Eqn 3.11) that

correspond to the final map output by the three algorithms. Figs 3.5 and 3.6 compare

the relative communication volumes through different levels for the three algorithms.

The relative communication volume COM ′
j is defined to be the value of COMj out-

put by the algorithm divided by the initial value of COMj (i.e. the value before the

algorithm is executed). In the figures, the abbreviation NL corresponds to the initial

cost function values (before load balancing is done), whereas LS, SA and GR refer

to the cost function values obtained by the execution of the local search, simulated

annealing and greedy algorithms respectively.

51

52

53

54

55

56

57

58

59

60

3.8.2 Run Time of the algorithms

In section 3.5 we have seen that the map is perturbed forMN(P−1) times for the local

search algorithm where M is between 6 and 10. The simulated annealing algorithm

perturbs the map for MN(P − 1) times at each temperature for M between 1 and 3.

Typically, the algorithm is run for 100 different values of the temperature. Hence the

entire execution of the simulated annealing algorithm perturbs the map MN(P − 1)

times for M between 100 and 300. Finally, the greedy algorithm causes MN(P −
1) perturbations for M between 8 and 15. For each of the three algorithms, each

perturbation involves changing the map and calculating the new cost for this changed

map. The acceptance criterion for the perturbations varies from one algorithm to

another. We can, however, consider the run time proportional to the number of

perturbations done during the execution. In terms of run time, therefore, the local

search algorithm is the fastest. The greedy algorithm is almost as fast as the local

search algorithm. But the simulated annealing algorithm is 10 to 30 times slower

than the other two algorithms.

3.8.3 Consistency of the Results

The solutions obtained with different initial maps in both the local search algorithm

and the simulated annealing algorithm do not vary greatly from one another. For the

greedy algorithm, however, sizable variations have been observed for different initial

maps and orders of selecting the subtasks for reassignment of processors. Typically,

we have found as much as 5% variations in the total cost function using the greedy

algorithm.

3.8.4 Susceptibility of the solution to the local optima prob-
lem

Both the local search algorithm and the greedy algorithm are more susceptible to the

local optima problem described in section 3.5 than the simulated annealing algorithm.

61

In fact, the simulated annealing algorithm has been devised to reduce the effect of

this problem. The cost paid for achieving this is a many times slower execution of

the simulated annealing algorithm in comparison with the other two algorithms.

3.8.5 Comparison between the Unified and Level-by-Level
Approaches

We have not observed any significant difference in the solution qualities obtained us-

ing the two different approaches in any of the three algorithms. In some cases, the

level-by-level approach gives a slightly better solution than the other approach. This

may be because the unified approach uses an overall cost function reflecting combina-

tions of several factors, like load imbalance at the servers’ level and communication

overheads through all levels. Each step of the level-by-level approach, on the other

hand, takes care of some specialized factors, like load imbalance and communication

overhead in a particular level. This may be a possible cause of better regulation of

individual parameters resulting in better overall solutions in case of the level-by-level

approach.

In terms of run time, the level-by-level approach gives a faster algorithm than

the unified approach. To see how this happens, we recapitulate that the run time

of each algorithm is proportional to the number of perturbations performed on the

mapping function. Though the time taken to calculate the cost associated with the

perturbed map depends on the size of the task graph, we shall assume in this section

that each perturbation requires some constant time on an average irrespective of the

size of the task graph. (If we remove this assumption, then the estimated execution

time for the level-by-level approach will be smaller than that which we get with the

assumption. This implies that the lower bound which we will provide for the speedup

of the level-by-level approach over the unified approach is less than the lower bound

which can be obtained without the assumption.) We have seen that an execution of

each algorithm takes time proportional to MN(P − 1), where N is the number of

subtasks, P is the number of processors onto which the algorithm maps the subtasks

and M is an integer that depends on the algorithm and also on the approach. For the

62

unified approach, P is 2lk in an EH(k,l). Thus the run time of the unified approach

is given by,

Tuni = Muni ·N · (2lk − 1) (3.16)

where Muni is the value of M for the unified approach. The level-by-level algorithm

runs in several phases. The first phase is executed at the root. The second phase runs

in parallel in each (l–1)st level NC. In general, the ith phase is executed in parallel in

the (l–i+1)st level NCs. We see that there are l phases for the level-by-level approach,

where each phase corresponds to the execution of the algorithm at one level of NCs.

Since different NCs at the same level run in parallel in each phase, the total run time

of the level-by-level approach is equal to the sum of the run times of l executions of

the algorithm with the ith execution occurring in an (l–i+1)st level NC. The root

takes time Mlev · N · (2k − 1), where Mlev is the value of M for the level-by-level

approach. Each NC at level (l–1) gets a subgraph with N/2k subtasks on an average.

So the second phase takes time Mlev ·N/2k · (2k−1). Similarly, each NC at level (l–2)

gets a subgraph of N/22k subtasks on an average. Therefore, the second phase takes

time Mlev ·N/22k · (2k−1). In this way we can calculate the run time for other phases

of the algorithm. Therefore, the level-by-level approach takes a run time given by,

Tlev = Mlev ·N · (2k − 1) +Mlev ·N/2k · (2k − 1) +

· · ·+Mlev ·N/2(l−1)k · (2k − 1)

= Mlev ·N · (2k − 1)(1 + 1/2k + 1/22k + · · ·+ 1/2(l−1)k)

< Mlev ·N · (2k − 1)(1 + 1/2k + 1/22k + · · · to infinity)
= Mlev ·N · 2k (3.17)

The speedup of the level-by-level approach over the unified approach is, therefore,

speedup = Tuni/Tlev

> Muni ·N · (2lk − 1)/(Mlev ·N · 2k)

≈
(

Muni

Mlev

)

2(l−1)k (3.18)

63

In our experiments, it has been observed that

Mlev ≤ 2 Muni (3.19)

Therefore,

speedup > 2(l−1)k−1 (3.20)

Thus for an EH(3,2), speedup > 4 and for an EH(2,3) speedup > 8.

Finally, suppose that the level-by-level algorithm is executed on a single pro-

cessor instead of on different NCs. This means that the same processor executes

different phases of the algorithm and for each phase the processor serially performs

the executions that are performed in parallel on different NCs in the actual execu-

tion of the algorithm. In other words, the single processor serially carries out the

executions done on all the NCs. In that case the run time T ′
lev will be proportional

to the total number of perturbations produced in the entire execution of the algo-

rithm. In fact, this is a measure of the total computation overhead associated with

the execution of the level-by-level algorithm.

The single processor first splits the initial task graph into 2k subgraphs with

N/2k subtasks in each subgraph on an average. This first phase takes time Mlev ·N ·
(2k−1). In the second phase, the processor serially divides 2k subgraphs into a total of

22k subsubgraphs, and this takes a total time given by 2k ·Mlev · (N/2k) · (2k − 1) =

Mlev ·N · (2k − 1). Similarly, the splitting of the 22k subsubgraphs takes time equal

to 22k ·Mlev · (N/22k) · (2k − 1) = Mlev ·N · (2k − 1), and so on. Thus the entire

execution takes time

T ′
lev = Mlev ·N · (2k − 1) · l (3.21)

The speedup of this execution over that of the unified algorithm is given by,

speedup′ = Tuni/T
′
lev (3.22)

=
1

l

(

Muni

Mlev

)

(

2lk − 1

2k − 1

)

64

Using the inequality 3.19 gives

speedup′ ≥ 1

2l

(

2lk − 1

2k − 1

)

(3.23)

In particular, for the EH(3,2),

speedup′ ≥ 9/4 = 2.25

and for the EH(2,3)

speedup′ ≥ 7/2 = 3.5

3.9 Conclusions

This chapter starts by defining the cost function to be minimized by the static load

balancing algorithm. Lack of load balance among the processors is given equal im-

portance as the communication overhead in determining the overall cost. The unified

approach maps subtasks directly onto servers. The level-by-level approach assigns the

subtasks in different phases down the hierarchy of NCs starting from the root. Three

static load balancing algorithms for EH have been described. Each algorithm starts

with an initial map. The local search algorithm produces random changes on the

map and accepts only those changes that reduce the cost function. The solution may,

however, get stuck in a local minima. To avoid the problem, the simulated annealing

algorithm provides controlled acceptance of the changes on the map that increase the

cost function. Finally, each step of the greedy algorithm modifies a given map func-

tion value such that the cost function is minimized by that change. In terms of the

cost function, the simulated annealing algorithm performs the best followed by the lo-

cal search and the greedy algorithms in succession. At the same time, the simulated

annealing algorithm is about 20 times slower than the other two algorithms. The

level-by-level approach performs slightly better than the unified approach in terms of

solution quality. However, the run time of the level-by-level approach is smaller than

that of the unified approach.

65

Chapter 4

THRESHOLD ALGORITHMS
FOR DYNAMIC LOAD
BALANCING

4.1 Introduction

A dynamic load balancing algorithm tends to achieve uniform load distribution among

the PEs by migration of excess load from heavily loaded PEs to lightly loaded ones.

The different dynamic load balancing algorithms differ from one another in one or

more of the following respects : i) The load information each PE keeps, for example,

load value of that PE and load values of adjacent PEs. ii) The information which

each PE uses for making a task migration decision, for example, comparison of the

load of that PE with the loads of the adjacent PEs. iii) The particular time instants

when the algorithms are executed, for example, when a new job comes to a PE, or

when a job finishes execution at a PE, or at regular intervals of time. iv) The strategy

adopted to decide when migration decision is to be carried out, which task(s) is(are)

to be migrated and where the excess load is to be migrated. In the following section,

we shall describe a well-known algorithm called the Threshold Algorithm (TA).

66

4.2 Threshold Algorithm

In a threshold algorithm [17,18]

i) Each PE keeps only local load information, i.e. the load value of that PE

only. As argued in section 1.1, load of a PE is defined heuristically by the number

of tasks that are awaiting execution on that PE (including the task, if any, that is

currently being executed).

ii) For making load balancing decisions, a PE uses load information of a subset

of the set of all PEs in the network. The size of this subset of PEs is limited by a

maximum value. Since remote load information (i.e. load values at other PEs) is not

maintained by the PE, it has to probe the remote processors across the network to

get the remote load values. In order to probe a remote processor, a processor sends a

request to the remote processor. The remote processor, upon reception of the request,

replies by sending its current load value.

iii) The algorithm is executed during arrival and/or departure of a job.

iv) Load balancing decision is based on the comparison of local load with a

certain predefined constant value, called threshold. If the local load is more than or

equal to the threshold value, the PE is assumed to be overloaded. On the other hand,

if the local load is less than the threshold, the PE will be called underloaded. There

are two different types of TAs, namely sender-initiated (SI) and receiver-initiated (RI)

TAs. This classification is based on the initiator of the load balancing activity. Let

us now describe these two types of algorithms in details.

4.2.1 Sender-Initiated Threshold Algorithm

Whenever an external task arrives at a PE P , the local load value increases by unity.

The PE compares this increased load value with the local threshold value Tp. If the

load value is more than Tp, the PE is overloaded and it tries to migrate the new

task to some remote node. In an attempt to decide the destination node for the task

transfer, the PE P probes a maximum of Lp remote nodes chosen randomly in the

network. Lp is called the probe limit of the sender-initiated algorithm. The probed

67

nodes reply by sending their respective current load values. If each of these load

values is larger than or equal to the threshold value of the corresponding probed PE,

it is not possible to transfer the new task to an underloaded processor, and hence the

new task is executed locally (i.e. not migrated). On the other hand, if some probed

node Q has local load less than Tq, the new task is migrated from PE P to PE Q.

The probes which P carries out can be made serially or parallelly. In serial

probing, the node P probes the remote processors one by one until a probed node

is found whose load is less than the corresponding threshold or until Lp probes have

been carried out without finding an underloaded remote PE for the task transfer. In

parallel probing, on the other hand, the processor P sends out Lp probes in parallel

and waits for the replies. If all probed PEs are overloaded, no migration occurs. If

one or more probed PEs are found to be underloaded, the new task is sent to any

one of the underloaded probed PEs. In our implementation we shall assume serial

probing only. The limit Lp on the number of probes is intended to limit the overhead

associated with each migration decision not to exceed an acceptable value. We note

that the overhead is more in case of serial probing than in case of parallel probing.

Lp is chosen to meet the overhead constraint. For example, suppose, each probe,

on an average, takes 1% of the average time for the execution of a job. If we want

the migration decision overhead not to exceed 10% of the average execution time

of a job, we must choose Lp ≤ 10. On the other hand, choice of Tp can be based

on some previous experience with the network or on the use of a suitable heuristic

strategy. For example, the average processor load can be calculated by observing the

processor over a period of time and the threshold is set to the average load value.

The significance of this choice of Tp is that if the PE P gets loaded by a value more

than the average, the processor will be called overloaded and will attempt to migrate

a new task that arrives to the PE.

4.2.2 Receiver-Initiated Threshold Algorithm

In this case an underloaded PE attempts to receive a task from an overloaded PE

in the network. Whenever a task completes execution at a node P , the load value

68

of P decreases by unity. If it happens that the load value is less than the local

threshold Tp, the node P probes a maximum of Lp remote nodes chosen randomly

in the network. Lp is called the probe limit of the receiver initiated algorithm. The

probed nodes reply by sending their respective current load values. If all these probed

nodes are underloaded (that is, have loads less than the respective thresholds), then

no task migration takes place. On the other hand, if an overloaded PE Q is found by

P , a task is migrated from Q to P . The PE Q can choose any task waiting at Q for

the transfer, but it cannot choose the task currently serverd by Q for the migration,

since in our algorithm a task assigned to a server is never preempted and is allowed

to continue till the completion of its execution.

As in the sender initiated algorithm, we shall consider only serial probing. The

choices of Tp and Lp are also similar in the two algorithms.

Before we conclude this general discussion about TAs, we mention one point.

We have assumed that each PE has its own threshold and probe limit. In what

follows, we shall assume that our system of PEs is homogeneous, that is, all PEs are

identical and so are the interconnection links. Moreover, the interconnection network

is assumed to be symmetric with respect to each PE. For a binary cube, a mesh with

wrap-around connections and for an EH, the network enjoys this symmetry property.

For a mesh without wrap-around connections, the assumption of network symmetry

is a reasonable one. For such a system, we are justified in taking

Tp = T and Lp = L

for each PE P of the network. With this assumption, a probing node can compare

remote load values with the local (and system-wide unique) threshold value.

4.3 Dynamic Load Balancing on EH

We recapitulate that external tasks arrive at the NCs and are distributed by the

network of NCs among the servers (PEs at level 0) of the network for execution.

Each server executes the jobs assigned to it in a FIFO discipline and never takes

part in any load balancing decision. Only the NCs execute a distributed algorithm to

69

ensure the uniformity of load distribution among the servers. Thus, we have separated

the job servicing and load balancing activities to work on different sites of the EH

network.

4.3.1 Information maintained by each NC

Work load at each server of an EH(k,l) refers to the number of tasks currently present

at that node. Work load of an NC at level 1 is the sum of work loads of the 2k servers

directly beneath it. In general, work load of an ith level NC is the sum of the work

loads of 2k NCs/servers at level (i–1) which are directly beneath the ith level NC.

In other words, the work load of an ith level NC is the sum of work loads of all 2ik

servers in the subEH of level i rooted at the ith level NC. For example, work load of

the root NC is the total work load of all servers in the EH(k,l).

Since each NC at level i is connected by control links to 2k NCs/servers at

level (i–1), it is convenient for each NC at level i to keep track of the information

regarding the work loads of its 2k children. In addition, each ith level NC maintains

its own work load value which is the sum of the load values of its 2k children. We

notice that only the NCs at level 1 keep track of individual server load values.

4.3.2 Thresholds at NCs

Let t be the threshold value of the work load of a server. By the assumption of

homogeneous system with symmetric interconnection network, this value is the same

for all the servers of the EH. However, this value does not correctly characterize the

threshold of an NC. This is because the work load of an NC has been defined to be

the sum of loads of all the servers beneath the NC. Since there are 2ik servers beneath

an ith level NC, the equivalent threshold value for the NC is given by

T (i) = 2ik · t (4.1)

70

4.3.3 Relation between arrival and deperture rates in equi-
librium

In an equilibrium condition, the rate of arrival of tasks to each server equals the rate

of service of tasks in that server. We shall assume that both the arrival and service

processes are Poisson processes. Let

λ = rate of arrival of tasks to each NC, and

µ = rate of service of tasks in each server.

We have assumed that λ is same for all NCs irrespective of the level.

To see how external tasks are distributed by the NCs, let us consider Fig 4.1,

where only the control links of an EH(k,l) are shown. At this point we assume that

no load balancing is performed so that tasks move only down the hierarchy of NCs

from higher to lower levels. The root receives external tasks at a rate of λ. A task

can be passed to each NC at level (l–1) with equal probability (1/2k). Thus the

input Poisson stream at rate λ is split into 2k substreams each of rate λ/2k along the

2k control links from the root NC. Each NC at level (l–1) receives two independent

Poisson streams, one of rate λ/2k passed down from its parent and the other is an

external arrival of rate λ. Hence the total arrival at the (l–1)st level NC is a Poisson

one with rate λ+ λ/2k. This is split by the NC into 2k Poisson streams each of rate

(λ+ λ/2k)/2k = λ/2k + λ/22k and these 2k streams are passed to the 2k NCs at level

(l–2) directly beneath the NC at level (l–1).

This process is repeated down the hierarchy of NCs. Each NC at level 1 receives

a Poisson stream of rate λ/2k+λ/22k+ · · ·+λ/2(l−1)k from its parent and an external

arrival of rate λ. The sum is a Poisson arrival of rate λ+λ/2k+λ/22k+ · · ·+λ/2(l−1)k

which is split equally among the 2k servers beneath the NC. Thus at equilibrium

µ = (λ+ λ/2k + λ/22k + · · ·+ λ/2(l−1)k)/2k

=
λ

2k
(1 + 1/2k + (1/2k)2 + · · ·+ (1/2k)l−1)

=
λ

2k

(

1− (1/2k)l

1− 1/2k

)

71

Figure 4.1: Distribution of tasks by the NCs among the servers

72

= λ

(

1− 2−lk

2k − 1

)

Rearranging gives

λ = µ

(

2k − 1

1− 2−lk

)

≈ µ(2k − 1) (4.2)

For an EH(3,2), k=3 and l=2. So we have,

λ = µ(23 − 1)/(1− 2−6) = 7.11µ.

For an EH(2,3), k=2 and l=3. Therefore,

λ = µ(22 − 1)/(1− 2−6) = 3.05µ.

4.3.4 Load balancing in an EH(k,1)

EH(k,1) consists of an NC with 2k servers directly beneath the NC. We have men-

tioned that the NC maintains the current load value of each server beneath it. When-

ever a new task comes to the NC, it finds out the server which is the least loaded

among all the servers. The new task is then allocated to this least loaded server. As

a result, the k-cube of servers is perfectly load balanced and there is no need of task

migration among the servers. This is the way an EH(k,1) performs load balancing.

Obviously, this is a centralized algorithm. In any EH(k, l) also, whenever an NC at

level 1 wants to assign a task to the k-cube of servers beneath it, it maps the task onto

the least loaded server in the k-cube using the centralized algorithm of an EH(k,1).

4.3.5 Load balancing in an EH(k, l)

Now that we have a centralized algorithm for load balancing in each k-cube of servers,

there is a need of load balancing among different k-cubes of servers in the network.

This can be achieved by using a distributed algorithm working on the hierarchy of

NCs at levels 1 through l. We have chosen the threshold algorithm to solve this

purpose. The TA, in its original form, can be applied on the network in which case

73

each NC at level 1, upon arrival and/or departure of a job, compares its total load

with the threshold value for a first level NC (i.e. with T (1)) and probes other NCs at

level 1, if the threshold value is exceeded by the total load of the NC. The probes,

probe replies and the tasks to be migrated are routed through the network of NCs.

This simple TA, however, does not have a multilevel structure to exploit the

hierarchical connection among the NCs. In the next chapter, we describe a modifica-

tion of the algorithm, called the multi-level threshold algorithm, that is very suitable

for an EH.

4.4 Conclusions

In this chapter we describe a popular algorithm for dynamic load balancing on a

distributed multiprocessor system. The algorithm is called the Threshold Algorithm

(TA). The algorithm is executed at each PE when a new task arrives at the PE

or when a job finishes execution at the PE. If the load of the PE exceeds certain

threshold value, the PE probes some other PEs in the network in an attempt to

migrating a task from an overloaded to an underloaded PE. This conventional TA

does not have a hierarchical structure to exploit the multi-level connection of NCs in

an EH. A modification of this conventional algorithm suitable for the EH is discussed

in the next chapter.

74

Chapter 5

MULTI-LEVEL THRESHOLD
ALGORITHM

5.1 Introduction

In this chapter we introduce a modification of the simple threshold algorithm (TA)

described in the last chapter. We call this modified algorithm the multi-level threshold

algorithm (MLTA). We will mainly deal with the sender-initiated algorithm. The

working of the receiver-initiated algorithm is very similar to the working of the former

algorithm except for certain modifications or differences that we will describe at

appropriate places.

5.2 Motivation Behind MLTA

The threshold T and the probe limit L of the conventional sender-initiated TA de-

scribed in section 4.2.1 assume fixed predetermined values. We shall shortly see that

we can expect better load sharing among the processors if we let the values of T and

L adapt to the dynamic load situation.

Let us first consider the effect of changing probe limit with load. From a local

point of view, task transfer from a PE is more urgent at larger processor loads. This

means that the more a PE gets loaded, the more it is necessary for the PE to get rid

75

of some excess load. As a result, the PE should perform larger number of probes at

higher loads. Thus L should increase with the load. From a global point of view, on

the other hand, if the overall system load is high, a large fraction of PEs is overloaded,

i.e. has load larger than T . Hence the probability of a successful probe, that is, the

probability of probing an underloaded PE, becomes low. Hence, the chance of probing

an underloaded PE increases if we increase the number of probes, i.e. the probe limit

L.

Similarly, the threshold value T should be adjusted in accordance with the load

situation. A threshold sets up a level of comparison so that two PEs, one with load

above the level and the other with load below the level, may exchange loads between

each other so as to make their final load values closer to each other as well as closer

to the threshold. However, if both the PEs have loads either greater than T or less

than T , the conventional TA cannot provide a means to reduce the load imbalance

within the pair, however large the load difference may be. For example, consider a

system of 5 PEs, P1 through P5. At some instant each of the PEs P1 through P4 has

load T + 5 and P5 has load T + 6. Suppose 4 tasks arrive successively at P5 before

any task completes execution in any one of the PEs. Since all the PEs have loads

larger than T , no task migration occurs and the load of P5 increases to T + 10. On

the other hand, if we adjust the threshold value to Tadj = T +6, P5 can migrate the 4

new tasks to the other PEs resulting in a situation when each PE has a load of T +6.

Therefore, we expect better load sharing, if we increase T with increase in load value.

Following this idea helps us to explore a threshold algorithm with c thresholds

T1, T2, . . . , Tc and corresponding probe limits L1, L2, . . . , Lc, respectively, with

T1 < T2 < · · · < Tc

L1 ≤ L2 ≤ · · · ≤ Lc (5.1)

This implies that for larger processor loads, larger thresholds are exceeded and cor-

respondingly, larger number of probes are carried out. Specifically, if the work load

Wp of a processor P , upon arrival of an external task, satisfies the inequality

T1 < T2 < · · · < Tj < Wp ≤ Tj+1 < · · · < Tc (5.2)

76

that is, if Tj is the largest threshold exceeded by Wp, then a maximum of Lj probes

are carried out by the node P and the comparison level is set at Tj. Thus, if any

probed node with load less than Tj is found, the task migration takes place.

For a receiver-initiated algorithm, we similarly maintain c thresholds T1, T2, . . . , Tc

and the corresponding probe limits L1, L2, . . . , Lc, respectively, such that

T1 > T2 > · · · > Tc

L1 ≤ L2 ≤ · · · ≤ Lc (5.3)

That is, the smaller the processor load, the larger is the number of probes carried out

by the processor so that the possibility of finding an overloaded PE from which to

take a task is higher.

Ideally, we should maintain a threshold corresponding to each positive integer

value of the work load. In that case, the sender-initiated MLTA will be executed

upon the arrival of each external task to a non-empty PE (i.e. a PE with load > 0).

This is because such an arrival will cause at least one threshold to be exceeded by the

processor load, since the increased processor load will be larger than 1, the smallest

threshold. Therefore the PE will attempt to transfer the new task to a PE whose load

is less than the load of the former PE. However, this may lead to the maintenance of

a large number of values, viz Li for each integer i. In practice, therefore, the number

of thresholds and probe limits (i.e. c) and their values may be chosen heuristically.

For an EH(k,l), as an example, we take c = l − 1 using a heuristic that exploits the

hierarchical structure of the network (see section 5.4).

5.3 Applying MLTA on Mesh and Binary Hyper-

cube

As described in section 4.2.1, we cannot increase the probe limit indefinitely with

increased system load for our modified algorithm. This is because larger number of

probes incurs larger time for taking the migration decision of each new task. This

increase in overhead associated with probing is more serious for serial probing. Also,

77

for the sender-initiated case, higher overhead occurs at higher loads which is undesir-

able. Thus, increasing L at higher loads may lead to better load sharing among the

PEs but need not necessarily guarantee better speedup which is our ultimate goal. As

a result, it remains uncertain if applying MLTA onto a mesh or a binary hypercube

network can really improve system performance in terms of speedup. We shall shortly

see that an EH with the NCs available for carrying out the load balancing activities

is very suitable for implementing the MLTA.

5.4 Applying MLTA to Extended Hypercube

Before describing how the MLTA works on an EH, we mention that each NC at level

1 of any EH(k,l) uses the centralized algorithm described in 4.3.4 in order to assign a

task to the k-cube of servers directly beneath the NC. In a similar manner, whenever

a new task arrives at the root of an EH(k,l) for l > 1, the root allocates the task to

the least loaded NC at level (l–1). It remains to describe how a task is migrated from

one NC where the task comes, to a different NC in order to perform load balancing

in accordance with the multi-level threshold algorithm.

5.4.1 Thresholds maintained at different processors

In terms of load per server in an EH(k,l) , we maintain (l–1) thresholds t1, t2, . . . , tl−1

with

t1 < t2 < · · · < tl−1 (5.4)

for the sender-initiated algorithm. As suggested by Eqn 4.1, we can equivalently think

of (l–1) thresholds T
(i)
1 , T

(i)
2 , . . . , T

(i)
l−1 in terms of load per processor (NC or server) at

level i, where

T
(i)
j = 2ik · tj (5.5)

for i = 0, 1, 2, . . . , l, and

j = 1, 2, ..., (l-1).

78

It follows that for a server (i=0)

T
(0)
j = tj (5.6)

With these definitions the following theorems follow trivially.

Theorem 5.1 : If the load of an NC at level i in an EH(k,l) exceeds the

threshold T
(i)
j , there must be at least one child processor (NC or server) at level (i–1),

whose load exceeds T
(i−1)
j .

Proof : If it were otherwise, the total load of the NC at level i would be less

than 2k · T (i−1)
j = 2k · 2(i−1)k · tj = 2ik · tj = T

(i)
j , since there are 2k children of the ith

level NC.

Theorem 5.2 : If the load of an NC at level i in an EH(k,l) exceeds the

threshold T
(i)
j , there must be at least one server beneath the NC, whose load exceeds

tj.

Proof : This follows from the repeated application of the above theorem.

That is, one child of the NC at level i must be a processor at level (i–1) whose load

exceeds T
(i−1)
j . If (i=1), then this latter processor is a server whose load exceeds tj.

If (i>1), then this latter processor has a child processor at level (i–2) whose load

exceeds T
(i−2)
j and so on.

In a similar manner we can prove the following two theorems.

Theorem 5.3 : If the load of an NC at level i in an EH(k,l) is less than the

threshold T
(i)
j , there must be at least one child processor (NC or server) at level (i–1),

whose load is less than T
(i−1)
j .

Theorem 5.4 : If the load of an NC at level i in an EH(k,l) is less than the

threshold T
(i)
j , there must be at least one server beneath the NC, whose load is less

than tj.

79

5.4.2 The least-loaded-child path

Suppose that we want to allocate a task to some server of a subEH of level i. Initially

the task is at the root of the subEH. Let us also assume that the load of the root of

the subEH is less than T
(i)
j . Now theorem 5.4 suggests that there is at least one server

in the subEH whose load is less than tj. The problem is how to find out such a server

to which to allocate the task. Theorem 5.3 suggests that the least loaded child of the

root of the subEH must be a processor at level (i–1) whose load is less than T
(i−1)
j .

So the root of the subEH sends the task to its least loaded child at level (i–1). The

task is now at the root of a subEH of level (i–1) whose load is less than T
(i−1)
j . The

root of this latter subEH now sends the task to its least loaded child at level (i–2)

and the task finds itself at the root of a subEH of level (i–2) whose load is less than

T
(i−2)
j . This process is repeated till the task reaches a server whose load is less than

T
(0)
j = tj. Henceforth, we will call the path followed by the task the least-loaded-child

path or LLC path, since at each step the task is assigned to the least loaded child of

an NC.

5.4.3 The probing heuristics

Suppose a new task arrives at an NC called NC1. The allocation of the task takes

place in two phases. First, a migration decision is carried out if at least the smallest

threshold at NC1 is exceeded by the increased load of the NC. Let us assume that

the task is migrated to an NC called NC2 as a result of this migration decision. (If,

however, no migration occurs, we have NC1 = NC2). After the task reaches NC2, it

is assigned to a server following the LLC path starting from NC2.

As described in section 5.2, we are motivated by the idea of increasing the

number of probes at higher loads. Thus we will tend to probe larger subEHs (i.e.

subEHs of larger levels) in case larger thresholds are exceeded. To be more specific,

let us formulate that when the largest threshold exceeded by the work load of an NC

upon the arrival of a new job is the jth one, we will not make an attempt to probe a

subEH whose level is greater than (j+1) before allocating the task to a server along

80

the LLC path. In terms of the notations introduced in the previous paragraph this

implies that whenever NC2 is different from NC1, NC2 cannot be at a level larger

than (j+1). The implication of this heuristic will be clear in the next section. At this

point, we mention that since the largest possible subEH of an EH(k,l) is the entire EH

itself, the largest subEH probed has a level equal to l. Thus the maximum possible

value of (j+1) is l and that of j is, therefore, (l–1). This explains the existence of (l–1)

thresholds for the algorithm.

5.4.4 The migration decision

Let us suppose that a new task arrives at an NC called NC1 at level i. As a result,

the load of the NC increases by unity. If the increased load at NC1 does not exceed

any threshold, that is, the load is less than T
(i)
1 , then no migrtion decision is carried

out and the task is assigned to a server along the LLC path starting from NC1. So

let us assume that some thresholds are exceeded. Suppose that the largest threshold

exceeded is the jth one, that is, T
(i)
j < load of NC1 ≤ T

(i)
j+1. If i > j, we are already

at the root of a subEH whose level ≥ (j+1). So we make no attempt to migrate tha

task, since that violates our objective of not probing a subEH of level greater than

(j+1). The new task is assigned to a server following the LLC path from NC1.

Finally, suppose i ≤ j. In this case the task allocation proceeds in two phases.

The first phase, i.e. the probe phase, is an upward phase. NC1 sends a request to its

parent NC at level (i+1). If this parent NC has a load less than T
(i+1)
j , then following

the LLC path from this NC will guarantee that the new task can be assigned to a

server whose load is less than tj. On the other hand, if the jth threshold is exceeded

by the load of the (i+1)st level NC, the request is passed to the next higher level,

that is, to the grandparent of NC1. This NC at level (i+2) takes identical decisions

by comparison of the load at level (i+2) with the threshold T
(i+2)
j . However, as per

our formulation, the upward passage of the request should not proceed beyond level

(j+1). If the request reaches (j+1) without finding an NC for the task transfer, failure

of the probe is reported to the initiator of the probe, that is, to NC1, and the task

is allocated to a server following the LLC path from NC1. On the other hand, if an

81

NC, say NC2, is found during the probe, such that the load of NC2 is less than the

jth threshold at NC2, then the new task is migrated from NC1 to NC2 and from

NC2 to a server along the LLC path. In either case of success or failure of the probe,

the task allocation along the LLC path constitutes the second and downward phase

of the task-transfer algorithm.

5.4.5 Complexity of MLTA

The downward phase for both i ≤ j and i > j has to find out at most l least loaded

child elements one at each level of the EH(k,l). If a linear search is performed to find

out the least loaded among the 2k children, each search makes O(2k) comparisons.

So a total of O(l·2k) comparisons are carried out during the downward phase. On

the other hand, if binary search is performed to find the least-loaded element at each

level, a total of O(l·k) comparisons are necessary, which is O(lg N), where

N = the number of servers in the EH(k,l) = 2lk.

In case of binary search, however, each NC must maintain a sorted list of the loads

of its children. Whenever the load of a child changes (during assignment of a job to

the child or when a server beneath the child completes execution of a task), the list

of loads of the children must be updated and adjusted to keep the list sorted after

the updation. This can be done in O(k) time, since the list is of length 2k.

The upward phase, on the other hand, passes the probe at most j levels up the

hierarchy of NCs. Each NC in the path makes a single comparison of its current load

value with its jth threshold. The entire upward phase, thus, makes O(j) number of

comparisons which is O(l).

So each migration decision in the MLTA makes O(l·2k) comparisons in case of

linear search and O(l·k) comparisons in case of binary search.

We also note that the upward phase consists of at most 2j communications

between NCs to pass the probe upwards and to get the reply of the probe downwards.

The downward phase needs at most l communications to allocate the task. So the

MLTA requires O(l) communications on the whole.

82

5.4.6 Modifications for the receiver-initiated MLTA

So far we have described the working of the sender-initiated MLTA. The working of

the receiver-initiated MLTA is similar except for three aspects. First, the initiator

of each migration request is some NC at level 1. No NC at level greater than 1

need initiate a task reception request. This follows from theorem 5.3. Suppose, the

completion of a job at a server makes the load of an NC at level i>1 to drop below a

threshold T
(i)
j . By theorem 5.3, we argue that there is an NC at level 1 beneath the

ith level NC in concern, whose load falls below T
(1)
j . As a result, the NC at level 1

issues a task reception request. Any further request on the part of the ith level NC

will merely be a duplication of effort.

Secondly, whenever a new task comes to an NC, no migration decision is carried

out. The new task is sent to a server following the LLC path starting from the NC.

Task migration decisions are carried out only when a job departs from the network

and as a result the decreased load falls below a threshold. The upward passage

of the probe and the downward passage of the reply are exactly similar to those

corresponding to the sender-initiated case.

Thirdly, a task assigned to a server may be migrated from the server. As

preemption of a task is not allowed, only those tasks waiting in a server can be

migrated, whereas that being serviced by the server cannot be migrated. Suppose an

underloaded NC at level 1 called NC1 requests a task from another first level NC,

say NC2. If a new job is present at NC2 and the job is yet to be allocated by the

NC, then that task is sent to NC1. Otherwise, NC2 requests its heaviest loaded child

server to send back a task for transfer to NC1.

5.5 Simulation Results

The MLTA algorithm for EH(2,3) and EH(3,2) has been implemented on a transputer-

based system. The performance of the MLTA algorithm on EH has been compared

with that on an 8*8 mesh and on a 6-dimensional binary cube. We note that the

83

number of servers in each of the above three networks is the same, viz. 64. As

argued in section 5.3, we cannot increase the probe limit for the mesh and the binary

hypercube networks as much as we want, since that increases the overhead of each

migration decision. On the other hand, in an EH(k,l) the probe requires a maximum

of only j comparisons before the allocation phase, when the jth threshold is the largest

threshold exceeded.

Figs 5.1 and 5.2 show the total execution time (service time + communication

time + waiting time) (TET) of a set of thousand tasks for the different network

topologies plotted as a function of R/C, where R and C are the average service time

and average time of communication respectively of a task. R/C is varied by keeping R

constant and by allowing C to vary. The interarrival and service times of the jobs are

generated randomly following exponential distribution. The EH has been observed

to perform better than the other two topologies. For high values of R/C (R/C = 50),

EH shows similar performance as mesh and hypercube. For low values of R/C (R/C

< 30), the superiority of EH over the other two architectures is pronounced.

Fig 5.3 shows the variation of TET of the same set of tasks with varying

threshold values for the SI MLTA algorithm on the two EH networks.

84

85

86

87

5.6 Conclusions

The conventional TA assumes fixed predetermined values of the threshold T and

the probe limit L. We can ensure better load sharing if we allow both L and T to

increase with the load value. This leads to an algorithm that maintains more than

one thresholds and corresponding probe limits so that for larger load values larger

thresholds are exceeded and as a result, larger number of probes are carried out. But

in a mesh or a binary cube, we cannot increase the number of probes indefinitely,

because that increases the overload for each migration decision. For an EH, however,

the algorithm can be nicely applied in a manner that exploits the hierarchical structure

of the network.

88

Chapter 6

CONCLUSIONS

In this project, load balancing algorithms for extended hypercube (EH) networks have

been studied. Static load balancing on an EH has been formulated as an optimization

problem – a problem of allocating the computation modules or the subtasks of a task

to the servers of the network in a way so as to reduce the imbalance among the

loads of the servers as well as to keep the communication overhead associated with

the execution of the task as small as possible. Three algorithms for solving the

optimization problem have been implemented and compared among each other in

terms of the solution quality obtained by the algorithms.

Threshold algorithms are very popular algorithms for dynamic load balancing

in a distributed multiprocessor system. An extension of the conventional threshold

algorithm has been proposed and implemented. The performances of the modified

algorithm for mesh, binary cube and EH networks have been compared among each

other. EH has been observed to give better speedup than mesh and binary cube

topologies.

Most of the load balancing algorithms in vogue do not take into account the

interconnection pattern of the processors in the network. Although current litera-

ture depicts some special algorithms for load balancing on mesh and binary cube

architectures, such architecture–specific algorithms are very few in number. In this

project, we have stressed on the multilevel structure of the interconnection network

89

in an EH. In an attempt to exploit the hierarchical connection of processors in an

EH, we have extended and modified some popular algorithms. In case of static load

balancing, these modifications include the design of a tree-structured level-by-level

distribution of the task allocation problem among the controllers of an EH. Similarly,

the modified threshold algorithm for dynamic load balancing on an EH is designed

to suit the toplogy of an EH.

In this project, we have also been able to combine the centralized and dis-

tributed approaches for load balancing. The set of all computation processors (called

servers) has been partitioned into subsets such that all servers in a subset are centrally

controlled by one controller. The different controllers, however, work in a distributed

fashion to secure load balancing over the entire network.

Possible extensions of the work : In the project, we have made certain

simplifying assumtions, for example, the independence of the tasks of one another.

A more general approach is not to ignore the communication among the tasks. Thus

while migrating a task from one processor to another, one should consider the effect

of the migration on the communication overhead of the task with other tasks present

in the network.

Secondly, we have studied the static and dynamic load balancing algorithms

independently. In practice, however, these two problems may not be separated from

one another. Designing an algorithm that combines both static and dynamic load

balancing strategies is obviously a challenging extension of the project work.

90

